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Abstract
The ability to predict transport properties (i.e. diffusivity, viscosity, conductivity) is one of the primary

benefits of molecular simulation. Although most studies focus on the accuracy of the simulation

output compared to experimental data, such a comparison primarily tests the adequacy of the force

field (i.e. the model). By contrast, the reliability of different simulation methodologies for predicting

transport properties is the focus of this manuscript. Unfortunately, obtaining reproducible estimates

of transport properties from molecular simulation is not as straightforward as static properties.

Therefore, this manuscript discusses the best practices that should be followed to ensure that

the simulation output is reliable, i.e. is a valid representation of the force field implemented. We

also discuss procedures to use so that the results are reproducible (i.e. can be obtained by other

researchers following the same methods and procedures).

There are two classes by which transport properties are predicted: equilibrium molecular dynamics

(EMD) and non-equilibriummolecular dynamics (NEMD). This manuscript presents the best practices

for EMD, leaving NEMD for a future publication. As self-diffusivity and shear viscosity are the most

prevalent transport properties found in the literature, the discussion will also be limited to these

properties with the expectation that future publications will discuss best practices for thermal

conductivity, ionic conductivity, and transport diffusivity.
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1 Introduction
Transport properties describe the rates at which mass, mo-

mentum, heat or charge move through a given substance.

They involvemean squared displacements (MSDs) ofmolecules

as the system evolves dynamically. In general, these prop-

erties can be computed by equilibrium molecular dynamics

(EMD) or by non-equilibrium molecular dynamics (NEMD)

methods. The EMD methods involve post-processing of a

standard molecular dynamics (MD) trajectory while NEMD

methods require modifications of the underlying equations of

motion and/or boundary conditions of the system. Therefore,

one advantage of EMD is that multiple transport properties

can be obtained from a single simulation, whereas NEMD

requires a separate simulation for each transport property of

interest.

Some molecular simulation packages include built-in post-

simulation analysis tools that automatically estimate trans-

port properties from an EMD or NEMD simulation (e.g. Refs.

[1–6]). In addition, several stand-alone trajectory analysis

tools are available which are intended to be simulation code

agnostic (e.g. Refs. [7–9]). However, there are often insuffi-

cient checks as to whether the actual underlying simulations

are adequate for making these estimates. For this reason,

we strongly discourage using these analysis tools as a “black

box,” as no amount of post-processing can compensate for

a poorly designed simulation. Following best practices for

both the molecular simulation set-up and data analysis is im-

perative to ensure that meaningful predictions are obtained.

The purpose of this document is to improve the quality of

published results and to reduce the time required for a novice

in the field to obtain meaningful and reliable results.

In addition to the present manuscript, we highly recom-

mend reviewing this list of existing resources:

1. Text books:

(a) Ref. [10], pages 73–79, 274–281, and 292–296

(b) Ref. [11], pages 87–90 and 509–523

(c) Ref. [12], pages 374–382

2. Class notes

(a) Ref. [13]

(b) Ref. [14]

(c) Ref. [15]

(d) Ref. [16]

3. Published articles

(a) Ref. [17]

(b) Ref. [18]

(c) Ref. [19], pages 13139–13140

(d) Ref. [20]

4. Software manuals

(a) Ref. [1]

(b) Ref. [2]

(c) Ref. [3]

Most text books and class notes provide a thorough discus-

sion of EMD/NEMD theory with little discussion of practical

considerations. Review articles tend to focus on the numeri-

cal advantages and disadvantages of different methods but

assume that the reader already understands the subtleties of

implementing each method. Furthermore, although software

manuals describe some of the theory and implementation

of these methods in their respective environments, the doc-

umentation is typically insufficient for someone not familiar

with best practices for estimating transport properties. This

document supplements the existing literature by providing a

succinct checklist and discussing common pitfalls. We also

provide some suggestions and recommendations based on

our own experience, but ultimately it is up to the individual

researcher to test and validate their methods.

2 Equilibrium Molecular Dynamics (EMD)
for Estimating Transport Properties

It is most convenient to consider compiling the transport

properties as an implicit part of any equilibrium MD simula-

tion. The added computational overhead is relatively small,

especially for the self-diffusivity. The main caveat is that

longer simulations than normal may be required to achieve

reasonable averages.

The general formula for computing a transport property

via an EMD simulation is given as

γ =

∫ ∞
0

dt〈ξ̇(t)ξ̇(0)〉 (1)

where γ is the transport coefficient (within a multiplicative

constant), ξ is the perturbation in the Hamiltonian associated

with the particular transport property under consideration

and ξ̇ signifies a time derivative. Integrals of the form given

by Equation 1 are known as “Green-Kubo” integrals. It is easy

to show that an integrated form of Equation 1 results in an

equivalent expression for γ known as the “Einstein” formula

γ = lim
t→∞

〈(ξ(t)− ξ(0))2〉
2t

=
1

2
lim
t→∞

d

dt
〈(ξ(t)− ξ(0))2〉 (2)

where the derivative form is often preferred.

For self-diffusivity, ξ is the Cartesian atom position (rα)

and the time correlation function, ξ̇, in Equation 1 is of the

molecular velocities (vα). For the shear viscosity, the integral

in Equation 1 is of the time correlation of the off-diagonal ele-

ments of the stress tensor. For the thermal conductivity the

integral is over the energy current, and for the ionic conductiv-

ity the integral is over the ionic current. Table 1 provides the
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relevant equations for self-diffusivity (D) and shear viscosity

(η), as these properties are the focus of this work.

Although both Equation 1 (Green-Kubo) and Equation 2

(Einstein) are theoretically rigorous, in practice one method is

often preferred depending on the property being estimated.

In the case of self-diffusivity, we recommend the Einstein

(MSD) approach. In contrast, for shear viscosity we typically

recommend Green-Kubo, although for some systems the

Einstein approach may be preferable. As the simulation set-

up and computational cost are essentially the same for the

Green-Kubo and Einstein approaches, the primary difference

is the post-simulation data analysis required. Precision and

reproducibility of the estimated value are key factors for se-

lecting between the Green-Kubo or Einstein methods. For

this reason, we emphasize the importance of proper and

clearly communicated data analysis and rigorous uncertainty

quantification.

3 Checklist
This section provides an overview of the checklist items for

each property (D and η) and method (Green-Kubo and Ein-

stein). Detailed discussions for each checklist item are found

in Sections 4-6.

4 General transport checklist items
4.1 General transport: Simulation set-up
4.1.1 Correct Ensemble

For a liquid solution, it is safest to run in the microcanonical

(NV E, constant number of molecules, volume, energy) en-

semble. This is because thermostats required to maintain

constant temperature and barostats required tomaintain con-

stant pressure can interfere with the dynamics of the system,

and thus the resulting transport properties can be skewed.

However, it is most common to desire D and η at a specified

temperature (T ) and pressure (P ). This requires performing

a series of simulations in different ensembles:

1. NPT ensemble at desired T and P until the system

density has properly equilibrated

2. NV T ensemble where the volume is set such that the

density is the average density computed from the NPT

run

3. NV E ensemble where the final configuration of the

NV T run is used as the initial configuration

The average pressure and temperature for the NV E produc-

tion run are computed and should be close to (but not exactly

the same) as the input P and T to the original NPT run.

These average pressures and temperatures must be reported

along with the self-diffusivity and viscosity.

Note that, although the best practice is to use the NV E

ensemble (Steps 1 to 3), it is common to see values reported

using the NPT (just Step 1) or NV T (Steps 1 and 2) ensem-

ble. We strongly discourage the use of the NPT ensemble

alone, because barostats (which alter positions through vol-

ume changes) greatly affect the dynamics of a system. In

contrast, the NV T ensemble has been implemented success-

fully for transport property calculations and is quite common,

especially for viscosity. For example, Fanourgakis et al. re-

ported that the NV T and NV E ensembles provide nearly

identical results for viscosity [21]. A study by Basconi and

Shirts [22] reached a similar conclusion, and provides guide-

lines for how thermostats should be applied when computing

transport properties. To summarize their results, NV T simu-

lations with velocity-scaling thermostats (e.g. Berendsen [23],

stochastic rescaling [24], and Noseé-Hoover [25] thermostats)

and a wide range of coupling strengths (0.1, 1, and 10 ps)

provide D and η values that are statistically indistinguishable

from the NV E ensemble estimates. By contrast, velocity-

randomizing algorithms (e.g. Andersen thermostat [26] and

Langevin dynamics [27]) with strong coupling (0.1 and 1 ps)

dramatically decrease D and increase η relative to the NV E

ensemble values. Therefore, we recommend using either the

NV T or NV E ensemble, with NV E being preferred. If NV T

simulations are used, we recommend judiciously selecting the

thermostat and coupling strength by consulting Refs. [21, 22].

4.1.2 Replicate simulations

To smooth noise in the Green-Kubo integral or Einstein slope,

we recommend generating independent replicate trajectories

(i.e. different initial configurations or random seed to initialize

velocities). The primary advantage of performing replicates

as opposed to one longer simulation is the computational

speed-up. Figure 2 in Ref. [28] demonstrates that an average

of 10 short replicate simulations converges to the same value

as a single long simulation. Since these replicates can be

performed in parallel, the time required to obtain the result

is reduced, although the CPU time may be the same or more.

The uncertainty is inversely proportional to the square

root of the number of replicates (see Figure 7 of Ref. [29] and

Figure 8 of Ref. [30]), so increasing the number of replicates

is a simple, fast, and direct way to reduce the uncertainty.

For example, the fluctuations in η are much smaller for the

average of 10 replicates compared to that of a single longer

simulation (see Figure 2 of Ref. [28]). As fluctuations in η are

typically much larger than D, more replicate simulations are

required for estimating viscosity (see Sec. 6.1.4).

In addition, replicate simulations are useful if a single

simulation does not adequately sample phase space, i.e. is

trapped in a local minimum or has slow dynamics. Further-

more, replicates can provide rigorous estimates of uncertainty
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CHECKLIST FOR COMPUTING SELF-DIFFUSIVITY WITH EINSTEIN EQUILIBRIUM APPROACH
� Simulation set-up. No amount of data analysis can compensate for a poorly designed experiment. It is imperative
that the simulation sufficiently samples the relevant region of phase space.

� Sample from the correct ensemble. See Sec. 4.1.1.

� Increase the information extracted from simulation results.

� Perform multiple replicate simulations. See Sec. 4.1.2.

� Ensure that simulations are sufficiently long. See Sec. 5.2.2.

� Increase the output frequency. See Sec. 5.2.1.

� Check for system size effects. See Sec. 5.1.2

� Post-simulation data analysis. Data analysis is key for obtaining reproducible and meaningful estimates of D.
� Improve precision by averaging over:

� N molecules. See Sec. 4.2.1.

� Three dimensions (xx, yy, zz). See Sec. 4.2.1.

� Multiple replicate simulations. See Sec. 4.1.2.

� Clearly communicate how D is obtained from Equation 2. See Secs. 4.2.2, 5.1.1, and 5.2.3.

� Report the uncertainty in D:

� Bootstrap replicate simulations. See Sec. 4.2.3.

� Perform sensitivity analysis, i.e. variation in D with respect to the time cut-off, etc. See Sec. 5.2.3.

� Common pitfalls. Double-check that your results are not plagued by one of the common pitfalls. See Sec. 4.3.
� Validation. Compare your results with those from a reputable source. See Sec. 4.4.
� Special topics. Check if your system of interest requires some special considerations. See Sec. 5.4.

CHECKLIST FOR COMPUTING SELF-DIFFUSIVITY WITH GREEN-KUBO EQUILIBRIUM APPROACH
� Simulation set-up. No amount of data analysis can compensate for a poorly designed experiment. It is imperative
that the simulation sufficiently samples the relevant region of phase space.

� Sample from the correct ensemble. See Sec. 4.1.1.

� Increase the information extracted from simulation results.

� Perform multiple replicate simulations. See Sec. 4.1.2.

� Ensure that simulations are sufficiently long. See Sec. 5.3.2

� Increase the output frequency. See Sec. 5.3.1.

� Check for system size effects. See Sec. 5.1.2.

� Post-simulation data analysis. Data analysis is key for obtaining reproducible and meaningful estimates of D.
� Improve precision by averaging over:

� N molecules. See Sec. 4.2.1.

� Three dimensions (xx, yy, zz). See Sec. 4.2.1.

� Multiple replicate simulations. See Sec. 4.1.2.

� Clearly communicate how D is obtained from Equation 1. See Secs. 4.2.2, 5.1.1, and 5.3.3.

� Report the uncertainty in D:

� Bootstrap replicate simulations. See Sec. 4.2.3.

� Perform sensitivity analysis, i.e. variation in D with respect to the time cut-off, etc. See Sec. 5.3.3.

� Common pitfalls. Double-check that your results are not plagued by one of the common pitfalls. See Sec. 4.3.
� Validation. Compare your results with those from a reputable source. See Sec. 4.4.
� Special topics. Check if your system of interest requires unique considerations. See Sec. 5.4.
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CHECKLIST FOR COMPUTING VISCOSITY WITH GREEN-KUBO EQUILIBRIUM APPROACH
� Simulation set-up. No amount of data analysis can compensate for a poorly designed experiment. It is imperative
that the simulation sufficiently samples the relevant region of phase space.

� Sample from the correct ensemble. See Sec. 4.1.1.

� Increase the information extracted from simulation results.

� Perform multiple replicate simulations. See Sec. 4.1.2.

� Ensure that simulations are sufficiently long. See Sec. 6.1.1.

� Increase the output frequency. See Sec. 6.1.2.

� Check for system size effects. See Sec. 6.1.3.

� Post-simulation data analysis. Data analysis is key for obtaining reproducible and meaningful estimates of η.
� Improve precision by averaging over multiple:

� Stress tensor elements (three off-diagonal or all six). See Sec. 6.1.4.

� Replicate simulations. See Sec. 4.1.2 and 6.1.4.

� Clearly communicate how η is obtained from Equation 1. See Secs. 4.2.2 and 6.2.1.

� Report the uncertainty in η:

� Bootstrap replicate simulations. See Sec. 4.2.3.

� Perform sensitivity analysis, i.e. variation in η with respect to the time cut-off, fitting model, etc. See Sec. 6.2.1.

� Common pitfalls. Double-check that your results are not plagued by one of the common pitfalls. See Sec. 4.3.
� Validation. Compare your results with those from a reputable source. See Sec. 4.4.
� Special topics. Check if your system of interest requires some special considerations. See Sec. 6.4.

CHECKLIST FOR COMPUTING VISCOSITY WITH EINSTEIN EQUILIBRIUM APPROACH
� Simulation set-up. No amount of data analysis can compensate for a poorly designed experiment. It is imperative
that the simulation sufficiently samples the relevant region of phase space.

� Sample from the correct ensemble. See Sec. 4.1.1.

� Increase the information extracted from simulation results.

� Perform multiple replicate simulations. See Sec. 4.1.2.

� Ensure that simulations are sufficiently long. See Sec. 6.1.1.

� Increase the output frequency. See Sec. 6.1.2.

� Check for system size effects. See Sec. 6.1.3.

� Post-simulation data analysis. Data analysis is key for obtaining reproducible and meaningful estimates of η.
� Improve precision by averaging over multiple:

� Stress tensor elements (three off-diagonal or all six). See Sec. 6.1.4.

� Replicate simulations. See Sec. 4.1.2 and 6.1.4.

� Clearly communicate how η is obtained from Equation 2. See Secs. 4.2.2 and 6.3.1.

� Report the uncertainty in η:

� Bootstrap replicate simulations. See Sec. 4.2.3.

� Perform sensitivity analysis, i.e. variation in η with respect to the time cut-off, fitting model, etc. See Sec. 6.3.1.

� Common pitfalls. Double-check that your results are not plagued by one of the common pitfalls. See Sec. 4.3.
� Validation. Compare your results with those from a reputable source. See Sec. 4.4.
� Special topics. Check if your system of interest requires some special considerations. See Sec. 6.4.
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Table 1. Equilibrium molecular dynamics equations.

Property γ ξ Green-Kubo (Equation 1) Einstein (Equation 2)

Self-diffusivity D rα
1

d

∫ ∞
0

dt

〈
1

N

N∑
i=1

vα,i(t)vα,i(0)

〉
t0

1

2d
lim
t→∞

d

dt

〈
1

N

N∑
i=1

|rα,i(t)− rα,i(0)|2
〉
t0

Shear viscosity η rαvβ
V

kbT

∫ ∞
0

dt 〈τα,β(t)τα,β(0)〉t0
V

2kbT
lim
t→∞

d

dt

〈(∫ t

0

dt′τα,β(t
′)

)2
〉
t0

α, β = x, y, or z Cartesian coordinates of the atoms or molecule center of mass

d = dimensionality (1,2, or 3)

N = number of atoms or molecules (see Sec. 4.2.2)

τα,β(t) =
1
V

∑N
i=1 (mvα,i(t)vβ,i(t) + rα,i(t)fβ,i(t)) , α 6= β

fβ,i is the force acting on particle i in direction β

〈· · · 〉t0 denotes an average over time origins (see Sec. 4.2.1)

(see Sec. 4.2.3).

Note that, although the best practice is to start each inde-

pendent replicate at the NPT step, it is common to use the

same density (NV T step) for each replicate. This approach

is acceptable assuming that the authors provide the corre-

sponding uncertainty in P (see Sec. 4.1).

4.2 General transport: Post-simulation
analysis

4.2.1 Improved precision

In practice, several tricks-of-the-trade are employed to re-

duce fluctuations and, thereby, the standard deviation (σ).

For self-diffusivity, it is a standard practice to average the

mean-square-displacement or velocity autocorrelation func-

tion over all N molecules (see Table 1). For shear viscosity,

it is not possible to average over the number of molecules

because viscosity is a collective property that depends on the

pressure/stress tensor of the system. For this reason, it is

much easier to get precise diffusivity estimates than it is to

get precise viscosity estimates; additional tactics are typically

employed to improve the viscosity precision, namely, large

amounts of replicate simulations.

The self-diffusivity is a tensor, and it is common practice

in homogeneous systems to average the diagonal compo-

nents, such that D = 1
3
(Dxx + Dyy + Dzz) where for exam-

ple Dxx =
1

2
lim
t→∞

d

dt

〈
1

N

N∑
i=1

|xi(t)− xi(0)|2
〉
. Since formally

Dxx = Dyy = Dzz for homogeneous systems, one can test

the equivalence of the three terms as a check on a simula-

tion and even to make a crude estimate of the uncertainty in

D. In inhomogeneous systems, the diagonal terms will not

necessarily be equivalent. Off diagonal terms should be zero,

and we encourage the user to verify this.

For viscosity, the recommended practice is to use mul-

tiple components from the pressure/stress tensor. For ex-

ample, although early studies only implemented a single off-

diagonal component (typically xy), the common practice in

recent studies is to use all three off-diagonal (xy, yz, zx) and

sometimes three additional modified diagonal terms of the

pressure/stress tensor (see Sec. 6.1.4).

Finally, for both self-diffusivity and shear viscosity it is com-

mon to average over multiple time origins (t0). It is important

that the difference between subsequent t0 values (δt0) be

longer than the correlation time so that the different time

intervals are independent.

4.2.2 Clear communication

Transport properties are estimated by integration of Equation

1 or calculating the slope of Equation 2 with respect to time.

Both methods involve some judgment on the part of the

user and results can vary depending on where the slope is

taken (Einstein approach) and for how long the integral is

carried out (Green-Kubo approach). Some recent work has

suggested some guidelines for how to compute an objective

estimate of the viscosity using the Green-Kubo approach [29].

Similar methods for estimating other transport properties

from Equations 1 or 2 should be possible to develop.

As no single best practice can be recommended for the

region over which the slope or integral is calculated, it is im-

portant to justify how this decision was made and then clearly

communicate the approach used in any publication. Further-

more, it is critical to quantify the degree of variability in the

estimated property that arises from assumptions in the data

analysis, e.g. the time interval over which the Einstein slope

is computed, etc. As post-simulation analysis is an essen-

tial step for estimating transport properties, we recommend

providing data analysis scripts as supporting information to

improve future reproducability.
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4.2.3 Uncertainty quantification

Replicates can provide a rigorous uncertainty assessment.

We recommend bootstrapping the uncertainties by randomly

sampling which replicates are included in the data analysis

procedure:

1. Randomly select (with replacement) a set of replicate

simulations

2. Calculate the relevant average quantity from this ran-

dom set, i.e. 〈ξ̇(t)ξ̇(0)〉 for Green-Kubo or 〈(ξ(t)−ξ(0))2〉
for Einstein

3. Compute transport property (γ) from Equations 1 or 2

4. Repeat steps 1 to 3 thousands of times

5. Generate distribution of the estimated values for D or

η

6. Determine lower and upper uncertainty bounds ofD or

η at desired confidence level, 1− α

The final step requires the probability density function (PDF,

or alternatively the cumulative distribution function, CDF) for

D or η. The bootstrapped distribution of D or η obtained

in Step 5 is used to approximate the PDF, which is typically

expressed as either a histogram or by fitting to a normal

distribution. Solving for the lower and upper bounds of D

or η can be performed in several different ways, but the two-

sided tail approach is most common. With this approach,

the lower and upper bounds correspond to the values that

yield α/2×100% of the integrated PDF in the lower and upper

tails. We recommend using α = 0.05, corresponding to a 95%

confidence interval.

4.3 General transport: Common pitfalls
When simulating in the NV E ensemble, it is imperative that

the integrator conserve energy. The most common method

to check for energy conservation is to systematically adjust

the time step and plot the energy versus time. The energy

should show little to no drift over the timescale of the sim-

ulation. Haile [31] provides a detailed discussion of energy

conservation and time step size (see Chapter 4.4 of his book).

If constraints on bond lengths or angles are used, we also

recommend checking to make sure that these constraints are

maintained.

An important implicit assumption in Equations 1 and 2

is that the time over which these expressions are evaluated

is much larger than the correlation time of the variable ξ.

This assumption is often satisfied easily for simple liquids,

where relaxation times are fast, but becomes problematical

for systems with sluggish dynamics. Therefore, insufficient

simulation time is a common pitfall in estimating transport

properties. To avoid this pitfall, we recommend performing a

series of progressively longer simulations to determine if the

estimated values deviate significantly with increasing simula-

tion time. Another way to test whether a simulation is long

enough is to determine whether the molecules in the system

explore a sufficiently diverse region of configuration space.

This can be done by calculating the MSD of the molecules

in the system and comparing this to either the radius of gy-

ration of the largest molecule in the system (rG) or the box

length (L). If the square root of the MSD is larger than rG

(or better yet, is comparable to or larger than L), then the

molecules have moved over long enough distances to sample

a significant amount of configuration space.

4.4 General transport: Validation
Validation is an important step to verify that the simulation

set-up and post-simulation analysis are performed properly.

One tool that can serve this purpose is the Standard Refer-

ence Simulation Website provided by the National Institute

of Standards and Technology (NIST) [32]. “Benchmark Simula-

tion Results” for static and transport properties are reported

for both “toy” problems, such as the Lennard-Jones fluid, and

more sophisticated systems, such as various water models,

small n-alkanes, and light gases. We recommend that novice
users attempt to replicate the transport properties reported

for some of these simple systems. Subsequently, we recom-

mend attempting to replicate literature values reported for

a more similar system to the one of interest. In general, vali-

dation should be performed prior to simulating new systems

for which a comparison is not possible.

5 Self-Diffusivity
We recommend the Einstein approach for computing self-

diffusivity as it is robust and themost commonly usedmethod.

However, we also recommend validating that the Green-Kubo

method provides similar estimates. Although systematic devi-

ations are often observed between the two methods, if the

analysis is done properly the values should agree within their

statistical uncertainties [33–35]. Section 5.1 discusses self-

diffusivity checklist items that apply to both the Einstein and

Green-Kubo approaches. Sections 5.2 and 5.3 discuss check-

list items that are specific to either the Einstein or Green-Kubo

approaches, respectively, for estimating the self-diffusivity

constant. Section 5.4 provides a brief discussion of some

topics that are relevant in certain applications.

5.1 Self-Diffusivity: General
5.1.1 Data analysis

The equations for computing D listed in Table 1 require the

use of “unwrapped coordinates”. That is, periodic boundary

conditions should not be applied to the coordinates, or else

the self-diffusivity will be underestimated. It is possible to
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use the coordinates / velocities of each atom or the center

of mass of each molecule in the self-diffusivity expressions.

In the long-time limit, the results should be the same (see

Figures 1 and 2 of Ref. [35]). Nevertheless, we recommend

using the molecular center of mass and not the individual

atomic coordinates. The reason is that short-time vibrational

displacements of individual atoms, that do not contribute

to the self-diffusivity, are tracked when atomic coordinates

are used while the center of mass displacements are much

better behaved (see Figure 3 of Ref. [35]). In either case, it is

imperative to use the correct value of N (number of atoms

or number of molecules) and to clearly state which approach

was used.

5.1.2 Finite size effects

Finite size effects are significant for self-diffusivity calculations

and must be accounted for to obtain meaningful estimates.

Self-diffusivities increase with increasing system size, as can

be seen in Figure 1 from Ref. [36] where the self-diffusivity of

high pressure CO2 differs by approximately 10% depending

on the size of the system. We therefore stress the importance

of reporting the self-diffusivity in the “infinite" box limit. This

can be determined in one of two ways.

First, simulations are run with progressively larger system

sizes, and the computed self-diffusivities are plotted as a

function of 1/N1/3
, where N is the number of molecules. As

shown in Figure 1, such a plot is approximately linear, and

extrapolating to when 1/N1/3 = 0 gives an estimate of the

self-diffusivity (although note that some studies, such as Ref.

[37], extrapolateD with respect to 1/N ). The downside of this

approach is that it requires multiple simulations and the large

system simulations are computationally intensive.

The second approach is to estimate the infinite system

self-diffusivity from a single simulation using an analytic cor-

rection factor proposed by Yeh and Hummer [38]. The correc-

tion is given by

D∞ = D(L) +
kBTξ

6πηL
(3)

where D∞ is the infinite system size self-diffusivity, D(L) is

the computed self-diffusivity for a cubic box with edge length

L, kB is the Boltzmann constant, T is the absolute temper-

ature, η is the shear viscosity, and ξ = 2.837298 is a dimen-

sionless constant. The shear viscosity must be computed

separately but fortunately, it is not typically a strong func-

tion of system size (see Section 6.1.3). As can be seen in

Figure 1, both methods give similar results (compare the blue

and red dashed lines). The advantage of the Yeh-Hummer

correction is that a good estimate of the self-diffusivity can be

obtained from a single simulation. Note that a different cor-

rection is required for non-cubic simulation boxes.[39] Also

note that a different correction may be more appropriate for

anisotropic condensed-phase systems (e.g. those containing

membranes), discussed in Section 5.4.

Figure 1. System size dependence of self-diffusivity obtained with
Einstein approach. Reproduced with permission from J. Chem. Phys.

145, 074109 (2016). Copyright 2016 AIP Publishing [36]. Blue dashed

lines are obtained by extrapolating the MD results to the infinite

system size, i.e. N−1/3 → 0. Red diamonds are the values ofD after

correcting for finite size effects, i.e. Equation 3. The red dashed line

is an average of these corrected values ofD. For further details, see

Ref. [36].

5.2 Self-Diffusivity: Einstein
5.2.1 Output frequency

Self-diffusivities are computed by post-processing a trajectory.

For the Einstein self-diffusivity, this means the positions of

the atoms (or molecule centers of mass) should be stored as

a function of time so that the MSD can be computed. How of-

ten should one save positions and at what frequency? There

will always be a trade-off between accuracy (which argues for

more configurations saved more frequently) and file size or

runtime performance (both of which argue for fewer config-

urations saved less frequently). Since the long-time slope in

MSD is required in the Einstein approach, configurations do

not need to be saved at a high frequency. As a general guide-

line, to balance file size and accuracy, we recommend that

approximately 1000 independent configurations be saved at

uniform time intervals over the length of a production run.

5.2.2 Simulation length

Simulation length needed depends on number of molecules

for which transport properties are desired. Fewer molecules

requires more simulation time and vice versa. Regardless,

the simulation must be long enough so that the molecules

are in the diffusive regime. We recommend computing the

slope from a log-log plot of MSD with respect to time, which

should be approximately 1 in the diffusive regime (see Figure

2). As mentioned in Section 4.3, another heuristic is whether
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the MSD is sufficiently large, i.e. larger than the square of the

radius of gyration of the molecule at the low end and larger

than the square of half the box length at the high end. If

these criteria are met, then one can have confidence that the

diffusive regime has been sampled.

5.2.3 Data analysis

In order to obtain reliable estimates of D, it is important to

consider how the linear regression is performed for the MSD

with respect to time (Equation 2). Specifically, the time interval

that is included in the regression can have a significant impact

on the predicted value of D. We recommend that only the

“middle” of the MSD be used in the fit. Short time must be

excluded as it follows a ballistic trajectory, while very long

time is excluded due to the increased noise. Currently, we are

unaware of an objective approach for defining the “middle”

region. Until such an approach exists, we recommend that

the author reports how the region was selected and how

much variability in D can be attributed to the choice of this

region. In addition, the uncertainty in the fit of the slope

should be reported. A typical plot, borrowed from Ref. [33],

is provided in Figure 2, where the linear regressions at long

time are included.

Figure 2. Log-log plot of MSD with respect to time. Reproduced
with permission from J. Phys. Conf. Ser. 774 (2016) 012039, under

the Creative Commons Attribution 3.0 license [33]. The gray dashed

lines are the long-time asymptotes of the MSD, as determined by the

authors. For further details, see Ref. [33].

5.3 Self-Diffusivity: Green-Kubo
5.3.1 Output frequency

If the self-diffusivity is computed using a Green-Kubo ap-

proach, the velocities are needed as a function of time. Note

that compared to the position information required by the

Einstein approach, velocity information must be stored at a

much higher frequency for the Green-Kubo approach. This

is because the velocity autocorrelation function (VACF) that

must be integrated decays very rapidly and fine time resolu-

tion is needed to perform an accurate numerical integration.

We recommend saving the velocities at least every 4-5 fs. Be

warned that this will result in trajectories that are significantly

larger than positional trajectories saved at lower frequencies.

5.3.2 Simulation length

Simulations should be long enough that the Green-Kubo inte-

gral has reached a plateau. Note that the plateau time is not

the same as the required simulation time, since multiple time

origins (t0) are used to compute the Green-Kubo integral.

5.3.3 Data analysis

The most common method for computing the self-diffusivity

from the VACF is to do a direct numerical integration of the

VACF. If this is done, the author should provide details on

how the integration was carried out (numerical procedure,

algorithm, cutoffs, etc.). The running integral versus time

is calculated and the self-diffusivity is estimated from the

plateau value. Note that when calculating the VACF, the maxi-

mum lag taken should be up to half the total simulation time

since longer times serve to increase statistical noise. Also,

note that the long time "tail" of the VACF must be properly

converged as it contributes significantly to the integral. Like

with the MSD, a cut-off needs to be determined when decid-

ing when the integral has converged. It is important to report

how sensitive the estimate is to this cut-off time.

5.4 Self-Diffusivity: Special topics
Although molecular simulation is well-suited for predicting

diffusivity coefficients in membranes, several issues arise

that require special attention. For example, the standard

non-bonded long-range cut-off corrections are not straight-

forward in a heterogeneous system. For this reason, it is

common to modify the non-bonded interactions such that

tail corrections are not needed, e.g. cut-and-shift, force-switch

[2, 5]. However, it is important to investigate the impact mod-

ifying the non-bonded potential has on the diffusion coeffi-

cients. Furthermore, since membranes require anisotropic

pressure control it is important to use barostats/thermostats

that maintain the correct isobaric/isothermal ensemble. Ven-

able et al. have shown that as long as a high-quality barostat

and thermostat are used (such as those implemented via

so-called "extended system" methods [25, 40]), diffusion con-

stants determined from NVE and NPT simulations are quite

similar [41]. Finally, correcting diffusion coefficients for fi-

nite size effects (i.e. when periodic boundary conditions are
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employed) in membrane systems requires some additional

consideration. Camley et al. developed a method for deter-

mining diffusion constants in membrane systems which uses

the immersed-boundary approach in the context of the the

Saffman-Delbrüuck model [42]. This method is available via

https://diffusion.lobos.nih.gov.

6 Viscosity
Although the popularity of NEMD methods for predicting

viscosity has increased in recent years, Ref. [17] demonstrates

that EMD methods can be of equal accuracy and reliability

to NEMD as long as best practices are followed, i.e. proper

system set-up and thorough data analysis. That being said,

EMD works best for fluids with relatively low viscosity, i.e.

typically less than 20 cP although EMD has been successfully

implemented for systems near 50 cP. Higher viscosity systems

are extremely difficult to compute with EMD and so NEMD

methods are often preferred in this case.

The recommended EMD approach for predicting viscosity

is Green-Kubo. The Green-Kubo approach appears to be the

most popular EMD method found in the literature and, more

importantly, less arbitrary data analysis methods exist that

improve the reliability and reproducibility (see Sec. 6.2.1).

We should note, however, that Ref. [18] states that the

Einstein relation is more convenient than Green-Kubo for vis-

cosity because “inaccuracies in the long-time correlations can

be ignored by only considering integral over shorter times.” Al-

though this observation is true (see Figure 9), several algorith-

mic advances have been implemented with the Green-Kubo

approach since 2002 (when Ref. [18] was published). Most

of these improvements rely on performing large amounts of

replicate simulations (see Sec. 6.1.4). Therefore, we only rec-

ommend utilizing the Einstein approach when replicate simu-

lations are too computationally expensive (see Sec. 6.3.1).

Section 6.1 discusses shear viscosity checklist items that

apply to both the Einstein and Green-Kubo approaches. Sec-

tions 6.2 and 6.3 discuss checklist items specific to the Green-

Kubo and Einstein approaches, respectively, for estimating

viscosity. Section 6.4 provides a brief discussion of some

topics that are relevant in certain applications.

6.1 Viscosity: General
6.1.1 Simulation length

Overall you need about 10X more data to compute viscos-

ity than diffusivity, since viscosity is a collective property. As

with the self-diffusivity, the simulation time needs to be long

enough so that all the relaxation processes are adequately

sampled. We recommend applying similar heuristics as those

described in Section 4.3 to determine the length of the simu-

lation required.

Figure 3, borrowed from Ref. [29], demonstrates that if

the length of each independent trajectory is too short the

viscosity will not converge to the correct value, regardless

of how many replicates are used. Specifically, the average

viscosity obtained from 100 replicates of 500 ps appears to

diverge from the 1, 2, and 4 ns simulation results, suggesting

that 500 ps is not sufficiently long for this system. Since it is

very hard to know how long an individual trajectory needs

to be, we recommend performing an analysis similar to that

shown in Figure 3 to ensure adequate sampling.

Figure 3. Viscosity dependence on simulation length. Reprinted
with permission from J. Chem. Theory Comput., 2015, 11 (8), pp

3537–3546. Copyright (2015) American Chemical Society Ref. [29].

Different lines and symbols correspond to different simulation length,

i.e. trajectory time. The inset in the top panel plots the standard

deviation, σ. For further details, see Ref. [29].

It is important not to confuse the Green-Kubo integration

time (the abscissa for the top panel of Figure 3) with the

simulation length (the different color lines in both panels of

Figure 3). Recall that the Green-Kubo integral (plotted in the

top panel) is evaluated using multiple time origins (t0), so the

Green-Kubo integral contains more independent trajectories

for the 4 ns line than the 500 ps line. Therefore, the time at

which the Green-Kubo integral reaches a plateau (around 100
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ps in the top panel of Figure 3) is not the same as the required

simulation time. For sufficient independent trajectories, the

required simulation time should typically be around an order

of magnitude greater than the plateau time.

Figure 4, borrowed from Ref. [29], demonstrates that

the plateau time increases with increasing viscosity, where

an order of magnitude increase in viscosity corresponds to

approximately an order of magnitude increase in the plateau

time. In order to account for the increase in the plateau time,

higher viscosity fluids require longer overall simulation times.

Figure 4. Plateau time dependence on viscosity. Reprinted with per-
mission from J. Chem. Theory Comput., 2015, 11 (8), pp 3537–3546.

Copyright (2015) American Chemical Society Ref. [29]. Different lines

correspond to different temperatures and, thus, different viscosities.

For further details, see Ref. [29].

6.1.2 Output frequency

As with the self-diffusivity, shear viscosity is computed by

post processing a data file. If the Green-Kubo procedure

is used, stress tensor components need to be written out

frequently enough so that an accurate estimate of the time

integral can be made. Since the integral decays quickly with

time, we recommend writing the stress tensor every 5 to 10

fs. If the Einstein relationship is used, less frequent writes

can be made over the length of the simulation. The user

should perform some preliminary tests to ensure write fre-

quencies are sufficient as well as to estimate file sizes for a

given simulation.

6.1.3 Finite size effects

Figures 5-6 from Refs. [36] and [29], respectively, suggest that

finite size effects are not significant for systems with as few as

125 and 500 molecules, respectively. Other authors, including

Daivis and Evans [37], have also reported that shear viscosity

has a weak dependence on system size (see Figure 4 of Ref.

[37]). It is thus reasonable to neglect a system size correction,

although if possible we recommend that users carry out some

additional calculations to justify this assumption.

To test for system size dependence, one can run a series

of simulations over a range ofN molecules, whereN is varied

at least by a factor of two and ideally an order of magnitude.

By plotting the computed shear viscosity versus N−1/3
, it is

possible to ascertain if there are system size effects. We en-

courage authors to report these findings to help further verify

system size effect trends on viscosity. If a linear trend is ob-

served with respect toN−1/3
, the infinite system size viscosity

can be extrapolated as the intercept from a linear regression.

The author should report the uncertainty associated with this

linear fit and extrapolation.

Figure 5. Finite size effects for viscosity obtained with Green-Kubo
approach. Reproduced with permission from J. Chem. Phys. 145,

074109 (2016). Copyright 2016 AIP Publishing [36]. Different symbols

correspond to different types of glymes (Gi). Dashed lines are average

value for each glyme from various system sizes (N). For further

details, see Ref. [36].

6.1.4 Improved precision

To improve statistical averaging, it is common to include mul-

tiple terms from the stress tensor. For example, Figure 7,

borrowed from Ref. [18], demonstrates the improvement of

averaging the three off-diagonal elements of the pressure ten-

sor, compared to a single off-diagonal element. To maximize

simulation efficiency for an isotropic system, we recommend

that users employ a generalized form of the Green-Kubo in-

tegral [43, 44], which uses all six independent components

of the stress tensor. Details are given in the Appendix of Ref.

[44]. This generalized integral is given by

η =
V

10kBT

∫ ∞
0

〈
τosij (0)τ

os
ij (t)

〉
t0
dt (4)

where the components τosij of the traceless, symmetric part

of the stress tensor are given by

τosij =
τij + τji

2
− δij

(
1

3

∑
k

τkk

)
(5)
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Figure 6. Finite size effects for viscosity obtained with Green-Kubo
approach. Reprinted with permission from J. Chem. Theory Comput.,

2015, 11 (8), pp 3537–3546. Copyright (2015) American Chemical

Society Ref. [29]. Different colors correspond to different number

of molecules. The inset plots the standard deviation, σ. For further

details, see Ref. [29].

where δ is the unit tensor. Note that the factor of 10 in the

denominator of Eq. 4 results from assigning weighting factors

of 3/3 and 4/3 for each of the six off-diagonal terms and the

three diagonal terms, respectively [34, 35, 45] (although some

authors have argued for an equal weighting [17], which would

modify the normalization factor in the denominator of Eq. 4).

The equivalent generalization of the Einstein relation is

η =
V

20kBT
lim
t→∞

d

dt

∑
i

∑
j

〈∫ t

0

τosij (t
′)dt′

〉
t0

(6)

We are not aware of any studies that rigorously quantify

the improvement in precision obtained by using all six terms.

Figure 8, borrowed from Ref. [17], demonstrates that the

average viscosity and fluctuations are nearly identical when

using the three off-diagonal terms or when using six terms.

Therefore, although we recommend including all six terms,

it is typically sufficient to utilize just the three off-diagonal

terms. Regardless, it is important to clearly state which terms

are included when computing viscosity.

Although fluctuations in η are significantly reduced by

including multiple terms from the stress tensor, the key to

improved precision of viscosity estimates is to average several

replicate simulations. For Nreps replicates, the Green-Kubo

equation is

η =
V

10kBTNreps

Nreps∑
n=1

∫ ∞
0

〈
τosij,n(0)τ

os
ij,n(t)

〉
t0
dt (7)

and the Einstein relation becomes

η =
V

20kBTNreps
lim
t→∞

d

dt

Nreps∑
n=1

∑
i

∑
j

〈∫ t

0

τosij,n(t
′)dt′

〉
t0

(8)

Figure 7. Green-Kubo viscosity plot. Reproduced from J. Chem. Phys.,
2002, 116(1):209–217, with the permission of AIP Publishing [18].

Dashed lines represent a single off-diagonal element of the pres-

sure tensor while solid line is the average of the three off-diagonal

elements. For further details, see Ref. [18].

Figure 8. Green-Kubo dimensionless viscosity plot for Lennard-Jones
fluid. Reproduced from J. Chem. Phys., 131, 246101 (2009), with the

permission of AIP Publishing [17]. Red line is obtained by averaging

the three off-diagonal elements while the black line is obtained from

all six pressure tensor elements. For further details, see Ref. [17].

For example, Figure 9 demonstrates that averaging three

stress tensors is not sufficient to obtain a reliable Einstein

slope as t→∞. By contrast, a near linear trend at high time
is observed by averaging a large number (30) of replicates.

The number of replicates used in the literature varies

widely. In their study of the shear viscosity of alkanes, Payal

and co-workers [28] used 10 replicates, whereas Zhang et

al. [29] performed a systematic investigation of the mini-

mal number of replicates required for convergence. They

observed that a value of 30 to 40 replicates was statisti-

cally equivalent to 100 replicates for their system. However,

the necessary number of replicates depends on the system.

Specifically, the compound, the temperature, the number
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Figure 9. Improvement with three stress tensor terms and 30 repli-
cate runs. Simulations were performed with Gromacs 2018 for satu-

rated liquid ethane at 137 K using the TraPPE-UA model [46]. Simu-

lation details: velocity Verlet integrator, 2 fs time-step, 6 fs pressure

tensor output frequency, 1 ns equilibration time, 1 ns production

time, 400 molecule system, 1.4 nm non-bonded cut-off distance with

analytic tail corrections, Nosé-Hoover thermostat with time constant

of 1 ps, bond-lengths constrained with LINCS algorithm [2].

of molecules, and the simulation time all influence the opti-

mal number of replicates. We recommend that researchers

plot how η varies with respect to the number of replicates

for a range of 10 to 30 replicates to determine if additional

simulations are needed.

6.2 Viscosity: Green-Kubo
6.2.1 Data analysis

It is imperative to report how the viscosity was estimated

from Equation 1. There are three common methods: average

over a specified time interval, fit the autocorrelation function

to a model and analytically integrate the model fit, or fit the

“running integral” to a model and extrapolate the model to

infinite time. We recommend the latter methodology but

discuss each approach below.

Average over time interval

A slightly ambiguous but common practice is to report an

average shear viscosity that is obtained over a specified time

interval. Due to large fluctuations at long times, the initial

plateau of the integral at short times (around 10 to 100 ps) is

typically the region of choice, see Refs. [17, 21]. However, it is

important to explain how this time interval was selected (i.e.

visual inspection, test of convergence, magnitude of fluctua-

tions, etc.) and to quantify how much the estimated viscosity

changes if the time interval were modified. For example, in

Figures 7 and 8 the reported viscosity would likely be the aver-

age from approximately 5 to 15 ps and 10 to 25 dimensionless

time units, respectively. Clearly, the estimated viscosity would

vary significantly if the long-time data were included in the

average.

Model fit to autocorrelation function

An alternative method is to fit a model to the autocorrelation

function before calculating the “running integral.” The integral

of the model fit can then be evaluated in the limit as t→∞.
This helps to overcome large fluctuations at long times and,

thereby, reduces uncertainties. The primary difficulty is find-

ing a model that can adequately match the autocorrelation

function without introducing bias into the estimate of viscos-

ity. A common function found in the literature is

Sf
ACF(t)

Sf
ACF(0)

= (1− C)cos(ωt) exp (−t/τf )βf + C exp (−t/τs)βs

(9)

where C,ω, τf , τs, βf , βs (and sometimes S
f
ACF(0)) are fitting

parameters. ω is the frequency of rapid pressure oscillations,

τf and βf are the time constant and exponent of fast relax-

ation in a stretched-exponential approximation, τs and βs are

constants for slow relaxation, C is the pre-factor that deter-

mines the weight between fast and slow relaxation, Sf
ACF(t)

is the stress autocorrelation function at time t, and Sf
ACF(0) is

the initial (time-zero) autocorrelation function [2].

Figure 10, from Ref. [21], demonstrates that Equation 9

has the correct shape to fit the stress autocorrelation func-

tion for this system. However, notice the significant deviation

between the model fit (Sf
ACF) and the raw simulation output

(SACF) for time less than 0.02 ps and the relatively small devi-

ations in the first two peaks around 0.1 ps. These systematic

deviations in the model fit can lead to significant bias in the

estimated viscosity. One method to overcome this issue is

to place a larger weight on short-time data or to include a

cut-off time beyond which SACF data are not included in the

model fit.

Alternatively, it is sometimes preferable to integrate the

raw SACF simulation output for short time and then integrate

the model fit, Sf
ACF, to infinite time [22, 47, 48]. The advan-

tage of this hybrid (combined) integration approach is that

the raw data are used in the time region where small devia-

tions in the model fit can lead to large biases in η, whereas the

model fit is utilized in the time region where integration of the

raw data does not converge. The hybrid integration approach

is especially preferred when SACF is highly oscillatory, such as

that shown in Figure 7 of Ref. [48], where Equation 9 is likely

inadequate.

The time where the Green-Kubo integration switches from

13 of 19



A LiveCoMS Best Practices Guide

Figure 10. Fit of autocorrelation function to Equation 9. Reproduced
with permission from J. Phys. Chem. A., 2012, 116 (10), pp 2564–2570.

Copyright (2012) ACS Publications [21]. SACF and S
f
ACF correspond

to the raw autocorrelation function and the fit to Equation 9, respec-

tively. The red dotted line and blue dashed–dotted line correspond

to the fast and slow autocorrelation components, respectively, i.e.

the first and second terms of Equation 9. For further details, see Ref.

[21].

using SACF to S
f
ACF, referred to as the switch-time (ts), should

be after the “fast” autocorrelation component has dissipated

(the first term in Equation 9 and the red dotted line in Figure

10). As this time depends on the system and user judgment,

examples of ts in the literature range widely. For example,

ts = 5 ps in Refs. [22, 47] while the switch-time value is only

0.015 ps in Ref. [48].

A simpler exponential decay function than Equation 9

can be used with the hybrid integration approach because

the model does not need to fit the autocorrelation function

over the entire time range, just for t > ts. For example, it is

common to fit SACF values for t > ts to a single exponential

term, e.g. Sf
ACF = exp(−(t/τ)β) [47], Sf

ACF = exp(−t/τ) [22],
or Sf

ACF = a exp(−t/b) [48], where τ , β, a, and b are fitting
parameters.

Similar to the methods discussed previously, it is impor-

tant to quantify the variability in viscosity that arises from

the model fit. For example, we recommend bootstrapping

the uncertainties by repeating the model fit for hundreds of

randomly selected subsets of SACF. If the hybrid integration

approach is utilized, it is important to investigate and report

how sensitive the final viscosity value is to the switch-time

and/or to discuss how ts is chosen. Furthermore, if a weight-

ing function or cut-off time is implemented when fitting Sf
ACF,

the impact of these parameters should be discussed.

Model fit to running integral

The method we recommend for obtaining viscosity from EMD

is to fit an analytic function directly to the “running integral”.

The primary advantage of fitting a model to the “running

integral” over the previous approach of fitting a model to the

autocorrelation function (i.e. Equation 9) is that uncertainties

in the model fit do not propagate through the integration.

For example, Refs. [49] and [29] recommend fitting the

“running integral” to a double-exponential function

η(t) = Aατ1 (1− exp (−t/τ1)) +A(1− α)τ2 (1− exp (−t/τ2))
(10)

where A,α, τ1, and τ2 are fitting parameters. Note that the

“true” estimate of η is obtained as t → ∞, i.e. η∞ = Aατ1 +

A(1− α)τ2.
Ref. [45] proposes an alternative model by integrating the

slow stretched-exponential function (second term in Equation

9) which results in the expression

η(t) = η∞(1− exp(−(t/τs)βs)) (11)

where η∞, τs, and βs are fitting parameters that relate to the

infinite-time viscosity, decay time, and the exponent of slow

relaxation.

We recommend the use of Equation 10 as we have found

it to be a more flexible fitting model, i.e. the optimized sum-

squared-error is typically lower than that of Equation 11. That

being said, the η∞ estimates obtained with Equations 10

and 11 are quite similar. Deviations in η∞ between the two

equations are generally less than 1% for both low (gas phase)

and high (compressed liquid phase) viscosities. Regardless

of whether Equation 10 or 11 is implemented, it is important

to include a description of how the fit is performed, i.e. the

objective function, range of data included, etc.

Ref. [29] recommends that the data be weighted by the

inverse of the standard deviation (σ) with respect to time.

They fit σ to a model Atb, where t is time and A and b are

fitting parameters. This fit is used to develop a weighting

model of the form w ∝ t−b, where w is the weight and b is the
weighting exponent obtained from the σ model fit. If such

a model is utilized, the resulting estimate of η may depend

strongly on b, the weighting exponent. For example, Figure

11, borrowed from Ref. [29], compares η for two different

values of b in the weighting model, namely, when b is a pre-

determined value of 0.5 and when b is fit to σ in the replicate

averages. Note that Ref. [49] recommended a value of b = 2.

Ref. [29] demonstrated that for b = 2 the estimated value of

η for an ionic liquid ([BMIM][Tf2N]) at 350 K is approximately

11 cP (compared to ≈ 19 cP in the bottom panel of Figure 11).
For these reasons, we recommend that the author quantifies

the uncertainty in the estimated viscosity due to the value
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of b. Propagating the uncertainty in η from b can be accom-

plished by implementing a two-step bootstrap method. First,

a distribution of b values are obtained by bootstrapping the σ

model fit. Second, a distribution of η values are computed by

fitting Equation 10 with each value of b from the distribution

generated in the previous step.

Figure 11. Viscosity dependence on the exponent of the weighting
model, b. b = 0.52 for Ethanol at 298K, top panel, while b is between

0.60 to 0.73 for [BMIM][Tf2N] at 350 K, bottom panel. Reprinted

with permission from J. Chem. Theory Comput., 2015, 11 (8), pp

3537–3546. Copyright (2015) American Chemical Society. For further

details, see Ref. [29].

Ref. [29] also suggests that a cut-off time be implemented

to improve the fit. They provide a heurestic that the cut-off

time correspond to when the standard deviation is 40% of the

plateau value. Regardless of how the cut-off is determined, it

is important to quantify the degree to which the estimated

viscosity depends on this parameter. For example, Zhang et

al. reported that the viscosity decreased by 0.8% and 6.1%

when using a cut-off time corresponding to a standard devia-

tion of 30% or 20% the plateau value, respectively. However,

the magnitude of variability depends strongly on the system.

We recommend that the author quantify the cut-off time de-

pendence.

Furthermore, Ref. [29] recommends excluding short-time

data from the fitting procedure. In Figure 12, borrowed from

Ref. [29], we observe large oscillations at very short times,

ca. t < 2 ps. A weighting function with a t−b form assigns an

inappropriately large weight to these short-time data points.

Therefore, it is important to exclude data in this short-time

region from the model fitting.

Figure 12. Large fluctuations at very short time. Reprinted with per-
mission from J. Chem. Theory Comput., 2015, 11 (8), pp 3537–3546.

Copyright (2015) American Chemical Society. For further details, see

Ref. [29].

6.3 Viscosity: Einstein
6.3.1 Data analysis

Since the Einstein relation is valid in the limit of infinite time,

in theory the slope should only be computed at long time.

Unfortunately, by contrast with self-diffusivity, the long-time

trend from a single run is often non-linear (recall Figure 9).

Replicate simulations are typically necessary to obtain a well-

behaved long-time trend. For example, Figure 9 demonstrates

that the replicate-averaged Einstein integral is approximately

linear over a large time interval (using 30 replicate simula-

tions). Therefore, if sufficient replicates are used it is possible

to compute a reliable slope (viscosity) at the long-time limit.

However, as observed in the inset of Figure 9, the Einstein

integral becomes nearly linear for a single simulation after a

few ps. For these reasons, it is common to fit the slope from

a single simulation over an intermediate time interval, e.g. 5

to 50 ps. We only recommend calculating the slope from an

intermediate time interval if performing a large number of

replicate simulations is too computationally expensive. Also,

as mentioned in Sec. 6.1, the Einstein approach is likely pre-

ferred over the Green-Kubo approach only in this scenario.

With a single simulation (or a small number of replicate sim-

ulations), we recommend that the author explain why the
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slope was calculated using a given intermediate time interval

and how much variability is introduced if a different region is

selected.

For example, Figure 13 helps visualize the uncertainty in η

due to the time interval used to compute the slope. Panels

a) and b) are obtained from the respective single and 30

replicate simulation results presented previously in Figure 9.

Panel a) demonstrates that determining η from a single run

depends strongly on the time interval, while Panel b) shows

that η is much less dependent on the time interval when

obtained from 30 replicate simulations.

Since the slope for an intermediate time interval is less the-

oretically rigorous and depends strongly on user judgment,

the recommended method, when computationally feasible,

is to average the Einstein integral for multiple replicate simu-

lations, i.e. Equation 8. The number of replicates needed has

not been rigorously investigated as it has for the Green-Kubo

approach. For this reason, we recommend creating a plot of

viscosity with respect to number of replicates (see Figure 3)

to determine when sufficient replicates have been simulated.

It is our experience that the necessary number of replicates

is similar to that for Green-Kubo.

Similar to the Green-Kubo recommendation, we also rec-

ommend bootstrapping the uncertainty for the Einstein ap-

proach (see Sec. 4.2.3). This is done by randomly sampling

which replicates are included in the replicate-averaged Ein-

stein integral, calculating the viscosity from the slope, and

producing a distribution of these viscosity values from hun-

dreds or thousands of different random replicate sets.

In addition, we recommend bootstrapping the time in-

terval uncertainty, i.e. computing the slope for hundred or

thousands of different time intervals. This approach is espe-

cially important if analyzing intermediate time intervals from

a single simulation. For example, from Figure 13 Panel a)

we would report the distribution of η values obtained from

randomly selected time intervals with a “start time” greater

than 5 ps and an “end time” less than 50 ps.

6.4 Viscosity: Special topics
The GROMACS manual reports that viscosity “is very depen-

dent on the treatment of the electrostatics. Using a (short)

cut-off results in large noise on the off-diagonal pressure ele-

ments, which can increase the calculated viscosity by an order

of magnitude.” [2, 18] Therefore, when computing viscosities

for systems with electrostatics, it is extremely important to

investigate the effect of cut-off distance. This can be done

by performing simulations with variable Coulombic cut-off

lengths, typically 0.9, 1.2, and 1.4 nm. We also recommend in-

vestigating whether the estimated viscosity depends strongly

on the algorithm for computing the electrostatics, i.e. particle

mesh Ewald, etc. [2]

Figure 13. Dependence of η on the time interval used to com-
pute the Einstein slope. For example, “start time” = 50 ps and

“end time” = 200 ps computes the slope from t = 50 to 200 ps of

V

2kBTNreps

Nreps∑
n=1

〈∫ t

0
ταβ,n(t

′)dt′
〉
t0

. Panels a) and b) correspond

to a single simulation and 30 replicate simulations. The same color

scale is used in both panels, but Panel b) also includes a zoomed-in

color bar. Simulation data are the same as those presented in Figure

9.

Similarly, we suspect that the viscosity also depends on

the van der Waals cut-off length and/or if a cut-and-shift,

force-switch, or truncated (with or without tail corrections)

potential is implemented [2]. For these reasons, we strongly

recommend reporting how the non-bonded (electrostatics
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and van der Waals) interactions are computed.

7 Conclusions
Molecular simulation is commonly used to predict transport

properties, however, without careful simulation design and

acute analysis, results may not be meaningful. This work out-

lines the best practices in the design and analysis of equilib-

rium molecular dynamics simulations for self-diffusivity and

viscosity prediction. We anticipate future studies discussing

best practices for non-equilibrium molecular dynamics tech-

niques or additional transport properties.

For self-diffusivity, we recommend employing the Einstein

method. In liquid systems, the NV E ensemble is suggested

over the NV T ensemble due to the potential interference

of the thermostats in self-diffusivity prediction. Uncertainty

is reduced by running multiple independent simulations, al-

lowing the system to more thoroughly sample the possible

states. We recommend multiple runs at different system

sizes to extrapolate the infinite system size limit prediction

for self-diffusivity. Atom positions are recommended to be

outputted 1000 times over a production run, however, the

user can choose to output less frequently to reduce file size

or more frequently for potentially increased accuracy. To

ensure simulations are run long enough for the dynamics

of the system to be fully emulated, the user can run a se-

ries of simulations at differing lengths, and observe deviation

in estimated self-diffusivity with changes in simulation time.

The degree of configuration space exploration can be esti-

mated by calculating the mean squared displacements of the

molecules and comparing to the radius of gyration and box

length. TheMSD should be greater than the radius of gyration,

and ideally, on the order of the box length. In post-simulation

analysis, best practice improves precision by averaging the

velocity autocorrelation function over all molecules and over

multiple time origins. Some judgment by the user is neces-

sary to decide where the slope is measured for the Einstein

approach, and it is important that the user communicate

the approach used and justify how the decision was made.

Measures should be taken to rigorously estimate the preci-

sion of the self-diffusivity prediction, where we recommend

bootstrapping the uncertainties.

For viscosity, the Green-Kubo approach is recommended,

although the Einstein method may be preferred with certain

systems, i.e. if replicate simulations as too computationally

expensive. It is worth noting that NEMD simulations are highly

preferred for moderate to high viscosity materials (more than

20 to 50 cP). The NV E ensemble is suggested, but some suc-

cess has been found using the NV T ensemble [21, 22]. As a

collective property, viscosity requires significantly more data

than self-diffusivity. The simulation length of each trajectory

should typically be at least an order of magnitude greater

than the Green-Kubo integral plateau time. This can be more

precisely determined by comparing the Green-Kubo integrals

of varying simulation lengths. Due to their slower dynam-

ics, more viscous materials require longer simulation times.

Stress tensor components are recommended to be outputted

every 5 to 10 fs. System size seems to be of little impact on

viscosity prediction (see Figures 5-6), however, it is still recom-

mended that the user justify their choice of system size by

plottingN−1/3
versus predicted viscosity. Any trend observed

would suggest system size effects, and an infinite system size

result could be estimated from a linear fit. In post-simulation

data processing, it is recommended to average over all six

independent components of the stress tensor to enhance

precision. The number of replicates a system needs can vary

greatly depending on the compound, number of molecules,

temperature, and simulation length. It is recommended that

the viscosity is estimated from the Green-Kubo equation by

fitting the running integral to a double-exponential function

as specified by Zhang et al. [29] (see Section 6.2.1).
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