
 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 1 (17)

Discovery	within	the	Swedish	eID	Framework	
ELN-0610-v1.1

Version 1.1
2015-05-06

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 2 (17)

1	 INTRODUCTION	 3	

2	 DISCOVERY	SERVICE	LOGIC	 3	
2.1	 MATCHING	OF	IDENTITY	PROVIDERS	 3	
2.2	 USER	STATE	AND	REMEMBERED	CHOICES	 4	

3	 DISCOVERY	ACCORDING	TO	“IDENTITY	PROVIDER	DISCOVERY	SERVICE	PROTOCOL	AND	
PROFILE”	 5	
3.1	 DISCOVERY	RESPONSE	ADDRESSES	 6	
3.2	 SILENT	DISCOVERY	SERVICE	 6	
3.3	 THE	DISCOVERY	SERVICE	AND	MOBILE	DEVICES	 6	

4	 INTEGRATING	THE	DISCOVERY	SERVICE	IN	THE	SERVICE	PROVIDER	APPLICATION	 7	
4.1	 ARCHITECTURE	AND	DEPENDENCIES	 7	
4.2	 STEP-BY-STEP	INTEGRATION	 8	
4.2.1	 INCLUSION	OF	REQUIRED	RESOURCES	 8	
4.2.2	 LAYING	OUT	THE	DISCOVERY	AREA	 9	
4.2.3	 INVOKING	THE	DODISCOVERY	FUNCTION	AND	HANDLING	THE	RESULT	 10	

5	 DISCOVERY	SERVICE	JAVASCRIPT	API	 12	
5.1	 NAMESPACE	AND	DEPENDENCIES	 12	
5.2	 FUNCTIONS	 12	
5.2.1	 GETVERSION	 12	
5.2.2	 DODISCOVERY	 12	
5.3	 OBJECTS	 13	
5.3.1	 DISCOVERYSETTINGS	 13	
5.3.2	 UICONFIG	 13	
5.3.3	 USERSTATECONFIG	 15	
5.3.4	 DISCOVERYERROR	 15	

6	 REFERENCES	 17	

7	 CHANGES	BETWEEN	VERSIONS	 17	

 	

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 3 (17)

1 Introduction	
The Swedish eID Framework comprises a Discovery Service that has as its purpose to supply Service Providers
with user selected Identity Providers for authentication within the federation. In other words, the process where
the end users chooses which Identity Provider, or eID, to use for authentication is not performed at the Service
Provider, but instead handled by the Discovery Service.

There are several reasons for centralizing this process:

• Matching logic – The Discovery Service performs filtering based on Service Provider requirements and
Identity Provider capabilities to find a set of Identity Providers that meet the criteria mandated by the
calling Service Provider.

• User state – By using a centralized service for discovery the end user may have his or hers selected
Identity Provider(s) saved in between sessions, and the information may be used for any Service Pro-
vider within the federation.

• Common look and feel – Since all Service Providers within the federation share the same Discovery
Service the end users will be met by the same user interface when choosing the method to use while
logging in, independently of which service they are trying to reach.

The Discovery Service for the Swedish eID Framework can be utilized in two different ways; either by directing
the end user to the Discovery Service according to “Identity Provider Discovery Service Protocol and Profile”,
[IdpDisco], or by importing a JavaScript from the Discovery Service and let the end user choose Identity Provid-
er locally at the Service Provider. The logic executed is the same for the two methods, the differences are how
the Service Provider integrates against the Discovery Service and how the end user performs his or hers
choice. These two methods are described later in this document. But first, let’s go through some of the logic of
the Discovery Service.

2 Discovery	Service	Logic	
Independently of how a Service Provider integrates to the Discovery Service, the same type of underlying func-
tionality and logic is provided. This chapter describes this logic in detail.

2.1 Matching	of	Identity	Providers	
The Discovery Service makes use of Entity Categories defined in metadata to match Service Provider require-
ments against Identity Provider capabilities, and to come up with a list of Identity Providers to display for the
user. The specification “Entity Categories for the Swedish eID Framework”, [Eid2EntCat], defines the different
entity categories and their meaning. Chapter 1.4 of [Eid2EntCat] also specifies the algorithm used by the Dis-
covery Service to match Identity Providers. This chapter elaborates on this algorithm and also provides a few
examples.

A Service Provider that invokes the discovery process provides its unique entityID as a parameter. The Discov-
ery Service will use this to obtain the Service Provider requirements from the federation metadata. Given the
Service Provider metadata entry, the following steps will be taken to filter out which Identity Providers that meet
the Service Provider requirements:

• Given all Entity Categories of the type “Service Entity Category” declared by the Service Provider, the
Discovery Service will match all Identity Providers that defines at least one of those categories.

• Given all Entity Categories of the type “Service Property” declared by the Service Provider, the Discov-
ery Service will match the Identity Providers that defines all of those categories.

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 4 (17)

Example 1:
Suppose that Service Provider X has a metadata entry that defines the following entity categories:

Service Provider X
Service Entity Categories loa3-pnr (http://id.elegnamnden.se/ec/1.0/loa3-pnr)

Service Properties -

Then, suppose that we have the following Identity Providers declared in the federation metadata:

Identity Provider A
Service Entity Categories loa3-pnr (http://id.elegnamnden.se/ec/1.0/loa3-pnr)

loa4-pnr (http://id.elegnamnden.se/ec/1.0/loa4-pnr)
Service Properties mobile-auth (http://id.elegnamnden.se/sprop/1.0/mobile-auth)

Identity Provider B
Service Entity Categories loa3-pnr (http://id.elegnamnden.se/ec/1.0/loa3-pnr)
Service Properties -

Identity Provider C
Service Entity Categories loa4-pnr (http://id.elegnamnden.se/ec/1.0/loa4-pnr)
Service Properties mobile-auth (http://id.elegnamnden.se/sprop/1.0/mobile-auth)

In this example the Discovery Service will match Identity Providers A and B, since they both define the
loa3-pnr Service Entity Category. Identify Provider C will not be used since it only defines loa4-pnr.

Example 2:

Now, assume that we have another Service Provider, Y, which has the following metadata entry:

Service Provider Y
Service Entity Categories loa3-pnr (http://id.elegnamnden.se/ec/1.0/loa3-pnr)
Service Properties mobile-auth (http://id.elegnamnden.se/sprop/1.0/mobile-auth)

Given the same Identity Providers from the previous example, the Discovery Service will only match
Identity Provider A since it defines loa3-pnr and all the Service Properties defined by the Service Pro-
vider (mobile-auth). Identity Provider B meets the requirements regarding the Service Entity Categories,
but does not define the required Service Property.

2.2 User	State	and	Remembered	Choices	
The Discovery Service is shared between all the Service Providers within the federation. This enables end users
to have pre-selected eIDs (or Identity Providers) for the Discovery Service, and to utilize this when logging on to
any Service Provider within the federation. The obvious advantage for the end user is that he or she just may
confirm a previous choice when prompted to choose an eID instead of selecting from a list of possible
eIDs/Identity Providers. These “remembered choices”, or pre-selected eIDs, are saved between sessions and
are valid until the user clears them. Note that the state is saved in the end users web browser as HTML 5 web
storage, or using cookies. No central repository is used.

Note: In the case a pre-selected Identity Provider cannot be used it is “greyed out”, and a full list of possible
Identity Providers will be displayed. This will typically occur when the Discovery Service matching logic rules out
the pre-selected Identity Provider because it does not meet the Service Provider requirements (see above).

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 5 (17)

The Discovery Service also maintains a session state for the “active” choice. This means that per browser ses-
sion, the Discovery Service keeps track of which eID that was chosen, and may further simplify the end user’s
choice if he or she visits several Service Providers within the same browser session. The session state may
also be used in Single Sign On-scenarios or in the case where the Service Provider invokes the discovery pro-
cess using the isPassive-flag (see 3.2, “Silent Discovery Service”).

3 Discovery	according	to	“Identity	Provider	Discovery	Service	Protocol	
and	Profile”	

The OASIS specification, ”Identity Provider Discovery Service Protocol and Profile”, [IdpDisco], describes how a
central Discovery Service presents a user interface for end users where they make their choice of which Identity
Provider to use while authenticating to the Service Provider. This section further explains how integration
against the Discovery Service of the Swedish eID Framework is made.

The integration is simple. Basically the Service Provider redirects the user to the Discovery Service along with a
parameter telling which Service Provider that is requesting the user to make a choice. Based on the calling Ser-
vice Provider’s entityID the Discovery Service may perform its filtering of Identity Providers (as described in
chapter 2.1, “Matching of Identity Providers”, above) and display a list of Identity Providers for the user to
choose from. Once the user has made his or hers choice, the user agent (i.e., the web browser) is redirected
back to the Service Provider, this time with a parameter telling the Service Provider the entityID of the selected
Identity Provider. Based on this information the Service Provider may continue the authentication process by
building an authentication request and sending the end user to the selected Identity Provider.

The flow diagram below illustrates the interaction between the user, the Service Provider and the Discovery
Service.

Figure 1: Web flow during discovery using the central Discovery Service.

The specification ([IdpDisco]) states a number of additional parameters that may be passed in the request to the
Discovery Service. These parameters are thoroughly described by the specification, but we still need to clarify
some issues in the chapters below.

User agent
(web browser) Service Provider Discovery Service

HTTP request for discovery
(HTTP redirect)

User selects eID (Identity Provider)

Result of selection is returned back
using HTTP redirect.

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 6 (17)

3.1 Discovery	Response	Addresses	
How does the Discovery Service know where to redirect the user when he or she has chosen which Identity
Provider to use?

In order to avoid unauthorized use of the Swedish eID Discovery Service all return addresses must be regis-
tered in the federation metadata. It is mandated that a Service Provider wanting to perform discovery according
to [IdpDisco] must supply at least one address in its metadata entry using the
<idpdisc:DiscoveryResponse> element. If several addresses are given, the address having index 1 is
regarded to be the default response address.

This means that the return-parameter specified in section 2.4.1 of [IdpDisco] only has to be supplied if the
Service Provider wishes to have the response sent back to an address other than the default response address.
In these cases the value of the return-parameter must still be one of the DiscoveryResponse-addresses
from the Service Provider metadata.

3.2 Silent	Discovery	Service	
Chapter 2.2, “User State and Remembered Choices”, describes how the Swedish eID Discovery Service han-
dles the user discovery state. A Service Provider may use the isPassive-parameter and set its value to true
in order to find out if the user already has selected an Identity Provider for the current web session1. This feature
may be useful in Single Sign On-scenarios, but care should be taken not to confuse the end user. It is essential
that the end users understand that they are being logged in to a Service Provider.

3.3 The	Discovery	Service	and	Mobile	Devices	
A Service Provider web application may be adapted for use by mobile devices such as smart phones. In these
cases the Service Provider most likely wants that the end user to be displayed a user interface suitable for mo-
bile devices also when the user is directed to the Discovery Service.

In the case that Discovery Service is used according to “Identity Provider Discovery Service Protocol and Pro-
file”, [IdpDisco], the Discovery Service interface is using responsive design and is adjusted according to the size
of the browser window irrespective of whether a mobile device is used or not.

The Discovery Service will try to detect the type of user agent (i.e., web browser) to determine if a mobile device
is used. If a mobile device is used then the Discovery Service at first only displays Identity Providers adapted for
mobile devices (i.e. Identity Providers that define mobile-auth Service Property among its Entity Categories in its
metadata entry) in the list of possible eIDs (Identity Providers)2. The end user can always choose to display all
Identity Providers that meet the requirements.

See “Entity Categories for the Swedish eID Framework”, [Eid2EntCat], for more information about the use of
entity categories. 	

1 In this context we refer to a web session and mean that the user still has his or her web browser (window)
open since the last time a choice of Identity Provider was made.
2 By including the mobile-auth category an Identity Provider asserts that it supports both authentication using a
mobile device and that it will display a user interface suitable for mobile devices.

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 7 (17)

4 Integrating	the	Discovery	Service	in	the	Service	Provider	Application	
This chapter describes how a Service Provider may integrate the use of the Discovery Service in its own web
application instead of, as described above, directing the end user to the central Discovery Service. The reasons
a Service Provider may wish to use this kind of integration may be:

• To provide a more tight integration, and to avoid redirecting the end user to the central Discovery Ser-
vice.

• To integrate other authentication methods, not available via the federation, in the list of the authentica-
tion methods that are displayed to the end user.

• To use local caching of Discovery Service feeds and scripts to eliminate the dependency on the third
party services being responsive.

4.1 Architecture	and	Dependencies	
The Discovery Service in the federation for Swedish eID is constructed in such a way that it offers the possibility
to access its logic, which is entirely built in JavaScript, without actually directing the end user to the Discovery
Service web application. Instead the Service Provider web application may download the Discovery Service
JavaScript and use it locally. The picture below illustrates this:

Figure 2: Discovery Service architecture.

The figure illustrates how the Service Provider may choose to implement caches, or proxies, for resources that
are downloaded from the Discovery Service. This is not a requirement, but may be useful to obtain a homoge-
nous solution where no direct dependencies exist to the central Discovery Service.

However, there is one dependency that is not possible to cache. That is the built in connection between the
JavaScript and the “user state service” residing on its own domain within the central Discovery Service. This
service is responsible of handling user state and remembered choices (as described in chapter 2.2 above),
however it is possible to disable these features (see 5.3.3, “userStateConfig”). Should this connection not be
responsive, the discovery process will still work, but without the feature of currently selected eID or pre-selected
eIDs.

The Discovery Service stores currently selected eID and pre-selected eIDs in the end users web
browser as HTML 5 web storage or by using cookies by embedding an iFrame that makes calls (using
PostMessage) to the "user state service" (no central repository is used). In addition to this, the Discov-
ery Service by default also saves the pre-selected eIDs (as HTML 5 web storage or using cookies) in

Discovery feed

Discovery JavaScript

User state service

Discovery Service
Web application

Service Provider

JavaScript
cache

Proxy for
discovery feed

Discovery
JavaScript

Integrated discovery

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 8 (17)

the Service Providers own domain to enable remembered choices for web browsers where third-party
data is blocked. The above functionality can be disabled using the userStateConfig parameter (see
chapter 5.3.3).

The listing below describes all dependencies that a Service Provider wanting to provide local discovery needs to
address:

Discovery JavaScript The JavaScript that is responsible of the discovery logic (matching of possible Identi-

ty Providers to display and handling of user state) as well as rendering of the HTML
that is inserted in the Service Provider’s web page.
There may be several versions of the JavaScript available for usage, and a Service
Provider should ensure to use a version that it has tested before use. Different ver-
sions of the JavaScript may be incompatible. The first digit of the three-digit version
number indicates whether a backward incompatible API-change has been made (see
chapter 5.2.1, “getVersion”, below). The filename of a Discovery JavaScript always
contains the major digit of the version, e.g. anvisning-2.js.

The JavaScript API is described in chapter 5 below.

Discovery feed A JSON-feed that is available from the Discovery Service. This feed corresponds to
the current state of the federation metadata. The JavaScript uses this information
internally, and the Service Provider itself does not have to interpret it, only make sure
that the JavaScript function has access to it.

As already mentioned, the Service Provider may cache this feed locally in order to
provide a quicker and more homogenous integration. When doing so, the Service
Provider cache functionality should ensure to update this cache frequently.

Style sheet (CSS) A Service Provider making use of locally integrated discovery must include a CSS-
file that is used by the JavaScript while it generates the HTML that is inserted in the
Service Provider web page. A Service Provider may choose to point at the CSS re-
siding at the Discovery Service, or to download this file and make alterations to it in
order to customize the “look-and-feel” of the user interface.

Note: All required addresses (URLs) and filenames are listed under “Technical Infrastructure” on the Swedish
eID federation web site.

4.2 Step-by-step	Integration	
This chapter describes, in a step-by-step manner, how a Service Provider integrates the Discovery Service on a
web page of the Service Provider web application. See chapter 5, “Discovery Service JavaScript API”, for a full
specification of the JavaScript functions and objects mentioned in this chapter.

4.2.1 Inclusion	of	Required	Resources	

In order for a Service Provider to be able to utilize the Discovery Service logic in its own web application, it
needs to include the required resources.

The example below illustrates how a web page imports a locally stored version of the Discovery Service Java-
Script and a modified CSS-file that contains the same CSS-definitions as the CSS-file of the Discovery Service.
The example also illustrates how a JavaScript variable, localDiscoveryFeed, is declared and assigned the
address to the local proxy/cache function holding the Discovery feed

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 9 (17)

...

<!-- Include the modified CSS for doDiscovery -->
<link href="styles/discovery.css" rel="stylesheet" type="text/css" />
...
<!-- Include the locally cached Discovery JavaScript -->
<script type="text/javascript" src="scripts/discovery-1.js"></script>
...

<script type="text/javascript">
 ...
 // The address where discoSveleg.doDiscovery can access the JSON feed.
 var localDiscoveryFeed = "feeds/discoveryfeed.json";

Note: How caching or proxying of resources is handled is outside of the scope of this document.
A Service Provider may also choose to import one, or several, resources directly from the Discovery Service
without intermediate caching/storage. In the example below the Service Provider imports all resources directly
from the Discovery Service.

...

<!-- Include the CSS for doDiscovery from the Discovery Service -->
<link href="https://anvisning.sveleg.se/UI/stylesheets/anvisning.css" rel="stylesheet" type="text/css" />
...
<!-- Include the Discovery JavaScript from the Discovery Service -->
<script type="text/javascript" src="https://anvisning.sveleg.se/anvisning-1.js"></script>
...

<script type="text/javascript">
 ...
 // The address where discoSveleg.doDiscovery can access the JSON feed.
 var localDiscoveryFeed = "https://anvisning.sveleg.se/discoveryfeed.json";

 Note: The correct addresses and filenames are published on the Swedish eID federation web site.

4.2.2 Laying	out	the	Discovery	Area	

When the function doDiscovery executes it will produce the Discovery Service user interface (HTML ele-
ments) and insert this into the desired position in the Service Provider web page (DOM tree). The Discovery
Service will also embed a simple HTML document (an iFrame) that is used to obtain and update the user state
and remembered choices by making calls (using PostMessage) to the central Discovery Service.

The identifier that uniquely specifies the DOM-element to which the Discovery Service will write the HTML ele-
ments making up the user interface is given as a parameter (DiscoverySettings.includeElement) in the
call to doDiscovery (see below). The Discovery Service JavaScript clears the contents of the specified HTML
element before writing to the element.

The recommended size of the HTML element for the Discovery user interface is a width of 480 pixels and a
height of 625 pixels. The minimum width is 380 pixels. When the HTML element for the Discovery user interface
is 1158 pixels or wider the design will change from a more compact one column layout to a wider two column
layout.

The example below illustrates how a HTML div element is defined to hold the Discovery user interface.

...
<script type="text/javascript">
 var discoverySettings = {
 entityID : "http://www.sp-authority.se/id",
 includeElement : "discoveryDiv",
 ...
 };

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 10 (17)

 discoSveleg.doDiscovery(discoverySettings);
</script>
...

<body>
 ...
 <div id="discoveryDiv" style="width: 480px; height: 625px;">
 </div>

4.2.3 Invoking	the	doDiscovery	Function	and	Handling	the	Result	

In order to display the Discovery user interface the doDiscovery function must be invoked. Depending on how
the Service Provider web application is structured this may be done after the user has clicked “Log in”, or after
the HTML page has been loaded.

This section presents a simple example where the doDiscovery function is called when the HTML page has
finished loading. When the result, i.e., the selected Identity Provider, is received, this is given to a Service Pro-
vider resource that is responsible of handling the user authentication. The error handling of this is example is
simple – an error is displayed and the user may retry. For a full specification of the Discovery JavaScript, see
chapter 5, “Discovery Service JavaScript API”. 	

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 11 (17)

Discovery Service JavaScript API
...
Inclusions of JavaScript and CSS-files.
...

<script type="text/javascript">

 // onload – Invokes doDiscovery
 //
 window.onload = function() {

 // Assign some UI configuration settings
 var uic = {
 language = "sv"; // We want Swedish for the language (see 5.3.2).
 showHelpLinks = false; // Do not display any help-links (see 5.3.2).
 };

 var discoverySettings = {
 entityID: "http://www.sp-authority.se/id",
 includeElement: "discoveryDiv",
 dsProxies: ["feeds/discoveryfeed.json"],
 uiConfig : uic,
 resultCallback : discoveryCallback,
 errorCallback : discoveryErrorCallback
 };

 discoSveleg.doDiscovery(discoverySettings);
 }

 // discoveryCallback – Proceeds with the user authentication
 //
 function discoveryCallback(idpEntityID) {
 if (idpEntityID == null) {
 // This means that the user cancelled the selection/login process.
 ...
 }
 else {
 // Proceed by redirecting to our SAML servlet (and include the selected IdP).
 var url = "https://www.sp-authority.se/saml/req?entityID=" + idpEntityID;
 window.location.replace(url);
 }
 }

 // discoveryErrorCallback – Displays an error message
 //
 function discoveryCallback(discoveryError) {
 document.getElementById("errorDiv").innerHTML =
 "An error occurred – Please try again (" + discoveryError.errorCode + ")";
 }

</script>
...

<body>
 ...

 <!-- This is here where the HTML rendered by doDiscovery() will be inserted. -->
 <div id="discoveryDiv" style="width: 480px; height: 625px;">
 </div>
 ...
 <div id="errorDiv">
 </div>
 ...

 	

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 12 (17)

5 Discovery	Service	JavaScript	API	
This section describes the Discovery Service JavaScript API for the Swedish eID framework.

5.1 Namespace	and	dependencies	
All functions within the Discovery Service JavaScript API for the Swedish eID framework are declared in a
namespace called discoSveleg. The reason for this is to encapsulate the functions and to avoid polluting a
Service Provider’s JavaScript namespace.

The Discovery Service JavaScript makes use of jQuery, which is created under its own alias, discoSvelegJq,
to avoid conflicts with other versions of jQuery that the service may be using. If the Service Provider’s already
has included a version of jQuery, the Discovery Service JavaScript may make use of this library3.

5.2 Functions	

5.2.1 getVersion	

Function getVersion

Parameters None

Returns A string on the format: major.minor.fix.

Throws Never

Description This function will return the current version of the downloaded JavaScript API.
Changes of the major-digit of the returned string indicate backwards-incompatible
changes.
A Service Provider should ensure to use the most recent version of the JavaScript
API.

5.2.2 doDiscovery	

Function doDiscovery

Parameters DiscoverySettings – An object containing configuration and callback functions
for use by the function. See 5.3.1 below.

Returns Void function. Results are reported asynchronously using the callback functions of
the DiscoverySettings objects.

Throws If no error callback function is provided, the function will throw objects of the type
DiscoveryError (5.3.4) as exceptions to indicate errors.

Description The main function of the API, which will create the user interface for the end user to
make his or her selection of the desired Identity Provider.

The rendered HTML code will be inserted into the HTML element as specified by
DiscoverySettings.includeElement, and results will be reported to the
callback function as specified by DiscoverySettings.resultCallback or

3 Provided that it is a valid version. The versions accepted by the Discovery Service JavaScript are listed on the
federation web site.

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 13 (17)

DiscoverySettings.errorCallback in case of errors.

5.3 Objects	

5.3.1 DiscoverySettings	

The DiscoverySettings object contains key-value pairs that are used to control how the HTML-code is gen-
erated and how results are reported back to the calling application.

Object property Required Description

entityID ✓ The entityID of the Service Provider that is invoking doDiscovery.
This is the unique ID for the Service Provider within the federation.

includeElement ✓ The ID of the HTML element to which doDiscovery will insert the
generated user interface. This inner content of this element will be
replaced with the contents generated by the Discovery Service.

dsProxies ✓ A list of one or more addresses to the discovery feed. The
doDiscovery function will attempt to use the first address in the
list, and move on to the next in the list in case of errors.

uiConfig Configuration parameters for how the user interface should be ren-
dered see 5.3.2 below.

userStateConfig Configuration parameters for how remembered choices should be
used, see 5.3.3 below.

resultCallback ✓ The callback function that will be used by the doDiscovery func-
tion to return the result of the user selection.
The function should accept one argument which will be a string
holding the entityID of the selected Identity Provider. If the user did
not make a selection the result callback will be invoked with a null-
argument.

errorCallback ✓ The callback function that will be used by the doDiscovery func-
tion to report errors.
The function should accept one argument that will be a
DiscoveryError object, see 5.3.4 below.

5.3.2 uiConfig	

The uiConfig object is a name-value object containing properties that determines how to display the Discov-
ery user interface.

Object property Default
value

Description

isPassive false A boolean variable that corresponds to the isPassive-parameter
specified in [IdpDisco].
If set, the doDiscovery function will attempt to derive the user
selection without displaying the interface to the user. This is done

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 14 (17)

by controlling if the user already has performed a selection in the
current web session (see 2.2, “User State and Remembered Choic-
es”) and if so, the Identity Provider’s entityID will be returned. If no
previous selection exists the doDiscovery function will invoke the
result callback with a null argument.

language sv This property specifies the preferred language of the user interface
that is created by the doDiscovery function.
If the Identity Provider information that is displayed in the user inter-
face does not exist (in federation metadata) in the required lan-
guage, Swedish will be used.
The language is specified with two or three letters according to
IANA Subtag Registry [IANA-Lang], e.g. “en” for English and “sv” for
Swedish.

minimal false Shows a minimal graphical user interface, which means that only
the list of Identity Providers is shown and no other information such
as headers and help links will be displayed.
Setting the minimal-property to true is equivalent with the follow-
ing settings:

showCancelButton = false
showFilter = false
showHeader = false
showHelpLinks = false
showLanguageSetting = false
showRememberChoiceSetting = false.

If the minimal-property is set to true, any assignment of the
above parameters will be ignored.

showCancelButton false Shows or hides the Cancel-button of the user interface being ren-
dered. Depending on how the user interface is integrated in the
Service Provider web site, the use of a Cancel-button may or may
not be desired.

showFilter true Shows or hides the filtering-functionality in the Discovery Service.
The filtering-functionality handles alternative ways to show available
Identity Providers, for example all Identity Providers or only Identity
Providers for mobile devices. The filtering-functionality also includes
the search-bar if a large number of Identity Providers are displayed.

showHeader true This property specifies if the header of the Discovery Service shall
be shown. The header includes the name of the Service Provider,
the Swedish eID logo and the heading “Select Swedish eID”.

showLanguageSett
ing

false Shows or hides the settings section for “Change language”. This
setting is used to control the language of the Discovery Service user
interface.

showRememberChoi
ceSetting

true Shows or hides the settings section for “Remember my selection”.
This setting is used to control if an end users choice of Identity Pro-
vider shall be remembered between sessions.

showHelpLinks true Indicates whether help-links should be included in the generated
user interface. These links typically points to informational re-
sources about eID and the federation.

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 15 (17)

5.3.3 userStateConfig	

The userStateConfig object is a name-value object containing properties that determines how user state
and remembered choices should be used (see 2.2, “User State and Remembered Choices” and 4.1,
“Architecture and Dependencies”).

Object property Default
value

Description

disableInOwnDomain false This property decides if storage of remembered choic-
es in the own domain shall be disabled.

disablePreSelection false This property decides if pre-selected eIDs shall be
disabled.

disableCurrentSelection false This property decides if the current selection (per
browser session) shall be disabled.

5.3.4 DiscoveryError	

The DiscoveryError is an object that is used as an argument for the
DiscoverySettings.errorCallback and as an exception object for the doDiscovery function.

Object property Description

errorCode The numeric error code identifying the error. See below for a listing of possible
error codes.

description A textual description of the error.
This text will always be in English and is of a technical nature. It should therefore
never be displayed for an end user.

Error code list:

Error code Caused by

100 Bad call to doDiscovery. The DiscoverySettings object is missing.

101 The entityID property of the DiscoverySettings object is not supplied.

102 The includeElement property of the DiscoverySettings object is not sup-
plied.

103 The dsProxies property of the DiscoverySettings object is not supplied or is
an empty array.

104 No resultCallback specified the DiscoverySettings object.

105 The invoking Service Provider lacks required fields in its metadata representation.

106 The entityID of the invoking Service Provider does not exist in the federation
metadata.

107 The address, or addresses, specified in DiscoverySettings.dsProxies can-

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 16 (17)

not be reached.

108 No errorCallback specified the DiscoverySettings object.

109 No Identity Providers are available for selection. Normally this error occurs when
the Service Provider requirements of its metadata leads to that no matching Identi-
ty Providers are found. Instead of displaying an empty list to “choose” from, the
Discovery Service will treat this as an error, and let the invoking Service Provider
handle the situation.

 ELN-0610-v1.1

www.elegnamnden.se
Postadress Besöksadress Telefon växel E-postadress
171 94 SOLNA Korta gatan 10 010-574 21 00 kansliet@elegnamnden.se
 17 (17)

6 References	
[IdpDisco]

OASIS Committee Specification, Identity Provider Discovery Service Protocol and Profile, March 2008.

[Eid2EntCat]
Entity Categories for the Swedish eID Framework.

[IANA-Lang]

http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry.

7 Changes	between	versions	
Changes between version 1.0 and version 1.1:

• Chapter 3.3, “The Discovery Service and Mobile Devices”, was updated to reflect changes in how mo-
bile devices are handled.

• The code examples of chapter 4, “Integrating the Discovery Service in the Service Provider Application”,
has been updated.

• A number of new JavaScript-properties regarding User Interface-configuration have been added to
chapter 5.3.2, “uiConfig”.

• The JavaScript-property userStateDomain has been removed from chapter 5.3.3, “userStateConfig”.

