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Optimization algorithms are a class of algorithms that are used to find the best solution to a 

problem from among a set of possible solutions. The best solution is often characterized by the 

minimization or maximization of an objective function. The objective function is a 

mathematical expression that represents the performance of a particular solution, and the 

optimization algorithm searches for the set of input parameters that minimize or maximize this 

function. Optimization algorithms are widely used in many fields including machine learning, 

operations research, and engineering to find the best solution to problems such as function 

fitting, linear and nonlinear programming, and control system design. Some common 

optimization algorithm includes gradient descent, Tabu, and simulated annealing… 
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Local Search algorithm is an optimization method that improves a given solution by searching 

through nearby solutions in the solution space. It begins with an initial solution and repeatedly 

makes small changes to it in order to find a better solution. The algorithm stops when it 

reaches a local minimum, where no further improvements can be made in the immediate 

vicinity of the current solution. 

 

 
 

This function appears to perform a local search for the minimum value of a function within a 

given range. It does this by evaluating the function at a point x, and then at two neighboring 

points x_left and x_right. It then updates x and fx (the function value at x) to the point with 

the lowest function value, and continues this process for a maximum number of 

max_iterations. If the function value at neither of the neighboring points is lower than at x, 

the function terminates and returns the current values of x and fx. 

 



 

3 

 

 



 

4 

 
 

The complexity of this algorithm is O(n), where n is the value of max_iterations. This is 

because the algorithm iterates through a loop that runs for a maximum of max_iterations 

times, and within each iteration, it performs a constant amount of operations (such as 

determining neighboring positions, evaluating the function in those positions, and updating 

the current position if a better solution is found). Therefore, the total number of operations 

performed is directly proportional to the value of max_iterations, and the complexity is O(n). 

 
 

Advantages of local search : 

 Simplicity: Local search algorithms are often simple to understand and implement. 

 Flexibility: Local search can be applied to a wide range of optimization problems, 

including both continuous and discrete optimization problems. 

 Efficiency: Local search algorithms can be very efficient, especially when the problem 

being solved has a large solution space. 

disadvantages of local search : 

 Convergence to local optima: Local search algorithms can get stuck in local optima, 

which are suboptimal solutions that are not the global optimal solution. 

 Lack of any guarantees: Local search does not provide any guarantees that the solution 

will be global optimal. 

 Requires a good starting point: Local search requires a good starting point for the 

algorithm, otherwise it can lead to poor results. 

 Problem dependency: The performance of local search depends on the structure of the 

problem, some problems are harder to optimize using local search. 

 

 
 

Local search is a powerful optimization technique that can be applied to a wide range of 

problems. It is simple to understand and implement, and can be very efficient. However, it has 

the potential to converge to local optima, which can be suboptimal solutions. Additionally, it 

does not provide any guarantees of global optimality, and requires a good starting point for 

the algorithm. The performance of local search also depends on the structure of the problem 

being solved. 
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Simulated Annealing is a optimization technique that is used to find the global minimum or 

maximum of a function. It is particularly useful for solving problems that have a large number 

of parameters, or when the solution space is complex and rugged. The algorithm is inspired 

by the annealing process used in metallurgy to harden metals, in which a material is heated to 

a high temperature and then cooled slowly to increase its strength and reduce defects. 

 

 

 

The basic idea behind simulated annealing is to start with a random initial solution and then 

iteratively modify it by making small random changes. The new solution is accepted or 

rejected based on a probability that depends on the difference in the value of the objective 

function between the old and new solutions, and the current "temperature" of the system. The 

temperature starts high and is gradually decreased over time, making it less likely that large 

changes will be accepted as the optimization proceeds. This mimics the annealing process in 

metallurgy, where the material is slowly cooled to reduce defects. 

The algorithm was implemented by defining the objective function, the initial solution, and 

the parameters of the simulated annealing process. 
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The complexity of this algorithm is O(n), where n is the value of max_iter. This is because the 

algorithm iterates through a loop that runs for a maximum of max_iter times, and within each 

iteration, it performs a constant amount of operations (such as generating a new solution, 

calculating delta_f, and updating the current and best solutions). Therefore, the total number 

of operations performed is directly proportional to the value of max_iter, and the complexity 

is O(n). 
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Advantages of Simulated Annealing: 

 Global Optimization: Simulated Annealing is a global optimization algorithm, meaning 

it can find the global minimum of a function, unlike local optimization algorithms that 

can only find the local minimum. 

 Handling Constraints: The algorithm can handle constraints on the solution space, 

making it useful for solving problems with complex constraints. 

 Handling Multi-modal Functions: Simulated Annealing is particularly effective at 

finding the global minimum of multi-modal functions, which have multiple local 

minima. 

 Handling Noise and Local Optima: The algorithm can handle noise and local optima by 

using a probabilistic acceptance function which allows a certain amount of exploration 

of the solution space. 

Disadvantages of Simulated Annealing: 

 Computationally Expensive: The algorithm can be computationally expensive, as it 

requires many iterations and random number generation, which can slow down the 

optimization process. 

 Difficulty in Determining Parameters: Determining the proper values for the parameters 

(initial temperature, cooling rate, etc.) can be difficult and may require trial and error. 

 Convergence to Local Minimum: The algorithm may converge to a local minimum, 

especially if the initial temperature is high, or if the cooling rate is too slow. 

 Time-consuming: The algorithm takes a lot of time to run, especially when the function 

is complex or has many local minima, as it needs to search through a large solution 

space. 

 

 

 

 

One of the key advantages of simulated annealing is that it is able to escape local minima or 

maxima, unlike other optimization techniques such as gradient descent, which can get stuck in 

these suboptimal solutions. This is because simulated annealing allows for larger moves in the 

solution space during the early stages of the optimization, when the temperature is high, 

which can lead to a more global minimum. 
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Guided Local Search (GLS) is a metaheuristic optimization algorithm that is a variation of 

Local Search (LS) algorithm. It is typically used for solving problems in combinatorial 

optimization, where the goal is to find the best solution from a finite set of solutions. 

The main idea behind GLS is to guide the search process by incorporating a memory 

mechanism and intensification and diversification strategies, which help to escape from local 

optima and to explore the solution space more efficiently. The memory mechanism is used to 

keep track of the best solutions found so far, and the intensification and diversification 

strategies are used to focus the search around the best solutions and to explore new regions of 

the solution space, respectively. 

The algorithm starts with an initial solution and repeatedly applies a neighborhood function 

to generate new solutions. The neighborhood function defines the set of solutions that can be 

reached from the current solution with a small number of changes. At each step, the algorithm 

selects the best solution from the current solution and its neighbors, and updates the current 

solution accordingly. The search process stops when a stopping criterion is met, such as 

reaching a maximum number of iterations or a satisfactory solution quality. 

GLS algorithm is often used in conjunction with problem-specific heuristics or problem-

specific knowledge to guide the search process in the direction of better solutions. 

 

 

 

 

 

This algorithm above defines a function called "guided_local_search" that takes another 

function as its input. The "guided_local_search" function is an implementation of a 

optimization technique called "Guided Local Search", which can be used to find the 

minimum value of a given function.  
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The outermost defined function is "function" which takes a single variable x and returns x^2 

+ sin(3x) + 1. 

The guided_local_search function starts by initializing a few variables: max_iterations, 

neighborhood_size, perturbation_size and current_solution. 

 max_iterations is the maximum number of iterations that the algorithm will run for before 

stopping.  

neighborhood_size is the number of potential solutions to be generated in each iteration, 

perturbation_size is the range from which these potential solutions are generated, 

current_solution is the starting point for the algorithm and best_solution is the best solution 

found so far. 

The for-loop within the guided_local_search function runs for max_iterations times. In each 

iteration, the neighborhood variable is assigned a list of neighborhood_size number of 

random solutions that are generated by adding a random value between -perturbation_size 

and perturbation_size to the current_solution. It uses this neighborhood as a list of 

candidates to find the best_neighbor which is the best of the neighborhood. Then it compares 

the function(best_neighbor) with function(best_solution), if function(best_neighbor) is 

less than function(best_solution), then it updates best_solution. If function(best_neighbor) 

is less than function(current_solution), then it updates current_solution. 

After max_iterations, it returns best_solution. 

 

 

first you have to import the following libraries to initialize the objective function and display 

the results in a curve 
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Here are the main steps of the algorithm: 

 

In the next line, the variable best_x is assigned the value returned by running the function 

guided_local_search with function as the input. 

Then it prints the optimal solution (best_x) and the optimal value of the function 

(function(best_x)) 

The next block of code is generating x and y values for plotting, it creates a np array x of 50 

linearly spaced points in the interval [-2, 2] and then it assigns the result of function(x) to y. 

Output: 

 

It also plot the best solution and the function that it is minimizing The key step that defines 

this method is the local search in a neighborhood around a current solution in order to find the 

best neighbor. Also, the current solution is updated only if the best neighbor solution is better 

than the current solution. 
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The complexity of the guided_local_search function is O(n*m), where n is the number of 

iterations and m is the number of solutions evaluated in the neighborhood during each 

iteration. 

In this specific implementation, max_iterations=1000, neighborhood_size=10, it will be 

O(1000*10)=O(10000) that means it grows linear with the input size. 

It is important to note that the time complexity also depends on the function being optimized, 

as well as the initial solution, as the number of iterations required to find the global optimum 

can vary greatly depending on these factors. 
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Guided search is an algorithm used for searching through large spaces of possible solutions to 

a problem.  

Advantages: 

 It is able to use problem-specific knowledge to direct the search in a more efficient 

direction, which can reduce the number of steps required to find a solution. 

 It is able to balance the trade-off between exploring different options and focusing on 

promising areas of the search space. 

 

Disadvantages: 

 It can be difficult to come up with an effective heuristic function to guide the search, 

which can limit the performance of the algorithm. 

 It may not be able to find the optimal solution if the problem-specific knowledge used 

to guide the search is incomplete or incorrect. 

 Guided search is memory intensive and not suitable for large search space. 

 It can be computationally expensive, especially if the heuristic function is 

computationally expensive to evaluate. 

 

It's important to note that, like most search algorithms, the effectiveness of guided search 

depends heavily on the specific problem and the quality of the heuristic function used to guide 

the search. 

 

 
 

In conclusion, the guided search algorithm can be a useful tool for searching through large 

spaces of possible solutions to a problem. It can leverage problem-specific knowledge to 

direct the search in a more efficient direction, which can help to reduce the number of steps 

required to find a solution. However, the algorithm also has some disadvantages, such as 

being difficult to implement with a poor or incomplete heuristic function and being memory 

and computationally intensive. It's effectiveness will vary depending on the problem at hand 

and the quality of the heuristic function used. 
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Tabu search is a metaheuristic optimization algorithm that is used to find approximate 

solutions to combinatorial optimization problems. The algorithm uses a memory structure 

called a "tabu list" to keep track of solutions that have recently been visited, in order to avoid 

cycling through the same solutions repeatedly. The tabu list acts as a form of "memory" for 

the algorithm, allowing it to make progress by moving to new solutions while avoiding 

solutions that it has already visited. The algorithm can also use a neighborhood function to 

define the set of solutions that can be reached from a given solution in one step. The 

algorithm's objective is to find solutions that are as good as or better than the current solution 

while also satisfying certain constraints. 

Tabu Search is widely applied to various optimization problem, such as travelling 

salesman problem, n-queens problem, vehicle routing problem, job shop scheduling problem, 

and etc. 

 

 
 

The algorithm above defines a function "tabu_search" which takes as input an objective 

function, the length of the tabu list and the number of maximum iterations. The objective 

function is a mathematical function that takes an input and produces an output, the input and 

output are numbers. 
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The tabu_search function starts by initializing the best_solution and best_obj_value with a 

random value within the search space (-10, 10) and the value returned by the objective 

function for that solution respectively. It then runs a loop for max_iterations, in each 

iteration it generates a random number between (-10, 10), and checks if it is in the tabu_list 

and if it is, it skips that iteration. If it is not in the tabu list then it checks if the obj_value of 

the candidate_solution is better than the best_obj_value, if it is, then the 

candidate_solution becomes the best_solution. Then it adds the candidate_solution to the 

tabu_list, and if the tabu_list is longer than tabu_list_length, it removes the oldest element. 

 

 

 

 

 

First defines the objective_function as x^2 + sin(4*x) + 1 and calls the tabu_search 

function to find the best solution and assigns the result to best_x 
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Result: 

 

Then it plots the objective_function by generating x values and y values for the function and 

plotting it. Then it plots a red dot on the best_x, best_y for the best solution found by 

tabu_search. And then it shows the graph with the labels and title. 

Result: 
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The complexity of this code is determined by the running time of the tabu_search function, 

which consists of the for loop that runs for max_iterations and the operations performed 

inside the loop. 

The running time of the for loop is O(max_iterations). Inside the loop, a random number is 

generated in O(1) time. Checking if an element is in a list takes O(n) time, where n is the 

length of the list, so in this case it takes O(tabu_list_length) time. Updating the best_solution, 

appending the element to the tabu_list, and removing the oldest element from the tabu_list 

each take O(1) time. 

Therefore, the total running time of the tabu_search function is O(max_iterations * (1 + 

tabu_list_length)) and as the max_iterations dominates the other operations in the tabu_search 

function. It is fair to say the complexity of this code is O(max_iterations) 

It is worth noting that the obj_func(x) could have a different complexity, the complexity of 

the code will be affected by the obj_func used. 

 

 

 

 

Tabu Search is an optimization algorithm that can be used to find good solutions to complex 

problems. Here are some of the advantages and disadvantages of this algorithm: 

Advantages: 

 It can escape from local optima by using the tabu list to prevent cycling 

 It can be used with a variety of objective functions, making it a versatile optimization 

algorithm 

 It can handle constraints and incorporate domain-specific knowledge 

 It's relatively simple to implement and understand 
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Disadvantages: 

 It's not guaranteed to find the global optimum, it can get stuck in a local optimum 

 It can be sensitive to the parameter settings, such as the length of the tabu list and the 

max_iterations 

 It requires a lot of memory and computational resources, especially when the problem 

size is large 

 It's not always easy to know when to stop the algorithm 

 

It's important to note that the choice of optimization algorithm is problem-specific and this 

algorithm may or may not be the best one for a particular problem. However, it is a good 

choice if the optimization problem has a good structure that can be exploited with tabu lists 

and the exploration of different regions. Also it could be used in a problem where the use of 

other metaheuristics like Hill Climbing or Simulated Annealing are not able to find good 

solution and or get stuck in local optima. 

 

 

 

 

 
 

Tabu Search algorithm is a powerful optimization method that is used to find good 

solutions to a wide range of problems. It is a type of local search algorithm that makes small 

changes to the current solution and uses a tabu list to prevent revisiting solutions that have 

been visited before. The algorithm also uses an aspiration criterion, which allows it to move 

to a new solution if it is significantly better than the current one. The performance of tabu 

search can be improved through careful design of the neighborhood structure, aspiration 

criteria, and tabu list. Additionally, it's not limited to specific problem domains and can be 

used to solve various optimization problems with good performance. 
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The VNS (Variable Neighborhood Search) algorithm is a metaheuristic optimization method 

that can be used to find the minimum of a function. It is inspired by the behavior of natural 

systems, where local optima are often surrounded by neighborhoods of worse solutions, but 

better solutions can be found by exploring different neighborhoods. 

 

 
 

The basic idea of the VNS algorithm is to start with an initial solution, and then repeatedly 

perturb this solution by changing the neighborhood it is in, until a local minimum is found. 

The algorithm can be summarized as follows: 

1.Start with an initial solution 

2.For a given number of iterations or until a stopping criterion is met:  

a. Select a neighborhood of the current solution  

b. Find the best solution in the selected neighborhood  

c. If the best solution is better than the current solution, update the current solution 

4.Return the best solution found 
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The complexity of this algorithm is O(n * m), where n is the value of max_iterations 

and m is the number of neighborhoods. This is because the algorithm first iterates 

through a loop that runs for a maximum of max_iterations times. Within each 

iteration, it then iterates through another loop that runs for the number of 

neighborhoods. Within this second loop, it performs a constant amount of operations 

(such as generating a new solution and updating the current and best solutions). 

Therefore, the total number of operations performed is directly proportional to the 

product of max_iterations and the number of neighborhoods, making the complexity 

O(n * m). 



 

22 

 
 

Advantages of Variable Neighborhood Search : 

 Global Optimization: VNS is a global optimization algorithm, meaning it can find the 

global minimum of a function, unlike local optimization algorithms that can only find 

the local minimum. 

 Handling Constraints: The algorithm can handle constraints on the solution space, 

making it useful for solving problems with complex constraints. 

 Handling Multi-modal Functions: VNS is particularly effective at finding the global 

minimum of multi-modal functions, which have multiple local minima. 

 Flexibility: The algorithm is flexible as it allows for the use of multiple neighborhoods, 

which can be tailored to the specific problem at hand. 

Disadvantages of Variable Neighborhood Search : 

 Computationally Expensive: The algorithm can be computationally expensive, as it 

requires many iterations and random number generation, which can slow down the 

optimization process. 

 Difficulty in Determining Parameters: Determining the proper values for the parameters, 

such as the number of iterations, the number of neighborhoods, and their structure, can 

be difficult and may require trial and error. 

 Convergence to Local Minimum: The algorithm may converge to a local minimum, 

especially if the initial solution is not well chosen or if the neighborhoods are not 

properly designed. 

 Time-consuming: The algorithm takes a lot of time to run, especially when the function 

is complex or has many local minima, as it needs to search through a large solution 

space with multiple neighborhoods. 

 

 

 

 
 

 

Variable Neighborhood Search can be useful for optimization problems that have multiple 

local optima, where traditional optimization methods like gradient descent may get stuck in a 

poor local optimum. 
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Gradient descent is an optimization algorithm used to minimize a function. It is commonly 

used in machine learning to adjust the parameters of a model in order to minimize the error or 

loss function. 

The algorithm starts with an initial set of parameter values and then repeatedly updates the 

parameters in the opposite direction of the gradient of the loss function with respect to the 

parameters. The size of the update is determined by the learning rate hyper parameter. The 

process is repeated until a minimum of the loss function is reached or a preset number of 

iterations are reached. 

There are different variants of Gradient descent like Stochastic Gradient Descent (SGD) 

and mini-batch gradient descent where in SGD we update the parameters after processing 

each sample, in mini-batch Gradient Descent, the parameters are updated after processing a 

small number of samples(batch size) instead of processing all the sample at once. 

 

 

 

This algorithm above is using gradient descent to find the minimum value of a Loss function 

(also called the objective function), represented by the cost function, which is defined as x**2 

+ np.sin(5*x) + 1.  

 

The gradient_descent function is used to find the minimum value of this function. It does this 

by first defining a starting point x_init and repeatedly moving in the opposite direction of the 

gradient of the function (hence the name "gradient descent") by a factor of the learning rate, 

until it reaches a minimum value or the number of iterations defined is reached. 

The function is the derivative of cost defined as function(x): return 2*x + 5*np.cos(5*x) 
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The cost function and the derivative of it both are plotted in the end using matplotlib library, 

x_min is calculated by the function gradient_descent and x_min is plotted with red dot in the 

graph. 
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 It also displays the minimum found at a particular point of the graph in the console using 

print statement. 

 

 

 

 
 

The algorithm has a time complexity of O(num_iterations) and space complexity of O(1) 

assuming that the calculation of the Loss function, sin and cos also have O(1) time 

complexity. It uses one for loop which iterates num_iterations times, and within that loop 

there are three simple mathematical operations, so the time complexity is proportional to the 

number of iterations. It is using x_current variable, x_init variable and one iterator variable i, 

so the space complexity is O(1). 

 

 

 
 

Here are some advantages and disadvantages of this algorithm: 

Advantages: 

 It is a widely used optimization algorithm and is well-suited for a wide range of 

problems. 

 It can be used with a variety of different cost functions and can be applied to both 

linear and nonlinear problems. 

 It is computationally efficient, particularly when the cost function is efficiently 

computable. 

 With proper learning rate the algorithm will converge to the minimum value in 

relatively few steps. 

 

Disadvantages: 

 The algorithm may converge to a local minimum rather than the global minimum, 

which can be a problem for non-convex cost functions. 

 It may be sensitive to the choice of the initial conditions and the learning rate. 

 It is not suitable for online learning, it requires complete data in order to work. 

 The convergence of the algorithm might be slow, especially for large dataset, the 

algorithm might get stuck in a flat region or plateaus. 
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Gradient descent is an iterative algorithm and the convergence speed and stability is 

heavily dependent on the choice of the learning rate. Even though gradient descent is a widely 

used optimization technique, it can get stuck in local minima, and that is where other 

optimization techniques like conjugate gradient,BFGS, and L-BFGS, which are second-order 

optimization methods that may provide better performance 
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Optimization algorithms are a set of techniques used to find the best solution to a problem by 

minimizing or maximizing an objective function. There are many different optimization 

algorithms available, each with their own strengths and weaknesses, and the choice of 

algorithm will depend on the specific problem being solved and the requirements of the 

solution. Some common optimization algorithms include gradient descent, Newton's method, 

simulated annealing, and genetic algorithms. It is important to note that optimization 

algorithms are used in many different fields and applications, including machine learning, 

engineering, finance, and operations research. Choosing the best suited algorithm requires a 

good understanding of the problem, the underlying mathematical models and the requirement 

of solution. 

 

 

 

 

 

 

 

 

 

 

 


