

Realized by:

 Abdelkarim AGOUJIL

 Hicham EL MOUDNI

 University Year: 2022-2023

Table of Contents:

I. General Introduction .. 1

II. Local search (Descent) ... 2

1. Introduction ... 2

2. Implementation ... 2

3. Testing .. 3

4. Complexity ... 4

5. Advantages & Disadvantages .. 4

6. Conclusion .. 4

III. Simulated Annealing ... 5

1. Introduction ... 5

2. Implementation ... 5

3. Testing .. 6

4. Complexity ... 7

5. Advantages & Disadvantages .. 8

6. Conclusion .. 8

IV. Guided local search ... 9

7. Introduction ... 9

8. Implementation ... 9

9. Testing .. 10

10. Complexity ... 12

11. Advantages & Disadvantages .. 13

12. Conclusion .. 13

V. Tabu search ... 14

7. Introduction ... 14

8. Implementation ... 14

9. Testing .. 15

10. Complexity ... 17

11. Advantages & Disadvantages .. 17

12. Conclusion .. 18

VI. Variable neighborhood search ... 19

13. Introduction ... 19

14. Implementation ... 19

15. Testing .. 20

16. Complexity ... 21

17. Advantages & Disadvantages .. 22

18. Conclusion .. 22

VII. Gradient descent ... 23

13. Introduction ... 23

14. Implementation ... 23

15. Testing .. 24

16. Complexity ... 25

17. Advantages & Disadvantages .. 25

18. Conclusion .. 26

VIII. General Conclusion .. 27

 1

Optimization algorithms are a class of algorithms that are used to find the best solution to a

problem from among a set of possible solutions. The best solution is often characterized by the

minimization or maximization of an objective function. The objective function is a

mathematical expression that represents the performance of a particular solution, and the

optimization algorithm searches for the set of input parameters that minimize or maximize this

function. Optimization algorithms are widely used in many fields including machine learning,

operations research, and engineering to find the best solution to problems such as function

fitting, linear and nonlinear programming, and control system design. Some common

optimization algorithm includes gradient descent, Tabu, and simulated annealing…

2

Local Search algorithm is an optimization method that improves a given solution by searching

through nearby solutions in the solution space. It begins with an initial solution and repeatedly

makes small changes to it in order to find a better solution. The algorithm stops when it

reaches a local minimum, where no further improvements can be made in the immediate

vicinity of the current solution.

This function appears to perform a local search for the minimum value of a function within a

given range. It does this by evaluating the function at a point x, and then at two neighboring

points x_left and x_right. It then updates x and fx (the function value at x) to the point with

the lowest function value, and continues this process for a maximum number of

max_iterations. If the function value at neither of the neighboring points is lower than at x,

the function terminates and returns the current values of x and fx.

3

4

The complexity of this algorithm is O(n), where n is the value of max_iterations. This is

because the algorithm iterates through a loop that runs for a maximum of max_iterations

times, and within each iteration, it performs a constant amount of operations (such as

determining neighboring positions, evaluating the function in those positions, and updating

the current position if a better solution is found). Therefore, the total number of operations

performed is directly proportional to the value of max_iterations, and the complexity is O(n).

Advantages of local search :

 Simplicity: Local search algorithms are often simple to understand and implement.

 Flexibility: Local search can be applied to a wide range of optimization problems,

including both continuous and discrete optimization problems.

 Efficiency: Local search algorithms can be very efficient, especially when the problem

being solved has a large solution space.

disadvantages of local search :

 Convergence to local optima: Local search algorithms can get stuck in local optima,

which are suboptimal solutions that are not the global optimal solution.

 Lack of any guarantees: Local search does not provide any guarantees that the solution

will be global optimal.

 Requires a good starting point: Local search requires a good starting point for the

algorithm, otherwise it can lead to poor results.

 Problem dependency: The performance of local search depends on the structure of the

problem, some problems are harder to optimize using local search.

Local search is a powerful optimization technique that can be applied to a wide range of

problems. It is simple to understand and implement, and can be very efficient. However, it has

the potential to converge to local optima, which can be suboptimal solutions. Additionally, it

does not provide any guarantees of global optimality, and requires a good starting point for

the algorithm. The performance of local search also depends on the structure of the problem

being solved.

5

Simulated Annealing is a optimization technique that is used to find the global minimum or

maximum of a function. It is particularly useful for solving problems that have a large number

of parameters, or when the solution space is complex and rugged. The algorithm is inspired

by the annealing process used in metallurgy to harden metals, in which a material is heated to

a high temperature and then cooled slowly to increase its strength and reduce defects.

The basic idea behind simulated annealing is to start with a random initial solution and then

iteratively modify it by making small random changes. The new solution is accepted or

rejected based on a probability that depends on the difference in the value of the objective

function between the old and new solutions, and the current "temperature" of the system. The

temperature starts high and is gradually decreased over time, making it less likely that large

changes will be accepted as the optimization proceeds. This mimics the annealing process in

metallurgy, where the material is slowly cooled to reduce defects.

The algorithm was implemented by defining the objective function, the initial solution, and

the parameters of the simulated annealing process.

6

7

The complexity of this algorithm is O(n), where n is the value of max_iter. This is because the

algorithm iterates through a loop that runs for a maximum of max_iter times, and within each

iteration, it performs a constant amount of operations (such as generating a new solution,

calculating delta_f, and updating the current and best solutions). Therefore, the total number

of operations performed is directly proportional to the value of max_iter, and the complexity

is O(n).

8

Advantages of Simulated Annealing:

 Global Optimization: Simulated Annealing is a global optimization algorithm, meaning

it can find the global minimum of a function, unlike local optimization algorithms that

can only find the local minimum.

 Handling Constraints: The algorithm can handle constraints on the solution space,

making it useful for solving problems with complex constraints.

 Handling Multi-modal Functions: Simulated Annealing is particularly effective at

finding the global minimum of multi-modal functions, which have multiple local

minima.

 Handling Noise and Local Optima: The algorithm can handle noise and local optima by

using a probabilistic acceptance function which allows a certain amount of exploration

of the solution space.

Disadvantages of Simulated Annealing:

 Computationally Expensive: The algorithm can be computationally expensive, as it

requires many iterations and random number generation, which can slow down the

optimization process.

 Difficulty in Determining Parameters: Determining the proper values for the parameters

(initial temperature, cooling rate, etc.) can be difficult and may require trial and error.

 Convergence to Local Minimum: The algorithm may converge to a local minimum,

especially if the initial temperature is high, or if the cooling rate is too slow.

 Time-consuming: The algorithm takes a lot of time to run, especially when the function

is complex or has many local minima, as it needs to search through a large solution

space.

One of the key advantages of simulated annealing is that it is able to escape local minima or

maxima, unlike other optimization techniques such as gradient descent, which can get stuck in

these suboptimal solutions. This is because simulated annealing allows for larger moves in the

solution space during the early stages of the optimization, when the temperature is high,

which can lead to a more global minimum.

9

Guided Local Search (GLS) is a metaheuristic optimization algorithm that is a variation of

Local Search (LS) algorithm. It is typically used for solving problems in combinatorial

optimization, where the goal is to find the best solution from a finite set of solutions.

The main idea behind GLS is to guide the search process by incorporating a memory

mechanism and intensification and diversification strategies, which help to escape from local

optima and to explore the solution space more efficiently. The memory mechanism is used to

keep track of the best solutions found so far, and the intensification and diversification

strategies are used to focus the search around the best solutions and to explore new regions of

the solution space, respectively.

The algorithm starts with an initial solution and repeatedly applies a neighborhood function

to generate new solutions. The neighborhood function defines the set of solutions that can be

reached from the current solution with a small number of changes. At each step, the algorithm

selects the best solution from the current solution and its neighbors, and updates the current

solution accordingly. The search process stops when a stopping criterion is met, such as

reaching a maximum number of iterations or a satisfactory solution quality.

GLS algorithm is often used in conjunction with problem-specific heuristics or problem-

specific knowledge to guide the search process in the direction of better solutions.

This algorithm above defines a function called "guided_local_search" that takes another

function as its input. The "guided_local_search" function is an implementation of a

optimization technique called "Guided Local Search", which can be used to find the

minimum value of a given function.

10

The outermost defined function is "function" which takes a single variable x and returns x^2

+ sin(3x) + 1.

The guided_local_search function starts by initializing a few variables: max_iterations,

neighborhood_size, perturbation_size and current_solution.

 max_iterations is the maximum number of iterations that the algorithm will run for before

stopping.

neighborhood_size is the number of potential solutions to be generated in each iteration,

perturbation_size is the range from which these potential solutions are generated,

current_solution is the starting point for the algorithm and best_solution is the best solution

found so far.

The for-loop within the guided_local_search function runs for max_iterations times. In each

iteration, the neighborhood variable is assigned a list of neighborhood_size number of

random solutions that are generated by adding a random value between -perturbation_size

and perturbation_size to the current_solution. It uses this neighborhood as a list of

candidates to find the best_neighbor which is the best of the neighborhood. Then it compares

the function(best_neighbor) with function(best_solution), if function(best_neighbor) is

less than function(best_solution), then it updates best_solution. If function(best_neighbor)

is less than function(current_solution), then it updates current_solution.

After max_iterations, it returns best_solution.

first you have to import the following libraries to initialize the objective function and display

the results in a curve

11

Here are the main steps of the algorithm:

In the next line, the variable best_x is assigned the value returned by running the function

guided_local_search with function as the input.

Then it prints the optimal solution (best_x) and the optimal value of the function

(function(best_x))

The next block of code is generating x and y values for plotting, it creates a np array x of 50

linearly spaced points in the interval [-2, 2] and then it assigns the result of function(x) to y.

Output:

It also plot the best solution and the function that it is minimizing The key step that defines

this method is the local search in a neighborhood around a current solution in order to find the

best neighbor. Also, the current solution is updated only if the best neighbor solution is better

than the current solution.

12

The complexity of the guided_local_search function is O(n*m), where n is the number of

iterations and m is the number of solutions evaluated in the neighborhood during each

iteration.

In this specific implementation, max_iterations=1000, neighborhood_size=10, it will be

O(1000*10)=O(10000) that means it grows linear with the input size.

It is important to note that the time complexity also depends on the function being optimized,

as well as the initial solution, as the number of iterations required to find the global optimum

can vary greatly depending on these factors.

13

Guided search is an algorithm used for searching through large spaces of possible solutions to

a problem.

Advantages:

 It is able to use problem-specific knowledge to direct the search in a more efficient

direction, which can reduce the number of steps required to find a solution.

 It is able to balance the trade-off between exploring different options and focusing on

promising areas of the search space.

Disadvantages:

 It can be difficult to come up with an effective heuristic function to guide the search,

which can limit the performance of the algorithm.

 It may not be able to find the optimal solution if the problem-specific knowledge used

to guide the search is incomplete or incorrect.

 Guided search is memory intensive and not suitable for large search space.

 It can be computationally expensive, especially if the heuristic function is

computationally expensive to evaluate.

It's important to note that, like most search algorithms, the effectiveness of guided search

depends heavily on the specific problem and the quality of the heuristic function used to guide

the search.

In conclusion, the guided search algorithm can be a useful tool for searching through large

spaces of possible solutions to a problem. It can leverage problem-specific knowledge to

direct the search in a more efficient direction, which can help to reduce the number of steps

required to find a solution. However, the algorithm also has some disadvantages, such as

being difficult to implement with a poor or incomplete heuristic function and being memory

and computationally intensive. It's effectiveness will vary depending on the problem at hand

and the quality of the heuristic function used.

14

Tabu search is a metaheuristic optimization algorithm that is used to find approximate

solutions to combinatorial optimization problems. The algorithm uses a memory structure

called a "tabu list" to keep track of solutions that have recently been visited, in order to avoid

cycling through the same solutions repeatedly. The tabu list acts as a form of "memory" for

the algorithm, allowing it to make progress by moving to new solutions while avoiding

solutions that it has already visited. The algorithm can also use a neighborhood function to

define the set of solutions that can be reached from a given solution in one step. The

algorithm's objective is to find solutions that are as good as or better than the current solution

while also satisfying certain constraints.

Tabu Search is widely applied to various optimization problem, such as travelling

salesman problem, n-queens problem, vehicle routing problem, job shop scheduling problem,

and etc.

The algorithm above defines a function "tabu_search" which takes as input an objective

function, the length of the tabu list and the number of maximum iterations. The objective

function is a mathematical function that takes an input and produces an output, the input and

output are numbers.

15

The tabu_search function starts by initializing the best_solution and best_obj_value with a

random value within the search space (-10, 10) and the value returned by the objective

function for that solution respectively. It then runs a loop for max_iterations, in each

iteration it generates a random number between (-10, 10), and checks if it is in the tabu_list

and if it is, it skips that iteration. If it is not in the tabu list then it checks if the obj_value of

the candidate_solution is better than the best_obj_value, if it is, then the

candidate_solution becomes the best_solution. Then it adds the candidate_solution to the

tabu_list, and if the tabu_list is longer than tabu_list_length, it removes the oldest element.

First defines the objective_function as x^2 + sin(4*x) + 1 and calls the tabu_search

function to find the best solution and assigns the result to best_x

16

Result:

Then it plots the objective_function by generating x values and y values for the function and

plotting it. Then it plots a red dot on the best_x, best_y for the best solution found by

tabu_search. And then it shows the graph with the labels and title.

Result:

17

The complexity of this code is determined by the running time of the tabu_search function,

which consists of the for loop that runs for max_iterations and the operations performed

inside the loop.

The running time of the for loop is O(max_iterations). Inside the loop, a random number is

generated in O(1) time. Checking if an element is in a list takes O(n) time, where n is the

length of the list, so in this case it takes O(tabu_list_length) time. Updating the best_solution,

appending the element to the tabu_list, and removing the oldest element from the tabu_list

each take O(1) time.

Therefore, the total running time of the tabu_search function is O(max_iterations * (1 +

tabu_list_length)) and as the max_iterations dominates the other operations in the tabu_search

function. It is fair to say the complexity of this code is O(max_iterations)

It is worth noting that the obj_func(x) could have a different complexity, the complexity of

the code will be affected by the obj_func used.

Tabu Search is an optimization algorithm that can be used to find good solutions to complex

problems. Here are some of the advantages and disadvantages of this algorithm:

Advantages:

 It can escape from local optima by using the tabu list to prevent cycling

 It can be used with a variety of objective functions, making it a versatile optimization

algorithm

 It can handle constraints and incorporate domain-specific knowledge

 It's relatively simple to implement and understand

18

Disadvantages:

 It's not guaranteed to find the global optimum, it can get stuck in a local optimum

 It can be sensitive to the parameter settings, such as the length of the tabu list and the

max_iterations

 It requires a lot of memory and computational resources, especially when the problem

size is large

 It's not always easy to know when to stop the algorithm

It's important to note that the choice of optimization algorithm is problem-specific and this

algorithm may or may not be the best one for a particular problem. However, it is a good

choice if the optimization problem has a good structure that can be exploited with tabu lists

and the exploration of different regions. Also it could be used in a problem where the use of

other metaheuristics like Hill Climbing or Simulated Annealing are not able to find good

solution and or get stuck in local optima.

Tabu Search algorithm is a powerful optimization method that is used to find good

solutions to a wide range of problems. It is a type of local search algorithm that makes small

changes to the current solution and uses a tabu list to prevent revisiting solutions that have

been visited before. The algorithm also uses an aspiration criterion, which allows it to move

to a new solution if it is significantly better than the current one. The performance of tabu

search can be improved through careful design of the neighborhood structure, aspiration

criteria, and tabu list. Additionally, it's not limited to specific problem domains and can be

used to solve various optimization problems with good performance.

19

The VNS (Variable Neighborhood Search) algorithm is a metaheuristic optimization method

that can be used to find the minimum of a function. It is inspired by the behavior of natural

systems, where local optima are often surrounded by neighborhoods of worse solutions, but

better solutions can be found by exploring different neighborhoods.

The basic idea of the VNS algorithm is to start with an initial solution, and then repeatedly

perturb this solution by changing the neighborhood it is in, until a local minimum is found.

The algorithm can be summarized as follows:

1.Start with an initial solution

2.For a given number of iterations or until a stopping criterion is met:

a. Select a neighborhood of the current solution

b. Find the best solution in the selected neighborhood

c. If the best solution is better than the current solution, update the current solution

4.Return the best solution found

20

21

The complexity of this algorithm is O(n * m), where n is the value of max_iterations

and m is the number of neighborhoods. This is because the algorithm first iterates

through a loop that runs for a maximum of max_iterations times. Within each

iteration, it then iterates through another loop that runs for the number of

neighborhoods. Within this second loop, it performs a constant amount of operations

(such as generating a new solution and updating the current and best solutions).

Therefore, the total number of operations performed is directly proportional to the

product of max_iterations and the number of neighborhoods, making the complexity

O(n * m).

22

Advantages of Variable Neighborhood Search :

 Global Optimization: VNS is a global optimization algorithm, meaning it can find the

global minimum of a function, unlike local optimization algorithms that can only find

the local minimum.

 Handling Constraints: The algorithm can handle constraints on the solution space,

making it useful for solving problems with complex constraints.

 Handling Multi-modal Functions: VNS is particularly effective at finding the global

minimum of multi-modal functions, which have multiple local minima.

 Flexibility: The algorithm is flexible as it allows for the use of multiple neighborhoods,

which can be tailored to the specific problem at hand.

Disadvantages of Variable Neighborhood Search :

 Computationally Expensive: The algorithm can be computationally expensive, as it

requires many iterations and random number generation, which can slow down the

optimization process.

 Difficulty in Determining Parameters: Determining the proper values for the parameters,

such as the number of iterations, the number of neighborhoods, and their structure, can

be difficult and may require trial and error.

 Convergence to Local Minimum: The algorithm may converge to a local minimum,

especially if the initial solution is not well chosen or if the neighborhoods are not

properly designed.

 Time-consuming: The algorithm takes a lot of time to run, especially when the function

is complex or has many local minima, as it needs to search through a large solution

space with multiple neighborhoods.

Variable Neighborhood Search can be useful for optimization problems that have multiple

local optima, where traditional optimization methods like gradient descent may get stuck in a

poor local optimum.

23

Gradient descent is an optimization algorithm used to minimize a function. It is commonly

used in machine learning to adjust the parameters of a model in order to minimize the error or

loss function.

The algorithm starts with an initial set of parameter values and then repeatedly updates the

parameters in the opposite direction of the gradient of the loss function with respect to the

parameters. The size of the update is determined by the learning rate hyper parameter. The

process is repeated until a minimum of the loss function is reached or a preset number of

iterations are reached.

There are different variants of Gradient descent like Stochastic Gradient Descent (SGD)

and mini-batch gradient descent where in SGD we update the parameters after processing

each sample, in mini-batch Gradient Descent, the parameters are updated after processing a

small number of samples(batch size) instead of processing all the sample at once.

This algorithm above is using gradient descent to find the minimum value of a Loss function

(also called the objective function), represented by the cost function, which is defined as x**2

+ np.sin(5*x) + 1.

The gradient_descent function is used to find the minimum value of this function. It does this

by first defining a starting point x_init and repeatedly moving in the opposite direction of the

gradient of the function (hence the name "gradient descent") by a factor of the learning rate,

until it reaches a minimum value or the number of iterations defined is reached.

The function is the derivative of cost defined as function(x): return 2*x + 5*np.cos(5*x)

24

The cost function and the derivative of it both are plotted in the end using matplotlib library,

x_min is calculated by the function gradient_descent and x_min is plotted with red dot in the

graph.

25

 It also displays the minimum found at a particular point of the graph in the console using

print statement.

The algorithm has a time complexity of O(num_iterations) and space complexity of O(1)

assuming that the calculation of the Loss function, sin and cos also have O(1) time

complexity. It uses one for loop which iterates num_iterations times, and within that loop

there are three simple mathematical operations, so the time complexity is proportional to the

number of iterations. It is using x_current variable, x_init variable and one iterator variable i,

so the space complexity is O(1).

Here are some advantages and disadvantages of this algorithm:

Advantages:

 It is a widely used optimization algorithm and is well-suited for a wide range of

problems.

 It can be used with a variety of different cost functions and can be applied to both

linear and nonlinear problems.

 It is computationally efficient, particularly when the cost function is efficiently

computable.

 With proper learning rate the algorithm will converge to the minimum value in

relatively few steps.

Disadvantages:

 The algorithm may converge to a local minimum rather than the global minimum,

which can be a problem for non-convex cost functions.

 It may be sensitive to the choice of the initial conditions and the learning rate.

 It is not suitable for online learning, it requires complete data in order to work.

 The convergence of the algorithm might be slow, especially for large dataset, the

algorithm might get stuck in a flat region or plateaus.

26

Gradient descent is an iterative algorithm and the convergence speed and stability is

heavily dependent on the choice of the learning rate. Even though gradient descent is a widely

used optimization technique, it can get stuck in local minima, and that is where other

optimization techniques like conjugate gradient,BFGS, and L-BFGS, which are second-order

optimization methods that may provide better performance

27

Optimization algorithms are a set of techniques used to find the best solution to a problem by

minimizing or maximizing an objective function. There are many different optimization

algorithms available, each with their own strengths and weaknesses, and the choice of

algorithm will depend on the specific problem being solved and the requirements of the

solution. Some common optimization algorithms include gradient descent, Newton's method,

simulated annealing, and genetic algorithms. It is important to note that optimization

algorithms are used in many different fields and applications, including machine learning,

engineering, finance, and operations research. Choosing the best suited algorithm requires a

good understanding of the problem, the underlying mathematical models and the requirement

of solution.

