Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time


MIT License

DNest4 is a C++11 implementation of Diffusive Nested Sampling, a Markov Chain Monte Carlo (MCMC) algorithm for Bayesian Inference and Statistical Mechanics. You can use it in a few different ways:

  • Implement your model in C++, compile it and have it run super fast.
  • Implement trans-dimensional models with the RJObject template class.
  • Implement your model as a Python class.
  • Write up your model in Python, using a BUGS-style approach see here to learn how (more documentation coming later for this).


There is a paper describing DNest4 installation and usage in the Journal of Statistical software. You might also want to read the original paper describing the Diffusive Nested Sampling algorithm itself. If you find this software useful in your research, please cite one or both of these papers. Here are the citations:

Brewer, B., & Foreman-Mackey, D. (2018). DNest4: Diffusive Nested Sampling in C++ and Python.
Journal of Statistical Software, 86(7), 1 - 33. doi:

Brewer, B. J., Pártay, L. B., & Csányi, G. (2011). Diffusive nested sampling.
Statistics and Computing, 21(4), 649-656.


You will need a C++ compiler that supports the C++11 standard, along with Python 3 and the Python packages NumPy, scipy, matplotlib, Cython, and Numba. Anaconda is a suitable Python distribution to use.


Note for Mac users:

On some Macs, g++ is an alias for clang, which is a C compiler. If this is the case for you, you'll need to edit the first line of the Makefile so that it uses clang++, which is a C++ compiler.

You can compile the DNest4 library (libdnest4) using the Makefile in the code directory using:

cd code

Along with building the library this will compile all the examples. Then, install the Python package.

The easiest way to do this is with:

pip install -U dnest4

but you can install the development version using:

python install

in the root directory of this repository.

Alternative build process with SCons

However, you can also compile and install the library using SCons. To do this you just need to run:

scons install

By default it will attempt to install the library in /usr/local (with the library files in /usr/local/lib and the headers in /usr/local/include/dnest4), so the above command must be run as a user with root access or using sudo. To install to a different location you can instead run:

scons install --prefix <install_location>

where <install_location> is the base path for the install.

To install with GDB enabled during the library's compilation you can add the --debug-mode flag to the install command.

Currently, the Scons installation does not compile the examples or the Python library. Any additions to this installation process are welcome.

(c) 2015--2018 Brendon J. Brewer and contributors. LICENCE: MIT. See the LICENSE file for details.

This work was supported by a Marsden Fast Start grant from the Royal Society of New Zealand.