
Using the ASM framework to implement common Java
bytecode transformation patterns

Eugene Kuleshov, eu@javatx.org

ABSTRACT
Most AOP frameworks targeting the Java platform use a bytecode
weaving approach as it is currently considered the most practical
solution. It allows applying cross-cutting concerns to Java
applications when source code is not available, is portable and
works on existing JVMs, in comparison to VM-level AOP
implementations.

Load-time bytecode weaving (LTW), which happens right before
the application code is loaded into the Java VM, significantly
simplifies development environment, but also raises the bar for
the performance and memory requirements for these
transformations. Such requirements directly apply to the toolkit
that will be used to perform these transformations. In this paper,
we examine how Java bytecode transformations, typical for AOP
implementations can be done efficiently, using the ASM1
bytecode manipulation framework [1].

Transformations used by general-use AOP frameworks and
similar applications can be categorized, and the common patterns
can be reused to implement specific transformations. These
patterns can also be combined to implement more complex
transformations.

General Terms
Languages, Design, Performance, Experimentation,
Standardization

Keywords
Aspect-Oriented Programming, Java, bytecode, weaving, ASM

1. INTRODUCTION
The ASM bytecode framework was designed at France Telecom
R&D by Eric Bruneton, Romain Lenglet and Thierry Coupaye
[2]. After evaluating several existing frameworks, including
BCEL [3], Serp [4] and JOIE [5], they designed a more efficient
approach, providing better performance and memory foot print.
Today ASM is used in many applications and has become the de-
facto standard for bytecode processing.
The main idea of the ASM API [6] is not to use an object
representation of the bytecode. This made it possible expressing
the same transformations using only a few classes comparing to
approximately 80 classes in Serp and 270 in BCEL API. Those
frameworks create lots of objects during class deserialization,
which takes a lot of time and memory. ASM avoids this overhead
to keep transformation fast and to use very little memory. This is
done by using the Visitor design pattern [7], without representing

1 The ASM name does not mean anything: it is just a reference to

the keyword in C which allows some functions to be
implemented in assembly language.

the visited tree with objects. Visitors can change call chains and
therefore transform the visited code. Using the Adapter design
pattern [7] visitors can be chained in order to implement complex
transformation from smaller building blocks. A similar approach
is also used in the SAX API for XML processing [8].
ASM hides all the complexity of the serialization and
deserialization of the class bytecode, using the following
techniques:

• Automatic management of the class constant pool,
therefore the user does not have to manipulate indexes
of these constants.

• Automatic management of the class structure, including
annotations, fields, methods, method code and other
standard bytecode attributes.

• Labels are used to manage instruction addresses, so it is
easy to insert new code in between existing instructions

• Computation of maximum stack and local variables, as
well as StackMapFrames

The event-based interaction between event producers and event
consumers is defined by several interfaces: ClassVisitor,
FieldVisitor, MethodVisitor, and AnnotationVisitor. Event
producers, like ClassReader fire visit*() calls to those interfaces.
On the other hand, event receivers like writers (ClassWriter,
FieldWriter, MethodWriter, and AnnotationWriter), adapters
(ClassAdapter and MethodAdapter) or classes from the tree
package (ClassNode, MethodNode, etc) implementing those
interfaces.
The following code demonstrates how this looks from the
developer’s point of view:
 ClassReader cr = new ClasReader(bytecode);
 ClassWriter cw = new ClassWiter(cr,
 ClassWriter.COMPUTE_MAXS |
 ClassWriter.COMPUTE_FRAMES);
 FooClassAdapter cv = new FooClassAdapter(cw);
 cr.accept(cv, 0);

Here ClassReader reads the bytecode. On accept() method call
ClassReader fires all visiting events corresponding to the
bytecode structure. FooClassAdapter will receive those events
and can change the event flow before passing them to the
ClassWriter. Once ClassWriter receive all the events it will have
transformed bytecode. You may notice that the ClassReader
instance is passed to the ClassWriter that allows performance
optimizations based on the assumption that the transformations
mostly add new code.
The following sections will show a number of practical examples
that should help you to better understanding of the ASM
framework.

2. Accessing class data
The visitor-based approach allows capturing class data
incrementally, collecting only the information required for
specific use case without creating and destroying lots of short-
lived objects. Incremental processing allows decisions such as
whether or not part of the class needs to be transformed, skipping
parsing of class parts that don’t need to be transformed.
ASM provide very simple API to support this. First of all there
are several bit-mask flags in the ClassReader.accept() method:

• SKIP_DEBUG – Used to ignore debug info, such as
source file, line number and variable info.

• SKIP_FRAMES – Used to ignore StackMapTable
information used for Java 6 split bytecode verifier.

• EXPAND_FRAMES – Expand the StackMapTable
data, allowing visitor to have information on types of all
local variables and current stack slots.

• SKIP_CODE – Exclude code of all methods from
visiting, while still passing trough method’s and
parameter’s attributes and annotations.

Additionally, the visitor can decide to skip the corresponding
bytecode section it is not interested in. In order to do that,
visitField(), visitMethod() and visitAnnotation() methods that
returns nested visitor can return null. That will indicate to the
bytecode producer to skip the corresponding class element.
When there is no need to read class data, but just the class
hierarchy, ClassReader provides shortcut methods
getSuperName() and getInterfaces() to read super class and
implemented interfaces, respectively.
It is also possible use the tree package of ASM framework to read
the entire class or selected method in memory and change its
structures using DOM-like API. For example:
 ClassReader cr = new ClassReader(source);
 ClassWriter cw = new ClassWriter();
 ClassAdapter ca = new ClassAdapter(cw) {
 public MethodVisitor visitMethod(int access,
 String name, String desc,
 String signature, String[] exceptions) {
 final MethodVisitor mv =
 super.visitMethod(access,
 name, desc, signature, exceptions);
 MethodNode mn = new MethodNode(access,
 name, desc, signature, exceptions) {
 public void visitEnd() {
 // transform/analyze this method DOM
 accept(mv);
 }
 };
 return mn;
 }
 };
 cr.accept(ca, 0);

The above code will basically suspend passing method events to
the next visitor in the chain (i.e. ClassWriter in this case) until the
visitEnd() event. When visitEnd() is passed, the MethodNode
instance will contain the entire method data. At this point the
method data can be transformed and only after that, finally passed
to the next visitor using the MethodNode.accept() method.
It is worth mentioning that ASM provides several basic Data Flow
Analysis algorithms that work on the tree package and can be

used to analyze selected methods in isolation. The result of such
analysis can be also used for inter-method analysis.
Combining those features it is possible to retrieve required class
information with very controlled memory overhead by making
decisions on the required transformations at load time.
In the next sections we will see concrete examples of the bytecode
transformations typical for AOP.

3. COMMON TRANSFORMATIONS
AOP frameworks that are using load time transformations usually
build their own high-level abstractions about how application
code needs to be transformed. Those abstractions can be
decomposed into smaller building blocks that can be chained
together to achieve the required transformation. Here are most
common use cases:

• Class Transformations

• Introduce Interface

• Add a New Field

• Add a New Method

• Replace Method Body

• Merge Two Classes into One

• Method Transformations

• Insert Code before Method, Constructor or Static
Initializer Execution

• Insert Code before Method Exit

• Replace Field Access

• Replace Method Call

• Inline Method

3.1 Class Transformations
3.1.1 Introducing Interface
This transformation only changes the class information about the
implemented interfaces. We can use simple ClassAdapter for this:
public class InterfaceAdder extends ClassAdapter {
 private Set newInterfaces;

 public InterfacesAdder(ClassVisitor cv,
 Set newInterfaces) {
 super(cv);
 this.newInterfaces = newInterfaces;
 }

 public void visit(int version, int access,
 String name, String signature,
 String superName, String[] interfaces) {
 Set ints = new HashSet(newInterfaces);
 ints.addAll(Arrays.asList(interfaces));
 cv.visit(version, access, name, signature,
 superName, (String[]) ints.toArray());
 }
}

Note, the actual methods required to implement the introduced
interfaces must be added with a separate transformation, which
will be discussed shortly.

3.1.2 Adding a New Field
Adding new fields to an existing class is a common
transformation. Usually it is used to enrich class state with
additional data. Here is a ClassAdapter that adds new field:
public class FieldAdder extends ClassAdapter {
 private final FieldNode fn;

 public FieldAdder(ClassVisitor cv,
 FieldNode fn) {
 super(cv);
 this.fn = fn;
 }

 public void visitEnd() {
 fn.accept(cv);
 super.visitEnd();
 }
}

The above adapter introduces new events in the visitEnd()
method, which is called at the end of visiting class data. So, the
field will be added after existing fields, which is the safest way,
just in case some other code relies on the field order. In the above
code new events are fired by FieldNode instance on accept() call.
This allows reusing field definition, including annotations or even
custom attributes, in case if same field need to be added to many
classes.
Note that non-static field initialization should be done separately,
for example by adding code after constructor invocation, or for
static fields, at the end of the static block. Those transformations
will be discussed later in the paper.

3.1.3 Adding a New Method
New methods can be added for implementing newly introduced
interface or for internal needs. The class adapter for this can also
use visitEnd() method to add new method to the class.
public class MethodAdder extends ClassAdapter {
 private int mAccess;
 private String mName;
 private String mDesc;
 private String mSignature;
 private String[] mExceptions;

 public MethodAdder(ClassVisitor cv,
 int mthAccess, String mthName,
 String mthDesc, String mthSignature,
 String[] mthExceptions) {
 super(cv);
 this.mAccess = mthAccess;
 this.mName = mthName;
 this.mDesc = mthDesc;
 this.mSignature = mthSignature;
 this.mExceptions = mthExceptions;
 }

 public void visitEnd() {
 MethodVisitor mv = cv.visitMethod(mAccess,
 mName, mDesc, mSignature, mExceptions);
 // create method body
 mv.visitMaxs(0, 0);
 mv.visitEnd();
 super.visitEnd();
 }
}

3.1.4 Replace Method Body
This transformation is a variation of the transformation for adding
a new method. In this case, the difference is that new method
generation is triggered by the visitMethod() call for a method that
needs to be renamed, as opposed to visitEnd() event:
public class MethodReplacer extends ClassAdapter {
 private String mname;
 private String mdesc;
 private String cname;

 public MethodReplacer(ClassVisitor cv,
 String mname, String mdesc) {
 super(cv);
 this.mname = mname;
 this.mdesc = mdesc;
 }

 public void visit(int version, int access,
 String name, String signature,
 String superName, String[] interfaces) {
 this.cname = name;
 cv.visit(version, access, name,
 signature, superName, interfaces);
 }

 public MethodVisitor visitMethod(int access,
 String name, String desc,
 String signature, String[] exceptions) {
 String newName = name;
 if(name.equals(mname) && desc.equals(mdesc)) {
 newName = "orig$" + name;
 generateNewBody(access, desc, signature,
 exceptions, name, newName);
 }
 return super.visitMethod(access, newName,
 desc, signature, exceptions);
 }

 private void generateNewBody(int access,
 String desc, String signature,
 String[] exceptions,
 String name, String newName) {
 MethodVisitor mv = cv.visitMethod(access,
 name, desc, signature, exceptions);
 // ...

 mv.visitCode();
 // call original metod
 mv.visitVarInsn(Opcodes.ALOAD, 0); // this
 mv.visitMethodInsn(access, cname, newName,
 desc);
 // ...
 mv.visitEnd();
 }
}

In the above visitMethod() checks method body should be
replaced. If it should, it uses generates new method body and then
replaces the method name and delegates to the next visitor in the
chain. This way body of the original method will be saved in the
newly created method.

3.1.5 Merging Two Classes into One
When adding the implementation of an introduced interface to
transformed class, it is convenient to use an existing
implementation of these methods from a separately compiled
class. This second can be loaded into memory and used multiple
times to copy class methods and fields.
ClassReader cr = new ClasReader(bytecode);
ClassNode cn = new ClassNode();
cr.accept(cn, 0);

Then we can pass loaded ClassNode instance to the merging
adapter:
public class MergeAdapter extends ClassAdapter {
 private ClassNode cn;
 private String cname;

 public MergeAdapter(ClassVisitor cv,
 ClassNode cn) {
 super(cv);
 this.cn = cn;
 }

 public void visit(int version, int access,
 String name, String signature,
 String superName, String[] interfaces) {
 super.visit(version, access, name,
 signature, superName, interfaces);
 this.cname = name;
 }

 public void visitEnd() {
 for(Iterator it = cn.fields.iterator();
 it.hasNext();) {
 ((FieldNode) it.next()).accept(this);
 }
 for(Iterator it = cn.methods.iterator();
 it.hasNext();) {
 MethodNode mn = (MethodNode) it.next();
 String[] exceptions =
 new String[mn.exceptions.size()];
 mn.exceptions.toArray(exceptions);
 MethodVisitor mv =
 cv.visitMethod(
 mn.access, mn.name, mn.desc,
 mn.signature, exceptions);
 mn.instructions.resetLabels();
 mn.accept(new RemappingMethodAdapter(
 mn.access, mn.desc, mv,
 new Remapper(cname, cn.name)));
 }
 super.visitEnd();
 }
}

As you can see, fields and methods are copied from ClassNode
into the visited class. Moreover, types referenced from the copied
methods are remapped with the RemappingMethodAdapter to
appropriately fit into the new target class.

3.2 Method Transformations
The major difference of the method transformations from the
class-level transformations is that they require additional filtering
at the class level. ClassAdapter can be used to make this decision
and if the method happens to be interested, additional
MethodAdapter can be inserted at the execution chain. For
example:
public class FilterAdapter extends ClassAdapter {
 ...
 public MethodVisitor visitMethod(
 int acc, String name, String desc,
 String signature, String[] exceptions) {
 MethodVisitor mv = cv.visitMethod(acc, name,
 desc, signature, exceptions);
 if(isFooMethod(name, desc)) {
 mv = new FooMethodAdapter(mv, acc,
 name, desc);
 }
 return mv;
 }

 ...
}

3.2.1 Common Issues
There are several common issues method transformers have to
deal with. ASM provides the commons package that can make
these issues easier to handle for the developer.

• Complexity of generating new code. For this issue
GeneratorAdapter provides number of more high level
building blocks that assist in the creation of common
code idioms like boxing and unboxing from primitive
types into object wrappers, loading method parameters,
and a few others.

• Inserting new local variables in the middle of a method
being visited is handled by LocalVariablesSorter, which
can transparently rename method variables after new
variables are inserted in the middle of the visited
method.

• Dealing with the data flow and type system. There is, of
course, no single solution for all the use cases, but ASM
provides number of primitives that hide this complexity
from the developer. One such primitive is
AdviceAdapter that provides a convenient way to detect
the right place in the bytecode to insert new code at the
beginning of method execution and before exiting of the
method.

Let’s look at more concrete use cases of the method
transformations.

3.2.2 Insert Code before Method, Constructor or
Static Initializer Execution
As already mentioned above, this transformation is greatly
simplified by subclassing AdviceAdapter. The developer
implements onMethodEnter() method called by the
AdviceAdapter at the appropriate time. This implementation
should not change stack and it could use methods inherited from
LocalVariablesSorter for adding new local variables.
class EnteringAdapter extends AdviceAdapter {
 private String name;
 private int timeVar;
 private Label timeVarStart = new Label();
 private Label timeVarEnd = new Label();

 public PrintEnteringAdapter(MethodVisitor mv,
 int acc, String name, String desc) {
 super(mv, acc, name, desc);
 this.name = name;
 }

 protected void onMethodEnter() {
 visitLabel(timeVarStart);
 int timeVar = newLocal(Type.getType("J"));
 visitLocalVariable("timeVar", "J", null,
 timeVarStart, timeVarEnd, timeVar);
 super.visitFieldInsn(GETSTATIC,
 "java/lang/System", "err",
 “Ljava/io/PrintStream;”);
 super.visitLdcInsn("Entering " + name);
 super.visitMethodInsn(INVOKEVIRTUAL,
 "java/io/PrintStream", "println",
 "(Ljava/lang/String;)V");
 }

 public void visitMaxs(int stack, int locals) {
 visitLabel(timeVarEnd);
 super.visitMaxs(stack, locals);
 }
}

Note how debug information is added for the timeVar variable via
the call to visitLocalVariable(), which allows us to see the value
of this variable in the debugger when stepping trough transformed
class in the debugger.

3.2.3 Insert Code before Method Exit
Transformation for inserting code before the method exists is very
similar to the transformation used to insert code before the start of
the method. This time developer provides implementation of the
onMethodExit() method. However, one difference is that opcode
for the instruction that caused visited method to exit is passed as a
parameter to onMethodExit() call and could be one of RETURN,
IRETURN, FRETURN, ARETURN, LRETURN, DRETURN or
ATHROW. More over, for all opcodes except RETURN, at the
time onMethodExit() invoked, the top stack slot has the value that
will be returned from the method, or exception that will be thrown
when opcode is ATHROW:
class ExitingAdapter extends AdviceAdapter {
 private String name;

 public ExitingAdapter(MethodVisitor mv,
 int acc, String name, String desc) {
 super(mv, acc, name, desc);
 this.name = name;
 }

 public void onMethodExit(int opcode) {
 mv.visitFieldInsn(GETSTATIC,
 "java/lang/System", "err",
 "Ljava/io/PrintStream;");
 if(opcode==ATHROW) {
 mv.visitLdcInsn("Exiting on exception " +
 name);
 } else {
 mv.visitLdcInsn("Exiting " + name);
 }
 mv.visitMethodInsn(INVOKEVIRTUAL,
 "java/io/PrintStream", "println",
 "(Ljava/lang/String;)V");
 }
}

Obviously, this code won’t catch the exception thrown from
nested method calls and passed trough the caller method. To catch
this case, we’ll need to introduce try/finally block for the entire
method body. In order to do that, we could use variant of the
above adapter:

class FinallyAdapter extends AdviceAdapter {
 private String name;
 private Label startFinally = new Label();

 public FinallyAdapter(MethodVisitor mv,
 int acc, String name, String desc) {
 super(mv, acc, name, desc);
 this.name = name;
 }

 public void visitCode() {
 super.visitCode();
 mv.visitLabel(startFinally);
 }

 public void visitMaxs(int maxStack,

 int maxLocals) {
 Label endFinally = new Label();
 mv.visitTryCatchBlock(startFinally,
 endFinally, endFinally, null);
 mv.visitLabel(endFinally);
 onFinally(ATHROW);
 mv.visitInsn(ATHROW);

 mv.visitMaxs(maxStack, maxLocals);
 }

 protected void onMethodExit(int opcode) {
 if(opcode!=ATHROW) {
 onFinally(opcode);
 }
 }

 private void onFinally(int opcode) {
 mv.visitFieldInsn(GETSTATIC,
 "java/lang/System", "err",
 "Ljava/io/PrintStream;");
 mv.visitLdcInsn("Exiting " + name);
 mv.visitMethodInsn(INVOKEVIRTUAL,
 "java/io/PrintStream", "println",
 "(Ljava/lang/String;)V");
 }
}

Note that try/finally boundaries are defined by visitLabel() calls
after visitCode() and before visitMaxs() calls, respective, for the
start and the end of the try/finally block.

3.2.4 Replace Field Access
Field access can be replaced with a method call in order to
provide additional logic. A static delegation method can be
created to substitute static field access and delegation instance
method -- for substituting access to instance fields.
Transformation of the method code looks like this:
public class FieldAccessAdapter
 extends MethodAdapter implements Opcodes {
 private final String cname;
 private final Map adapters;

 public FieldAccessAdapter(MethodVisitor mv,
 String cname, Map adapters) {
 super(mv);
 this.cname = cname;
 this.adapters = adapters;
 }

 public void visitFieldInsn(int opcode,
 String owner, String name, String desc) {
 Info info = matchingInfo(opcode, owner,
 name, desc);
 if(info!=null) {
 super.visitMethodInsn(INVOKESTATIC,
 cname, info.adapterName,
 info.adapterDesc);
 return;
 }
 super.visitFieldInsn(opcode, owner,
 name, desc);
 }
 ...

Note that delegation methods should be generated separately
using transformation for adding new methods to class described
above.

3.2.5 Replace Method Call
Method call replacement is a common use case. This simple
transformation can be simplified even more if the method call is
replaced with a static delegation method in the same class. In that
case, the method size won’t increase and the method
transformation can be implemented like this:
public class MethodCallAdapter
 extends MethodAdapter implements Opcodes {
 private final String cname;
 private final Set infos;

 public MethodCallAdapter(MethodVisitor mv,
 String cname, Set infos) {
 super(mv);
 this.cname = cname;
 this.infos = infos;
 }

 public void visitMethodInsn(int opcode,
 String owner, String name, String desc) {
 Info info = matchingInfo(opcode, owner,
 name, desc);
 if(info!=null) {
 super.visitMethodInsn(INVOKESTATIC,
 cname, info.adapterName,
 info.adapterDesc);
 return
 }
 super.visitMethodInsn(opcode, owner,
 name, desc);
 }
 ...
}

Note that this transformation can’t be used to intercept class
construction (new in Java language). In the bytecode object
construction represented by two separate instructions that can be
far apart in the steam of events. First one is NEW opcode that
creates not-initialized object instance of specified type. Before
that instance could be used, <init> method of that instance has to
be called using INVOKESPECIAL opcode. Code generated by
java compilers make this even more complicated because result of
NEW opcode is duped on the stack and duplicated reference is
used as a result value. So, a transformation like this will obviously
have to use some state machine or load the entire method in
memory (i.e. using ASM tree package) and transform it directly.
Such an example is beyond the scope of this paper. We are
looking into the ways to generalize it and include into the ASM
commons package.

3.2.6 Inline Method
This transformation is very similar to the one used for merging
two classes. So, we can also use content of the MethodNode to
insert inlined code into some other method. However in this case
we not only need to rename types, but we also need to replace all
RETURN opcodes with jumps to the end of the method and make
sure that try/catch blocks are in the right order. Here is an adapter
that does that:
public class MethodCallInliner
 extends LocalVariablesSorter {
 private final String oldClass;
 private final String newClass;
 private final MethodNode mn;

 private List blocks = new ArrayList();
 private boolean inlining;

 private MethodCallInliner(int access,

 String desc, MethodVisitor mv, MethodNode mn,
 String oldClass, String newClass) {
 super(access, desc, mv);
 this.oldClass = oldClass;
 this.newClass = newClass;
 this.mn = mn;
 }

 public void visitMethodInsn(int opcode,
 String owner, String name, String desc) {
 if(!canBeInlined(owner, name, desc)) {
 mv.visitMethodInsn(opcode,
 owner, name, desc);
 return;
 }

 Map map = Collections.singletonMap(
 oldClass, newClass);
 Remapper remapper = new Remapper(map);
 Label end = new Label();
 inlining = true;
 mn.instructions.resetLabels();
 mn.accept(new InliningAdapter(this,
 opcode==Opcodes.INVOKESTATIC ?
 Opcodes.ACC_STATIC : 0,
 desc, remapper, end));
 inlining = false;
 super.visitLabel(end);
 }

 public void visitTryCatchBlock(Label start,
 Label end, Label handler, String type) {
 if(!inlining) {
 blocks.add(new CatchBlock(start, end,
 handler, type));
 } else {
 super.visitTryCatchBlock(start, end,
 handler, type);
 }
 }

 public void visitMaxs(int stack, int locals) {
 Iterator it = blocks.iterator();
 while(it.hasNext()) {
 CatchBlock b = (CatchBlock) it.next();
 super.visitTryCatchBlock(b.start, b.end,
 b.handler, b.type);
 }
 super.visitMaxs(stack, locals);
 }
}

The above adapter extends LocalVariablesSorter in order to
handle local variables from the inlined code. It is also captures
visitTryCatchBlock() calls the end of the method and replay them
back there. Inlined method code, icluding try/catch blocks and
local variables is inserted from the MethodNode, decorared by
InliningAdapter. This adapter does all type renaming and
replacing of the RETURN opcodes is done in a nested adapter:
public static class InliningAdapter
 extends RemappingMethodAdapter {
 private final LocalVariablesSorter lvs;
 private final Label end;

 public InliningAdapter(LocalVariablesSorter mv,
 Label end, int acc, String desc,
 Remapper remapper) {
 super(acc, desc, mv, remapper);
 this.lvs = mv;
 this.end = end;

 int off = (acc & Opcodes.ACC_STATIC)!=0 ?
 0 : 1;

 Type[] args = Type.getArgumentTypes(desc);
 for (int i = args.length-1; i >= 0; i--) {
 super.visitVarInsn(args[i].getOpcode(
 Opcodes.ISTORE), i + offset);
 }
 if(offset>0) {
 super.visitVarInsn(Opcodes.ASTORE, 0);
 }
 }

 public void visitInsn(int opcode) {
 if(opcode==Opcodes.RETURN) {
 super.visitJumpInsn(Opcodes.GOTO, end);
 } else {
 super.visitInsn(opcode);
 }
 }

 public void visitMaxs(int stack, int locals) {
 }

 protected int newLocalMapping(Type type) {
 return lvs.newLocal(type);
 }
}

Note that this adapter loads method arguments from the stack into
remapped local variables and also removes the visitMaxs() event.

4. Performance
It is hard to provide direct performance comparison with other
frameworks. We are trying to maintain performance suite for null
transformation for ASM, BCEL, SERP and Javassist and compare
results with the overhead of ASM transformations from the
commons package. Here are the results of running those tests
using Java 6 on Windows PS with Intel Duo 2.33Gz processor for
reading and writing back 15840 classes from the rt.jar (not
including file I/O):

ASM 3.x with copy pool 0.56 sec

ASM 3.x compute maxs 1.43 sec

ASM 3.x compute frames 2.67 sec

ASM 3.x tree package 1.77 sec

BCEL 5.2 16.19 sec

BCEL 5.2 compute maxs 18.39 sec

BCEL Aspectj 1.5.3 4.77 sec

BCEL Aspectj 1.5.3 compute maxs 5.93 sec

Javassist 3.4 2.70 sec

Serp 1.12.1 15.90 sec

The following table present results for running several ASM
helper classes and transformations on the same classes:

ASM 3.x class info 0.04 sec

ASM 3.x SerialVersionUIDAdder 1.05 sec

ASM 3.x LocalVariablesSorter 1.29 sec

ASM 3.x analyze with SimpleVerifier 9.05 sec

5. CONCLUSIONS
This paper demonstrated number of Java bytecode
transformations that can be easily assembled together to
implement AOP solutions. The examples shown, implemented
using the ASM framework, demonstrate the power and simplicity
of the ASM framework. Using ASM allows developers to focus
on code transformations instead of spending time on low level
bytecode manipulations.
The ASM framework is the de-facto standard for high-
performance bytecode transformations, and it is used in many
Java-based applications and frameworks including code analyzers
(SonarJ, IBM AUS), ORM mappers (including Oracle TopLink
and Berkley DB, ObjectWeb EasyBeans and Speedo), and
scripting languages (BeanShell, Groovy and JRuby).

6. ACKNOWLEDGEMENTS
First I would like to thank ASM team and all users of the ASM
framework for being such a great community. I also want to thank
Tim Eck, the lead developer of Terracotta DSO, and Jason van
Zyl, from Maven project for feedback on this paper.

7. REFERENCES
[1] The ASM project web site, http://asm.objectweb.org/
[2] E. Bruneton, R. Lenglet, T. Coupaye. ASM: a code

manipulation tool to implement adaptable systems.
[3] M. Dahm, Byte Code Engineering, Proceedings JIT’99,

Springer, 1999.
[4] A. White, Serp, http://serp.sourceforge.net
[5] G. A. Cohen, J. S. Chase, D. L. Kaminsky, Automatic

program transformation with JOIE, USENIX 1998 Annual
Technical Conference, New Orleans, Louisiana, USA, 1998.

[6] E. Kuleshov. Using ASM toolkit for bytecode manipulation.
http://www.onjava.com/lpt/a/5250

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. 1995.

[8] The SAX project. http://www.saxproject.org/

http://serp.sourceforge.net/
http://www.onjava.com/lpt/a/5250

	INTRODUCTION
	Accessing class data
	COMMON TRANSFORMATIONS
	Class Transformations
	Introducing Interface
	Adding a New Field
	Adding a New Method
	Replace Method Body
	Merging Two Classes into One

	Method Transformations
	Common Issues
	Insert Code before Method, Constructor or Static Initializer
	Insert Code before Method Exit
	Replace Field Access
	Replace Method Call
	Inline Method

	Performance
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

