-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPiCalculation.cs
248 lines (202 loc) · 6.15 KB
/
PiCalculation.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
using System;
using System.Text;
namespace Elekto.Mathematic
{
/// <summary>
/// Written by Fabrice Bellard on January 8, 1997.
///
/// We use a slightly modified version of the method described by Simon
/// Plouffe in "On the Computation of the n'th decimal digit of various
/// transcendental numbers" (November 1996). We have modified the algorithm
/// to get a running time of O(n^2) instead of O(n^3log(n)^3).
///
/// This program uses mostly integer arithmetic. It may be slow on some
/// hardwares where integer multiplications and divisons must be done
/// by software. We have supposed that 'int' has a size of 32 bits. If
/// your compiler supports 'long long' integers of 64 bits, you may use
/// the integer version of 'MulMod' (see HAS_LONG_LONG).
///
/// O propósito prático é criar um "benchmark" para o poder de CPU e memória.
/// </summary>
public static class PiCalculation
{
private static int MulMod(int a, int b, int m)
{
return (int) ((a*(long) b)%m);
}
/// <summary>
/// return the inverse of x mod y
/// </summary>
private static int InvMod(int x, int y)
{
var u = x;
var v = y;
var c = 1;
var a = 0;
do
{
var q = v/u;
var t = c;
c = a - q*c;
a = t;
t = u;
u = v - q*u;
v = t;
} while (u != 0);
a = a%y;
if (a < 0)
{
a = y + a;
}
return a;
}
/// <summary>
/// return (a^b) mod m
/// </summary>
private static int PowMod(int a, int b, int m)
{
var r = 1;
var aa = a;
while (true)
{
if ((b & 1) != 0)
{
r = MulMod(r, aa, m);
}
b = b >> 1;
if (b == 0)
{
break;
}
aa = MulMod(aa, aa, m);
}
return r;
}
/// <summary>
/// return true if n is prime
/// </summary>
private static bool IsPrime(int n)
{
if ((n%2) == 0)
{
return false;
}
var r = (int) Math.Sqrt(n);
for (var i = 3; i <= r; i += 2)
{
if ((n%i) == 0)
{
return false;
}
}
return true;
}
/// <summary>
/// return the prime number immediatly after n
/// </summary>
private static int NextPrime(int n)
{
do
{
n++;
} while (!IsPrime(n));
return n;
}
private static string CalculateNinePiDigits(int n)
{
var nn = (int) ((n + 20)*Math.Log(10)/Math.Log(2));
double sum = 0;
for (var a = 3; a <= (2*nn); a = NextPrime(a))
{
var vmax = (int) (Math.Log(2*nn)/Math.Log(a));
var av = 1;
for (var i = 0; i < vmax; i++)
{
av = av*a;
}
var s = 0;
var num = 1;
var den = 1;
var v = 0;
var kq = 1;
var kq2 = 1;
int t;
for (var k = 1; k <= nn; k++)
{
t = k;
if (kq >= a)
{
do
{
t = t/a;
v--;
} while ((t%a) == 0);
kq = 0;
}
kq++;
num = MulMod(num, t, av);
t = 2*k - 1;
if (kq2 >= a)
{
if (kq2 == a)
{
do
{
t = t/a;
v++;
} while ((t%a) == 0);
}
kq2 -= a;
}
den = MulMod(den, t, av);
kq2 += 2;
if (v > 0)
{
t = InvMod(den, av);
t = MulMod(t, num, av);
t = MulMod(t, k, av);
for (var i = v; i < vmax; i++)
{
t = MulMod(t, a, av);
}
s += t;
if (s >= av)
{
s -= av;
}
}
}
t = PowMod(10, n - 1, av);
s = MulMod(s, t, av);
sum = (sum + s/(double) av)%1.0;
}
var result = (int) (sum*1e9);
var stringResult = string.Format("{0:D9}", result);
return stringResult;
}
/// <summary>
/// Gets the pi.
/// </summary>
/// <param name="digits">The number of digits.</param>
/// <returns></returns>
public static string GetPi(int digits)
{
if (digits <= 0)
{
throw new ArgumentOutOfRangeException("digits", digits, "Shold be greater than zero.");
}
var result = new StringBuilder("3.", 1024);
for (var i = 0; i < digits; i += 9)
{
var ds = CalculateNinePiDigits(i + 1);
var digitCount = Math.Min(digits - i, 9);
while (ds.Length < 9)
{
ds = "0" + ds;
}
result.Append(ds.Substring(0, digitCount));
}
return result.ToString();
}
}
}