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Ethan Rosenthal is a Data Scientist at Birchbox. He was an Insight Data
Science Fellow in NYC in 2015 and holds a Ph.D. in Physics from
Columbia University. He blogs here about all things data science,
including recommender systems. In the post below he digs into the details
of how to inject a bit more machine learning into these models.

Working at an e-commerce company, I spend a lot of time thinking about

recommender systems. The goal of a recommendation model is to present a

ranked list of objects given an input object. Typically, this ranking is based

on the similarity between the input object and the listed objects. To be less

vague, one often wants to either present similar products to a given product

or present products that are personally recommended for a given user.

The astounding thing is that if one has enough user-to-product “interaction”

data (ratings, purchases, clicks, etc…), then no other information is

necessary to make decent recommendations. This is quite different than

regression and classification problems where one must explore various

features in order to boost a model’s predictive powers.
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Often, one’s first introduction to recommender systems is collaborative

filtering; specifically, one learns user- and item-based collaborative

filtering. These are relatively old methods, and, through the lens of modern

machine learning, these methods might feel a bit off. To me, machine

learning almost always deals with some function which we are trying to

maximize or minimize. In simple linear regression, we minimize the mean

squared distance between our predictions and the true values. Logistic

regression involves maximizing a likelihood function. However, in user- and

item-based collaborative filtering, one randomly tries a bunch of different

parameters and watches what happens to the error metric. This sure doesn’t

feel like machine learning. To see this in action, check out my blog post on

these methods.

To bring some technical rigor to recommender systems, I would like to talk

about matrix factorization where we do, in fact, learn parameters to a model

in order to directly minimize a function.

This blog post will be organized as follows: We’ll start by grabbing a well

known dataset of movie ratings on which to train our models. Then, I’ll

introduce and derive two different learning algorithms for matrix

factorization. Next, we’ll spend some time optimizing model parameters.

http://blog.ethanrosenthal.com/2015/11/02/intro-to-collaborative-filtering/
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Lastly, we’ll use a free API to visualize our recommendations for easy

evaluation of our results.

GRABBING AND PARSING THE MOVIELENS DATASET

INTRODUCING MATRIX FACTORIZATION FOR RECOMMENDER

SYSTEMS

ALTERNATING LEAST SQUARES FOR TRAINING THE MODEL

ALS DERIVATION

ALS COMPUTATION

OPTIMIZING ALS MODEL PARAMETERS

STOCHASTIC GRADIENT DESCENT AS AN ALTERNATIVE TRAINING

ALGORITHM

SGD DERIVATION

SGD COMPUTATION

OPTIMIZING SGD MODEL PARAMETERS

USING THEMOVIEDB.ORG’S API TO EYE-TEST RECOMMENDATIONS

Grabbing and parsing the MovieLens dataset

http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#movielens
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#intromf
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#als
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#alsderivation
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#alscomputation
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#alsoptimization
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#introsgd
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#sgdderivation
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#sgdcomputation
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#sgdoptimization
http://xyz.insightdatascience.com/blog/explicit_matrix_factorization.html#api
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For this introduction, I’ll use the MovieLens dataset — a classic dataset for

training recommendation models. It can be obtained from the GroupLens

website. There are various datasets, but the one that I will use below

consists of 100,000 movie ratings by users (on a 1–5 scale). Note that this is

considered an explicit feedback dataset. The users are explicitly telling us

how they would rate a movie. This is different than in implicit feedback

dataset like clicks or purchases where we hope that the data is a proxy for

the user’s preference. Different algorithms must be used for such datasets.

The main data file consists of a tab-separated list with user-id (starting at

1), item-id (starting at 1), rating, and timestamp as the four fields. We can

use bash commands in the Jupyter notebook to download the file and then

read it into with pandas. We’ll then build a ratings matrix with users as

rows, items as columns, and ratings as the elements of the matrix.

In this dataset, every user has rated at least 20 movies which results in a

reasonable sparsity of 6.3%. This means that 6.3% of the user-item ratings

have a value. Note that, although we filled in missing ratings as 0, we

should not assume these values to truly be zero. More appropriately, they

are just empty entries. We will split our data into training and test sets by

removing 10 ratings per user from the training set and placing them in the

test set.
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Introducing matrix factorization for recommender systems

With our training and test ratings matrices in hand, we can now move

towards training a recommendation system. Explanations of matrix

view rawinsight-nb1.ipynb hosted with ❤ by GitHub

In [1]: import numpy as np 
import pandas as pd 
np.random.seed(0) 

In [2]: !curl -O http:��files.grouplens.org/datasets/movielens/ml-10
0k.zip 
!unzip ml-100k.zip 
!cd ml-100k/ 

In [3]: names = ['user_id', 'item_id', 'rating', 'timestamp'] 
df = pd.read_csv('u.data', sep='\t', names=names) 
df.head() 

In [4]: n users = df.user id.unique().shape[0]

Out[3]: user_id item_id rating timestamp

0 196 242 3 881250949

1 186 302 3 891717742

2 22 377 1 878887116

3 244 51 2 880606923

4 166 346 1 886397596

https://gist.github.com/EthanRosenthal/c647d60828d16fa3591d/raw/9c306eee4c3819a7b73b641130397bec5ad57e19/insight-nb1.ipynb
https://gist.github.com/EthanRosenthal/c647d60828d16fa3591d#file-insight-nb1-ipynb
https://github.com/
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factorization often start with talks of “low-rank matrices” and “singular

value decomposition”. While these are important for a fundamental

understanding of this topic, I don’t find math-speak to be too helpful in

understanding the basic concepts of various algorithms. Let me simply state

the assumptions that basic matrix factorization makes.

Matrix factorization assumes that:

Each user can be described by k attributes or features. For example,

feature 1 might be a number that says how much each user likes sci-fi

movies.

Each item (movie) can be described by an analagous set of k attributes

or features. To correspond to the above example, feature 1 for the movie

might be a number that says how close the movie is to pure sci-fi.

If we multiply each feature of the user by the corresponding feature of

the movie and add everything together, this will be a good

approximation for the rating the user would give that movie.

That’s it. The beauty is that we do not know what these features are. Nor do

we know how many (k) features are relevant. We simply pick a number for



22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 8/40

k and learn the relevant values for all the features for all the users and

items. How do we learn? By minimizing a loss function, of course!

We can turn our matrix factorization approximation of a k-attribute user

into math by letting a user u take the form of a k-dimensional vector x_u.

Similarly, an item i can be k-dimensional vector y_i. User u’s predicted

rating for item i is just the dot product of their two vectors.

where r_ui hat represents our prediction for the true rating r_ui, and y_i

(x⊺_u) is assumed to be a column (row) vector. These user and item vectors

are often called latent vectors or low-dimensional embeddings in the

literature. The k attributes are often called the latent factors. We will

choose to minimize the square of the difference between all ratings in our

dataset (S) and our predictions. This produces a loss function of the form
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Note that we’ve added on two L2 regularization terms at the end to prevent

overfitting of the user and item vectors. Our goal now is to minimize this

loss function. Derivatives are an obvious tool for minimizing functions, so

I’ll cover the two most popular derivative-based methods. We’ll start with

Alternating Least Squares (ALS).

Alternating Least Squares for training the model

For ALS minimiztion, we hold one set of latent vectors constant. For this

example, we’ll pick the item vectors. We then take the derivative of the loss

function with respect to the other set of vectors (the user vectors). We set

the derivative equal to zero (we’re searching for a minimum) and solve for

the non-constant vectors (the user vectors). Now comes the alternating

part: With these new, solved-for user vectors in hand, we hold them

constant, instead, and take the derivative of the loss function with respect

to the previously constant vectors (the item vectors). We alternate back and

forth and carry out this two-step dance until convergence.

ALS Derivation

To explain things with math, let’s hold the item vectors (y_i) constant and

take the derivative of the loss function with respect to the user vectors (x_u)
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A couple things happen above: let us assume that we have n users and m

items, so our ratings matrix is n×m. We introduce the symbol Y (with

dimensioins m×k) to represent all item row vectors vertically stacked on

each other. Also, the row vector r_u just represents users u’s row from the

ratings matrix with all the ratings for all the items (so it has dimension

1×m). Lastly, I is just the identity matrix which has dimension k×k here.

Just to make sure that everything works, let’s check our dimensions. I like

doing this with Einstein notation. Although this seems like an esoteric

physics thing, there was a reason it was invented — it makes life really

simple! The basic tenant is that if one observes a variable for a matrix index

more than once, then it is implicitly assumed that you should sum over that

index. Including the indices in the last statement from the derivation above,

this appears as the following for a single user’s dimension k

https://en.wikipedia.org/wiki/Einstein_notation
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When you carry out all the summations over all the indices on the right

hand side of the above statement, all that’s left are u’s as the rows and k’s as

the columns. Good to go!

The derivation for the item vectors is quite similar

Now that we have our equations, let’s program this thing up!

Computation: turning the math into code
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With significant inspiration from Chris Johnson’s implicit-mf repo, I’ve

written a class that trains a matrix factorization model using ALS. In an

attempt to limit this already long blog post, the code is relegated to this

GitHub gist — feel free to check it out and play with it yourself. The class

also has the functionality to calculate a learning curve where we plot our

optimization metric against the number of iterations of our training

algorithm.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

from numpy.linalg import solve

class ExplicitMF():

    def __init__(self, 

                 ratings, 

                 n_factors=40, 

                 item_reg=0.0, 

                 user_reg=0.0,

                 verbose=False):

        """

        Train a matrix factorization model to predict empty 

        entries in a matrix. The terminology assumes a 

        ratings matrix which is ~ user x item

        

        Params

        ======

        ratings : (ndarray)

            User x Item matrix with corresponding ratings

        

        n_factors : (int)

Number of latent factors to use in matrix

https://github.com/MrChrisJohnson/implicit-mf
https://gist.github.com/EthanRosenthal/a0816d8fea4394baf732
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            Number of latent factors to use in matrix 

            factorization model

        

        item_reg : (float)

            Regularization term for item latent factors

        

        user_reg : (float)

            Regularization term for user latent factors

        

        verbose : (bool)

            Whether or not to printout training progress

        """

        

        self.ratings = ratings

        self.n_users, self.n_items = ratings.shape

        self.n_factors = n_factors

        self.item_reg = item_reg

        self.user_reg = user_reg

        self._v = verbose

    def als_step(self,

                 latent_vectors,

                 fixed_vecs,

                 ratings,

                 _lambda,

                 type='user'):

        """

        One of the two ALS steps. Solve for the latent vectors

        specified by type.

        """

        if type == 'user':

            # Precompute

            YTY = fixed_vecs.T.dot(fixed_vecs)
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            lambdaI = np.eye(YTY.shape[0]) * _lambda

            for u in xrange(latent_vectors.shape[0]):

                latent_vectors[u, :] = solve((YTY + lambdaI), 

                                             ratings[u, :].dot(fixed_vecs))

        elif type == 'item':

            # Precompute

            XTX = fixed_vecs.T.dot(fixed_vecs)

            lambdaI = np.eye(XTX.shape[0]) * _lambda

            

            for i in xrange(latent_vectors.shape[0]):

                latent_vectors[i, :] = solve((XTX + lambdaI), 

                                             ratings[:, i].T.dot(fixed_vecs))

        return latent_vectors

    def train(self, n_iter=10):

        """ Train model for n_iter iterations from scratch."""

        # initialize latent vectors

        self.user_vecs = np.random.random((self.n_users, self.n_factors))

        self.item_vecs = np.random.random((self.n_items, self.n_factors))

        

        self.partial_train(n_iter)

    

    def partial_train(self, n_iter):

        """ 

        Train model for n_iter iterations. Can be 

        called multiple times for further training.

        """

        ctr = 1

        while ctr <= n_iter:

            if ctr % 10 == 0 and self._v:

                print '\tcurrent iteration: {}'.format(ctr)

            self.user_vecs = self.als_step(self.user_vecs, 
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                                           self.item_vecs, 

                                           self.ratings, 

                                           self.user_reg, 

                                           type='user')

            self.item_vecs = self.als_step(self.item_vecs, 

                                           self.user_vecs, 

                                           self.ratings, 

                                           self.item_reg, 

                                           type='item')

            ctr += 1

    

    def predict_all(self):

        """ Predict ratings for every user and item. """

        predictions = np.zeros((self.user_vecs.shape[0], 

                                self.item_vecs.shape[0]))

        for u in xrange(self.user_vecs.shape[0]):

            for i in xrange(self.item_vecs.shape[0]):

                predictions[u, i] = self.predict(u, i)

                

        return predictions

    def predict(self, u, i):

        """ Single user and item prediction. """

        return self.user_vecs[u, :].dot(self.item_vecs[i, :].T)

    

    def calculate_learning_curve(self, iter_array, test):

        """

        Keep track of MSE as a function of training iterations.

        

        Params

        ======

        iter_array : (list)

            List of numbers of iterations to train for each step of 

the learning curve. e.g. [1, 5, 10, 20]
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ExplicitMF_ALS.py hosted with ❤ by GitHub

            the learning curve. e.g. [1, 5, 10, 20]

        test : (2D ndarray)

            Testing dataset (assumed to be user x item).

        

        The function creates two new class attributes:

        

        train_mse : (list)

            Training data MSE values for each value of iter_array

        test_mse : (list)

            Test data MSE values for each value of iter_array

        """

        iter_array.sort()

        self.train_mse =[]

        self.test_mse = []

        iter_diff = 0

        for (i, n_iter) in enumerate(iter_array):

            if self._v:

                print 'Iteration: {}'.format(n_iter)

            if i == 0:

                self.train(n_iter - iter_diff)

            else:

                self.partial_train(n_iter - iter_diff)

            predictions = self.predict_all()

            self.train_mse += [get_mse(predictions, self.ratings)]

            self.test_mse += [get_mse(predictions, test)]

            if self._v:

                print 'Train mse: ' + str(self.train_mse[-1])

                print 'Test mse: ' + str(self.test_mse[-1])

            iter_diff = n_iter

https://gist.github.com/EthanRosenthal/a0816d8fea4394baf732/raw/63cbbfd7a05cd49a0c0490c6d6312a3b6ad456da/ExplicitMF_ALS.py
https://gist.github.com/EthanRosenthal/a0816d8fea4394baf732#file-explicitmf_als-py
https://github.com/
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I’ve included a helper function below to quickly calculate Mean Squared

Error (MSE). Let’s try an initial training with 40 latent factors and no

regularization and see what the learning curve looks like.

view rawinsight-nb3.ipynb hosted with ❤ by GitHub

In [8]: from sklearn.metrics import mean_squared_error 
 
def get_mse(pred, actual): 
    # Ignore nonzero terms. 
    pred = pred[actual.nonzero()].flatten() 
    actual = actual[actual.nonzero()].flatten() 
    return mean_squared_error(pred, actual) 

In [9]: MF_ALS = ExplicitMF(train, n_factors=40, \ 
                    user_reg=0.0, item_reg=0.0) 
iter_array = [1, 2, 5, 10, 25, 50, 100] 
MF_ALS.calculate_learning_curve(iter_array, test) 

In [10]: %matplotlib inline 
import matplotlib.pyplot as plt 
import seaborn as sns 
sns.set() 
 
def plot_learning_curve(iter_array, model): 
    plt.plot(iter_array, model.train_mse, \ 
             label='Training', linewidth=5) 
    plt.plot(iter_array, model.test_mse, \ 
             label='Test', linewidth=5) 
 
 

plt.xticks(fontsize=16);

https://gist.github.com/EthanRosenthal/3d6cb5c0835e73ee2195/raw/1ee3fc01d0df1841adf0e0493b2a157363f2e0be/insight-nb3.ipynb
https://gist.github.com/EthanRosenthal/3d6cb5c0835e73ee2195#file-insight-nb3-ipynb
https://github.com/
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Optimizing ALS model parameters

Looks like we have a reasonable amount of overfitting (our test MSE is

~50% greater than our training MSE). Also, the test MSE bottoms out

around 5 iterations then actually increases after that (even more

overfitting). We can try adding some regularization to see if this helps to

alleviate some of the overfitting.

In [12]: MF_ALS = ExplicitMF(train, n_factors=40, \ 
                    user_reg=30., item_reg=30.) 
 
iter_array = [1, 2, 5, 10, 25, 50, 100] 
MF_ALS.calculate_learning_curve(iter_array, test) 

In [13]: plot_learning_curve(iter_array, MF_ALS)
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Hmmm, the regularization narrowed the gap between our training and test

MSE, but it did not decrease the test MSE too much. We could spend all day

searching for optimal hyperparameters. We’ll just setup a small grid search

and tune both the regularization terms and number of latent factors. The

item and user regularization terms will be restricted to be equal to each

other.

view rawinsight-nb4.ipynb hosted with ❤ by GitHub

In [14]: latent_factors = [5, 10, 20, 40, 80] 
regularizations = [0.1, 1., 10., 100.] 
regularizations.sort() 
iter_array = [1, 2, 5, 10, 25, 50, 100] 
 
best_params = {} 
best_params['n_factors'] = latent_factors[0] 
best_params['reg'] = regularizations[0] 
best_params['n_iter'] = 0 
best_params['train_mse'] = np.inf 
best_params['test_mse'] = np.inf 
best_params['model'] = None 
 
for fact in latent_factors: 
    print 'Factors: {}'.format(fact) 
    for reg in regularizations: 
        print 'Regularization: {}'.format(reg) 
        MF_ALS = ExplicitMF(train, n_factors=fact, \ 
                            user_reg=reg, item_reg=reg) 

MF ALS calculate learning curve(iter array test)

https://gist.github.com/EthanRosenthal/37bbc6b557e3562453ac/raw/534ba71ce8bf5847a47cd656a91e6d4745e85112/insight-nb4.ipynb
https://gist.github.com/EthanRosenthal/37bbc6b557e3562453ac#file-insight-nb4-ipynb
https://github.com/
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So it looks like the best performing parameters were 10 factors and a

regularization value of 0.1. It creeps me out a bit that the test set error is

actually lower than the training error, but so be it. Before visualizing the

recommendaton results of our ALS algorithm, let’s first explore the other

minimization algorithm: stochastic gradient descent (SGD).

Stochastic Gradient Descent as an alternative training algorithm

With SGD, we again take derivatives of the loss function, but we take the

derivative with respect to each variable in the model. The “stochastic”

aspect of the algorithm involves taking the derivative and updating feature

weights one individual sample at a time. So, for each sample, we take the

derivative of each variable, set them all equal to zero, solve for the feature

weights, and update each feature. Somehow this method actually

converges.

view rawinsight-nb5.ipynb hosted with ❤ by GitHub

        MF_ALS.calculate_learning_curve(iter_array, test) 
        min_idx = np.argmin(MF_ALS.test_mse) 
        if MF_ALS.test_mse[min_idx] < best_params['test_mse'
]: 
            best_params['n_factors'] = fact 
            best_params['reg'] = reg 
            best_params['n_iter'] = iter_array[min_idx] 

best params['train mse'] = MF ALS.train mse[min

https://gist.github.com/EthanRosenthal/c3f089259728f2b691e9/raw/f6c658c8fb7b7312815a7163bbb8222623a168e5/insight-nb5.ipynb
https://gist.github.com/EthanRosenthal/c3f089259728f2b691e9#file-insight-nb5-ipynb
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SGD Derivation

We will use a similar loss function to before, but I am going to add some

more details to the model. Instead of assuming that a user u’s rating for

item i can be described simply by the dot product of the user and item latent

vectors, we will consider that each user and item can have a bias term

associated with them. The rational is that certan users might tend to rate all

movies highly, or certain movies may tend to always have low ratings. The

way that I think about it is that the bias term takes care of the “DC” part of

the signal which allows the latent factors to account for the more detailed

variance in signal (kind of like the AC part). We will also include a global

bias term as well. With all things combined, our predicted rating becomes

where we have added on extra bias regularization terms. We want to

update each feature (user and item latent factors and bias terms) with each



22/08/2021 Explicit Matrix Factorization: ALS, SGD, and All That Jazz | by Insight | Insight

https://blog.insightdatascience.com/explicit-matrix-factorization-als-sgd-and-all-that-jazz-b00e4d9b21ea 22/40

sample. The update for the user bias is given by

where η is the learning rate which weights how much our update modifies

the feature weights. The derivative term is given by

where e_ui represents the error in our prediction, and we have dropped the

factor of 2 (we can assume it gets rolled up in the learning rate). For all of

our features, the updates end up being
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Computation

I’ve modified the original ExplicitMF class to allow for either sgd or als

learning. The modified class is located at this gist. Similar to the ALS

section above, let’s try looking at the learning curve for 40 latent factors, no

regularizaton, and a learning rate of 0.001.
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class ExplicitMF():

    def __init__(self, 

                 ratings,

                 n_factors=40,

                 learning='sgd',

                 item_fact_reg=0.0, 

                 user_fact_reg=0.0,

                 item_bias_reg=0.0,

                 user_bias_reg=0.0,

                 verbose=False):

        """

        Train a matrix factorization model to predict empty 

        entries in a matrix. The terminology assumes a 

        ratings matrix which is ~ user x item

https://gist.github.com/EthanRosenthal/a293bfe8bbe40d5d0995
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        Params

        ======

        ratings : (ndarray)

            User x Item matrix with corresponding ratings

        

        n_factors : (int)

            Number of latent factors to use in matrix 

            factorization model

        learning : (str)

            Method of optimization. Options include 

            'sgd' or 'als'.

        

        item_fact_reg : (float)

            Regularization term for item latent factors

        

        user_fact_reg : (float)

            Regularization term for user latent factors

            

        item_bias_reg : (float)

            Regularization term for item biases

        

        user_bias_reg : (float)

            Regularization term for user biases

        

        verbose : (bool)

            Whether or not to printout training progress

        """

        

        self.ratings = ratings

        self.n_users, self.n_items = ratings.shape

        self.n_factors = n_factors

self.item fact reg = item fact reg
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        self.item_fact_reg = item_fact_reg

        self.user_fact_reg = user_fact_reg

        self.item_bias_reg = item_bias_reg

        self.user_bias_reg = user_bias_reg

        self.learning = learning

        if self.learning == 'sgd':

            self.sample_row, self.sample_col = self.ratings.nonzero()

            self.n_samples = len(self.sample_row)

        self._v = verbose

    def als_step(self,

                 latent_vectors,

                 fixed_vecs,

                 ratings,

                 _lambda,

                 type='user'):

        """

        One of the two ALS steps. Solve for the latent vectors

        specified by type.

        """

        if type == 'user':

            # Precompute

            YTY = fixed_vecs.T.dot(fixed_vecs)

            lambdaI = np.eye(YTY.shape[0]) * _lambda

            for u in xrange(latent_vectors.shape[0]):

                latent_vectors[u, :] = solve((YTY + lambdaI), 

                                             ratings[u, :].dot(fixed_vecs))

        elif type == 'item':

            # Precompute

            XTX = fixed_vecs.T.dot(fixed_vecs)

            lambdaI = np.eye(XTX.shape[0]) * _lambda

            

f i i (l t t t h [0])
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            for i in xrange(latent_vectors.shape[0]):

                latent_vectors[i, :] = solve((XTX + lambdaI), 

                                             ratings[:, i].T.dot(fixed_vecs))

        return latent_vectors

    def train(self, n_iter=10, learning_rate=0.1):

        """ Train model for n_iter iterations from scratch."""

        # initialize latent vectors        

        self.user_vecs = np.random.normal(scale=1./self.n_factors,\

                                          size=(self.n_users, self.n_factors))

        self.item_vecs = np.random.normal(scale=1./self.n_factors,

                                          size=(self.n_items, self.n_factors))

        

        if self.learning == 'als':

            self.partial_train(n_iter)

        elif self.learning == 'sgd':

            self.learning_rate = learning_rate

            self.user_bias = np.zeros(self.n_users)

            self.item_bias = np.zeros(self.n_items)

            self.global_bias = np.mean(self.ratings[np.where(self.ratings != 0)])

            self.partial_train(n_iter)

    

    

    def partial_train(self, n_iter):

        """ 

        Train model for n_iter iterations. Can be 

        called multiple times for further training.

        """

        ctr = 1

        while ctr <= n_iter:

            if ctr % 10 == 0 and self._v:

                print '\tcurrent iteration: {}'.format(ctr)

            if self.learning == 'als':
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                self.user_vecs = self.als_step(self.user_vecs, 

                                               self.item_vecs, 

                                               self.ratings, 

                                               self.user_fact_reg, 

                                               type='user')

                self.item_vecs = self.als_step(self.item_vecs, 

                                               self.user_vecs, 

                                               self.ratings, 

                                               self.item_fact_reg, 

                                               type='item')

            elif self.learning == 'sgd':

                self.training_indices = np.arange(self.n_samples)

                np.random.shuffle(self.training_indices)

                self.sgd()

            ctr += 1

    def sgd(self):

        for idx in self.training_indices:

            u = self.sample_row[idx]

            i = self.sample_col[idx]

            prediction = self.predict(u, i)

            e = (self.ratings[u,i] - prediction) # error

            

            # Update biases

            self.user_bias[u] += self.learning_rate * \

                                (e - self.user_bias_reg * self.user_bias[u])

            self.item_bias[i] += self.learning_rate * \

                                (e - self.item_bias_reg * self.item_bias[i])

            

            #Update latent factors

            self.user_vecs[u, :] += self.learning_rate * \

                                    (e * self.item_vecs[i, :] - \

                                     self.user_fact_reg * self.user_vecs[u,:])
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_ _ g _

            self.item_vecs[i, :] += self.learning_rate * \

                                    (e * self.user_vecs[u, :] - \

                                     self.item_fact_reg * self.item_vecs[i,:])

    def predict(self, u, i):

        """ Single user and item prediction."""

        if self.learning == 'als':

            return self.user_vecs[u, :].dot(self.item_vecs[i, :].T)

        elif self.learning == 'sgd':

            prediction = self.global_bias + self.user_bias[u] + self.item_bias[i]

            prediction += self.user_vecs[u, :].dot(self.item_vecs[i, :].T)

            return prediction

    

    def predict_all(self):

        """ Predict ratings for every user and item."""

        predictions = np.zeros((self.user_vecs.shape[0], 

                                self.item_vecs.shape[0]))

        for u in xrange(self.user_vecs.shape[0]):

            for i in xrange(self.item_vecs.shape[0]):

                predictions[u, i] = self.predict(u, i)

                

        return predictions

    

    def calculate_learning_curve(self, iter_array, test, learning_rate=0.1):

        """

        Keep track of MSE as a function of training iterations.

        

        Params

        ======

        iter_array : (list)

            List of numbers of iterations to train for each step of 

            the learning curve. e.g. [1, 5, 10, 20]

        test : (2D ndarray)

Testing dataset (assumed to be user x item)
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ExplicitMF.py hosted with ❤ by GitHub

            Testing dataset (assumed to be user x item).

        

        The function creates two new class attributes:

        

        train_mse : (list)

            Training data MSE values for each value of iter_array

        test_mse : (list)

            Test data MSE values for each value of iter_array

        """

        iter_array.sort()

        self.train_mse =[]

        self.test_mse = []

        iter_diff = 0

        for (i, n_iter) in enumerate(iter_array):

            if self._v:

                print 'Iteration: {}'.format(n_iter)

            if i == 0:

                self.train(n_iter - iter_diff, learning_rate)

            else:

                self.partial_train(n_iter - iter_diff)

            predictions = self.predict_all()

            self.train_mse += [get_mse(predictions, self.ratings)]

            self.test_mse += [get_mse(predictions, test)]

            if self._v:

                print 'Train mse: ' + str(self.train_mse[-1])

                print 'Test mse: ' + str(self.test_mse[-1])

            iter_diff = n_iter

https://gist.github.com/EthanRosenthal/a293bfe8bbe40d5d0995/raw/6ab5e571b07056af008fbe6ae998e7190456dd0f/ExplicitMF.py
https://gist.github.com/EthanRosenthal/a293bfe8bbe40d5d0995#file-explicitmf-py
https://github.com/
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Wow, quite a bit better than before! I assume that this is likely due to the

inclusion of bias terms (especially because the ratings are not normalized).

Optimizing SGD model parameters

view rawinsight-nb6.ipynb hosted with ❤ by GitHub

In [14]: MF_SGD = ExplicitMF(train, 40, learning='sgd', verbose=True) 
iter_array = [1, 2, 5, 10, 25, 50, 100, 200] 
MF_SGD.calculate_learning_curve(iter_array, test, learning_r
ate=0.001) 

Iteration: 1 
Train mse: 1.1419376708 
Test mse: 1.07081066329 
Iteration: 2 
Train mse: 1.07186223696 
Test mse: 1.00654383987 
Iteration: 5 
Train mse: 0.975972057215 
Test mse: 0.926091276051 
Iteration: 10 
Train mse: 0.919170129465 
Test mse: 0.88774317347 
Iteration: 25 
 current iteration: 10 
Train mse: 0.868550680386 
Test mse: 0.861884799308 
Iteration: 50 
 current iteration: 10 
 current iteration: 20 
Train mse: 0.842385086053 
Test mse: 0.850655185536 
Iteration: 100 

https://gist.github.com/EthanRosenthal/a3a1b002eedca7d9f316/raw/42e98caef6ce17aac62bb53c647de238e36bec47/insight-nb6.ipynb
https://gist.github.com/EthanRosenthal/a3a1b002eedca7d9f316#file-insight-nb6-ipynb
https://github.com/
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Let’s try to optimize some hyperparameters. We’ll start with a grid search of

the learning rate.

view rawinsight-nb7.ipynb hosted with ❤ by GitHub

In [16]: iter_array = [1, 2, 5, 10, 25, 50, 100, 200] 
learning_rates = [1e-5, 1e-4, 1e-3, 1e-2] 
 
best_params = {} 
best_params['learning_rate'] = None 
best_params['n_iter'] = 0 
best_params['train_mse'] = np.inf 
best_params['test_mse'] = np.inf 
best_params['model'] = None 
 
 
for rate in learning_rates: 
    print 'Rate: {}'.format(rate) 
    MF_SGD = ExplicitMF(train, n_factors=40, learning='sgd') 
    MF_SGD.calculate_learning_curve(iter_array, test, learni
ng_rate=rate) 
    min_idx = np.argmin(MF_SGD.test_mse) 
    if MF_SGD.test_mse[min_idx] < best_params['test_mse']: 
        best_params['n_iter'] = iter_array[min_idx] 
        best_params['learning_rate'] = rate 
        best_params['train_mse'] = MF_SGD.train_mse[min_idx] 
        best_params['test_mse'] = MF_SGD.test_mse[min_idx] 
        best_params['model'] = MF_SGD 
        print 'New optimal hyperparameters' 
        print pd.Series(best_params) 

Rate: 1e-05 

https://gist.github.com/EthanRosenthal/f00a8711932818ba9c61/raw/16503eac68407552ecbd658517ced843ed53c0d0/insight-nb7.ipynb
https://gist.github.com/EthanRosenthal/f00a8711932818ba9c61#file-insight-nb7-ipynb
https://github.com/
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Looks like a learning rate of 0.001 was the best value. Note that the best test

error was for only 100 iterations, not 200 — it’s likely that the model

started to overfit after this point. On that note, we’ll now complete the

hyperparameter optimization with a grid search through regularization

terms and latent factors. This takes a while and could easily be parallelized,

but that’s beyond the scope of this post.

In [17]: iter_array = [1, 2, 5, 10, 25, 50, 100, 200] 
latent_factors = [5, 10, 20, 40, 80] 
regularizations = [0.001, 0.01, 0.1, 1.] 
regularizations.sort() 
 
best_params = {} 
best_params['n_factors'] = latent_factors[0] 
best_params['reg'] = regularizations[0] 
best_params['n_iter'] = 0 
best_params['train_mse'] = np.inf 
best_params['test_mse'] = np.inf 
best_params['model'] = None 
 
for fact in latent_factors: 
    print 'Factors: {}'.format(fact) 
    for reg in regularizations: 
        print 'Regularization: {}'.format(reg) 
        MF_SGD = ExplicitMF(train, n_factors=fact, learning=
'sgd',\ 
                            user_fact_reg=reg, item_fact_reg
=reg, \ 
                            user_bias_reg=reg, item_bias_reg
=reg) 
        MF_SGD.calculate_learning_curve(iter_array, test, le
arning_rate=0.001) 
        min_idx = np.argmin(MF_SGD.test_mse) 

if MF SGD.test mse[min idx] < best params['test mse'
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It should be noted that both our best latent factors and best iteration count

were at the maximums of their respective grid searches. In hindsight, we

should have set the grid search to a wider range. In practice, I am going to

just go with these parameters. We could spend all day optimizing, but this is

just a blog post on extensively studied data.

Using themoviedb.org’s API to eye-test recommendations

We spent a fair bit of time optimizing the MSE of our models, and we are

now ready to actually make some recommendations. However, how will we

really know if we are making good recommendations? Because we are

dealing with a domain where many of us have intuition (movies), we can

generate item-to-item recommendations and see if similar items “make

sense”.

And just for fun, let us really look at the items. The MovieLens dataset

contains a file with information about each movie. It turns out that there is

a website calledthemoviedb.org which has a free API. If we have the IMDB

“movie id” for a movie, then we can use this API to return the posters of

view rawinsight-nb8.ipynb hosted with ❤ by GitHub

https://www.themoviedb.org/
https://gist.github.com/EthanRosenthal/c1ae70188c2e4705fb32/raw/9e5d7376739015c4204ec31b58ec73c79847307b/insight-nb8.ipynb
https://gist.github.com/EthanRosenthal/c1ae70188c2e4705fb32#file-insight-nb8-ipynb
https://github.com/
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movies. Looking at the movie data file below, it seems that we at least have

the IMDB url for each movie.

If you follow one of the links in this dataset, then your url will get

redirected. The resulting url contains the IMDB movie ID as the last

information in the url starting with “tt”. For example, the redirected url for

Toy Story ishttp://www.imdb.com/title/tt0114709/, and the IMDB movie

ID is tt0114709.

Using the Python requests library, we can automatically extract this movie

ID. TheToy Story example is shown in the next code snippet.

I requested a free API key from themoviedb.org. The key is necessary for

querying the API. I’ve omitted it below, so be aware that if you will need

your own key if you want to reproduce this. We can search for movie posters

by movie id and then grab links to the image files. The links are relative

paths, so we need the base_url query at the top of the next cell to get the

full path. Also, some of the links don’t work, so we can instead search for

the movie by title and grab the first result.

In [17]: !head -5 u.item 

1|Toy Story (1995)|01-Jan-1995 �http: �us imdb com/M/title-ex

http://www.imdb.com/title/tt0114709/
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Ta-da! Now we have a pipeline to go directly from the IMDB url in the data

file to displaying the movie poster. With this machinery in hand, let us

investigate our movie-to-movie similarity by visualizing the top-5 most

similar movie posters for an input movie. We’ll use the cosine similarity of

the item latent vectors to calculate the similarity. Let’s go for gold and use

view rawinsight-nb9.ipynb hosted with ❤ by GitHub

In [18]: import requests 
import json 
 
response = requests.get('http:��us.imdb.com/M/title-exact?To
y%20Story%20(1995)') 
print response.url.split('/')[-2] 

In [19]: # Build function to query themoviedb.org's API 
 

1|Toy Story (1995)|01-Jan-1995��http:��us.imdb.com/M/title-ex
act?Toy%20Story%20(1995)|0|0|0|1|1|1|0|0|0|0|0|0|0|0|0|0|0|0|
0 
2|GoldenEye (1995)|01-Jan-1995��http:��us.imdb.com/M/title-ex
act?GoldenEye%20(1995)|0|1|1|0|0|0|0|0|0|0|0|0|0|0|0|0|1|0|0 
3|Four Rooms (1995)|01-Jan-1995��http:��us.imdb.com/M/title-e
xact?Four%20Rooms%20(1995)|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|1|
0|0 
4|Get Shorty (1995)|01-Jan-1995��http:��us.imdb.com/M/title-e
xact?Get%20Shorty%20(1995)|0|1|0|0|0|1|0|0|1|0|0|0|0|0|0|0|0|
0|0 
5|Copycat (1995)|01-Jan-1995��http:��us.imdb.com/M/title-exac
t?Copycat%20(1995)|0|0|0|0|0|0|1|0|1|0|0|0|0|0|0|0|1|0|0 

tt0114709 

https://gist.github.com/EthanRosenthal/47c4c3bc25845524f182/raw/456222f21f164bd870f45766f408dcaf1e2f388d/insight-nb9.ipynb
https://gist.github.com/EthanRosenthal/47c4c3bc25845524f182#file-insight-nb9-ipynb
https://github.com/
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the entire dataset to train the latent vectors and calculate similarity. We’ll

do this for both ALS and SGD models and compare the results.

We start by training both models with the best parameters we found. I’ll

also use a small function to calculate both the ALS and the SGD movie-to-

movie similarities. Lastly, let’s read in the movie’s IMDB urls and use those

to uery themoviedb.org API.

In [21]: best_als_model = ExplicitMF(ratings, n_factors=10, learning=
'als', \ 
                            item_fact_reg=0.1, user_fact_reg
=0.1) 
best_als_model.train(100) 

In [22]: best_sgd_model = ExplicitMF(ratings, n_factors=80, learning=
'sgd', \ 
                            item_fact_reg=0.01, user_fact_re
g=0.01, \ 
                            user_bias_reg=0.01, item_bias_re
g=0.01) 
best_sgd_model.train(200, learning_rate=0.001) 

In [23]: def cosine_similarity(model): 
    sim = model.item_vecs.dot(model.item_vecs.T) 
    norms = np.array([np.sqrt(np.diagonal(sim))]) 
    return sim / norms / norms.T 
 
als_sim = cosine_similarity(best_als_model) 
sgd_sim = cosine_similarity(best_sgd_model) 

In [24]: # Load in movie data 
idx to movie {}
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To visualize the posters in the Jupyter notebook’s cells, we can use the

IPython.display method. Special thanks to this Stack Overflow answer for

the idea to use straight HTML.

I’ll let you look through 5 different movie-to-movie recommendations

below.

view rawinsight-nb10.ipynb hosted with ❤ by GitHub

idx_to_movie = {} 
with open('u.item', 'r') as f: 

f li i f dli ()

In [25]: idx = 0 # Toy Story
compare_recs(als_sim, sgd_sim, idx_to_movie, idx, base_url, 
api_key) 

http://stackoverflow.com/a/27795087
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So how do we think we did? I find it very interesting that the best test MSE

for our ALS model was 5.04 compared to 0.76 for SGD. That’s a giant

difference, and yet I think the ALS recommendations might actually beat

out the SGD ones; particularly, the GoldenEye and Dumbo

recommendations.

I have found similar behavior in some of my own work, as well. I have a

vague hunch that SGD tends to overfit more than ALS and is more

susceptible to popularity bias. Unfortunately, I have zero math to back this

up, so it’ll remain purely anecdotal for now. An alternative explanation

could be that the SGD movie-to-movie recommendations are actually better

than the ALS ones even if they seem like less similar movies. In a recent

Netflix paper, they show a similar comparison of two different models’

movie-to-movie recommendations. It turns out that the model with movies

that look less similar by eye (but are generally more popular movies)

view rawinsight-nb11.ipynb hosted with ❤ by GitHub
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performs better on A/B tests. And really, A/B tests are a much better way of

truly benchmarking recommendation systems compared to this offline data

modeling.

And on a final note, maybe we would want to just combine both models into

an ensemble which seems to be what everbody does nowadays.
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