
FASTPOSECNN:

REAL-TIME MONOCULAR CATEGORY-LEVEL

POSE AND SIZE ESTIMATION FRAMEWORK

By

Eduardo Davalos Anaya

Thesis

Submitted to the Faculty of the

Graduate School of St. Mary’s University

in partial fulfillment of the requirements

for the degree of

MASTER IN SCIENCE

in

ELECTRICAL ENGINEERING

May 10th, 2021

San Antonio, Texas



Copyright © 2021 Eduardo Davalos Anaya
All Rights Reserved

ii



I would like to dedicate this work to my parents, Bertha Anaya Gutierrez and Eduardo Davalos Orozco, my
amazing sister, Marian Davalos Anaya, and the most important person in my life - my soul-mate Yike Zhang.
Without their endless love and support, this thesis would haven’t never been started nor completed. I love
you all.

iii



ACKNOWLEDGMENTS

This research was made through the Graduate Research Assistantship grant provided by St. Mary’s Engi-
neering Department. Through the masterful help of Dr. Aminian , Dr. Luo, and Dr. Rezaie, the necessary
guidance and aid required for this work were provided - enabling the completion of this thesis. Thank you all
for your great support.

iv



ABSTRACT

The primary focus of this paper is the development of a framework for pose and size estimation of unseen
objects given a single RGB image - all in real-time. In 2019, Wang et al. [45] proposed the first category-level
pose and size estimation framework alongside two novel datasets called CAMERA and REAL. However, the
novel method proposed by Wang et al. [45] was restricted from practical use because of its long inference time
(2-4 fps). Their approach’s inference had significant delays because they used the computationally expensive
MaskedRCNN framework and Umeyama algorithm. To optimize our method and yield real-time results,
our framework uses the efficient ResNet-FPN framework alongside decoupling the translation, rotation, and
size regression problem by using distinct decoders. Moreover, our methodology performs pose and size
estimation in a global context - i.e., estimating the involved parameters of all captured objects in the image
all at once. We perform extensive testing to fully compare the performance in terms of precision and speed to
demonstrate the capability of our method - FastPoseCNN. Our code will be made available in the following
link: https://github.com/edavalosanaya/FastPoseCNN.

v

https://github.com/edavalosanaya/FastPoseCNN


TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Pose and Size Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 FastPoseCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Mathematical Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Reference Frames and Interchangeability . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 3D-2D Correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Quaternions and Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Input Data Type Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Category-Level vs. Instance-Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Real-Time Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.5 Addressing the Gap in the Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Pixel-Wise Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Segmentation Mask Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Pixel-Wise Hough Voting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.6 Ground Truth and Prediction Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.7 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1 Tools and Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Implementation and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4 Comparison to SOTA Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5 Inference & Time-Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vi



LIST OF TABLES

Table Page

5.1 Additional breakdown comparison information in CAMERA. . . . . . . . . . . . . . . . 23
5.2 Total Model Time-Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

vii



LIST OF FIGURES

Figure Page

1.1 Model’s Intermediate Data Representation . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Mathematical Framework for 6D Pose Estimation . . . . . . . . . . . . . . . . . . . . . 3

3.1 Input Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Category-Level vs. Instance-Level Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Size Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Types of Methods - Simply Illustrated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Model’s Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Mask Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Hough Voting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Aggregation via Masked Average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.5 Quaternion Axis-of-Symmetry Rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Example Generated Poses and Size via FastPoseCNN . . . . . . . . . . . . . . . . . . . 21
5.2 3D detection and 6D pose estimation results for CAMERA validation . . . . . . . . . . . 22
5.3 3D detection and 6D pose estimation results for REAL test dataset . . . . . . . . . . . . 22

viii



CHAPTER 1

INTRODUCTION

1.1 Overview of Contents

The following thesis is divided into six major chapters. Chapter 1 - Introduction - begins our discussion

about the field of pose and size estimation and demonstrates our proposed method. Chapter 2 - Background

- provides a mathematical framework for 6D pose and size estimation and other supplementary equations

used in our work. Chapter 3 - Literature Review - further specifies how this work fits within the literature

and provides further context about 6D pose and size estimation. Chapter 4 - Methodology - dives into the

details about our proposed model. Chapter 5 - Experiments and Results - provides data describing the overall

performance, limitations, and other key features of our proposed framework. The conclusion ends with

elaborating on the future work and other possible improvements.

1.2 Pose and Size Estimation

We study rigid-body 6D pose and size estimation to detect and recognize object’s spatial information which

includes translation, rotation, and scale. With all this information, we can pinpoint the object in 3D space and

understand its relationship to the surrounding environment. This technology provides a foundation for various

practical applications, including mixed reality, robotics, and object tracking. Historically, methods in 6D pose

and size estimation were focused on feature matching through the use of algorithmic feature extractors such

as SIFT (Scale-Invariant Feature Transform) [22] and SURF (Speeded-Up Robust Features) [1]. Pose and

size estimation, similar to other computer vision (CV) tasks, has undergone a complete transformation with

the emergence of deep learning and convolutional neural networks (CNN). In recent years, most proposed

state-of-the-art methods have used end-to-end neural network models whose input is an image, and their

output is the final pose and size of targeted objects.

1.3 FastPoseCNN

In this work, RGB images are used as input to make multiple dense pixel-wise predictions, including the cen-

troid, quaternion, and size vector fields and depth regression. These dense outputs are converted into instance-

wise attributes through an aggregation routine that allows the estimation of the final pose and size. The regress

parameters are constructed from the collective information of an object’s seen pixels through the use of pixel-

1



(a) Input RGB Image

(b) Mask (c) Quaternion (d) Size

(e) Depth (f) Centroid Vectors (g) 3D Centroid

(h) Pose and Size

Figure 1.1: Model’s Intermediate Data Representation

wise data, resulting in robustness against occlusion and truncation. The code for this model which is open

source can be found in the following GitHub repository: https://github.com/edavalosanaya/FastPoseCNN.

The contribution of this work to the field can be summarized as follows:

• Proposing a novel CNN model for category-level 6D pose and size estimation named FastPoseCNN.

Our network generates dense pixel-wise predictions for each decoupled spatial component.

• Achieving real-time inference only requires RGB images as input, and it is robust to occlusion and

truncation through its pixel-wise driven pose and size estimation.

• Introducing SymQuaternion-Loss, a new training loss function for quaternion regression that accounts

for symmetric objects.

2

https://github.com/edavalosanaya/FastPoseCNN


CHAPTER 2

BACKGROUND

2.1 Mathematical Framework

z

xc

yc

zc
{C}

v

u

H

W

{O} zo

xo

yo

Centroid (x, y)

depth (z)

image plane

size (w,h,l)

rotation (q)

Figure 2.1: Mathematical Framework for 6D Pose Estimation

The task of 6D pose and size estimation includes estimating three main attributes of an object, namely trans-

lation, rotation, and size. Translation, t = (tx, ty, tz)T , can be described by a vector including the x, y, and

z displacement of the object from a fixed point - this is typically the camera’s location. Rotation can be

represented in various forms, e.g., rotation matrix, quaternion, axis-vector, and Rodrigues’ vector. The most

widely used forms in this field include rotation matrix and quaternion. In this work, we use quaternion form,

(q = q1 + q2i+ q3j+ q4k), because this is one of the smallest and most popular representations for using

only 4 orthogonal parameters. We then convert a quaternion to a rotation matrix,(R ∈ R3x3), and combine it

with the translation vector to build the complete affine transformation matrix, T. It provides computational

convenience when applying the transformation to multiple points. The size of the object’s bouding box is

estimated by regressing the three parameters, (h,w, l). All of these parameters are illustrated in Fig. 2.1. Our

sources for mathematical expressions and information are found in Section 2.1 are [37, 23].

3



2.2 Reference Frames and Interchangeability

It is essential for 6D pose and size estimation to understand how cameras and targeted objects’ coordinate

spaces are related and how we can transform 3D points between them. Transformation is performed using

T transformation that characterizes how the origins of both a camera and an object are related in terms of

translation, rotation, and scaling. In Eq. 2.1, it is shown how a transformation matrix converts a point from an

object’s space into a camera’s space. Note that we use the homogeneous form of point vectors for consistency.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xC

yC

zC

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R t

01x3 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0

y0

z0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.1)

By applying the T transformation, eight points associated with the bounding box and three points consisting

of the axis of an object can be interpreted from a camera’s frame. The estimation of the T transformation via

its integrated rotation matrix R and translation vector t is a necessity for determining the pose and size of an

object. It enables us to comprehend the state of an object and its global location to the camera.

Before we directly estimate the T transformation, we need to acknowledge another additional level of com-

plexity in our problem. That is how 3D spaces are affected when our view is flattened into a quantized 2D

plane, i.e., the image. Since our input is an image, we need a method for 3D to 2D correspondence that allows

information to be interchanged between these two types of spaces.

2.3 3D-2D Correspondence

3D to 2D Conversion - Projection. Projection is a process of converting 3D points into their corresponding

2D location within the uv-plane, as shown in Fig. 2.1. Since the image plane is composed of a quantized grid

of pixels, these 2D locations are converted to pixel coordinates. The translation between 3D point’s location

in the homogeneous form, (X ,Y,Z,1)T , is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũ

ṽ

w̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [K 03x1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xC

yC

zC

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.2)

4



⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u

v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũ/w̃

ṽ/w̃

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.3)

In this equation, we use 3D points in the camera frame and the internal intrinsic matrix to calculate the

pixel coordinates. It results in the homogeneous form of the projected points. Afterward, we convert the

homogeneous form to the Cartesian form by dividing using w̃. In Eq. 2.2, we use the intrinsic matrix, K,

of a camera provided by the camera’s manufacture. The parameters included in the K matrix describe the

essential characteristics of the camera and the image plane. ρu and ρv are the pixel’s height and width of the

camera’s sensor; the f is the camera’s focal length. (u0,v0)T is the principal point of an image plane. The K

matrix is defined in the following:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f/ρu 0 u0

0 f/ρv v0

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.4)

Given both T and K, we can easily translate information between the 2D image plane and 3D coordinate

space. It allows us to visualize the 3D information, such as the bounding box, by projecting it into the image

plane. In Eq. 2.5, the scaling of a unit box yields in the bounding box of captured objects using the (h,w, l)T

parameters:

BBscaled =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h

w

l

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⊙BBunit (2.5)

2D to 3D Conversion - Lifting Up. In the opposite direction of projection, we lift the pixel’s location into

the 3D coordinate space, and thereby able to capture an object’s xy-translation. By localizing an object’s 3D

centroid’s projection, c = (u,v)T , and estimating their depth z, we construct the translation vector, t. Assum-

ing a standard pinhole camera is used, we apply the following equation to construct an object’s translation

vector:

t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tx

ty

tz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=K−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u ⋅ z

v ⋅ z

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.6)

5



The parameters z, q, and s = (h,w, l)T are more challenging to be estimated comparing to x, and y since these

parameters require more contextual information of an object’s attributes and its environment. Nevertheless,

once we can construct the T matrix and estimate the size of an object, we infer an object’s complete spatial

information - ranging from their orientation, location, and size.

2.4 Quaternions and Rotation Matrices

During our conversion from quaternions to rotation matrices, we use the following equation to perform batch

quaternion-to-rotation-matrix conversions [24]:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q2
1−q2

2−q2
3+q2

4 2(q1q2+q3q4) 2(q1q3−q2q4)

2(q1q2−q3q4) −q2
1+q2

2−q2
3+q2

4 2(q2q3+q1q4)

2(q1q3+q2q4) 2(q2q3−q1q4) −q2
1−q2

2+q2
3+q2

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)

With this conversion method, the conversion computation delay was minimized when accounting for multiple

objects captured by an image.

6



CHAPTER 3

LITERATURE REVIEW

The field of 6D pose and size estimation has many different approaches and methodologies for estimating

rigid body spatial information. We begin our overview of the literature by an initial categorization from

previous works - primarily the problem and its solution constraints. These constraints are illustrated in the

following subsections: 3.1 specifies input data types to a model, 3.2 describes object variation, and 3.3

elaborates the throughput requirement of solutions. Afterward, we will discuss the types of strategies and

approaches used in the literature in Section 3.4 and how these methods compare to each other in terms of

performance, efficiency, and usability. Finally, we conclude our literature review by addressing the gap

mentioned in Section 3.5 using our method.

3.1 Input Data Type Differences

RGB Images

PoseCNN [46]

DPOD [49]

PVNet [30]

DOPE [42]

BB8 [33]

Input Data Types

RGBD Images

NOCS [45]

MaskedFusion [31]

Brachmann et al. [3]

iPose [17]

LatentFusion [28]

D Images

CLPRDI [36]

6OPEDI [40]

Point Clouds

W-PoseNet [47]

DenseFusion [44]

G2L-Net [5]

6OPRSLPC [8]

Figure 3.1: Input Data Types

The first distinction among many proposed solutions is the type of input image or information they used.

Standard data inputs include RGB images, RGBD images, depth images, point clouds, and other input repre-

sentations. Different data representations provide unique challenges, complexities, and constraints.

RGB Image Input. Methods that used RGB images have gained high attention, mostly due to the com-

monality of RGB cameras in modern devices. Determining the 6D pose and size of an object from a single

RGB image is inherently more challenging than using an RGBD image. It is because the missing depth in-

formation introduces perspective ambiguity. Even for humans, an object’s unknown depth results in scaling

ambiguities. Therefore, making pose and size estimation especially difficult.

7



RGBD Image Input. Historically, RGBD methods have been more commonly used in the 6D pose estima-

tion field [3]. Methods that rely on RGBD input images utilize the 3D features to capture the pose of objects

more accurately. These methods have achieved excellent performance by using neural networks and other

machine learning approaches [31, 28, 41]. One of the downsides of this mode of input data is the expensive

requirement of an RGB+depth camera.

Depth Image Input. Pure depth methods rely on the volumetric information provided in a depth image

to estimate the pose [36, 40]. These methods use lighter machine learning models such as random forest

models to make their inference extremely fast, e.g., 2 ms for [40]. These methods benefit from smaller

yet efficient models as they require fewer training samples. The major drawback of these methods is their

relatively lower performance, compared to RGB and RGBD methods, in more challenging datasets. The de-

creased performance is more visible when tested on the difficult LINEMOD-OCCLUDED and LINDEMOD-

TRUNCATION datasets.

Point-Clouds Input. With the development of PointNet [32], Point clouds for CV methods have gained

interest primarily because of their powerful integration of depth in a native 3D space. By lifting RGBD

images into a point cloud representation, DL models benefit more from the present depth information by

learning complex 3D features [47, 44, 8, 5]. Fusion methods combine the learned features from the point

cloud and RGB image to better estimate an object’s pose.

3.2 Category-Level vs. Instance-Level

(a) NOCS CAMERA: A Category-Level dataset (b) LINEMOD: An instance-level dataset

Figure 3.2: Category-Level vs. Instance-Level Dataset

The first modern datasets available for 6D pose estimation included LINEMOD [12], LINEMOD-OCCLUDED

[3], YCB-V [46], and T-LESS [14]. All of these datasets share the property of being instance-level datasets.

Instance-level implies that the dataset does not include any variants for objects of the same type. There is

only one instance of each type in an object class. This is a major flaw in SOTA pose research since it does

8



not accurately reflect the nature of objects found in reality. The discrepancy between real-life data and SOTA

research datasets has led to the need for a 6D pose and size category-level dataset.

The landmark publication by Wang et al. [45] provided the first pair of publicly available category-level

datasets, named CAMERA and REAL. CAMERA is an extensive synthetic dataset containing realistic back-

grounds with rendered 3D models in workplace-related environments. REAL is a smaller real dataset with

the same object categories and similar backgrounds. These datasets included a variety of distinct instances

for each object category, as shown in Fig. 3.2. It added another level of complexity to pose estimation as

now models had to account for these per-instance differences and how that might affect the effectiveness of

methods.

Size Estimation Requirement

1

1 1

h

w l

size scaling

(h,w, l)

Figure 3.3: Size Regression

Additionally, Wang et al. [45] was the first paper to address category-level 6D pose and size estimation

problem - specifically the addition of the size requirement. This is because instance-level pose estimation

automatically provides the scale of an object since the exact 3D model of the object is known. However, the

category-level problem adds the size requirement to fully estimate the complete bounding box of an object to

account for per-instance size variations.

3.3 Real-Time Inference

Another major concern present in pose and size estimation is the inference time of solutions. Models need

to detect and classify objects and their corresponding pose efficiently to allow applications to be built on top

of the model; therefore, this time efficiency requirement is a commonly sought feature in the CV. This was

a problem for Wang et al. [45] as their proposed method was only able to run within 2-4 fps on an Intel

Xeon Gold 5122 CPU @ 3.60GHz desktop with an NVIDIA TITAN Xp. The slow inference makes their

MaskRCNN-NOCS model not practical for time-sensitive applications.

9



3.4 Related Work

Methods

Holistic Template-Matching Feature-Based

Keypoint Correspondence-Mapping Dense

hx y

y

Figure 3.4: Types of Methods - Simply Illustrated

Holistic Methods. Holistic methods take the approach of directly regressing the pose, size, or other object’s

attributes. To simplify the nonlinearity of the rotation space, [43, 38, 18, 39] quantized the SO(3) space -

making it into a more stable yet less accurate classification problem. It is common practice in the literature

to take a mixed approach when estimating an object’s 6D pose and size. Xiang et al. [46] uses a CNN feature

extractor to estimate the decoupled translation and rotation. First, the extracted features were used to estimate

the translation via dense keypoint regression to identify the centroid (x,y) and dense pixel-wise regression for

the direct depth (z). Second, they used the extracted features to directly regress the rotation by approximating

an object’s quaternion q.

Template-matching Methods. Before the use of DL in pose estimation, template-matching was widely

used to estimate the pose of rigid bodies [50, 51, 9, 34, 16, 10, 13, 11]. Template-matching methods use a

sliding-window algorithm that calculates a similarity score between an image and multiple perspective-based

templates. The major advantage in template-matching is its great ability to estimate the pose of texture-less

objects with great performance. However, its heavy reliance on the similarity score reduces its performance

10



when exposed to occlusion, truncation, and lighting variations.

Feature-based Methods. Another method used in the traditional field of 6D pose estimation, hand-crafted,

and feature engineering were used for feature extraction and matching [21, 6, 35]. However, feature extraction

and matching require texture-rich objects to accurately detect and recognize these objects. With the help of

CNN’s in pose estimation, using trainable end-to-end neural network models has become commonplace as

these approaches learn more effective methods for extracting features in more challenging scenarios [46,

4, 15, 49, 47, 45, 44, 42]. After using features instead of templates, methods have become more robust to

occlusion and truncation. Handling symmetries in objects have posed a greater challenge to feature-based

methods in part because of symmetric-induced orientation ambiguities.

Keypoint-based Methods. Keypoint-based methods rely on regressing 2D keypoints of 3D objects instead

of directly estimating the 3D translation and rotation. The use of keypoints as an intermediate representation

of the pose and size stabilizes as well simplifies the learning problem. These methods use CNNs for fea-

ture extraction and segmentation to perform keypoint predictions through regions [15], heatmaps [26, 43], or

pixel-wise predictions [4, 30]. Many approaches use hough voting and unit-vectors within keypoint-based

methods to determine the keypoints corresponding to objects’ projected 3D bounding box edges or 3D cen-

troid point [46, 30, 4]. While using Perspective-n-Point (PnP), these methods can obtain the pose and size

from these 2D-3D correspondence keypoints.

Correspondence-Mapping Methods. Another data representation that connects 2D-3D spaces is the di-

rect use of 2D-3D correspondence mapping of objects. Methods such as [45, 49, 17, 19, 3] utilize dense

correspondence mapping to regress intermediate representations, such as 3D object coordinates, that aid in

determining the rotation and translation of the objects. Wang et al. [45] proposed normalized object coordi-

nate space to integrate size estimation in 3D coordinate regression.

Dense Methods. Dense methods utilize pixel-wise predictions that contribute via a reduction function to

the overall object’s pose. These methods have been used to regress keypoints, correspondence maps, and

direct components of the pose, i.e rotation, translation, and size. Through reduction schemes, such as hough

voting, RANSAC, and native averaging, dense predictions are converted into instance-wise predictions.

11



3.5 Addressing the Gap in the Literature

Our research focuses on addressing the disadvantages in the groundbreaking publication of Wang et al. [45]

- i.e., slow inference and dependence on depth information. Their approach regressed dense correspondence

mapping via a heavy MaskRCNN framework (210 ms) and later used the Umeyama algorithm (30 ms) for

pose alignment. Their approach greatly benefited in performance by using correspondence mapping - yet this

design decision slowed the model’s speed. Our approach takes inspiration from RGB methods [30, 4, 46]

by using the smaller ResNet-FPN framework and regressing both intermediate representations and direct

attributes. Through these representations, our method allows the computation of the pose and size with greater

computation efficiency. By making our method only use RGB images, we make our approach compatible

with most modern cameras. This delay reduction and depth independence are at a small performance penalty

while rendering our method useful for time-critical and hardware-limited applications.

12



CHAPTER 4

METHODOLOGY

4.1 Framework Overview

x

mask
decoder

rotation
decoder

translation
decoder

size
decoder

Instance-wise Pose
and Size Fitting

RGB image

Results

pixel-wise
predictions

hough
voting

mask
breaking

encoder

(vpw ,zpw)

(hpw ,wpw , lpw)

(qpw)

(Spw)

(xiw ,yiw ,zpw)

(Ipw)

Figure 4.1: Model’s Overall Architecture

In our approach to 6D pose and size estimation, we decoupled the regression for each spatial component of

the objects. This lead to our architecture handling the classification, rotation, translation, and size estimation

in separate decoders. They are demonstrated in our architecture outline in Fig. 4.1. The decoupling of these

attributes ensures stability in training and better regression as each branch effectively adapts to the typical

range of the designated data.

As shown in Fig. 4.1, our data pipeline is composed of CNN-generated pixel-wise predictions, mask breaking,

hough voting, and aggregation. The input image’s features are extracted by the encoder and then later used

by the decoupled decoders. These decoders generate multiple dense pixel-wise predictions for segmentation,

direct regression, and unit vector regression. The segmentation output is converted to instance masks via

mask breaking. The unit vectors are used in hough voting to generate a centroid hypothesis for a detected

object. After converting the intermediate data, aggregation takes place to match pixel-wise predictions to

specific instances. In the following sections, each component of the data pipeline will be discussed in more

detail.

13



4.2 Pixel-Wise Predictions

Our proposed method creates dense pixel-wise predictions for all parameters of the final pose. Our individual

parameter decoders are inspired by [15, 49, 46, 4] - we noticed that small independent decoders improved

stability and performance in training without a significant increase in inference time. The mask branch

creates a segmentation mask. The rotation branch regresses dense pixel-wise quaternion predictions. We

utilized quaternions here instead of rotation matrix due to the lower number of parameters to regress. This

is to ensure that the problem space is smaller and less complex. The translation branch regressed both dense

predictions for centroid unit vectors and the depth. The size branch generates dense (h,w, l) predictions.

By using dense pixel-wise predictions with the ResNet framework, our approach generates predictions for

multiple objects in a single step - via a global context. Later in the process, the aggregation of these dense

predictions is performed in an optimized batch manner - enabling the quick translation between pixel-wise

to instance-wise pose and size information. Our method differs from other published works [45, 39] that

perform 2D object detection and serially estimate an object’s spatial attributes. Our method process multiple

instances in parallel - thereby reducing the delay when multiple objects are captured in the image.

Class Masking and Compression. Our method outputs pixel-wise predictions for each class to ensure the

data of different classes do not interfere and lower the model’s performance. Afterward, we utilize the seg-

mentation mask to compress the pixel-wise predictions and reduce their dimensionality to match categorical

data. By doing this, our model can effectively estimate the pose and size of multiple classes without any

speed penalty.

4.3 Segmentation Mask Breaking

segmentation mask instance mask

mask breaking

Figure 4.2: Mask Breaking

To match the pixel-wise information between all predictions, we convert the segmentation mask to a col-

lection of instance masks. We utilize the GPU-accelerated implementation of scipy.ndimage.label

provided in the CuPy library [27] to perform mask breaking. Once we convert the instance mask, it’s matched

with the corresponding dense pixel-wise to each object instance captured in an image by matching it with the

14



instance mask.

Through our ResNet-FPN implementation, class segmentation and mask breaking improve the performance

and shorten the training time of the model. It also allowed the optimization of the aggregation later down the

pipeline. By breaking the segmentation mask into instance masks, the reduction function of the pixel-wise

predictions can be performed in parallel for all instances captured in the instance masks.

4.4 Pixel-Wise Hough Voting

p1,0

v(p1,0)

p2,0

v(p2,0)

p2,1

p1,1

v(p1,1)

v(p2,1)

h1

h2

Figure 4.3: Hough Voting Scheme

For our regression of objects’ x and y translation attributes, we used the intermediate centroid unit vectors that

point towards the projection of the 3D center of an object. To convert these unit vectors to proper translation

parameters, we used the popular hough voting approach. For the hough voting scheme, we adapted the

CUDA-accelerated implementation proposed by PVNet [30] for our problem as it provides a fast and accurate

method to process multiple centroids in a batched fashion.

In our adapted hough voting algorithm, the pixel-wise centroid unit vectors are translated into a final c =

(u,v)T hypotheses within the image plane. The centroid unit vectors v(p) of a pixel p is defined by the

relative location of the pixel p from the centroid c, shown in Eq. 4.1. With this definition, the centroid unit

vectors point towards the projected 3D centroid of objects.

v(p) = c−p
∣∣c−p∣∣2

(4.1)

During the class masking and compression step, we apply bit-wise masking on pixel-wise unit vectors with

the mask of the same classes. This step prepares the data to generate N number of hypotheses. As shown

15



in Eq. 4.2, we construct a hypothesis, h, for the projected centroid by obtaining the intersection between a

random pair of unit vectors.

hi = v(pi,0)∩v(pi,1) (4.2)

Once we construct N number of hypotheses, we calculate the weights for each hypothesis by incorporating

the rest of the object’s unit vectors. These weights measure confidence in the matching hypothesis. The

weights are calculated by counting the number of unit vectors that agree with the hypothesis - that is, that

they point towards the hypothesis. In Eq. 4.3, the θ is a threshold (usually 0.99), O is the object’s pertaining

unit vector pixel-wise predictions.

wi = ∑
p∈O

I( (hi−p)T

∣∣hi−p∣∣2
v(p) ≥ θ) (4.3)

The final centroid hypothesis is determined by calculating the weighted average of the N hypotheses. By using

the hypothesis weights, the entirety of the object’s unit vectors is included in the final hypothesis calculation.

This contributes to faster learning with a smaller requirement of the number of hypotheses generated.

h f inal =
∑N

i=0 wihi

∑N
i=0 wi

(4.4)

The resulting hfinal is later used, by combining it with the regressed depth z, to construct the translation vector

t of an object. This process is shown in Eq. 2.6. To completely reconstruct the pose and size parameters

of instances captured by the model, we perform an aggregation step to convert the pixel-wise predictions to

instance-wise, and this part will be elaborated in the next section.

4.5 Aggregation

With the creation of dense pixel-wise predictions for the pose and size variables, we need to compress dense

predictions into instance-wise predictions to attach these parameters to captured objects. The overall aggre-

gation routine is illustrated in Fig. 4.4. Our method utilizes the instance mask to individually extract the

instance’s information using a mask-drive reduction function. To ensure that our method remains real-time,

we selected the fast and simple naive average of the masked dense predictions. The related reduction function

is shown in Eq. 4.5 - where a is a placeholder for any pixel-wise predictions, O is the object’s pixel-wise

16



Pixel-Wise Predictions

Instance-wise Mask

mask-driven
reduction
function

mask-data
matching

Instance-Wise Predictions

instance i:
quaternion: (q)
depth: (z)
size: (w,h,l)

qpw

zpw

hpw , wpw ,lpw

Figure 4.4: Aggregation via Masked Average

predictions, and the I is the binary instance mask.

aaggregated =
∑p∈O a(p)

∑p∈O I(I(p) = 1)) (4.5)

Here, we convert dense pixel-wise predictions into instance-wise predictions that allow us to create complete

instance profiles that contain the translation, size, and rotation parameters. Except for the centroid unit

vectors, these are not included in the aggregation routine - these pixel-wise predictions are handled by the

hough voting step.

4.6 Ground Truth and Prediction Matching

During training, we focus on comparing the instance-wise predictions instead of the pixel-wise predictions.

It shifts the focus of the optimization problem to the estimated final pose and size parameters rather than

the intermediate dense pixel-wise predictions. Therefore, we matched the ground truth instances and the

predicted instances using the 2D intersection over union (IoU) metric. By calculating all of the 2D IoU’s

between the ground truth and predicted instance masks, we matched the instances by assigning them to their

corresponding highest 2D IoU score match. We noticed how direct optimization was more stable during our

training process and prevented the model’s estimation performance from degrading for smaller objects - due

to their smaller pixel counts.

17



4.7 Loss Functions

Similar to our decoupling approach, we use separate loss functions for each branch of the model. Afterward,

we sum the individual contribution of each loss to determine the total. Each loss is structured to account for

the range and dimension of each parameter’s problem space.

Ltotal ≔ Lmask+Lsym−quat +Lcentroid +Ldepth+Lscales (4.6)

Segmentation. The loss function used for segmentation is the summation between multi-class cross-entropy

and focal [20] loss functions.

Lmask ≔ Lce(m,m)+L f ocal(m,m) (4.7)

Quaternion. For regressing the quaternion, we initially used QLoss, as shown in Eq. 4.8 as Lquat , referred

in [2]. This loss function accounts for the internal symmetry of quaternions. However, it does not account

for the symmetric object’s axis of symmetry. We propose Lsym−quat for making the quaternion loss function

fit for symmetric objects.

Lquat ≔ log(ε +1− ∣q ⋅q∣) (4.8)

Figure 4.5: Quaternion Axis-of-Symmetry Rotation

Symmetric Object Handling. A major issue when performing rotation estimation is symmetry. Many of

the objects present in the CAMERA/REAL datasets have an axis of symmetry. We explored and determined

that if we directly regressed the rotation without considering the axis of symmetric of certain objects, the

model yielded drastically lower performance for those objects.

As shown in Fig. 4.5, our strategy is to generate a set of equivalent ground truth quaternions rotated around

the axis of symmetric. The goal is to capture all possible correct quaternion orientations and concentrate the

quaternion optimization problem for symmetric objects to capture the axis of symmetry.

18



Therefore, we annotate the axis of symmetry for each type of symmetric object. We specify a set of ro-

tation angles, θ = {0◦,1◦, ...,359◦}, which we use to form a new set of transformation quaternion, q̂i =

{q̂0◦ , ..., q̂∣θ ∣}. By applying the transformation quaternion to the ground truth quaternion qi = q̂iqq̂−1
i , we

construct ground truth quaternions, qi = {q0◦ , ...,q∣θ ∣} that capture all possible valid rotations. As shown in

Eq. 4.9, we calculate the Lquat for each qi and use the lowest loss value.

Lsym−quat ≔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

mini=i,...,∣θ ∣ Lquat (qi,q) if object is symmetric

Lquat (q,q)) otherwise
(4.9)

Centroid Unit Vectors. Early in the training phase, large quantities of outliers are generated by the un-

trained hough voting scheme. Through multiple trials, we determined that L1 outperformed smooth L1 and

L2 in this task. Therefore, for regressing the projected 3D centroid, we use L1 loss on each coordinate space

of the centroid.

Lcentroid ≔ `1(c∣x,c∣x)+ `1(c∣y,c∣y) (4.10)

Depth. The ambiguity of estimating the depth makes this component of the model have the lowest perfor-

mance. Additionally, minor errors in the depth estimation have significant negative effects on metrics such as

3D IoU thresholds. We follow the stabilizing technique proposed by [4] of estimating the log(z) instead of

the z. This enhances the performance and stabilizes the training of the model.

Ldepth ≔ `1(log(z), log(z)) (4.11)

Size Scales. For regressing the size of objects, we use L1 loss functions on each component of the size.

This ensures the outliers in scales parameters were better handled compared to using smooth L1 or L2 loss

functions.

Lscales ≔ `1(s∣h,s∣h)+ `1(s∣w,s∣w)+ `1(s∣l ,s∣l) (4.12)

19



CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Tools and Source Code

Our experiments and model were implemented using the PyTorch framework [29] and PyTorch-Lightning

[7] open source libraries. We also used PyTorch Segmentation [48] pre-trained FPN-resnet18 model to jump

start our training. Our model adapted PVNet’s CUDA-accelerated hough voting scheme [30]. Our source

code is publicly available at https://github.com/edavalosanaya/FastPoseCNN.

5.2 Implementation and Training

We initialize the ResNet18-FPN backbone with the weights pre-trained on Imagenet. In the first stage of

training, we focus on training the mask branch of the model. We used a batch size of 2, an initial learning

rate of 1× 10−4, and a RAdam optimizer with a weight decay of 3× 10−4. We disabled the hough voting,

mask breaking, and aggregation steps that are later used in the second stage of training. After freezing all

the layers except those found in the encoder and mask branch, we begin the speed-optimized training for

50 epochs. In the second stage of training, we trained the entire model for another 50 epochs. We used the

same hyperparameters for this stage while enabling all intermediate steps of the model during training. The

learning rate is reduced by a factor of 0.25 by a plateau scheduler in both stages.

5.3 Metrics

We adopt the metrics used in [45] to evaluate our results. These metrics include the 3D IoU and the mean

average precision (mAP) where the error is less than m cm for translation and n◦ for rotation. By considering

separate metrics for translation, rotation, and scale, we can more clearly present the performance of the model.

For symmetric objects, we apply the same technique used in the symmetric loss function by rotating the

ground truth quaternion and 3D bounding box by the axis-of-symmetric and selecting the highest performance

value.

5.4 Comparison to SOTA Methods

As the following, we report and compare our category-level results to the reported values of NOCSNet [45]

on both datasets. Due to our training structure, comparisons with NOCSNet for the CAMERA25 validation

20

https://github.com/edavalosanaya/FastPoseCNN


dataset use the reported data with the same training amount and type.

Figure 5.1: Example Generated Poses and Size via FastPoseCNN

CAMERA25 Validation. We tested our model against the CAMERA25 validation set after only training

with the 275K CAMERA training set. Our model achieves 32.33% for 3D IoU at 50% and an 5◦&5cm mAP

of 66.69%. The precision curves for these metrics are shown in Fig. 5.2. Note that these metrics are quite

challenging because of the perspective ambiguities introduced by the unknown depth of objects.

21



(a) FastPoseCNN Performance Curves (b) NOCSNet Performance Curves

Figure 5.2: 3D detection and 6D pose estimation results for CAMERA validation

REAL275 Testing. After training the model on the CAMERA275 training dataset, we train an additional

50 epochs specifically on the REAL training dataset. When tested on the REAL test dataset, our model

performs 7.18% for 3D IoU at 50% and an 5◦&5cm mAP of 5.18%. The precision curves for these metrics

are shown in Fig. 5.3. The shifting of domains is especially tough when real data is not sufficient. Both

NOCSNet and our proposed method have significantly decreased performance when testing on the REAL

test dataset.

(a) FastPoseCNN Performance Curves (b) NOCSNet Performance Curves

Figure 5.3: 3D detection and 6D pose estimation results for REAL test dataset

The approach proposed by Wang et al. [45] yields higher performance for the 3D IoU metric primarily

because of its high-quality correspondence mapping method used to regress the object’s scales and its use

of depth images. However, correspondence mapping methods, like NOCSNet, do not handle well axis of

symmetry. Our results verify this - as our direct regression rotation method achieves higher mAP. It is also

important to consider that our method regresses the depth with good accuracy yet it negatively affects the 3D

IoU metric. Our method achieves good performance while not requiring additional depth information.

In Table 5.1, we present our per-class performance in 5.1b and a further breakdown in performance in 5.1a.

Through the class-wise information, it is clear that our method can capture the symmetric nature of objects

better compared to Wang et al. [45] using our Lquat−sym loss function.

22



CAMERA
methods NOCS OURS

3D25 90.13 66.69
3D50 87.58 32.33

5◦&5cm 38.14 67.16
10◦&5cm 61.24 84.14

10◦&10cm 62.01 91.02
(a) Validation on CAMERA25

Class OURS NOCS
3D50 5◦&5cm 10◦&10cm 3D50 5◦ & 5cm 10◦&10cm

bottle 20.22 77.15 97.88 89.18 78.99 91.56
bowl 35.08 79.18 99.13 91.36 51.18 87.77
can 26.97 81.19 99.24 85.28 78.78 97.32

laptop 54.12 71.07 93.45 85.56 16.52 63.67
camera 39.53 51.88 76.90 83.59 2.01 17.47

mug 37.00 44.03 79.53 90.53 13.50 14.28
(b) Class-Wise performance on CAMERA25

Table 5.1: Additional breakdown comparison information in CAMERA.

5.5 Inference & Time-Breakdown

The primary purpose of this research is to provide a real-time monocular version of [45]. Our method can

achieve an average delay of 43ms (23 fps) during inference - allowing our method to be considered real-time

for pose estimation applications. A run-time breakdown is presented in Table 5.2. As far as we know, we are

the first to propose a monocular category-level pose and size estimation framework with a real-time inference.

Component Delay Time (ms)
Feature Extractor 18.570
Aggregation 4.808
Hough Voting 12.894
RT Calculation 3.769
Class Compression 2.660
Total 43.355 (23fps)

Table 5.2: Total Model Time-Breakdown

5.6 Limitations

In this section, we elaborate on the limitations of FastPoseCNN. First, the Hough Voting algorithm obtained

from PVNet requires a CUDA-compatible GPU device to run it. Second, to use a different camera, additional

training would be required. As referred by the pose estimation community, the camera intrinsics were baked

into the model’s parameters when we trained on the CAMERA and REAL datasets. This should not affect

performance drastically, but it should be noticed. Third, the pose and size estimated by FastPoseCNN are

23



excellent to a certain degree. FastPoseCNN should not be used for applications that depend on precision-

critical objects’ pose and size estimation. The research presented here is a proof-of-concept and would

require further research and development to become a commercially reliable system.

24



CHAPTER 6

CONCLUSION

In this thesis, we have introduced a real-time monocular category-level pose and size estimation framework

that globally detects and estimates an object’s pose and size parameters via dense pixel-wise predictions.

FastPoseCNN is excellent at estimating the pose of symmetric objects while running in real-time. We showed

how our specialized Lsym−quat loss function improves the training of the model and outperforms NOCSNet

in rotation estimation. Our experiment and analysis section demonstrates the performance and speed of

FastPoseCNN compared to previous works. In future work, we plan on creating a more robust intermediate

size and depth interpretation to achieve higher performance in 3D IoU and translation offset metrics. Another

possible future research direction includes the use of the NVIDIA TensorRT library [25] to further accelerate

the model and increase its throughput.

25



REFERENCES

[1] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded Up Robust Features. In Aleš
Leonardis, Horst Bischof, and Axel Pinz, editors, Computer Vision – ECCV 2006, pages 404–417,
Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. ISBN 978-3-540-33833-8.

[2] Gideon Billings and Matthew Johnson-Roberson. SilhoNet: An RGB Method for 6D Object Pose
Estimation. arXiv e-prints, page arXiv:1809.06893, 9 2018.

[3] Eric Brachmann, Alexander Krull, Frank Michel, Stefan Gumhold, Jamie Shotton, and Carsten Rother.
Learning 6D Object Pose Estimation Using 3D Object Coordinates. In David Fleet, Tomas Pajdla, Bernt
Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, pages 536–551, Cham, 2014.
Springer International Publishing. ISBN 978-3-319-10605-2.

[4] Catherine Capellen, Max Schwarz, and Sven Behnke. ConvPoseCNN: Dense Convolutional 6D Object
Pose Estimation. arXiv e-prints, page arXiv:1912.07333, 12 2019.

[5] Wei Chen, Xi Jia, Hyung Jin Chang, Jinming Duan, and Ales Leonardis. G2L-Net: Global to Local
Network for Real-time 6D Pose Estimation with Embedding Vector Features. arXiv e-prints, page
arXiv:2003.11089, 3 2020. URL https://arxiv.org/abs/2003.11089.

[6] Alvaro Collet, Manuel Martinez, and Siddhartha S Srinivasa. The MOPED framework: Object recog-
nition and pose estimation for manipulation. The International Journal of Robotics Research, 30(10):
1284–1306, 2011. doi: 10.1177/0278364911401765. URL https://doi.org/10.1177/0278364911401765.

[7] W A Falcon and .al. PyTorch Lightning. GitHub. Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3, 2019.

[8] Ge Gao, Mikko Lauri, Yulong Wang, Xiaolin Hu, Jianwei Zhang, and Simone Frintrop. 6D Object Pose
Regression via Supervised Learning on Point Clouds. arXiv e-prints, page arXiv:2001.08942, 1 2020.
URL https://arxiv.org/abs/2001.08942.

[9] Chunhui Gu and Xiaofeng Ren. Discriminative Mixture-of-Templates for Viewpoint Classification. In
Kostas Daniilidis, Petros Maragos, and Nikos Paragios, editors, Computer Vision – ECCV 2010, pages
408–421, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-15555-0.

[10] S Hinterstoisser, S Holzer, C Cagniart, S Ilic, K Konolige, N Navab, and V Lepetit. Multimodal tem-
plates for real-time detection of texture-less objects in heavily cluttered scenes. In 2011 International
Conference on Computer Vision, pages 858–865, 2011. doi: 10.1109/ICCV.2011.6126326.

[11] S Hinterstoisser, C Cagniart, S Ilic, P Sturm, N Navab, P Fua, and V Lepetit. Gradient Response Maps
for Real-Time Detection of Textureless Objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(5):876–888, 2012. doi: 10.1109/TPAMI.2011.206.

[12] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt Konolige, and
Nassir Navab. Model Based Training, Detection and Pose Estimation of Texture-Less 3D Objects in
Heavily Cluttered Scenes. In Kyoung Mu Lee, Yasuyuki Matsushita, James M Rehg, and Zhanyi Hu,
editors, Computer Vision – ACCV 2012, pages 548–562, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg. ISBN 978-3-642-37331-2.

[13] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt Konolige,
and Nassir Navab. Model Based Training, Detection and Pose Estimation of Texture-Less 3D Ob-
jects in Heavily Cluttered Scenes. In Kyoung Mu Lee, Yasuyuki Matsushita, James M Rehg, and
Zhanyi Hu, editors, Computer Vision – ACCV 2012, pages 548–562, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-37331-2. URL https://link.springer.com/chapter/10.1007/
978-3-642-37331-2 42http://www.stefan-hinterstoisser.com/papers/hinterstoisser2012accv.pdf.

[14] Tomas Hodan, Pavel Haluza, Stepan Obdrzalek, Jiri Matas, Manolis Lourakis, and Xenophon Zabulis.
T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects. arXiv e-prints, page
arXiv:1701.05498, 1 2017.

26

https://arxiv.org/abs/2003.11089
https://doi.org/10.1177/0278364911401765
https://arxiv.org/abs/2001.08942
https://link.springer.com/chapter/10.1007/978-3-642-37331-2_42 http://www.stefan-hinterstoisser.com/papers/hinterstoisser2012accv.pdf
https://link.springer.com/chapter/10.1007/978-3-642-37331-2_42 http://www.stefan-hinterstoisser.com/papers/hinterstoisser2012accv.pdf


[15] Yinlin Hu, Joachim Hugonot, Pascal Fua, and Mathieu Salzmann. Segmentation-driven 6D Object Pose
Estimation. arXiv e-prints, page arXiv:1812.02541, 12 2018.

[16] D P Huttenlocher, G A Klanderman, and W J Rucklidge. Comparing images using the Hausdorff
distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):850–863, 1993. doi:
10.1109/34.232073.

[17] Omid Hosseini Jafari, Siva Karthik Mustikovela, Karl Pertsch, Eric Brachmann, and Carsten Rother.
iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects. arXiv e-prints, page
arXiv:1712.01924, 12 2017.

[18] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan Ilic, and Nassir Navab. SSD-6D: Making
RGB-based 3D detection and 6D pose estimation great again. arXiv e-prints, page arXiv:1711.10006,
11 2017. URL https://arxiv.org/abs/1711.10006.

[19] Zhigang Li, Gu Wang, and Xiangyang Ji. CDPN: Coordinates-Based Disentangled Pose Network for
Real-Time RGB-Based 6-DoF Object Pose Estimation. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 7677–7686, 2019.

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal Loss for Dense Object
Detection. arXiv e-prints, page arXiv:1708.02002, 8 2017. URL https://arxiv.org/abs/1708.02002.

[21] D G Lowe. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, volume 2, pages 1150–1157, 1999. doi: 10.1109/ICCV.
1999.790410.

[22] David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision,
60(2):91–110, 11 2004. ISSN 0920-5691. doi: 10.1023/B:VISI.0000029664.99615.94. URL http:
//dx.doi.org/10.1023/B:VISI.0000029664.99615.94.

[23] Satya Mallick. Geometry of Image Formation: Learn OpenCV, 4 2021. URL https://learnopencv.com/
geometry-of-image-formation/.

[24] F Landis Markley. Unit Quaternion from Rotation Matrix. Journal of Guidance, Control, and Dynamics,
31(2):440–442, 2008. doi: 10.2514/1.31730. URL https://doi.org/10.2514/1.31730.

[25] NVIDIA. NVIDIA TensorRT, 4 2021. URL https://developer.nvidia.com/tensorrt.

[26] Markus Oberweger, Mahdi Rad, and Vincent Lepetit. Making Deep Heatmaps Robust to Partial
Occlusions for 3D Object Pose Estimation. arXiv e-prints, page arXiv:1804.03959, 4 2018. URL
https://arxiv.org/pdf/1804.03959.pdf.

[27] Ryosuke Okuta, Y Unno, Daisuke Nishino, S Hido, and Crissman. CuPy : A
NumPy-Compatible Library for NVIDIA GPU Calculations. 2017. URL https://www.
semanticscholar.org/paper/CuPy-:-A-NumPy-Compatible-Library-for-NVIDIA-GPU-Okuta-Unno/
a59da4639436f582e483347a4833e7659fd3e598.

[28] Keunhong Park, Arsalan Mousavian, Yu Xiang, and Dieter Fox. LatentFusion: End-to-End Dif-
ferentiable Reconstruction and Rendering for Unseen Object Pose Estimation. arXiv e-prints, page
arXiv:1912.00416, 12 2019.

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In H Wallach, H Larochelle, A Beygelzimer, F d\textquotesingle
Alché-Buc, E Fox, and R Garnett, editors, Advances in Neural Information Processing Sys-
tems 32, pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

27

https://arxiv.org/abs/1711.10006
https://arxiv.org/abs/1708.02002
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
https://learnopencv.com/geometry-of-image-formation/
https://learnopencv.com/geometry-of-image-formation/
https://doi.org/10.2514/1.31730
https://developer.nvidia.com/tensorrt
https://arxiv.org/pdf/1804.03959.pdf
https://www.semanticscholar.org/paper/CuPy-:-A-NumPy-Compatible-Library-for-NVIDIA-GPU-Okuta-Unno/a59da4639436f582e483347a4833e7659fd3e598
https://www.semanticscholar.org/paper/CuPy-:-A-NumPy-Compatible-Library-for-NVIDIA-GPU-Okuta-Unno/a59da4639436f582e483347a4833e7659fd3e598
https://www.semanticscholar.org/paper/CuPy-:-A-NumPy-Compatible-Library-for-NVIDIA-GPU-Okuta-Unno/a59da4639436f582e483347a4833e7659fd3e598
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


[30] Sida Peng, Xiaowei Zhou, Yuan Liu, Haotong Lin, Qixing Huang, and Hujun Bao. PVNet: Pixel-wise
Voting Network for 6DoF Object Pose Estimation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, page arXiv:1812.11788, 12 2020. ISSN 19393539. doi: 10.1109/TPAMI.2020.3047388.
URL https://arxiv.org/abs/1812.11788.

[31] Nuno Pereira and Lu’A Alexandre. MaskedFusion: Mask-based 6D Object Pose Estimation. arXiv
e-prints, page arXiv:1911.07771, 11 2019. URL https://arxiv.org/abs/1911.07771.

[32] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation. arXiv e-prints, page arXiv:1612.00593, 12 2016. URL https:
//arxiv.org/abs/1612.00593.

[33] Mahdi Rad and Vincent Lepetit. BB8: A Scalable, Accurate, Robust to Partial Occlusion Method
for Predicting the 3D Poses of Challenging Objects without Using Depth. arXiv e-prints, page
arXiv:1703.10896, 3 2017. URL https://arxiv.org/abs/1703.10896.

[34] R Rios-Cabrera and T Tuytelaars. Discriminatively Trained Templates for 3D Object Detection: A
Real Time Scalable Approach. In 2013 IEEE International Conference on Computer Vision, pages
2048–2055, 2013. doi: 10.1109/ICCV.2013.256.

[35] Fred Rothganger, Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. 3D Object modeling and recog-
nition using local affine-invariant image descriptors and multi-view spatial constraints. International
Journal of Computer Vision, 66:2006, 2006.

[36] Caner Sahin and Tae-Kyun Kim. Category-level 6D Object Pose Recovery in Depth Images. arXiv
e-prints, page arXiv:1808.00255, 8 2018. URL https://arxiv.org/abs/1808.00255.

[37] Kyle Simek. Dissecting the Camera Matrix, Part 3: The Intrinsic Matrix, 8 2013. URL http://ksimek.
github.io/2013/08/13/intrinsic/.

[38] Hao Su, Charles R Qi, Yangyan Li, and Leonidas Guibas. Render for CNN: Viewpoint Estimation in
Images Using CNNs Trained with Rendered 3D Model Views. arXiv e-prints, page arXiv:1505.05641,
5 2015. URL https://arxiv.org/abs/1505.05641.

[39] Martin Sundermeyer, Zoltan-Csaba Marton, Maximilian Durner, Manuel Brucker, and Rudolph Triebel.
Implicit 3D Orientation Learning for 6D Object Detection from RGB Images. arXiv e-prints, page
arXiv:1902.01275, 2 2019. URL https://arxiv.org/abs/1902.01275.

[40] David Joseph Tan, Nassir Navab, and Federico Tombari. 6D Object Pose Estimation with Depth Images:
A Seamless Approach for Robotic Interaction and Augmented Reality. arXiv, 2017. ISSN 23318422.
URL https://arxiv.org/abs/1709.01459.

[41] Meng Tian, Liang Pan, Jr Ang Marcelo H, and Gim Hee Lee. Robust 6D Object Pose Estimation by
Learning RGB-D Features. arXiv e-prints, page arXiv:2003.00188, 2 2020.

[42] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, and
Stan Birchfield. Deep Object Pose Estimation for Semantic Robotic Grasping of
Household Objects. arXiv e-prints, page arXiv:1809.10790, 9 2018. URL https:
//arxiv.org/abs/1809.10790?utm source=feedburner&utm medium=feed&utm campaign=Feed%
253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529#:∼:
text=DeepObjectPoseEstimationforSemanticRoboticGraspingofHouseholdObjects,-Jonatha.

[43] Shubham Tulsiani and Jitendra Malik. Viewpoints and Keypoints. arXiv e-prints, page
arXiv:1411.6067, 11 2014. URL https://arxiv.org/abs/1411.6067.

[44] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Mart\’\in-Mart\’\in, Cewu Lu, Li Fei-Fei, and Silvio
Savarese. DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion. arXiv e-prints, page
arXiv:1901.04780, 1 2019. URL https://arxiv.org/abs/1901.04780.

28

https://arxiv.org/abs/1812.11788
https://arxiv.org/abs/1911.07771
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1703.10896
https://arxiv.org/abs/1808.00255
http://ksimek.github.io/2013/08/13/intrinsic/
http://ksimek.github.io/2013/08/13/intrinsic/
https://arxiv.org/abs/1505.05641
https://arxiv.org/abs/1902.01275
https://arxiv.org/abs/1709.01459
https://arxiv.org/abs/1809.10790?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529#:~:text=Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects,-Jonatha
https://arxiv.org/abs/1809.10790?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529#:~:text=Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects,-Jonatha
https://arxiv.org/abs/1809.10790?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529#:~:text=Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects,-Jonatha
https://arxiv.org/abs/1809.10790?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529#:~:text=Deep Object Pose Estimation for Semantic Robotic Grasping of Household Objects,-Jonatha
https://arxiv.org/abs/1411.6067
https://arxiv.org/abs/1901.04780


[45] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J Guibas.
Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 6 2019. URL https:
//arxiv.org/abs/1901.02970.

[46] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. PoseCNN: A Convolutional Neu-
ral Network for 6D Object Pose Estimation in Cluttered Scenes. arXiv e-prints, page arXiv:1711.00199,
11 2017. URL https://arxiv.org/abs/1711.00199.

[47] Zelin Xu, Ke Chen, and Kui Jia. W-PoseNet: Dense Correspondence Regularized Pixel Pair Pose
Regression. arXiv e-prints, page arXiv:1912.11888, 12 2019. URL https://arxiv.org/abs/1912.11888.

[48] Pavel Yakubovskiy. Segmentation Models Pytorch. \url{https://github.com/qubvel/segmentation models.pytorch},
2020.

[49] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. DPOD: 6D Pose Object Detector and Refiner.
arXiv e-prints, page arXiv:1902.11020, 2 2019. URL https://arxiv.org/abs/1902.11020.

[50] Zhe Cao, Yaser Sheikh, and Natasha Kholgade Banerjee. Real-time scalable 6DOF pose estimation
for textureless objects. In 2016 IEEE International Conference on Robotics and Automation (ICRA),
pages 2441–2448. IEEE, 5 2016. ISBN 978-1-4673-8026-3. doi: 10.1109/ICRA.2016.7487396. URL
http://ieeexplore.ieee.org/document/7487396/.

[51] Menglong Zhu, Konstantinos G Derpanis, Yinfei Yang, Samarth Brahmbhatt, Mabel Zhang, Cody
Phillips, Matthieu Lecce, and Kostas Daniilidis. Single image 3D object detection and pose esti-
mation for grasping. In 2014 IEEE International Conference on Robotics and Automation (ICRA),
pages 3936–3943. IEEE, 5 2014. ISBN 978-1-4799-3685-4. doi: 10.1109/ICRA.2014.6907430. URL
http://ieeexplore.ieee.org/document/6907430/.

29

https://arxiv.org/abs/1901.02970
https://arxiv.org/abs/1901.02970
https://arxiv.org/abs/1711.00199
https://arxiv.org/abs/1912.11888
https://arxiv.org/abs/1902.11020
http://ieeexplore.ieee.org/document/7487396/
http://ieeexplore.ieee.org/document/6907430/

	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Overview of Contents
	1.2 Pose and Size Estimation
	1.3 FastPoseCNN

	2 BACKGROUND
	2.1 Mathematical Framework
	2.2 Reference Frames and Interchangeability
	2.3 3D-2D Correspondence
	2.4 Quaternions and Rotation Matrices

	3 LITERATURE REVIEW
	3.1 Input Data Type Differences
	3.2 Category-Level vs. Instance-Level
	3.3 Real-Time Inference
	3.4 Related Work
	3.5 Addressing the Gap in the Literature

	4 METHODOLOGY
	4.1 Framework Overview
	4.2 Pixel-Wise Predictions
	4.3 Segmentation Mask Breaking
	4.4 Pixel-Wise Hough Voting
	4.5 Aggregation
	4.6 Ground Truth and Prediction Matching
	4.7 Loss Functions

	5 EXPERIMENTS AND RESULTS
	5.1 Tools and Source Code
	5.2 Implementation and Training
	5.3 Metrics
	5.4 Comparison to SOTA Methods
	5.5 Inference & Time-Breakdown
	5.6 Limitations

	6 CONCLUSION
	REFERENCES

