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Abstract

Genetic algorithms are powerful means for solving many types of artificial intelligence problems.
They bring many methods used by nature to evolve creatures suitable for their environment into the
realm of computer learning. This paper describes a simple game resembling hockey or soccer that can
be used to test the feasibility of a genetic algorithm to adapt rule-based agents to their environment
using computer-based learning.

I. INTRODUCTION

ENETIC algorithms are simple and easily-implemented methods of reinforced computer learn-
ing. The language of genetic algorithms is similar to biological genetics, and terms from both
fields are used interchangeably in this paper.

A genetic algorithm evolves individuals based upon their suitability, or fitness to their environ-
ment. Organisms that perform poorly in their environment die off, while organisms that perform
well live long enough to reproduce. This ensures that genomes that have shown to be somewhat
successful in the past are propagated to new organisms, while genomes that are unsuccessful are
removed from the system.

This paper describes an implementation of a genetic algorithm and a simple game to test the
suitability of this genetic algorithm for reinforced learning.

II. THE GAME

To test the implementation of a simple genetic algorithm a game similar to hockey and soccer
was devised.

A. Game Definition

The game is played in an arena twice as wide as it is high, with the ball initially placed in the
centre and two nets at either end. Two teams with any number of players are lined up, one team
on each side of a line through the centre of the arena. The players are evenly spaced before the
game begins.

When the game begins, players may move in any direction. If a player comes in contact with the
ball, it takes possession of it. The player may then carry the ball along with itself, pass the ball to
another player, or shoot the ball at the net. If a player with the ball comes in contact with a player
on the opposing team, there is a chance that the other player can take possession of the ball.

Goals are scored when the ball enters the net, either by being carried by a player, or if it is shot
into the net by a player. The team that the player is on receives a positive goal if the ball entered
the opposing team’s net, or a negative goal if the ball entered their own net. After a goal is scored,
players move back to their positions as before the start of the game, and the ball is again placed at
the centre of the arena. Then the gameplay resumes.

The game continues for a predefined amount of time. At the end the score is tallied; if the scores
are equal then both teams receive a tie, otherwise the winning team receives a win and the losing
team receives a loss.
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B. Assumptions

Since shooting and passing the ball are the same operation, this implementation defines them as
“firing” the ball.

Players are defined by Bots. Each bot is given a mass; more massive bots can fire the ball faster,
but they themselves move more slowly.

All movement for both bots and the ball is defined in terms of a “tick.” The speed of the object
determines how many ticks it takes before the object is given a turn to move. Bots may move,
rotate, or fire the ball if they have it on each turn, but cannot perform more than one of these
operations per turn.

After each goal the positions of each bot and the ball are reset, and gameplay resumes. When a
predefined number of ticks have been processed the game ends. Currently a game ends after 1000
ticks; when this occurs, the play stops and a simple genetic algorithm is performed on each team
separately.

III. GENETIC ALGORITHM

The main aspects of the simple genetic algorithm in this implementation are:
Bot Fitness: determines survival and suitability for reproduction
Crossover Function: evaluates bot performance and “mates” them
Mutation: occasionally randomizes bot rules

A. Bot Fitness

The fitness of each bot is measured by its performance during a game. Currently, goals scored
are weighed the highest, followed by interceptions made and time with the ball. These scores are
summed using the following function, where G represents goals scored by the bot, I is the number
of interceptions made by the bot, and T is the number of ticks that the bot had possession of the
ball for. W¢, Wy, and Wy are the weights of the three scores, respectively.

Wg*G+W[*[+WT*T

The result of this function is the fitness of the bot. Since goals scored can be negative, so can the
fitness.
The weights are currently set to:
goals: 1.0
interceptions: 0.5
time with the ball: 0.2

B. Crossover Function

After each game, the fitness function is computed for each bot and the bots are sorted by their
fitness. The number of bots to replace on the team is half of the size of the team, rounded down to
the next lowest even integer. The lowest scoring bots are removed from the team, and the highest
scoring bots are used as input to the crossover function. The crossover function takes a random
number of rules from the first parent bot and a different random number of rules from the second
parent bot to form one child bot. A second child bot is formed from the remaining rules. These
new bots are used to replace the bots that were removed from the team.
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C. Mutation

After the new team has been generated, each bot on the team has a small chance of being mutated.
When this occurs, one of the rules of the chosen bot is mutated; that is, one element of the rule is
changed.

IV. RULEs
A. Rule Sets

Each bot stores a number of rules, consisting of six different elements.
Three of the elements are conditions:
sensor array (of eight elements): indicates an object (or nothing) within the sensor range of
the 8 cardinal directions of the bot
teamBall: an integer that is negative when the opposing team has the ball, positive when the
bot’s own team has the ball, and zero if the ball is free
myBall: true when the bot itself is in possession of the ball
The three remaining elements are actions:
fire: indicates that the bot should fire the ball when the conditions are met
move: indicates that the bot should move one space in the direction it is facing
turn: one of Left, Right, or None, indicating a direction for the bot to turn to
The structure of each rule is summarized in Fig. 1.

GARule

-Sensors : Thing [8]
-MyBall : boolean
-TeamBall : int
-Fire : boolean
-Move : boolean
-Turn : Rotation

Fig. 1. GARule Structure

B. Rule Evaluation

When a bot is given the chance to move, it determines its own state. This state is then pro-
grammed into the conditions of a new rule, which is compared to each of the bot’s own rules using
a function that returns a non-negative integer representing how closely the given conditions match
the rule. If the function returns a zero, then the conditions of the two rules are the same. The
results of applying the function to each rule are sorted in ascending order, so the closest matching
rule is first. If more than one rule matches, then one of these is executed at random, otherwise the
matching rule is executed.

C. Rule Execution

Rule execution consists of performing one of the actions specified in the rule. Only one action
may be performed, so if the rule specifies more than one action, the following preference is given:
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1. fire
2. move
3. turn
Movement also involves checking if the bot collided with another bot, a wall, or the ball. When
two bots collide, they both turn away from each other in the hopes that they do not collide again
upon their next turn, which would prevent either bot from moving.
Bot collisions with walls have no effect; the bot stays in the position it was in before executing
the rule.
When the bot collides with the ball, it takes possession of the ball and may carry it or fire it on

its next turn. If a bot is in possession of the ball, then the ball moves along with the bot when the
rule is executed.

V. IMPLEMENTATION

The described system is implemented entirely in C+4. The Qt Toolkit is used for the graphical
user interface. This toolkit provides built-in templates for doubly-linked lists and sortable arrays
that are used in the implementation. It also provides an XML parser that is used for storage of
data.

A copy of the entire code is presented in the Appendix.

A. Implementation Structure

The implementation of this software package consists of the following 14 classes:
Arena: responsible for display of the arena
Ball: describes and performs operations on the ball in the game
Bot: describes a bot, provides storage for its rule set, and provides operations on them
Botview: responsible for display of objects
Coordinate: storage for two-dimensional Cartesian coordinates
GABot: main data storage class
Game: performs the actual game play
GARule: describes a rule
Main Window: display of the main window
Random: static class to encapsulate some useful random number generation functions
SitmpleGA: performs genetic algorithm evolution operations on a team
Team: describes a team, provides storage for the bots on it, and provides operations on them
TeamData: responsible for loading and saving bot data to XML files
TeamParser: handler for parsing an XML file when loading team data
There are also three enumerated types defined:
Direction: cardinal directions (N, NE, E; SE, S, SW, W, NW)
Rotation: turn directions (Left, Right, or None)
Thing: things that may be perceived by bots (other bots, walls, the ball, nets)

B. Data Storage

Team data can be saved at any point during gameplay. The data is saved in a simple XML format
to allow easy parsing by the Qt Toolkit’s XML parser, and allows the data to be read by humans.
An example team data file is in the Appendix.
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C. Development

The system was developed entirely on x86-type processors running Linux, but it has been compiled
and runs on Windows, and likely runs on any system that Qt has been ported to.

Versions 2.2.4, 2.3.2, and 3.0.2 of the Qt toolkit were used and tested during development. The
software compiles using GCC versions 2.95 and 2.96, and Visual C++ 6.0.

D. Screenshots

Fig. 2 is a screenshot of the file menu.
Fig. 3 and Fig. 4 are screenshots of the main window while a game is being played. There are

five bots on each team in both cases.
’7||E_ﬂz View Help
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Exit

Fig. 2. File Menu

VI. EXPERIMENTS

Most of the experiments were performed using randomly-generated teams, known as “Team
Stochastic” to reflect their random nature. As the rules for Team Stochastic are randomly generated,
many of them do not make sense in the context of the game. Some of the problems are:

« Specifying multiple actions is redundant, as only one will be performed.

« Mutation can produce rules that are never used. For example, the random rule generating
method does not specify “myBall” when “teamBall” is not positive, but mutation may change
this.

« Some combinations of conditions are not possible; for example, ball can appear in more than
one sensor direction even though there is only one ball during gameplay.

The default team size is five, so one bot on each team is placed directly in front of the ball. In
most games, these bots move directly towards the ball and the bot who gets there first (generally
the bot with the smaller mass) acquires control of the ball and either fires or carries it into the net.
Because of this games are usually one-sided, but sometimes (due to random execution of multiple
matching rules) the losing team can still score. As a result of scoring, these bots continue on to the
next generation in the next game. After a short number of games, all of the bots have more-or-less
identical rulesets and run towards the net with the ball or fire it immediately. The respective speeds
of the central bots determine which team will win.

After many generations, evolved teams were played against newly-generated teams. The bots
on the random teams performed almost as well as evolved bots, and many times they performed
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Fig. 3. Playing the Game
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Fig. 4. Playing the Game
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better.

VII. CONCLUSIONS

There are many assumptions and simplifications made in the current version of this implementa-
tion that should be explored further to determine their effect on learning of the game. Some of the
more important ones with possible solutions are described below.

The total number of possible rules (including rules that contradict themselves or do not make
sense in the context of the game) is 6% x 3 x 2 x 2 x 2 x 2 x 3 =120932352. Randomly-generated
bots only contain 100-200 rules, so it is likely that most of the generated rules do not make sense.
The random rule generating function could analyse the rules, and return only those that can be
used by bots.

Bots that have possession of the ball, even if they are not moving, will receive a high value of the
fitness function. Making W smaller, possibly by a factor of 10 or more can reduce bots that fail
to score goals or make interceptions but achieve a high value of the fitness function and therefore
continue to the next generation.

Collisions with the wall should be added to the fitness function, with a negative weight. In many
test runs bots would simply run towards the wall and stay there.

The crossover function always replaces bots, so bots that have performed well in the past can be
removed if they play one poor game. The crossover function used in this simple genetic algorithm
produces a team of similar bots, causing each game to be played in the same way when the same
rules get used again and again.

Unused and duplicate rules can exist in a bot, and some means should be provided to remove
these entries to allow faster matching of rules to conditions. A counter that is incremented every
time a rule is used can be used to eliminate unused rules, and duplicate rules can be removed after
the crossover function and mutation are completed.

Mutation needs to be explored further, as it can be used to prevent teams from “stagnating,” or
having all bots nearly identical.

The implementation of the game and genetic algorithm shows that a genetic algorithm, even a
very simple one, can be used by a computer to learn how to play a simple game. Although a genetic
algorithm can be very powerful, there are some simplifications made in this implementation that
should be expanded on in future versions.
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