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Design of Public Transport Networks 

ROB VAN NES, RUDI HAMERSLAG, AND BEN H. IMMERS 

This paper describes the major features of an optimization 
model which can be used to design public transport networks. 
Design problems that can be solved with the model involve the 
redesign of either a part of a network or a complete network 
and the assignment of frequencies. The model consists of an 
additive procedure in which the decision to incorporate a route 
in the network or to increase the frequency of a route is based 
on an economic criterion which can also be regarded as an 
estimate of the Lagrange Multiplier of the optimization prob­
lem. A major advantage of the model is that the different design 
problems are solved with one single optimization process. Fur­
thermore, the optimization process is kept understandable and 
the model is suited for use on a personal computer. Some 
results of the model are presented. 

Due to the changing economic situation the financial con­
straints of public transport have become more and more 
important. The government is no longer willing to account 
for all deficits of the public transport companies. The policy 
has changed into granting a single subsidy with which the 
public transport companies have to offer service which can 
compete with other modes and transport facilities for those 
who cannot travel otherwise. Since the subsidy will be limited, 
the public transport companies will have to reconsider the 
service they are offering. Of course, it is also necessary to cut 
costs by improving the scheduling of personnel and vehicles, 
as well as the regularity of the service. 

The design of the network deserves extra attention, as it is 
the network that determines the service offered. Moreover, 
the network 's used as input for studies concerning other 
aspects such as timetables, scheduling, and regularity. Another 
reason for extra attention to the design of public transport 
networks is the fact that networks have often been adjusted 
by using simple design methods to meet changes in the city, 
e.g., new residential areas. Very little use was made of sophis­
ticated tools such as traffic forecasting and assignment models. 
See for instance Chua and Sitcock (J) for a survey of planning 
techniques used in Great Britain. 

The problem of the network design can be formulated as 
follows: which routes and which frequencies should be offered 
to fulfil the demand for public transport as well as possible, 
given a certain available budget. 
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EXISTING DESIGN METHODS 

The type of model mostly used for network design is an eval­
uation model in which an origin-destination (OD) matrix is 
assigned to a network and with which all kinds of evaluation 
characteristics are calculated. Such an evaluation model ena­
bles a systematic comparison between alternative network 
designs. Although the use of evaluation models must be con­
sidered as a major improvement to the quality of the planning 
process, the disadvantage remains that only a few alternatives 
can be compared because of the effort involved. Also, these 
alternatives will often be biased towards the existing network 
and the implicit ideas of the planner, although in some cases 
this might be considered as an advantage. 

The disadvantage of a limited number of alternatives, how­
ever, does not apply to models which design a network as 
well as evaluate it. These so-called optimization models use 
operations research techniques to find a feasible network. The 
name optimization model is misleading, however, because 
most models do not find an optimum solution and even then 
it is questionable whether an optimum of a model, which is 
a mathematical description of reality, will be an optimum in 
reality. Therefore, the importance of these models does not 
derive from the fact that they find a (near) optimum solution, 
but rather that they help to find new and feasible alternatives. 

Despite the advantage of generating new alternatives, the 
use of these optimization models is very limited. This limited 
use can be explained by several reasons, one of them being 
the overall lack of experience in using models in public trans­
port studies, but when we take a close look at the optimization 
models which have been developed, some other reasons can 
be found. 

EXISTING OPTIMIZATION MODELS 

In the last two decades all kinds of optimization models for 
the design of public transport networks have been developed. 
These models can roughly be divided into six categories: 

1. Analytical models (e.g., Holroyd [2], Kocur and Hen­
drickson [3]). These models use simplified networks to derive 
optimum relations for parameters of the public transport sys­
tem, for instance headway and route-spacing. 

2. Models determining which links should be used to con­
struct routes for a public transport network (e.g., Billheimer 
and Gray [4], Rea [5]). 

3. Models determining routes without considering the fre­
quencies of the routes (e.g., Pierick and Wiegand [6], Simonis 
[7]). 

4. Models assigning frequencies to a given set of routes 
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(e .g., Scheele [8], Furth and Wilson [9], Hagberg and 
Hasselstrom [ 1 OJ). 

5. Models determining routes in a first and assigning fre­
quencies in a second stage (e.g., Lampkin and Saalmans [11], 
Dubois et al. [12]). 

6. Models determining routes and frequencies simultane­
ously (Hasselstrom [13]). 

The first two categories determine neither routes nor fre­
quencies and are therefore unsuited for the problem we have 
formulated. The third and fourth categories solve only part 
of our problem, either routes or frequencies. Actually, there 
are only two categories of models suited to our design prob­
lem, categories 5 and 6. 

Determining Routes and Assigning Frequencies Separately 

The models of category 5 solve the network design problem 
in two stages. In the first stage the routes of the network are 
determined. The objective is to transport a maximum number 
of passengers given a fixed OD-matrix. In this stage Lampkin 
and Saalmans (11) consider trips without transfers, while Dubois 
et al. (12) consider all trips. In the second stage frequencies 
are assigned to the generated set of routes. The objective is 
to minimize the total travel time given the OD-matrix and 
the available number of vehicles . In the calculation of the 
travel time Dubois et al. (12) introduced the possibility of 
walking instead of using public transport. All the methods 
used are clearly heuristic, but those of Dubois et al. (12) are 
more sophisticated. The major disadvantage of these models, 
however, is the fact that they solve the problem of routes and 
frequencies separately, while there is a distinct relation between 
these two components of the public transport system. More­
over, a fixed OD-matrix is used, so the relation between 
supply and demand for public transport services is not taken 
into account. 

Determining Routes and Assigning Frequencies 
Simultaneously 

The model developed by Hasselstrom (13) does not have these 
disadvantages. It solves the problem in three stages. First, the 
model considers a link network and eliminates links seldom 
or never used by passengers (compare the models of category 
2). The result is a concentrated network which is used in the 
second stage to generate a large set of possible routes. Finally, 
the route of the network are selected by assigning frequencies 
using linear programming. The objective is to maximize the 
number of transfers saved by changing from a link network 
(transfers at every node) to a public transport network (trans­
fers only at intersections). Instead of a known OD-matrix, 
Hasselstrom (13) suggests the use of a desire matrix (i.e., an 
OD-matrix for the situation in which an ideal public transport 
system exists) in order to Jessen the bias towards the network 
with which the OD-matrix is determined. The disadvantage 
of the model is that although routes and frequencies are deter­
mined simultaneously, two different optimization problems 
are formulated. 
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Use of Optimization Models 

All optimization models discussed have rarely been used in 
practice. Most models have been employed only in the proj­
ects they were designed for, or in the tests described in the 
presentations. The model of Hasselstrom (13) forms part of 
the VOL VO-package, which contains a variety of models for 
planning public transport networks (e.g., Andreasson [14]), 
and has been used more often (Arnstrom [15], HTM [16] and 
Harris and Haywood [17]). The major disadvantages of all 
optimization models, however, are the complex structure (e.g., 
several optimization problems within one model) and the lim­
ited accessibility for planners as the models can be used only 
on a mainframe. 

ANEW MODEL 

The disparities between the capabilities of optimization models 
in the design process and the practical situation combined 
with the need to improve the design process are the reasons 
for developing a new model. If a model is to be used as a 
tool in the design process, it should fulfil the following 
requirements: 

1. It should be suited for several design problems ranging 
from short-term analyses to long-term decisions, e.g., assign­
ing frequencies, designing part of a network and designing a 
complete network, 

2. It should be easily accessible and understandable for the 
user (i.e., the planner). 

The model presented in this paper is an attempt to serve 
as such a model. It is suited for use on a personal computer 
and special attention is given to the interactive design process . 

Moreover, the optimization model will be included in a 
software package for the design of public transport networks. 
This package will also contain a model for the determination 
of an OD-matrix, an evaluation, model and interactive pro­
grams to arrange the necessary input. Activities for which the 
package can be used are as follows: 

1. Evaluating a network, 
2. Assigning frequencies, 
3. Designing or redesigning part of a network, 
4. Designing or redesigning a complete network . 

·For activities 2, 3 and 4, the optimization model can be 
used. The optimization process is structured to be simple and 
understandable. 

OPTIMIZATION PROBLEM IN WORDS 

The main objective is to design a network which can fulfil the 
demand for public transport as well as possible. It is obvious 
that this objective cannot be used in an optimization model, 
as it is unclear what is meant by "as well as possible." Does 
a network qualify as "good" if it offers services which can 
compete with other modes, or if it is especially suited to the 
needs of people who cannot travel otherwise? The decision 
on what is meant by "as well as possible" is a political one, 
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however, and should not be made within an optimization 
model. 

An objective suited to an optimization model and for both 
interpretations of "as well as possible" is maximizing the num­
ber of passengers, given a certain budget. It is a well-known 
fact that transfers negatively affect the number of passengers. 
Recent research in the Netherlands shows a penalty of 6 min­
utes, not including the waiting time at the transfer point (Van 
der Waard et al. [18]). Therefore, maximizing the number of 
passengers is more or less equivalent to minimizing transfers, 
especially in middle-sized cities such as those in the Nether­
lands. Although minimizing transfers is a commonly used 
objective (see e.g., Hasselstrom [13]), it is preferable to max­
imize the number of direct trips. The objective of maximizing 
direct trips makes it possible to use a description in which the 
demand for public services depends on the quality of the 
services offered, while the objective of minimizing transfers 
requires a fixed OD-matrix. Therefore, we choose to maxi­
mize the number of direct trips. 

The major constraint of the problem is the available budget. 
Since there is a strong relation between the available budget 
and the number of vehicles that can be put into operation, 
the optimization problem can be formulated as follows: 

Maximize the number of direct trips given a certain fleet 
size. 

A special aspect of the public transport system is the use 
of different vehicle types (e.g., bus, tram). As the vehicle 
type influences both generalized costs and total costs, this 
aspect will also be included in the optimization model. Of 
course it is possible that, by maximizing the number of direct 
trips, networks may be developed which offer very poor trans­
fer facilities, resulting in far fewer passengers than the highest 
number desirable. Therefore, additional constraints, such as 
a maximum number of routes or a minimum frequency, may 
be necessary. The decision as to which constraints must be 
imposed depends on the characteristics of the demand pattern 
and the specific network. 

RELATION BETWEEN SUPPLY AND DEMAND 
FOR PUBLIC TRANSPORT SERVICES 

The formulated objective makes it necessary to describe the 
relation between supply and demand for public transport ser­
vices. It is not possible to use elasticities which are based on 
empirical research of the behavior of passengers as a result 
of changes in the public transport system. Usually these elas­
ticities have constant values and are time and place depend­
ent. Therefore, a direct demand model is formulated, which 
is based on the simultaneous distribution-modal split model 
(see, e.g., Wilson [19]). The relation between supply and 
demand for public transport is described by the deterrence 
function. 

The simultaneous distribution-modal split model can be 
formulated as (see, e.g., Wilson [19]): 

T,i = r · o1 • di · F,i Vi,j 

where 

T1i = number of trips between nodes i and j, 
r = constant term 

(1) 
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o1 = factor for the generation of node i, 
di = factor for the attraction of node j, 
F1i = value of the deterrence function for all modes for 

OD-pair i-j. 

Constrained by: 

Vj and 2: Tii = 0 1 Vi (2) 
J 

where 

Di = arrivals at zone j, 
0 1 = departures from zone i. 

Fii can be written as: 

Vi,j (3) 

where 

Fv = the deterrence function for mode v, 
C,iv = the generalized costs for OD-pair i-j with mode v. 

Finally, the number of trips by public transport can be cal­
culated with the following equation: 

Vi,j (4) 

where 

T1iP = number of trips by public transport between nodes 
i and j, 

FP = the deterrence function for public transport, 
C,iP = the generalized costs for OD-pair i-j with public 

transport. 

We will assume that a small change in the public transport 
system will only affect the number of trips by public transport, 
and will neither affect the total number of trips for an OD­
pair (T,i) nor the value of the deterrence function for all modes 
(F1i). This assumption is acceptable for situations where 10-
20 percent of all trips are made by public transport (e.g., in 
the Netherlands). The values of o1 and di are known, so by 
using equation (4) it is possible to calculate the number of 
trips. The values of 0 1 and di have to be determined for a 
situation which is comparable with the new situation. In case 
of an existing public transport system, these values can be 
calculated with an observed OD-matrix and for instance a 
weighted Poisson model (e.g., Hamerslag et al. [20]). When 
large changes are expected to occur, such as new residential 
areas, a traffic forecasting model should be used to calculate 
the values of 0 1 and di. 

OBJECTIVE FUNCTION 

Given is a set of possible routes Y with characteristics such 
as: 

1. fy = frequency of route y, 

2. Sy vehicle type used on route y (e.g. bus, tram), 
3. NY set of nodes connected by route y, 

4. TY in-vehicle times between the nodes of set NY. 
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Only fy will be used as the decision variable in the optim­
ization process; all other characteristics are assumed to be 
fixed for each route. For instance, if a route can be used by 
two vehicle types, two identical routes have to be included 
each with a different vehicle type. 

The set of possible routes Y can be generated in several 
ways, for instance with the method described by Ceder and 
Wilson (21), or such a set can be developed manually, using 
the interactive programs that will be included in the package. 
The final package will contain a model for the generation of 
routes. 

The objective is to maximize the number of public transport 
passengers who can travel without transfers: 

(5) 

The generalized costs for an OD-pair are determined by the 
set of routes S;j which offer a direct trip for the OD-pair i-j. 
Therefore: 

(6) 

with S;j = a set of routes with i E NY, j E NY and fy 2= 0 for 
'rJ y E Sij> and Sij E Y. 

When equation (6) is substituted in (5) the objective can 
be written as: 

max L {L[r · 0 1 • dj · G(S;)]} 
fy I J 

(7) 

The description of the public transport system results in a 
complicated analytical formulation of the objective. In order 
to derive a formulation which is more suitable for analytical 
analyses, a somewhat simplified description is used. For 
instance, let us assume an exponential function for FP: 

Fp = a · exp [ - b · ( Cijp + c)] (8) 

with a, b, and c as the coefficients. 
The generalized costs can be written as: 

(9) 

with 

g;j = a constant for OD-pair i-j, determined by the time to 
access and to egress the system and the time spent in 
the vehicle, 

h = a parameter for the calculation of the waiting time 
(including the weight of the waiting time). 

Of course this description of the generalized costs is too simple 
in case there are several routes available for the OD-pair i-j, 
but it is sufficient to illustrate the problem. Equation (7) can 
then be written as: 

max L (L: (r · o; · dj · a · exp {- b 
fy 1 } 

(10) 
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CONSTRAINTS 

The constraints of the problem are the available budget (SJ) 
and the number of vehicles per vehicle type (S2). Further­
more, the possible frequencies are restricted to a limited set 
of integer values in order to make it easy for the passenger 
to memorize headways (SJ), and of course only an integer 
number of vehicles can be assigned to a route (S4). These 
constraints can be written as: 

(11) 

with 

K = the available budget, 
nvy = the number of vehicles that is necessary for route y, 

by = a binary variable that indicates whether route y will 
be included in the summation (by = 1 if sY = s; 
otherwise, by = 0), 

ks = a factor for the costs of using a vehicle of type s. 

S2: L (nvy · by) ~ mnvs Vs (12) 
y 

. with mnvs = available number of vehicles of types. 

SJ: fyEf Vy (13) 

with f = set of possible (integer) frequencies. 

S4: nvy - 1 < (fy · nvfy) ~ nyY Vy (14) 

with nvfy = the number of vehicles that is necessary for the 
frequency of one vehicle per hour on route y. 

SOLUTION METHOD 

The formulated problem has a non-linear objective, linear 
constraints and a great number of integer variables. There 
are no efficient algorithms available to solve the problem 
without simplifying the formulation. For that reason Lampkin 
and Saalmans (11) and Dubois et al. (12) solve the problem 
in two stages: first, determine the routes and second, assign 
the frequencies. But, as there is a distinct relation between 
routes and frequencies, it would be better to determine them 
simultaneously. Therefore a new method has been developed. 
This method can be described as follows: 

0. Set all frequencies equal to 0 and determine the elements 
of the sets sij. 

I. Determine for each route y the efficiency ry of an increase 
of the frequency by calculating the ratio of the number of 
extra passengers as a result of this increase and the necessary 
costs: 

ry 

~{~[r ·Om· dn · G(Smn2)]} - ~{~[r ·Om· dn · G(Smn1)]} 

ksy · nvfy · (fy2 - fy1) 

(15) 
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with 

m,n E NY, 
fy1' fy2 E f, and fy1 < fyz, 

ry = the efficiency of route y, 
Smni = set of routes available for OD-pair m-n; fy = fy1, 
Smnz = set of routes available for OD-pair m-n; fy = fy2, 

ks = factor for the costs of using a vehicle of type s 
(s = sy). 

2. Select the route with the highest efficiency ratio and 
increase the frequency of that route. 

3. Check the constraints SJ and S2 (eq. [11] and [12]); if 
they are no longer met the process stops; otherwise, continue 
with step 1. 

A special feature of the method is the possibility of assigning 
some routes a fixed frequency, e.g., routes of other public 
transport companies, or routes of a vehicle type of which 
vehicles are no longer available. Because the optimization 
problem is limited to passengers who are being offered a direct 
trip, the values of the rys and the value of the objective func­
tion can quickly and easily be obtained. By restraining the 
set of possible routes Y, the method can also be applied to 
other design problems; for example, if we are only interested 
in the assignment of frequencies, the set Y consists of the 
existing routes. 

ANALYSIS OF THE METHOD 

Lagrange Multiplier 

Although the method is heuristic, the efficiency of a route 
(ry) can be regarded as an estimate of the Lagrange Multiplier, 
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which is introduced when the first constraint is included in 
the objective and the integer constraints are dropped. The 
Lagrange formulation can then be written as: 

max L{L[r · O; ·di· G(S;)]} 
fy I I 

- µ {~[k ( ~(f, n,f, b,) - K )J} (16) 
with µ = the Lagrange Multiplier. 

An optimum will be found when the Kuhn-Tucker condi­
tions are fulfilled. Therefore it is required that: 

s{ ~ [ ~(' · o. · d., · G(S •• )) ]} 

'6fy 

'Vy 

(17) 

with m,n EN ,. 

(18) 

µ 2: 0 (19) 

FREQUENCY (VEH/H) 

FIGURE 1 Possible relations between the number of passengers and the frequency offered. 
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Using equation (17) the Lagrange Multiplierµ. can be writ­
ten as: 

{~:[ ~(' · o. · d. · G(S_)) ]} 

µ. = 
ks · nvfy · Bfy 

\:/y (20) 

If we take the limit of equation (15) as (fy2 - fy1) approaches 
zero, the resemblance between the equations (15) and (20) is 
obvious. From this point of view the method is based on 
minimizing the variance between the values of ry by increasing 
the frequency of the route with the largest ry. The values of 
ry will decrease gradually and finally converge to a solution 
in which they are more or less equal to each other and con­
sequently equal µ.. 

Concavity 

If the objective function is concave over the decision variables 
(fy), the Kuhn-Tucker conditions are sufficient to determine 
the optimum. For an exponential, as well as for a lognormal 
deterrence function it can be shown that the objective is con­
cave for frequencies greater than a certain value, depending 
on the coefficient being used (see Figure 1). The concavity 
of the objective function also guarantees that an increase of 
fy will result in a decrease of ry, and consequently that the 
method converges to a solution. 

Quality of the Solution 

As the method can be used for several design problems, there 
are two aspects that have to be analyzed: 

1. The assignment of frequencies, 
2. The selection of routes. 

Both aspects have been analyzed with the use of the sim­
plified objective described with equation (10). When we restrict 
the problem to assigning frequencies only, we can derive an 
alternative solution technique. By introducing the first con­
straint (11) in the objective (10) the Lagrange equation is 
derived. In the optimum situation the Kuhn-Tucker condi­
tions should be fulfilled. These conditions result in a set of 
non-linear equations, which because of the concavity of the 
objective can be solved using Newton-Raphson (see Simmons 
[22)). For these analyses a simple network (Figure 2 and Table 
1) has been used. 

2 3 

5 6 7 .. 
8 

FIGURE 2 Network for analysis of the 
method. 
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4 

For several sets of routes the frequencies were determined 
using Newton-Raphson as well as the new method withfy2 -

fy 1 = 0.1 and with fy 2 - fy 1 = 1. The results show that with 
a small stepsize the new method gives the same results as 
Newton-Raphson. If we use the integer stepsize, the results 
are quite satisfactory. The results are shown in Table 2. 

The selection of routes is more difficult to analyze as the 
method used to analyze the assignment of frequencies cannot 
be used for the selection of routes. Therefore this has been 
done by comparing the first four selected routes with the 
results of every possible combination of four routes from the 
set Y. For each combination the Newton-Raphson method 
was used to determine the frequencies and the value of the 
objective. This comparison showed that the selected four routes 
were the best combination. Moreover, this analysis showed 

TABLE 1 VALUES OFo, 
AND d1 

Zone o, di 

1 2 4 
2 10 10 
3 2 2 
4 2 2 
5 4 2 
6 10 10 
7 4 4 
8 2 4 

TABLE 2 COMPARISON OF CALCULATED FREQUENCIES FOR A TEST NETWORK 

Frequency 

Route Newton-Raphson (fy2 - fy,) = 0.1 (fy2 - fy,) = 1.0 

1-2-6-5 1.9 1.9 2.0 
1-2-6-7 2.3 2.3 2.0 
4-3-7-6-5 1.4 1.4 1.0 
4-3-2-6-8 2.4 2.4 3.0 

No. of direct trips 696.5 696.2 692.9 
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that 3 percent of the combinati.ons were near-optimal, i.e., 
within 2 percent difference from the optimum solution. Anal­
yses with a more realistic network gave similar results. 

ADDITIONAL FEATURES 

Although the test showed good results for the method, there 
are indications that the purely additive nature of the method 
might have a negative effect on the optimal quality of the 
selected network. Therefore, an exchange routine to check 
the solution has been introduced. This routine is based on 
the interpretation of the efficiency ry as an estimate of the 
Lagrange Multiplier µ and checks whether the solution can 
be improved by replacing a selected route with another. If an 
optimum solution has been found it will not be possible to 
improve the solution in this way because the efficiency of the 
routes will be more or less equal. Moreover, an interactive 
routine is developed which can be used to analyze a solution 
by fixing frequencies, dropping routes or introducing extra 
routes, and to restart the optimization process, for example, 
to assign frequencies or to select alternative routes given the 
adapted solution. Therefore, the model does not present the 
solution, but allows the planner to play around with an opti 
mized solution. Besides, the possibility of using different start­
ing sets Y, developed manually or with the use of a route 
generation model, also offers different solutions from which 
the planner may choose. 

INCORPORATION OF THE PUBLIC TRANSPORT 
SYSTEM IN THE MODEL 

Another aspect which determines the quality of the model is 
the description of the public transport system. Some special 
features of this description will be discussed in this paragraph. 

The area that is the subject of the study is divided into 
zones, which are located around the stops. For each zone an 
access- and egress-time is determined. Trips from or to th,e 
study area are supposed to enter or leave at fictional zones 
located at the major transfer points between the local and 
regional public transport system. 

The generalized costs consist of the weighted sum of the 
time-elements of a trip by public transport, namely the access-

• city centre 

I railway station 

• offices 
A shopping centre 
+ Industrial estate 2 

FIGURE 3 Test network. 
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and egress-time, the in-vehicle time and the waiting time. The 
in-vehicle time is weighted with a coefficient which depends 
on the vehicle type. The waiting time can be calculated with 
several formulas, so it is possible to account for the expected 
regularity of the route, for example. 

A special situation occurs when several routes offer a direct 
trip for an OD-pair. In some models the frequencies of the 
routes are added, but this is clearly a very optimistic approach. 
We will use an approach similar to that of Lampkin and Saal­
mans (11), but instead of calculating an average waiting time 
we also take amount of the possibility of bunched arrivals of 
vehicles. In this approach it is assumed that a passenger uses 
the first vehicle that arrives at the stop. This assumption has 
often been criticized (e.g., Marguier and Ceder [23]), but this 
criticism is not supported by empirical evidence. 

All kinds of routes can be used in the set of possible routes: 
one-way and two-way routes, routes with loops, express routes 
and so on. Moreover, it is possible to use different deterrence 
functions to account for the different behavior of separate 
groups of travelers . 

EXAMPLES 

The model which has been described is suitable for a personal 
computer (Olivetti M24, MS-DOS , 640KB) and can be used 
for a network consisting of 250 nodes with a maximum of 150 
zones, and a maximum of 750 possible routes. 

Fictional Network 

As an example of the design process using the optimization 
model the network of Figure 3 is used. A set of possible routes 
Y was generated manually, and consists of 75 routes. Two 
alternative demand patterns are considered: a midday period 
and an evening peak hour. For the midday period a network 
is designed which offers 1205 passengers a direct trip, given 
a fleet size of 10 vehicles. This solution cannot be improved 
using the exchange routine. For the evening peak hour two 
networks were developed: a complete new network and a 
network which uses the midday network as a base. network. 
A comparison of these two networks shows that adding new 
constraints, such as the use of a base network, results in less 

12 16 

20 
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FIGURE 4 Selected network with four routes (midday). 

optimal solutions. On the other hand, using a base network 
has the advantage that the network remains recognizable for 
the passenger. The major point, however, is that the optim­
ization model can be used for both strategies. Results of the 
tests are shown in Figures 4, 5 and 6, and in Table 3. 

Existing Network 

The optimization model is also tested with data from the city 
of Groningen in the Netherlands (170,000 inhabitants). This 
network consists of 182 nodes and 115 zones (Figure 7). Three 
different starting sets Y were used. The first set consists of 
the current routes run by the local public transport company. 
The second set was constructed by splitting the existing routes 
at the city center and connecting them in all possible ways. 
The third set was derived with the use of basic design prin­
ciples. The shortest routes from the city center and the railway 
station to 14 termini were determined and these route-seg­
ments were combined in such a way that each route passes 
the railway station and the city center. The optimization model 
was used to determine the best possible network based on 
the possibilities contained in sets 2 and 3, given the demand 
pattern for the morning peak hour. The first set, the existing 
routes, is used for comparison. 

The results of these tests can be found in Table 4. They 
clearly indicate that the optimization method is suited for 
realistic situations. Sets 2 and 3 yield similar results for the 
number of direct trips, an increase of 300 trips. Set 3, however, 
is clearly the best solution when the total number of trips is 
included. This is due to the basic design principles used to 
construct set 3, because of which a network can be developed 
offering good transfer facilities. 

These analyses show that the set Y is an additional con­
straint; set 2, which is determined by the network, yields a 
lower result compared to set 3, which is developed with fewer 
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FIGURE 5 Selected network with six routes (peak). 

constraints. It is up to the planner to decide which constraints 
will have to be included in the set of possible routes. It should 
be noted that during these tests the number of routes was not 
used as a constraint. The method itself stopped selecting routes 
at 9, respectively 7 routes. 

CONCLUSIONS 

We have presented a new optimization model for the design 
of public transport networks. Special features of the optimi­
zation method are as follows: 

1. The simultaneous selection of routes, assignment of fre­
quencies and the determination of the number of passengers, 

2. The single optimization process which can be used for 
several design problems, ranging from short-term analyses to 
long-term decisions, 

3. The application on a personal computer, which together 
with the interactive approach and the inclusion in a software 

FIGURE 6 Selected network with six routes using a base 
network (peak). 

TABLE 3 CHARACTERISTICS OF THE RESULTS WITH THE TEST 
NETWORK 

Period Base Direct No. of No. of 
of Day Network Trips Vehicles Routes 

Mid-day No 1,205 10 4 
Peak Yes 1,529 15 6 
Peak No 1,543 15 6 
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FIGURE 7 Network of Groningen. 

TABLE 4 CHARACTERISTICS OF THE RESULTS WITH THE 
NETWORK OF GRONINGEN 

Direct Total 
Set Trips Trips 

1 3,494 5,242 
2 3,818 5,393 
3 3,805 5,746 

package, enables the use of the model by the planner imle­
pendently, 

4. The possibility of taking into account all kinds of addi­
tional constraints, such as a base network, existing routes, a 
maximum number of routes, etc. 

The method has proved to give good results with test net­
works and with actual data. Further research will be carried 
out to develop a model to generate a proper set of possible 
routes which can be used as input for the optimization model. 
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