
22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 1/40

Explicit Matrix Factorization:
ALS, SGD, and All That Jazz

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 2/40

Insight Follow

Mar 16, 2016 · 14 min read

Ethan Rosenthal is a Data Scientist at Birchbox. He was an Insight Data
Science Fellow in NYC in 2015 and holds a Ph.D. in Physics from
Columbia University. He blogs here about all things data science,
including recommender systems. In the post below he digs into the details
of how to inject a bit more machine learning into these models.

Working at an e-commerce company, I spend a lot of time thinking about

recommender systems. The goal of a recommendation model is to present a

ranked list of objects given an input object. Typically, this ranking is based

on the similarity between the input object and the listed objects. To be less

vague, one often wants to either present similar products to a given product

or present products that are personally recommended for a given user.

The astounding thing is that if one has enough user-to-product “interaction”

data (ratings, purchases, clicks, etc…), then no other information is

necessary to make decent recommendations. This is quite different than

regression and classification problems where one must explore various

features in order to boost a model’s predictive powers.

https://medium.com/@InsightData?source=post_page-----b00e4d9b21ea--------------------------------
https://medium.com/@InsightData?source=post_page-----b00e4d9b21ea--------------------------------
https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea?source=post_page-----b00e4d9b21ea--------------------------------
http://blog.ethanrosenthal.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 3/40

Often, one’s first introduction to recommender systems is collaborative

filtering; specifically, one learns user- and item-based collaborative

filtering. These are relatively old methods, and, through the lens of modern

machine learning, these methods might feel a bit off. To me, machine

learning almost always deals with some function which we are trying to

maximize or minimize. In simple linear regression, we minimize the mean

squared distance between our predictions and the true values. Logistic

regression involves maximizing a likelihood function. However, in user- and

item-based collaborative filtering, one randomly tries a bunch of different

parameters and watches what happens to the error metric. This sure doesn’t

feel like machine learning. To see this in action, check out my blog post on

these methods.

To bring some technical rigor to recommender systems, I would like to talk

about matrix factorization where we do, in fact, learn parameters to a model

in order to directly minimize a function.

This blog post will be organized as follows: We’ll start by grabbing a well

known dataset of movie ratings on which to train our models. Then, I’ll

introduce and derive two different learning algorithms for matrix

factorization. Next, we’ll spend some time optimizing model parameters.

http://blog.ethanrosenthal.com/2015/11/02/intro-to-collaborative-filtering/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 4/40

Lastly, we’ll use a free API to visualize our recommendations for easy

evaluation of our results.

GRABBING AND PARSING THE MOVIELENS DATASET

INTRODUCING MATRIX FACTORIZATION FOR RECOMMENDER

SYSTEMS

ALTERNATING LEAST SQUARES FOR TRAINING THE MODEL

ALS DERIVATION

ALS COMPUTATION

OPTIMIZING ALS MODEL PARAMETERS

STOCHASTIC GRADIENT DESCENT AS AN ALTERNATIVE TRAINING

ALGORITHM

SGD DERIVATION

SGD COMPUTATION

OPTIMIZING SGD MODEL PARAMETERS

USING THEMOVIEDB.ORG’S API TO EYE-TEST RECOMMENDATIONS

Grabbing and parsing the MovieLens dataset

http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#movielens
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#intromf
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#als
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#alsderivation
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#alscomputation
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#alsoptimization
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#introsgd
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#sgdderivation
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#sgdcomputation
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#sgdoptimization
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#api

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 5/40

For this introduction, I’ll use the MovieLens dataset — a classic dataset for

training recommendation models. It can be obtained from the GroupLens

website. There are various datasets, but the one that I will use below

consists of 100,000 movie ratings by users (on a 1–5 scale). Note that this is

considered an explicit feedback dataset. The users are explicitly telling us

how they would rate a movie. This is different than in implicit feedback

dataset like clicks or purchases where we hope that the data is a proxy for

the user’s preference. Different algorithms must be used for such datasets.

The main data file consists of a tab-separated list with user-id (starting at

1), item-id (starting at 1), rating, and timestamp as the four fields. We can

use bash commands in the Jupyter notebook to download the file and then

read it into with pandas. We’ll then build a ratings matrix with users as

rows, items as columns, and ratings as the elements of the matrix.

In this dataset, every user has rated at least 20 movies which results in a

reasonable sparsity of 6.3%. This means that 6.3% of the user-item ratings

have a value. Note that, although we filled in missing ratings as 0, we

should not assume these values to truly be zero. More appropriately, they

are just empty entries. We will split our data into training and test sets by

removing 10 ratings per user from the training set and placing them in the

test set.

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 6/40

Introducing matrix factorization for recommender systems

With our training and test ratings matrices in hand, we can now move

towards training a recommendation system. Explanations of matrix

view rawinsight-nb1.ipynb hosted with ❤ by GitHub

In [1]: import numpy as np
import pandas as pd
np.random.seed(0)

In [2]: !curl -O http:��files.grouplens.org/datasets/movielens/ml-10
0k.zip
!unzip ml-100k.zip
!cd ml-100k/

In [3]: names = ['user_id', 'item_id', 'rating', 'timestamp']
df = pd.read_csv('u.data', sep='\t', names=names)
df.head()

In [4]: n users = df.user id.unique().shape[0]

Out[3]: user_id item_id rating timestamp

0 196 242 3 881250949

1 186 302 3 891717742

2 22 377 1 878887116

3 244 51 2 880606923

4 166 346 1 886397596

https://gist.github.com/EthanRosenthal/c647d60828d16fa3591d/raw/9c306eee4c3819a7b73b641130397bec5ad57e19/insight-nb1.ipynb
https://gist.github.com/EthanRosenthal/c647d60828d16fa3591d#file-insight-nb1-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 7/40

factorization often start with talks of “low-rank matrices” and “singular

value decomposition”. While these are important for a fundamental

understanding of this topic, I don’t find math-speak to be too helpful in

understanding the basic concepts of various algorithms. Let me simply state

the assumptions that basic matrix factorization makes.

Matrix factorization assumes that:

Each user can be described by k attributes or features. For example,

feature 1 might be a number that says how much each user likes sci-fi

movies.

Each item (movie) can be described by an analagous set of k attributes

or features. To correspond to the above example, feature 1 for the movie

might be a number that says how close the movie is to pure sci-fi.

If we multiply each feature of the user by the corresponding feature of

the movie and add everything together, this will be a good

approximation for the rating the user would give that movie.

That’s it. The beauty is that we do not know what these features are. Nor do

we know how many (k) features are relevant. We simply pick a number for

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 8/40

k and learn the relevant values for all the features for all the users and

items. How do we learn? By minimizing a loss function, of course!

We can turn our matrix factorization approximation of a k-attribute user

into math by letting a user u take the form of a k-dimensional vector x_u.

Similarly, an item i can be k-dimensional vector y_i. User u’s predicted

rating for item i is just the dot product of their two vectors.

where r_ui hat represents our prediction for the true rating r_ui, and y_i

(x⊺_u) is assumed to be a column (row) vector. These user and item vectors

are often called latent vectors or low-dimensional embeddings in the

literature. The k attributes are often called the latent factors. We will

choose to minimize the square of the difference between all ratings in our

dataset (S) and our predictions. This produces a loss function of the form

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 9/40

Note that we’ve added on two L2 regularization terms at the end to prevent

overfitting of the user and item vectors. Our goal now is to minimize this

loss function. Derivatives are an obvious tool for minimizing functions, so

I’ll cover the two most popular derivative-based methods. We’ll start with

Alternating Least Squares (ALS).

Alternating Least Squares for training the model

For ALS minimiztion, we hold one set of latent vectors constant. For this

example, we’ll pick the item vectors. We then take the derivative of the loss

function with respect to the other set of vectors (the user vectors). We set

the derivative equal to zero (we’re searching for a minimum) and solve for

the non-constant vectors (the user vectors). Now comes the alternating

part: With these new, solved-for user vectors in hand, we hold them

constant, instead, and take the derivative of the loss function with respect

to the previously constant vectors (the item vectors). We alternate back and

forth and carry out this two-step dance until convergence.

ALS Derivation

To explain things with math, let’s hold the item vectors (y_i) constant and

take the derivative of the loss function with respect to the user vectors (x_u)

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 10/40

A couple things happen above: let us assume that we have n users and m

items, so our ratings matrix is n×m. We introduce the symbol Y (with

dimensioins m×k) to represent all item row vectors vertically stacked on

each other. Also, the row vector r_u just represents users u’s row from the

ratings matrix with all the ratings for all the items (so it has dimension

1×m). Lastly, I is just the identity matrix which has dimension k×k here.

Just to make sure that everything works, let’s check our dimensions. I like

doing this with Einstein notation. Although this seems like an esoteric

physics thing, there was a reason it was invented — it makes life really

simple! The basic tenant is that if one observes a variable for a matrix index

more than once, then it is implicitly assumed that you should sum over that

index. Including the indices in the last statement from the derivation above,

this appears as the following for a single user’s dimension k

https://en.wikipedia.org/wiki/Einstein_notation

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 11/40

When you carry out all the summations over all the indices on the right

hand side of the above statement, all that’s left are u’s as the rows and k’s as

the columns. Good to go!

The derivation for the item vectors is quite similar

Now that we have our equations, let’s program this thing up!

Computation: turning the math into code

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 12/40

With significant inspiration from Chris Johnson’s implicit-mf repo, I’ve

written a class that trains a matrix factorization model using ALS. In an

attempt to limit this already long blog post, the code is relegated to this

GitHub gist — feel free to check it out and play with it yourself. The class

also has the functionality to calculate a learning curve where we plot our

optimization metric against the number of iterations of our training

algorithm.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

from numpy.linalg import solve

class ExplicitMF():

 def __init__(self,

 ratings,

 n_factors=40,

 item_reg=0.0,

 user_reg=0.0,

 verbose=False):

 """

 Train a matrix factorization model to predict empty

 entries in a matrix. The terminology assumes a

 ratings matrix which is ~ user x item

 Params

 ======

 ratings : (ndarray)

 User x Item matrix with corresponding ratings

 n_factors : (int)

Number of latent factors to use in matrix

https://github.com/MrChrisJohnson/implicit-mf
https://gist.github.com/EthanRosenthal/a0816d8fea4394baf732

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 13/40

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

 Number of latent factors to use in matrix

 factorization model

 item_reg : (float)

 Regularization term for item latent factors

 user_reg : (float)

 Regularization term for user latent factors

 verbose : (bool)

 Whether or not to printout training progress

 """

 self.ratings = ratings

 self.n_users, self.n_items = ratings.shape

 self.n_factors = n_factors

 self.item_reg = item_reg

 self.user_reg = user_reg

 self._v = verbose

 def als_step(self,

 latent_vectors,

 fixed_vecs,

 ratings,

 _lambda,

 type='user'):

 """

 One of the two ALS steps. Solve for the latent vectors

 specified by type.

 """

 if type == 'user':

 # Precompute

 YTY = fixed_vecs.T.dot(fixed_vecs)

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 14/40

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

 lambdaI = np.eye(YTY.shape[0]) * _lambda

 for u in xrange(latent_vectors.shape[0]):

 latent_vectors[u, :] = solve((YTY + lambdaI),

 ratings[u, :].dot(fixed_vecs))

 elif type == 'item':

 # Precompute

 XTX = fixed_vecs.T.dot(fixed_vecs)

 lambdaI = np.eye(XTX.shape[0]) * _lambda

 for i in xrange(latent_vectors.shape[0]):

 latent_vectors[i, :] = solve((XTX + lambdaI),

 ratings[:, i].T.dot(fixed_vecs))

 return latent_vectors

 def train(self, n_iter=10):

 """ Train model for n_iter iterations from scratch."""

 # initialize latent vectors

 self.user_vecs = np.random.random((self.n_users, self.n_factors))

 self.item_vecs = np.random.random((self.n_items, self.n_factors))

 self.partial_train(n_iter)

 def partial_train(self, n_iter):

 """

 Train model for n_iter iterations. Can be

 called multiple times for further training.

 """

 ctr = 1

 while ctr <= n_iter:

 if ctr % 10 == 0 and self._v:

 print '\tcurrent iteration: {}'.format(ctr)

 self.user_vecs = self.als_step(self.user_vecs,

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 15/40

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

 self.item_vecs,

 self.ratings,

 self.user_reg,

 type='user')

 self.item_vecs = self.als_step(self.item_vecs,

 self.user_vecs,

 self.ratings,

 self.item_reg,

 type='item')

 ctr += 1

 def predict_all(self):

 """ Predict ratings for every user and item. """

 predictions = np.zeros((self.user_vecs.shape[0],

 self.item_vecs.shape[0]))

 for u in xrange(self.user_vecs.shape[0]):

 for i in xrange(self.item_vecs.shape[0]):

 predictions[u, i] = self.predict(u, i)

 return predictions

 def predict(self, u, i):

 """ Single user and item prediction. """

 return self.user_vecs[u, :].dot(self.item_vecs[i, :].T)

 def calculate_learning_curve(self, iter_array, test):

 """

 Keep track of MSE as a function of training iterations.

 Params

 ======

 iter_array : (list)

 List of numbers of iterations to train for each step of

the learning curve. e.g. [1, 5, 10, 20]

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 16/40

view raw

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

ExplicitMF_ALS.py hosted with ❤ by GitHub

 the learning curve. e.g. [1, 5, 10, 20]

 test : (2D ndarray)

 Testing dataset (assumed to be user x item).

 The function creates two new class attributes:

 train_mse : (list)

 Training data MSE values for each value of iter_array

 test_mse : (list)

 Test data MSE values for each value of iter_array

 """

 iter_array.sort()

 self.train_mse =[]

 self.test_mse = []

 iter_diff = 0

 for (i, n_iter) in enumerate(iter_array):

 if self._v:

 print 'Iteration: {}'.format(n_iter)

 if i == 0:

 self.train(n_iter - iter_diff)

 else:

 self.partial_train(n_iter - iter_diff)

 predictions = self.predict_all()

 self.train_mse += [get_mse(predictions, self.ratings)]

 self.test_mse += [get_mse(predictions, test)]

 if self._v:

 print 'Train mse: ' + str(self.train_mse[-1])

 print 'Test mse: ' + str(self.test_mse[-1])

 iter_diff = n_iter

https://gist.github.com/EthanRosenthal/a0816d8fea4394baf732/raw/63cbbfd7a05cd49a0c0490c6d6312a3b6ad456da/ExplicitMF_ALS.py
https://gist.github.com/EthanRosenthal/a0816d8fea4394baf732#file-explicitmf_als-py
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 17/40

I’ve included a helper function below to quickly calculate Mean Squared

Error (MSE). Let’s try an initial training with 40 latent factors and no

regularization and see what the learning curve looks like.

view rawinsight-nb3.ipynb hosted with ❤ by GitHub

In [8]: from sklearn.metrics import mean_squared_error

def get_mse(pred, actual):
 # Ignore nonzero terms.
 pred = pred[actual.nonzero()].flatten()
 actual = actual[actual.nonzero()].flatten()
 return mean_squared_error(pred, actual)

In [9]: MF_ALS = ExplicitMF(train, n_factors=40, \
 user_reg=0.0, item_reg=0.0)
iter_array = [1, 2, 5, 10, 25, 50, 100]
MF_ALS.calculate_learning_curve(iter_array, test)

In [10]: %matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

def plot_learning_curve(iter_array, model):
 plt.plot(iter_array, model.train_mse, \
 label='Training', linewidth=5)
 plt.plot(iter_array, model.test_mse, \
 label='Test', linewidth=5)

plt.xticks(fontsize=16);

https://gist.github.com/EthanRosenthal/3d6cb5c0835e73ee2195/raw/1ee3fc01d0df1841adf0e0493b2a157363f2e0be/insight-nb3.ipynb
https://gist.github.com/EthanRosenthal/3d6cb5c0835e73ee2195#file-insight-nb3-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 18/40

Optimizing ALS model parameters

Looks like we have a reasonable amount of overfitting (our test MSE is

~50% greater than our training MSE). Also, the test MSE bottoms out

around 5 iterations then actually increases after that (even more

overfitting). We can try adding some regularization to see if this helps to

alleviate some of the overfitting.

In [12]: MF_ALS = ExplicitMF(train, n_factors=40, \
 user_reg=30., item_reg=30.)

iter_array = [1, 2, 5, 10, 25, 50, 100]
MF_ALS.calculate_learning_curve(iter_array, test)

In [13]: plot_learning_curve(iter_array, MF_ALS)

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 19/40

Hmmm, the regularization narrowed the gap between our training and test

MSE, but it did not decrease the test MSE too much. We could spend all day

searching for optimal hyperparameters. We’ll just setup a small grid search

and tune both the regularization terms and number of latent factors. The

item and user regularization terms will be restricted to be equal to each

other.

view rawinsight-nb4.ipynb hosted with ❤ by GitHub

In [14]: latent_factors = [5, 10, 20, 40, 80]
regularizations = [0.1, 1., 10., 100.]
regularizations.sort()
iter_array = [1, 2, 5, 10, 25, 50, 100]

best_params = {}
best_params['n_factors'] = latent_factors[0]
best_params['reg'] = regularizations[0]
best_params['n_iter'] = 0
best_params['train_mse'] = np.inf
best_params['test_mse'] = np.inf
best_params['model'] = None

for fact in latent_factors:
 print 'Factors: {}'.format(fact)
 for reg in regularizations:
 print 'Regularization: {}'.format(reg)
 MF_ALS = ExplicitMF(train, n_factors=fact, \
 user_reg=reg, item_reg=reg)

MF ALS calculate learning curve(iter array test)

https://gist.github.com/EthanRosenthal/37bbc6b557e3562453ac/raw/534ba71ce8bf5847a47cd656a91e6d4745e85112/insight-nb4.ipynb
https://gist.github.com/EthanRosenthal/37bbc6b557e3562453ac#file-insight-nb4-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 20/40

So it looks like the best performing parameters were 10 factors and a

regularization value of 0.1. It creeps me out a bit that the test set error is

actually lower than the training error, but so be it. Before visualizing the

recommendaton results of our ALS algorithm, let’s first explore the other

minimization algorithm: stochastic gradient descent (SGD).

Stochastic Gradient Descent as an alternative training algorithm

With SGD, we again take derivatives of the loss function, but we take the

derivative with respect to each variable in the model. The “stochastic”

aspect of the algorithm involves taking the derivative and updating feature

weights one individual sample at a time. So, for each sample, we take the

derivative of each variable, set them all equal to zero, solve for the feature

weights, and update each feature. Somehow this method actually

converges.

view rawinsight-nb5.ipynb hosted with ❤ by GitHub

 MF_ALS.calculate_learning_curve(iter_array, test)
 min_idx = np.argmin(MF_ALS.test_mse)
 if MF_ALS.test_mse[min_idx] < best_params['test_mse'
]:
 best_params['n_factors'] = fact
 best_params['reg'] = reg
 best_params['n_iter'] = iter_array[min_idx]

best params['train mse'] = MF ALS.train mse[min

https://gist.github.com/EthanRosenthal/c3f089259728f2b691e9/raw/f6c658c8fb7b7312815a7163bbb8222623a168e5/insight-nb5.ipynb
https://gist.github.com/EthanRosenthal/c3f089259728f2b691e9#file-insight-nb5-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 21/40

SGD Derivation

We will use a similar loss function to before, but I am going to add some

more details to the model. Instead of assuming that a user u’s rating for

item i can be described simply by the dot product of the user and item latent

vectors, we will consider that each user and item can have a bias term

associated with them. The rational is that certan users might tend to rate all

movies highly, or certain movies may tend to always have low ratings. The

way that I think about it is that the bias term takes care of the “DC” part of

the signal which allows the latent factors to account for the more detailed

variance in signal (kind of like the AC part). We will also include a global

bias term as well. With all things combined, our predicted rating becomes

where we have added on extra bias regularization terms. We want to

update each feature (user and item latent factors and bias terms) with each

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 22/40

sample. The update for the user bias is given by

where η is the learning rate which weights how much our update modifies

the feature weights. The derivative term is given by

where e_ui represents the error in our prediction, and we have dropped the

factor of 2 (we can assume it gets rolled up in the learning rate). For all of

our features, the updates end up being

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 23/40

Computation

I’ve modified the original ExplicitMF class to allow for either sgd or als

learning. The modified class is located at this gist. Similar to the ALS

section above, let’s try looking at the learning curve for 40 latent factors, no

regularizaton, and a learning rate of 0.001.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

class ExplicitMF():

 def __init__(self,

 ratings,

 n_factors=40,

 learning='sgd',

 item_fact_reg=0.0,

 user_fact_reg=0.0,

 item_bias_reg=0.0,

 user_bias_reg=0.0,

 verbose=False):

 """

 Train a matrix factorization model to predict empty

 entries in a matrix. The terminology assumes a

 ratings matrix which is ~ user x item

https://gist.github.com/EthanRosenthal/a293bfe8bbe40d5d0995

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 24/40

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

 Params

 ======

 ratings : (ndarray)

 User x Item matrix with corresponding ratings

 n_factors : (int)

 Number of latent factors to use in matrix

 factorization model

 learning : (str)

 Method of optimization. Options include

 'sgd' or 'als'.

 item_fact_reg : (float)

 Regularization term for item latent factors

 user_fact_reg : (float)

 Regularization term for user latent factors

 item_bias_reg : (float)

 Regularization term for item biases

 user_bias_reg : (float)

 Regularization term for user biases

 verbose : (bool)

 Whether or not to printout training progress

 """

 self.ratings = ratings

 self.n_users, self.n_items = ratings.shape

 self.n_factors = n_factors

self.item fact reg = item fact reg

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 25/40

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

 self.item_fact_reg = item_fact_reg

 self.user_fact_reg = user_fact_reg

 self.item_bias_reg = item_bias_reg

 self.user_bias_reg = user_bias_reg

 self.learning = learning

 if self.learning == 'sgd':

 self.sample_row, self.sample_col = self.ratings.nonzero()

 self.n_samples = len(self.sample_row)

 self._v = verbose

 def als_step(self,

 latent_vectors,

 fixed_vecs,

 ratings,

 _lambda,

 type='user'):

 """

 One of the two ALS steps. Solve for the latent vectors

 specified by type.

 """

 if type == 'user':

 # Precompute

 YTY = fixed_vecs.T.dot(fixed_vecs)

 lambdaI = np.eye(YTY.shape[0]) * _lambda

 for u in xrange(latent_vectors.shape[0]):

 latent_vectors[u, :] = solve((YTY + lambdaI),

 ratings[u, :].dot(fixed_vecs))

 elif type == 'item':

 # Precompute

 XTX = fixed_vecs.T.dot(fixed_vecs)

 lambdaI = np.eye(XTX.shape[0]) * _lambda

f i i (l t t t h [0])

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 26/40

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

 for i in xrange(latent_vectors.shape[0]):

 latent_vectors[i, :] = solve((XTX + lambdaI),

 ratings[:, i].T.dot(fixed_vecs))

 return latent_vectors

 def train(self, n_iter=10, learning_rate=0.1):

 """ Train model for n_iter iterations from scratch."""

 # initialize latent vectors

 self.user_vecs = np.random.normal(scale=1./self.n_factors,\

 size=(self.n_users, self.n_factors))

 self.item_vecs = np.random.normal(scale=1./self.n_factors,

 size=(self.n_items, self.n_factors))

 if self.learning == 'als':

 self.partial_train(n_iter)

 elif self.learning == 'sgd':

 self.learning_rate = learning_rate

 self.user_bias = np.zeros(self.n_users)

 self.item_bias = np.zeros(self.n_items)

 self.global_bias = np.mean(self.ratings[np.where(self.ratings != 0)])

 self.partial_train(n_iter)

 def partial_train(self, n_iter):

 """

 Train model for n_iter iterations. Can be

 called multiple times for further training.

 """

 ctr = 1

 while ctr <= n_iter:

 if ctr % 10 == 0 and self._v:

 print '\tcurrent iteration: {}'.format(ctr)

 if self.learning == 'als':

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 27/40

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

 self.user_vecs = self.als_step(self.user_vecs,

 self.item_vecs,

 self.ratings,

 self.user_fact_reg,

 type='user')

 self.item_vecs = self.als_step(self.item_vecs,

 self.user_vecs,

 self.ratings,

 self.item_fact_reg,

 type='item')

 elif self.learning == 'sgd':

 self.training_indices = np.arange(self.n_samples)

 np.random.shuffle(self.training_indices)

 self.sgd()

 ctr += 1

 def sgd(self):

 for idx in self.training_indices:

 u = self.sample_row[idx]

 i = self.sample_col[idx]

 prediction = self.predict(u, i)

 e = (self.ratings[u,i] - prediction) # error

 # Update biases

 self.user_bias[u] += self.learning_rate * \

 (e - self.user_bias_reg * self.user_bias[u])

 self.item_bias[i] += self.learning_rate * \

 (e - self.item_bias_reg * self.item_bias[i])

 #Update latent factors

 self.user_vecs[u, :] += self.learning_rate * \

 (e * self.item_vecs[i, :] - \

 self.user_fact_reg * self.user_vecs[u,:])

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 28/40

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

_ _ g _

 self.item_vecs[i, :] += self.learning_rate * \

 (e * self.user_vecs[u, :] - \

 self.item_fact_reg * self.item_vecs[i,:])

 def predict(self, u, i):

 """ Single user and item prediction."""

 if self.learning == 'als':

 return self.user_vecs[u, :].dot(self.item_vecs[i, :].T)

 elif self.learning == 'sgd':

 prediction = self.global_bias + self.user_bias[u] + self.item_bias[i]

 prediction += self.user_vecs[u, :].dot(self.item_vecs[i, :].T)

 return prediction

 def predict_all(self):

 """ Predict ratings for every user and item."""

 predictions = np.zeros((self.user_vecs.shape[0],

 self.item_vecs.shape[0]))

 for u in xrange(self.user_vecs.shape[0]):

 for i in xrange(self.item_vecs.shape[0]):

 predictions[u, i] = self.predict(u, i)

 return predictions

 def calculate_learning_curve(self, iter_array, test, learning_rate=0.1):

 """

 Keep track of MSE as a function of training iterations.

 Params

 ======

 iter_array : (list)

 List of numbers of iterations to train for each step of

 the learning curve. e.g. [1, 5, 10, 20]

 test : (2D ndarray)

Testing dataset (assumed to be user x item)

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 29/40

view raw

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

ExplicitMF.py hosted with ❤ by GitHub

 Testing dataset (assumed to be user x item).

 The function creates two new class attributes:

 train_mse : (list)

 Training data MSE values for each value of iter_array

 test_mse : (list)

 Test data MSE values for each value of iter_array

 """

 iter_array.sort()

 self.train_mse =[]

 self.test_mse = []

 iter_diff = 0

 for (i, n_iter) in enumerate(iter_array):

 if self._v:

 print 'Iteration: {}'.format(n_iter)

 if i == 0:

 self.train(n_iter - iter_diff, learning_rate)

 else:

 self.partial_train(n_iter - iter_diff)

 predictions = self.predict_all()

 self.train_mse += [get_mse(predictions, self.ratings)]

 self.test_mse += [get_mse(predictions, test)]

 if self._v:

 print 'Train mse: ' + str(self.train_mse[-1])

 print 'Test mse: ' + str(self.test_mse[-1])

 iter_diff = n_iter

https://gist.github.com/EthanRosenthal/a293bfe8bbe40d5d0995/raw/6ab5e571b07056af008fbe6ae998e7190456dd0f/ExplicitMF.py
https://gist.github.com/EthanRosenthal/a293bfe8bbe40d5d0995#file-explicitmf-py
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 30/40

Wow, quite a bit better than before! I assume that this is likely due to the

inclusion of bias terms (especially because the ratings are not normalized).

Optimizing SGD model parameters

view rawinsight-nb6.ipynb hosted with ❤ by GitHub

In [14]: MF_SGD = ExplicitMF(train, 40, learning='sgd', verbose=True)
iter_array = [1, 2, 5, 10, 25, 50, 100, 200]
MF_SGD.calculate_learning_curve(iter_array, test, learning_r
ate=0.001)

Iteration: 1
Train mse: 1.1419376708
Test mse: 1.07081066329
Iteration: 2
Train mse: 1.07186223696
Test mse: 1.00654383987
Iteration: 5
Train mse: 0.975972057215
Test mse: 0.926091276051
Iteration: 10
Train mse: 0.919170129465
Test mse: 0.88774317347
Iteration: 25
 current iteration: 10
Train mse: 0.868550680386
Test mse: 0.861884799308
Iteration: 50
 current iteration: 10
 current iteration: 20
Train mse: 0.842385086053
Test mse: 0.850655185536
Iteration: 100

https://gist.github.com/EthanRosenthal/a3a1b002eedca7d9f316/raw/42e98caef6ce17aac62bb53c647de238e36bec47/insight-nb6.ipynb
https://gist.github.com/EthanRosenthal/a3a1b002eedca7d9f316#file-insight-nb6-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 31/40

Let’s try to optimize some hyperparameters. We’ll start with a grid search of

the learning rate.

view rawinsight-nb7.ipynb hosted with ❤ by GitHub

In [16]: iter_array = [1, 2, 5, 10, 25, 50, 100, 200]
learning_rates = [1e-5, 1e-4, 1e-3, 1e-2]

best_params = {}
best_params['learning_rate'] = None
best_params['n_iter'] = 0
best_params['train_mse'] = np.inf
best_params['test_mse'] = np.inf
best_params['model'] = None

for rate in learning_rates:
 print 'Rate: {}'.format(rate)
 MF_SGD = ExplicitMF(train, n_factors=40, learning='sgd')
 MF_SGD.calculate_learning_curve(iter_array, test, learni
ng_rate=rate)
 min_idx = np.argmin(MF_SGD.test_mse)
 if MF_SGD.test_mse[min_idx] < best_params['test_mse']:
 best_params['n_iter'] = iter_array[min_idx]
 best_params['learning_rate'] = rate
 best_params['train_mse'] = MF_SGD.train_mse[min_idx]
 best_params['test_mse'] = MF_SGD.test_mse[min_idx]
 best_params['model'] = MF_SGD
 print 'New optimal hyperparameters'
 print pd.Series(best_params)

Rate: 1e-05

https://gist.github.com/EthanRosenthal/f00a8711932818ba9c61/raw/16503eac68407552ecbd658517ced843ed53c0d0/insight-nb7.ipynb
https://gist.github.com/EthanRosenthal/f00a8711932818ba9c61#file-insight-nb7-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 32/40

Looks like a learning rate of 0.001 was the best value. Note that the best test

error was for only 100 iterations, not 200 — it’s likely that the model

started to overfit after this point. On that note, we’ll now complete the

hyperparameter optimization with a grid search through regularization

terms and latent factors. This takes a while and could easily be parallelized,

but that’s beyond the scope of this post.

In [17]: iter_array = [1, 2, 5, 10, 25, 50, 100, 200]
latent_factors = [5, 10, 20, 40, 80]
regularizations = [0.001, 0.01, 0.1, 1.]
regularizations.sort()

best_params = {}
best_params['n_factors'] = latent_factors[0]
best_params['reg'] = regularizations[0]
best_params['n_iter'] = 0
best_params['train_mse'] = np.inf
best_params['test_mse'] = np.inf
best_params['model'] = None

for fact in latent_factors:
 print 'Factors: {}'.format(fact)
 for reg in regularizations:
 print 'Regularization: {}'.format(reg)
 MF_SGD = ExplicitMF(train, n_factors=fact, learning=
'sgd',\
 user_fact_reg=reg, item_fact_reg
=reg, \
 user_bias_reg=reg, item_bias_reg
=reg)
 MF_SGD.calculate_learning_curve(iter_array, test, le
arning_rate=0.001)
 min_idx = np.argmin(MF_SGD.test_mse)

if MF SGD.test mse[min idx] < best params['test mse'

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 33/40

It should be noted that both our best latent factors and best iteration count

were at the maximums of their respective grid searches. In hindsight, we

should have set the grid search to a wider range. In practice, I am going to

just go with these parameters. We could spend all day optimizing, but this is

just a blog post on extensively studied data.

Using themoviedb.org’s API to eye-test recommendations

We spent a fair bit of time optimizing the MSE of our models, and we are

now ready to actually make some recommendations. However, how will we

really know if we are making good recommendations? Because we are

dealing with a domain where many of us have intuition (movies), we can

generate item-to-item recommendations and see if similar items “make

sense”.

And just for fun, let us really look at the items. The MovieLens dataset

contains a file with information about each movie. It turns out that there is

a website calledthemoviedb.org which has a free API. If we have the IMDB

“movie id” for a movie, then we can use this API to return the posters of

view rawinsight-nb8.ipynb hosted with ❤ by GitHub

https://www.themoviedb.org/
https://gist.github.com/EthanRosenthal/c1ae70188c2e4705fb32/raw/9e5d7376739015c4204ec31b58ec73c79847307b/insight-nb8.ipynb
https://gist.github.com/EthanRosenthal/c1ae70188c2e4705fb32#file-insight-nb8-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 34/40

movies. Looking at the movie data file below, it seems that we at least have

the IMDB url for each movie.

If you follow one of the links in this dataset, then your url will get

redirected. The resulting url contains the IMDB movie ID as the last

information in the url starting with “tt”. For example, the redirected url for

Toy Story ishttp://www.imdb.com/title/tt0114709/, and the IMDB movie

ID is tt0114709.

Using the Python requests library, we can automatically extract this movie

ID. TheToy Story example is shown in the next code snippet.

I requested a free API key from themoviedb.org. The key is necessary for

querying the API. I’ve omitted it below, so be aware that if you will need

your own key if you want to reproduce this. We can search for movie posters

by movie id and then grab links to the image files. The links are relative

paths, so we need the base_url query at the top of the next cell to get the

full path. Also, some of the links don’t work, so we can instead search for

the movie by title and grab the first result.

In [17]: !head -5 u.item

1|Toy Story (1995)|01-Jan-1995 �http: �us imdb com/M/title-ex

http://www.imdb.com/title/tt0114709/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 35/40

Ta-da! Now we have a pipeline to go directly from the IMDB url in the data

file to displaying the movie poster. With this machinery in hand, let us

investigate our movie-to-movie similarity by visualizing the top-5 most

similar movie posters for an input movie. We’ll use the cosine similarity of

the item latent vectors to calculate the similarity. Let’s go for gold and use

view rawinsight-nb9.ipynb hosted with ❤ by GitHub

In [18]: import requests
import json

response = requests.get('http:��us.imdb.com/M/title-exact?To
y%20Story%20(1995)')
print response.url.split('/')[-2]

In [19]: # Build function to query themoviedb.org's API

1|Toy Story (1995)|01-Jan-1995��http:��us.imdb.com/M/title-ex
act?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|
0
2|GoldenEye (1995)|01-Jan-1995��http:��us.imdb.com/M/title-ex
act?GoldenEye%20(1995)|0|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0
3|Four Rooms (1995)|01-Jan-1995��http:��us.imdb.com/M/title-e
xact?Four%20Rooms%20(1995)|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|1|
0|0
4|Get Shorty (1995)|01-Jan-1995��http:��us.imdb.com/M/title-e
xact?Get%20Shorty%20(1995)|0|1|0|0|0|1|0|0|1|0|0|0|0|0|0|0|0|
0|0
5|Copycat (1995)|01-Jan-1995��http:��us.imdb.com/M/title-exac
t?Copycat%20(1995)|0|0|0|0|0|0|1|0|1|0|0|0|0|0|0|0|1|0|0

tt0114709

https://gist.github.com/EthanRosenthal/47c4c3bc25845524f182/raw/456222f21f164bd870f45766f408dcaf1e2f388d/insight-nb9.ipynb
https://gist.github.com/EthanRosenthal/47c4c3bc25845524f182#file-insight-nb9-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 36/40

the entire dataset to train the latent vectors and calculate similarity. We’ll

do this for both ALS and SGD models and compare the results.

We start by training both models with the best parameters we found. I’ll

also use a small function to calculate both the ALS and the SGD movie-to-

movie similarities. Lastly, let’s read in the movie’s IMDB urls and use those

to uery themoviedb.org API.

In [21]: best_als_model = ExplicitMF(ratings, n_factors=10, learning=
'als', \
 item_fact_reg=0.1, user_fact_reg
=0.1)
best_als_model.train(100)

In [22]: best_sgd_model = ExplicitMF(ratings, n_factors=80, learning=
'sgd', \
 item_fact_reg=0.01, user_fact_re
g=0.01, \
 user_bias_reg=0.01, item_bias_re
g=0.01)
best_sgd_model.train(200, learning_rate=0.001)

In [23]: def cosine_similarity(model):
 sim = model.item_vecs.dot(model.item_vecs.T)
 norms = np.array([np.sqrt(np.diagonal(sim))])
 return sim / norms / norms.T

als_sim = cosine_similarity(best_als_model)
sgd_sim = cosine_similarity(best_sgd_model)

In [24]: # Load in movie data
idx to movie {}

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 37/40

To visualize the posters in the Jupyter notebook’s cells, we can use the

IPython.display method. Special thanks to this Stack Overflow answer for

the idea to use straight HTML.

I’ll let you look through 5 different movie-to-movie recommendations

below.

view rawinsight-nb10.ipynb hosted with ❤ by GitHub

idx_to_movie = {}
with open('u.item', 'r') as f:

f li i f dli ()

In [25]: idx = 0 # Toy Story
compare_recs(als_sim, sgd_sim, idx_to_movie, idx, base_url,
api_key)

http://stackoverflow.com/a/27795087
https://gist.github.com/EthanRosenthal/57ac8890defe8cb99cca/raw/a073031318af7217905d5f033cfda73de8380c26/insight-nb10.ipynb
https://gist.github.com/EthanRosenthal/57ac8890defe8cb99cca#file-insight-nb10-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 38/40

So how do we think we did? I find it very interesting that the best test MSE

for our ALS model was 5.04 compared to 0.76 for SGD. That’s a giant

difference, and yet I think the ALS recommendations might actually beat

out the SGD ones; particularly, the GoldenEye and Dumbo

recommendations.

I have found similar behavior in some of my own work, as well. I have a

vague hunch that SGD tends to overfit more than ALS and is more

susceptible to popularity bias. Unfortunately, I have zero math to back this

up, so it’ll remain purely anecdotal for now. An alternative explanation

could be that the SGD movie-to-movie recommendations are actually better

than the ALS ones even if they seem like less similar movies. In a recent

Netflix paper, they show a similar comparison of two different models’

movie-to-movie recommendations. It turns out that the model with movies

that look less similar by eye (but are generally more popular movies)

view rawinsight-nb11.ipynb hosted with ❤ by GitHub

http://dl.acm.org/citation.cfm?id=2843948
https://gist.github.com/EthanRosenthal/4ea8ec4bd5d612a2f6d2/raw/d4d08d27ed5d94546a2bfd59da957f14c19049d8/insight-nb11.ipynb
https://gist.github.com/EthanRosenthal/4ea8ec4bd5d612a2f6d2#file-insight-nb11-ipynb
https://github.com/

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 39/40

performs better on A/B tests. And really, A/B tests are a much better way of

truly benchmarking recommendation systems compared to this offline data

modeling.

And on a final note, maybe we would want to just combine both models into

an ensemble which seems to be what everbody does nowadays.

Interested in transitioning to career in data science?

Find out more about the Insight Data Science Fellows Program in New York

and Silicon Valley, apply today, or sign up for program updates.

Already a data scientist or engineer?

Find out more about our Advanced Workshops for Data Professionals. Register

for two-day workshops in Apache Spark and Data Visualization, or sign up for

workshop updates.

Insight Data Science Data Science

https://medium.com/@xamat/10-more-lessons-learned-from-building-real-life-ml-systems-part-i-b309cafc7b5e
http://insightdatascience.com/
http://www.insightdatascience.com/apply.html
http://www.insightdatascience.com/notify.html
http://insightdatalabs.com/
http://insightdatalabs.com/register
http://insightdatalabs.com/#spark-core
http://insightdatalabs.com/#data-visualization
http://insightdatalabs.com/#call-to-action
https://blog.insightdatascience.com/tagged/insight-data-science
https://blog.insightdatascience.com/tagged/data-science

22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 40/40

Learn more.
Medium is an open platform where 170 million
readers come to find insightful and dynamic
thinking. Here, expert and undiscovered voices
alike dive into the heart of any topic and bring
new ideas to the surface. Learn more

Make Medium yours.
Follow the writers, publications, and topics that
matter to you, and you’ll see them on your
homepage and in your inbox. Explore

Write a story on Medium.
If you have a story to tell, knowledge to share, or
a perspective to offer — welcome home. It’s easy
and free to post your thinking on any topic. Start
a blog

About Write Help Legal

https://medium.com/about?autoplay=1&source=post_page-----b00e4d9b21ea--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----b00e4d9b21ea--------------------------------
https://medium.com/topics?source=post_page-----b00e4d9b21ea--------------------------------
https://medium.com/topics?source=post_page-----b00e4d9b21ea--------------------------------
https://medium.com/creator-tools?source=post_page-----b00e4d9b21ea--------------------------------
https://medium.com/creator-tools?source=post_page-----b00e4d9b21ea--------------------------------
https://medium.com/?source=post_page-----b00e4d9b21ea--------------------------------
https://medium.com/about?autoplay=1&source=post_page-----b00e4d9b21ea--------------------------------
https://medium.com/new-story?source=post_page-----b00e4d9b21ea--------------------------------
https://help.medium.com/hc/en-us?source=post_page-----b00e4d9b21ea--------------------------------
https://policy.medium.com/medium-terms-of-service-9db0094a1e0f?source=post_page-----b00e4d9b21ea--------------------------------

