
eero
objective-c, evolved

Andy Arvanitis

Cocoaheads-SF Aug. 9, 2012

What is Eero?

• A programming language

• It is a dialect of Objective-C

• It has a streamlined syntax

• It is binary- and header-compatible with
Objective-C

• Its toolchain is implemented using a
continuously updated fork of LLVM/Clang
(trunk)

Cocoaheads-SF Aug. 9, 2012

Why did I do this?

• My background: I’ve mostly worked for large
companies, large organizations, often large
teams

• Whether an architect or individual contributor, I
end up reading lots and lots of other people’s
code

• Even reading your own code after a few
months (or years) is like reading someone
else’s code

Cocoaheads-SF Aug. 9, 2012

• Code is read much more often than it’s written

• Human “parsability” of code is critical

• Readability matters A LOT! And when it comes
to a programming language, it’s not “just
syntactic sugar”

• Eero is an unrepentant project about syntactic
sugar

Code readability

Cocoaheads-SF Aug. 9, 2012

Eero goals

• To be a practical tool, not just an experiment

• To reuse ALL Objective-C frameworks out
there, as seamlessly as possible

• To keep Objective-C strengths: named
parameters, type checking, performance,
interoperability with C libraries, tools

Cocoaheads-SF Aug. 9, 2012

Eero principles

• DRY

• WYSIWYG (POLS)

• Make the compiler, not the human, do the
work

Cocoaheads-SF Aug. 9, 2012

Eero techniques

• Remove clutter without introducing ambiguity

• Avoid “syntactic saccharin”

• Employ sane defaults

General code-
structure changes

Cocoaheads-SF Aug. 9, 2012

Significant whitespace

• Offside-rule, à la Python

• Lots of controversy — strong opinions on both
sides

• Personally, I wasn’t so sure about it at first, but
grew to appreciate/love it

Cocoaheads-SF Aug. 9, 2012

Significant whitespace — why?

• WYSIWYG / DRY:

• most agree that blocks should be indented

• Why should I have to indent and use
braces?

• Readability! — less visual clutter

Cocoaheads-SF Aug. 9, 2012

Optional semicolons

• Readability (less visual clutter)

• DRY

• Good compilers generally know where they
should go. Why should I have to do it? (works
best when newline is significant)

• Clang very good for this, made it easy to
implement

Cocoaheads-SF Aug. 9, 2012

Local type inference

• The := operator specifies a variable definition
and assignment, with the type inferred from
the value

• Same behavior as C++11’s “auto”

counter := 0 // infers an int

const title := ”hello, world”

Cocoaheads-SF Aug. 9, 2012

Local type inference

• Gains some of the conciseness advantages of
Ruby/Python, but a bit safer

• Compiler can still catch typos in subsequent
assignments

• Normal = assignment operator remains
unchanged

Cocoaheads-SF Aug. 9, 2012

Namespace-like prefixes

• Eero does not introduce a true namespace
facility, but instead works with existing
Objective-C prefix conventions

• Prefixes can be “registered” within a scope

• If a symbol (class, type, function, etc.) is not
found by the compiler, it tries again, with prefix

• The “NS” prefix is built-in, e.g., “String”
resolves to “NSString”

Cocoaheads-SF Aug. 9, 2012

• User-defined prefixes

• Eero introduces keyword using (borrowed
from C++), and context keyword prefix

• To register prefix: using prefix XX

• Declared (and valid) within an enclosing
scope: file, method, function, conditional
block, etc.

Namespace-like prefixes, cont.

Cocoaheads-SF Aug. 9, 2012

Example

using prefix UI // file scope

int myFunction()

 using prefix AB // only in function scope

 AddressBook addressBook = nil

 Log(...) // resolves to NSLog()

 return 0

Objective-C–specific
changes

Cocoaheads-SF Aug. 9, 2012

Objective-C keywords

• Objective-C keywords “promoted” to first-class
keywords

• @ no longer needed in front of them

interface MyClass : Object
...
end

Cocoaheads-SF Aug. 9, 2012

NSString literals

• No @, enclosed in single quotes

• C string literals remain in double-quotes

title := ’hello, world’

Cocoaheads-SF Aug. 9, 2012

Array and dictionary literals

• Neither type of literal needs @

myArray := [’a’, ’b’, ’c’]

myDict := {’A’ : ’a’, ’B’ : ’b’}

Cocoaheads-SF Aug. 9, 2012

Array and dictionary literals

• Since we’re on the topic: empty object literals
are mutable

myMutableArray := []

myMutableDict := {}

myMutableString := ’’

Cocoaheads-SF Aug. 9, 2012

NSRange literals

• Alternative to NSMakeRange() or C99’s
(NSRange){ start, length }

• Accepts any integer values, not just numeric
literals

range := 1 .. 10

otherRange := kFirst .. kLast

Cocoaheads-SF Aug. 9, 2012

Objects are always pointers

• In Objective-C, we never have objects on the
stack, so it is never valid to declare a non-
pointer object variable

• Eero assumes you mean a pointer; nothing
else is valid anyway

• Consistent with message-passing syntax

String title = ’Hello, World!’

Methods and
message-passing

Cocoaheads-SF Aug. 9, 2012

Message-passing sans brackets

• Like Smalltalk, message passing is done
without square brackets

• However, commas are used to help humans
(and the compiler) disambiguate selectors/
parameters

• Message-passing expressions are just like any
other expression; they can be put in
parentheses, if needed

Cocoaheads-SF Aug. 9, 2012

names := []

names addObject: ’Saarinen’

names insertObject: ‘Eero’, atIndex: 0

names addObject: (otherNames objectAtIndex: 0)

Examples

Cocoaheads-SF Aug. 9, 2012

Method declarations

• An observation: argument variable names are
not really needed in interfaces

• The users of the method don’t care about
them (it’s an implementation detail)

• The implementor of the method doesn’t
need to make variable naming decisions
when designing just the interface

Cocoaheads-SF Aug. 9, 2012

Method declarations, cont.

• Another observation: argument variable
names tend to be very similar to (or derived
from) their selector names

• Can we use sane defaults?

• When we do need to specify arg variable
names, can we get something a little more
consistent with normal variable declarations
(maybe without those parentheses)?

Cocoaheads-SF Aug. 9, 2012

Method declarations in Eero

• Argument variable names default to last
camel-case word in selector (see site for more
details)

• Similar to Apple’s approach to properties/
setters

• Override with variable name following type,
just like a normal declaration

Cocoaheads-SF Aug. 9, 2012

@interface MyNotificationCenterClass

 -(void)addObserver:(id)observer
 selector:(SEL)selector
 name:(NSString *)notificationName
 object:(id)object;

@end

Example

Cocoaheads-SF Aug. 9, 2012

interface MyNotificationCenterClass

 addObserver: id,
 selector: SEL,
 name: String,
 object: SEL

end

Example

Cocoaheads-SF Aug. 9, 2012

implementation MyNotificationCenterClass

 addObserver: id,
 selector: SEL,
 name: String,
 object: SEL

 if observer == nil
 ...

end

Example

Cocoaheads-SF Aug. 9, 2012

implementation MyNotificationCenterClass

 addObserver: id,
 selector: SEL,
 name: String notificationName,
 object: SEL

 if observer == nil
 ...

end

Example

Cocoaheads-SF Aug. 9, 2012

Method declarations in Eero

• Note: there are a couple of (subtle) departures
from Objective-C

• Parameter types are no longer optional
(they do not default to id)

• When absent, return type no longer defaults
to id, it now means no return value at all,
i.e., void — WYSIWYG

Cocoaheads-SF Aug. 9, 2012

Optional and default parameters

• Eero’s method prototype syntax allows
specification of optional parameters (selector
pieces) and default values

• Optional parameters are enclosed in square
brackets in the interface (mirroring common
software/tech-doc convention)

• Defaults are assigned in the implementation
using “= value” (they are, in fact, an
implementation detail)

Cocoaheads-SF Aug. 9, 2012

interface MyNotificationCenterClass
 addObserver: id,
 selector: SEL,
 name: String,
 object: SEL
end

implementation MyNotificationCenterClass
 addObserver: id,
 selector: SEL,
 name: String,
 object: SEL

 if name == nil
 ...
end

Example

Cocoaheads-SF Aug. 9, 2012

interface MyNotificationCenterClass
 addObserver: id,
 selector: SEL,
 [name: String],
 object: SEL
end

implementation MyNotificationCenterClass
 addObserver: id,
 selector: SEL,
 name: String,
 object: SEL

 if name == nil
 ...
end

Example

Cocoaheads-SF Aug. 9, 2012

interface MyNotificationCenterClass
 addObserver: id,
 selector: SEL,
 [name: String],
 object: SEL
end

implementation MyNotificationCenterClass
 addObserver: id,
 selector: SEL,
 name: String = nil,
 object: SEL

 if name == nil
 ...
end

Example

Cocoaheads-SF Aug. 9, 2012

• This is all just sugar, and doesn’t introduce
any semantic changes

• The compiler simply generates the
appropriate method interfaces and
implementations

• You can mix/match these with existing
Objective-C classes

Optional and default parameters

Object operators

Cocoaheads-SF Aug. 9, 2012

Object subscript operators

• Same support recently added to Objective-C
(although Eero had them first ;-)

• Integers imply array operations; objects
imply dictionary operations

• Eero introduces support for NSRange
subscripts

• If a string, slice via substringWithRange

• Otherwise, slice via subarrayWithRange

Cocoaheads-SF Aug. 9, 2012

implementation MyClass

 + truncateString: String, return String
 if string.length > 10
 truncatedString := string[0 .. 9]
 return truncatedString
 return string

end

Example

Cocoaheads-SF Aug. 9, 2012

implementation MyClass

 + truncateString: String, return String
 if string.length > 10
 truncatedString := string[0 .. 9]
 return truncatedString
 return string

 + truncateArray: Array, return Array
 if array.length > 100
 truncatedArray := array[0 .. 99]
 return truncatedArray
 return array
end

Example

Cocoaheads-SF Aug. 9, 2012

Overloadable binary operators

• Supported operators are + - * / < >

• Includes implicit support for operator/equal
variants (+=, -=, <=, etc.)

• Each of these map to method selectors plus,
minus, multipliedBy, isLess, etc.

• Overloaded by implementing any of these
methods

Cocoaheads-SF Aug. 9, 2012

// Defining some string comparison operators using
// a category

implementation String (operators)

 isLess: String string, return BOOL
 const comparison := self compare: string
 return (comparison == OrderedAscending)

 isGreater: String string, return BOOL
 const comparison := self compare: string
 return (comparison == OrderedDescending)

end

Example

Cocoaheads-SF Aug. 9, 2012

// Using the string comparison operator ‘<‘ from
// the category

name := ‘Eames’
previousName := ‘Saarinen’

if name < previousName
 ...

Example

Cocoaheads-SF Aug. 9, 2012

• There are some built-in operators

• == and != via isEqual for all object types

• If object is a String, + is concatenation via
stringWithString

• If object is a MutableString, << is
concatenation via appendString

Overloadable operators, cont.

Cocoaheads-SF Aug. 9, 2012

Example

 hello := ’hello’
 world := ’world’

 title := hello + ’, ’ + world

 // title is now ‘hello, world’

 itemName := ’’
 itemName << ‘tulip’
 itemName << ’ ’
 itemName << ‘chair’

 // itemName is now ‘tulip chair’

Cocoaheads-SF Aug. 9, 2012

Other features

• Optional parentheses around conditions

• Concise boxing/unboxing

• Enhanced blocks (including compact form)

• Stricter enum type checking

• Enhanced switch/case

• And more!

Cocoaheads-SF Aug. 9, 2012

Questions?

Cocoaheads-SF Aug. 9, 2012

Thank you!

• More information:

• http://eerolanguage.org

• https://github.com/eerolanguage

• My twitter: @andyarvanitis

http://eerolanguage.org
http://eerolanguage.org
https://eerolanguage.github.com
https://eerolanguage.github.com

