Meta mathematics. Symbolic functions and derivatives.
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
include/metamath
sample
.gitignore
CMakeLists.txt
LICENSE
README.md

README.md

metamath

Meta mathematic

metamath is a tiny header-only library. It can be used for symbolic computations on single-variable functions, such as dynamic computations of derivatives. The operator precedence rules are naturally handled by the compiler. The library could be useful for building custom DSL's in C++.

func.h contains definitions for some of the cmath functions: Sin/Cos, Ln, Pow, Abs, Sqrt, Exp, more to come... Arithmetic operations with functions are supported:

auto f1 = 3 * x;
auto f2 = Ln(x);
auto f = f1 + f2;

auto y1 = f(2);
auto y2 = f(4);

as well as function composition:

auto f = Ln(x);
auto g = 3 * x;
auto h = f(g);

auto y1 = h(2);

Examples of Functions and Derivatives

Example:

using namespace metamath;

auto f = 3 * x * x;

std::cout << "f(x) = " << f << std::endl;
std::cout << "f(4) = " << f(4.f) << std::endl;
std::cout << "------" << std::endl;

// take derivative
auto df = derivative(f);
std::cout << "f`(x) = " << df << std::endl;
std::cout << "f`(4) = " << df(4.f) << std::endl;

This will produce the following output:

f(x) = 3 * x * x
f(4) = 48
------
f`(x) = ((0 * x + 3) * x + 3 * x)
f`(4) = 24

Example:

auto f =  4 * Sin(2 * x);

std::cout << "f(x) = " << f << std::endl;
std::cout << "f(pi) = " << f(M_PI) << std::endl;
std::cout << "f(pi/4) = " << f(M_PI/4.f) << std::endl;
std::cout << "------" << std::endl;

//take derivative
auto df = derivative(f);
std::cout << "f`(x) = " << df << std::endl;
std::cout << "f`(pi) = " << df(M_PI) << std::endl;
std::cout << "f`(pi/4) = " << df(M_PI/4.f) << std::endl;

This will produce the following output:

f(x) = 4 * sin(2 * x)
f(pi) = 6.99382e-07
f(pi/4) = 4
------
f`(x) = (0 * sin(2 * x) + 4 * cos(2 * x) * (0 * x + 2))
f`(pi) = 8
f`(pi/4) = -3.49691e-07

Build

Requirements

C++14 or later

Steps to build the sample

  • Suppose you cloned to [HOME]/work/metamath

  • For out-of-source, create a build folder in [HOME]/work, and go there.

      $mkdir build
      $cd build
    
  • Run cmake

      $cmake ../metamath
    
  • Build it

      $make
    
  • You can now run a sample (the sample source is in metamath/sample/)

      $./sample/mms
    
  • The sample output:

      Metamath sample
      ======
      f(x) = 3 * x * x
      f(4) = 48
      ------
      f`(x) = ((0 * x + 3) * x + 3 * x)
      f`(4) = 24
      ======
    
      ======
      f(x) = 3 * x
      f(2) = 6
      f(3) = 9
      ------
      f`(x) = (0 * x + 3)
      f`(2) = 3
      ======
    
      ======
      f(x) = ((1) / (x))
      f(2) = 0.5
      f(3) = 0.333333
      ------
      f`(x) = (((0 * x - 1)) / (x * x))
      f`(2.f) = -0.25
      ======
    
      ======
      f(x) = ((2 * (x + 1)) / (x))
      f(2) = 3
      f(3) = 2.66667
      ------
      f`(x) = ((((0 * (x + 1) + 2 * 1) * x - 2 * (x + 1))) / (x * x))
      f`(2) = -0.5
      ======
    
      ======
      f(x) = 4 * sin(2 * x)
      f(pi) = 6.99382e-07
      f(pi/4) = 4
      ------
      f`(x) = (0 * sin(2 * x) + 4 * cos(2 * x) * (0 * x + 2))
      f`(pi) = 8
      f`(pi/4) = -3.49691e-07
      ======
    
      ======
      f(x) = sqrt(x)
      f(4) = 2
      f(6) = 2.44949
      ------
      f`(x) = ((1) / (2 * sqrt(x)))
      f`(4) = 0.25
      f`(6) = 0.204124
      ======
    
      ======
      f(x) = (3 * x^2)
      f(4) = 144
      f(6) = 324
      ------
      f`(x) = 2 * (3 * x^1) * (0 * x + 3)
      f`(4) = 72
      f`(6) = 108
      ======
    
      ======
      f(x) = e^(3 * x)
      f(4) = 162755
      f(6) = 6.566e+07
      ------
      f`(x) = e^(3 * x) * (0 * x + 3)
      f`(4) = 488264
      f`(6) = 1.9698e+08
      ======
    
      ======
      f(x) = ln(3 * x)
      f(4) = 2.48491
      f(6) = 2.89037
      ------
      f`(x) = ((1) / (3 * x)) * (0 * x + 3)
      f`(4) = 0.25
      f`(6) = 0.166667
      ======
    
      ======
      f(x) = |3 * x|
      f(-4) = 12
      f(6) = 18
      ------
      f`(x) = ((3 * x) / (|3 * x|)) * (0 * x + 3)
      f`(-4) = -3
      f`(6) = 3
      ======
    
      ======
      f(x) = ln(x)
      g(x) = 3 * x
      h(x) = f(g(x)) = ln(3 * x)
      h(4) = 2.48491
      ------
      h`(x) = ((1) / (3 * x)) * (0 * x + 3)
      h`(4) = 0.25
      ======