diff --git a/output/openapi/elasticsearch-openapi.json b/output/openapi/elasticsearch-openapi.json index d69e0d4ac1..aca653bbc4 100644 --- a/output/openapi/elasticsearch-openapi.json +++ b/output/openapi/elasticsearch-openapi.json @@ -22157,7 +22157,7 @@ "MlEvaluateDataFrameRequestExample4": { "summary": "Regression example 1", "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "summary": "Regression example 2", @@ -113741,7 +113741,7 @@ "MultiTermVectorsRequestExample2": { "summary": "Simplified syntax", "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" }, "MultiTermVectorsRequestExample3": { "summary": "Artificial documents", diff --git a/output/openapi/elasticsearch-serverless-openapi.json b/output/openapi/elasticsearch-serverless-openapi.json index 3d39b3ba55..3c5a4915ca 100644 --- a/output/openapi/elasticsearch-serverless-openapi.json +++ b/output/openapi/elasticsearch-serverless-openapi.json @@ -12561,7 +12561,7 @@ "MlEvaluateDataFrameRequestExample4": { "summary": "Regression example 1", "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "summary": "Regression example 2", @@ -66523,7 +66523,7 @@ "MultiTermVectorsRequestExample2": { "summary": "Simplified syntax", "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" }, "MultiTermVectorsRequestExample3": { "summary": "Artificial documents", diff --git a/output/schema/schema-serverless.json b/output/schema/schema-serverless.json index b9e6fe4fa8..9befc31083 100644 --- a/output/schema/schema-serverless.json +++ b/output/schema/schema-serverless.json @@ -29558,7 +29558,7 @@ "MlEvaluateDataFrameRequestExample4": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", "summary": "Regression example 1", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the training error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the training split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", @@ -36876,7 +36876,7 @@ "MultiTermVectorsRequestExample2": { "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", "summary": "Simplified syntax", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" }, "MultiTermVectorsRequestExample3": { "description": "Run `POST /_mtermvectors` to generate term vectors for artificial documents provided in the body of the request. The mapping used is determined by the specified `_index`.\n", @@ -45854,6 +45854,119 @@ } } } + }, + { + "description": "A list of fields to include in the statistics.\nIt is used as the default list unless a specific field list is provided in the `completion_fields` or `fielddata_fields` parameters.", + "name": "fields", + "required": false, + "type": { + "kind": "instance_of", + "type": { + "name": "Fields", + "namespace": "_types" + } + } + }, + { + "description": "If `true`, the response includes:\n\n* The document count (how many documents contain this field).\n* The sum of document frequencies (the sum of document frequencies for all terms in this field).\n* The sum of total term frequencies (the sum of total term frequencies of each term in this field).", + "name": "field_statistics", + "required": false, + "serverDefault": true, + "type": { + "kind": "instance_of", + "type": { + "name": "boolean", + "namespace": "_builtins" + } + } + }, + { + "description": "If `true`, the response includes term offsets.", + "name": "offsets", + "required": false, + "serverDefault": true, + "type": { + "kind": "instance_of", + "type": { + "name": "boolean", + "namespace": "_builtins" + } + } + }, + { + "description": "If `true`, the response includes term payloads.", + "name": "payloads", + "required": false, + "serverDefault": true, + "type": { + "kind": "instance_of", + "type": { + "name": "boolean", + "namespace": "_builtins" + } + } + }, + { + "description": "If `true`, the response includes term positions.", + "name": "positions", + "required": false, + "serverDefault": true, + "type": { + "kind": "instance_of", + "type": { + "name": "boolean", + "namespace": "_builtins" + } + } + }, + { + "description": "If `true`, the response includes:\n\n* The total term frequency (how often a term occurs in all documents).\n* The document frequency (the number of documents containing the current term).\n\nBy default these values are not returned since term statistics can have a serious performance impact.", + "name": "term_statistics", + "required": false, + "serverDefault": false, + "type": { + "kind": "instance_of", + "type": { + "name": "boolean", + "namespace": "_builtins" + } + } + }, + { + "description": "A custom value that is used to route operations to a specific shard.", + "name": "routing", + "required": false, + "type": { + "kind": "instance_of", + "type": { + "name": "Routing", + "namespace": "_types" + } + } + }, + { + "description": "If `true`, returns the document version as part of a hit.", + "name": "version", + "required": false, + "type": { + "kind": "instance_of", + "type": { + "name": "VersionNumber", + "namespace": "_types" + } + } + }, + { + "description": "The version type.", + "name": "version_type", + "required": false, + "type": { + "kind": "instance_of", + "type": { + "name": "VersionType", + "namespace": "_types" + } + } } ] }, @@ -46070,7 +46183,7 @@ } } ], - "specLocation": "_global/termvectors/TermVectorsRequest.ts#L33-L187" + "specLocation": "_global/termvectors/TermVectorsRequest.ts#L33-L239" }, { "body": { diff --git a/output/schema/schema.json b/output/schema/schema.json index 7edba55f2e..898087a1b3 100644 --- a/output/schema/schema.json +++ b/output/schema/schema.json @@ -31895,7 +31895,7 @@ "MultiTermVectorsRequestExample2": { "description": "Run `POST /my-index-000001/_mtermvectors`. If all requested documents are in same index and the parameters are the same, you can use a simplified syntax.\n", "summary": "Simplified syntax", - "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"parameters\": {\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n }\n}" + "value": "{\n \"ids\": [ \"1\", \"2\" ],\n \"fields\": [\n \"message\"\n ],\n \"term_statistics\": true\n}" }, "MultiTermVectorsRequestExample3": { "description": "Run `POST /_mtermvectors` to generate term vectors for artificial documents provided in the body of the request. The mapping used is determined by the specified `_index`.\n", @@ -174320,7 +174320,7 @@ "MlEvaluateDataFrameRequestExample4": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the testing error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the test split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", "summary": "Regression example 1", - "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n }\n}" + "value": "{\n \"index\": \"house_price_predictions\",\n \"query\": {\n \"bool\": {\n \"filter\": [\n {\n \"term\": {\n \"ml.is_training\": false\n }\n }\n ]\n }\n },\n \"evaluation\": {\n \"regression\": {\n \"actual_field\": \"price\",\n \"predicted_field\": \"ml.price_prediction\",\n \"metrics\": {\n \"r_squared\": {},\n \"mse\": {},\n \"msle\": {\n \"offset\": 10\n },\n \"huber\": {\n \"delta\": 1.5\n }\n }\n }\n }\n}" }, "MlEvaluateDataFrameRequestExample5": { "description": "Run `POST _ml/data_frame/_evaluate` to evaluate the training error of a regression job for an annotated index. The term query in the body limits evaluation to be performed on the training split only. The `actual_field` contains the ground truth for house prices. The `predicted_field` contains the house price calculated by the regression analysis.\n", @@ -238334,4 +238334,4 @@ "specLocation": "_spec_utils/behaviors.ts#L102-L108" } ] -} +} \ No newline at end of file