09/05/2024 03:54 about:blank

9‘ http://localhost/dev/wordpressbase/ E
=

Performance

Values are estimated and may vary. The performance score

is calculated directly from these metrics. See calculator.

A 049 50-89 90-100
METRICS Expand view
A First Contentful Paint A Largest Contentful Paint
11.7s 11.7s
Total Blocking Time Cumulative Layout Shift

0 ms 0

A Speed Index

1.7s

. View Treemap

Show audits relevant to: FCP LCP TBT

DIAGNOSTICS

A Enable text compression — Potential savings of 1,662 KiB A

Text-based resources should be served with compression (gzip, deflate or brotli) to minimize total network bytes. Learn

more about text compression.

@ You can enable text compression in your web server configuration.

Transfer Potential

URL
Size Savings
localhost 2,028.7KiB 1,661.8 KiB
...css/frontend.css (localhost) 492.0 KiB 4455 KiB
...jquery/jquery.js (localhost) 278.6 KiB 196.6 KiB
...css/frontend.css (localhost) 191.9 KiB 170.2 KiB
...js/svete-test.js (localhost) 189.1 KiB 150.9 KiB

about:blank 112

http://localhost/dev/wordpressbase/
https://developer.chrome.com/docs/lighthouse/performance/performance-scoring/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/performance-scoring/?utm_source=lighthouse&utm_medium=devtools
https://googlechrome.github.io/lighthouse/scorecalc/#FCP=11705&LCP=11705&TBT=5&CLS=0&SI=11705&TTI=11735&FMP=11705&device=mobile&version=11.6.0
https://developer.chrome.com/docs/lighthouse/performance/uses-text-compression/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/uses-text-compression/?utm_source=lighthouse&utm_medium=devtools
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-includes/js/jquery/jquery.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor-child/assets/js/svete-test.js

09/05/2024 03:54

about:blank

URL

...js/frontend-modules.js (localhost)

...vendor/wp-polyfill.js (localhost)

...jslelements-handlers.js (localhost)

...js/frontend.js (localhost)

...js/frontend.js (localhost)

...css/global.css (localhost)

...dist/i18n.js (localhost)

...uilcore.js (localhost)

...vendor/wp-polyfill-inert.js (localhost)

...vendor/regenerator-runtime.js (localhost)

...dist/hooks.js (localhost)

...css/swiper.css (localhost)

...waypoints/waypoints.js (localhost)

...jslwebpack-pro.runtime.js (localhost)

...js/webpack.runtime.js (localhost)

/dev/wordpressbase/ (localhost)

...hello-elementor/style.css (localhost)

...hello-elementor/theme.css (localhost)

...jslwpa.js (localhost)

about:blank

Transfer
Size

180.9 KiB

125.8 KiB

100.4 KiB

100.8 KiB

56.0 KiB

40.8 KiB

48.7 KiB

48.7 KiB

29.5KiB

246 KiB

19.3 KiB

18.8 KiB

17.5KiB

15.5 KiB

15.1 KiB

12.1 KiB

11.6 KiB

6.4 KiB

4.4 KiB

Potential

Savings

149.2 KiB

99.1 KiB

85.4 KiB

78.9 KiB

45.5 KiB

37.8 KiB

37.2KiB

35.6 KiB

22.5KiB

17.6 KiB

15.0 KiB

14.0 KiB

13.9KiB

11.4 KiB

11.2 KB

8.7 KiB

8.0KiB

4.8 KiB

3.0KiB

A Largest Contentful Paint element — 11,710 ms

This is the largest contentful element painted within the viewport. Learn more about the Largest Contentful Paint element

LCP

Element

Phase
TTFB

Load Delay

% of LCP

5%

0%

Timing
550 ms

0ms

2/12

https://developer.chrome.com/docs/lighthouse/performance/lighthouse-largest-contentful-paint/?utm_source=lighthouse&utm_medium=devtools
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend-modules.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/elements-handlers.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/global.css
http://localhost/dev/wordpressbase/wp-includes/js/dist/i18n.js
http://localhost/dev/wordpressbase/wp-includes/js/jquery/ui/core.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill-inert.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/regenerator-runtime.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/hooks.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/swiper/v8/css/swiper.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/waypoints/waypoints.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/webpack-pro.runtime.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/webpack.runtime.js
http://localhost/dev/wordpressbase/
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor/style.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor/theme.css
http://localhost/dev/wordpressbase/wp-content/plugins/honeypot/includes/js/wpa.js

09/05/2024 03:54

about:blank

about:blank
Phase % of LCP Timing
Load Time 0% 0ms
Render Delay 95% 11,160 ms
A Eliminate render-blocking resources — Potential savings of 4,950 ms A

Resources are blocking the first paint of your page. Consider delivering critical JS/CSS inline and deferring all non-critical
JS/styles. Learn how to eliminate render-blocking resources.

There are a number of WordPress plugins that can help you inline critical assets or defer less important resources.
Beware that optimizations provided by these plugins may break features of your theme or plugins, so you will likely
need to make code changes.

Show 3rd-party resources (1)

Transfer Potential
URL .)
Size Savings

localhost 1,045.4KiB 17,260 ms

...css/wpa.css (localhost) 1.0 KiB 300 ms
...hello-elementor/style.css (localhost) 11.9 KiB 450 ms
...hello-elementor/theme.css (localhost) 6.7 KiB 150 ms
...css/frontend.css (localhost) 192.3 KiB 3,150 ms
...css/swiper.css (localhost) 19.2 KiB 450 ms
...css/post-7.css (localhost) 1.4 KiB 150 ms
...css/frontend.css (localhost) 492.3 KiB 7,500 ms
...css/global.css (localhost) 41.1KiB 750 ms
...css/post-8.css (localhost) 0.6 KiB 150 ms
...jqueryl/jquery.js (localhost) 279.0 KiB 4,200 ms
Google Fonts 1.9 KiB 800 ms
/ess?family=... (fonts.googleapis.com) 1.9 KiB 800 ms
A Reduce unused CSS — Potential savings of 736 KiB ~

Reduce unused rules from stylesheets and defer CSS not used for above-the-fold content to decrease bytes consumed by
network activity. Learn how to reduce unused CSS.

Consider reducing, or switching, the number of WordPress plugins loading unused CSS in your page. To identify
plugins that are adding extraneous CSS, try running code coverage in Chrome DevTools. You can identify the

@ theme/plugin responsible from the URL of the stylesheet. Look out for plugins that have many stylesheets in the list
which have a lot of red in code coverage. A plugin should only enqueue a stylesheet if it is actually used on the
page.

Transfer Potential
URL
Size Savings

localhost 7436 KiB 736.0 KiB

3/12

https://developer.chrome.com/docs/lighthouse/performance/render-blocking-resources/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/search/critical+css/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/search/defer+css+javascript/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/unused-css-rules/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/devtools/coverage/?utm_source=lighthouse&utm_medium=devtools
http://localhost/dev/wordpressbase/wp-content/plugins/honeypot/includes/css/wpa.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor/style.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor/theme.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/swiper/v8/css/swiper.css
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/post-7.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/global.css
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/post-8.css
http://localhost/dev/wordpressbase/wp-includes/js/jquery/jquery.js
https://fonts.googleapis.com/css?family=Roboto%3A100%2C100italic%2C200%2C200italic%2C300%2C300italic%2C400%2C400italic%2C500%2C500italic%2C600%2C600italic%2C700%2C700italic%2C800%2C800italic%2C900%2C900italic%7CRoboto+Slab%3A100%2C100italic%2C200%2C200italic%2C300%2C300italic%2C400%2C400italic%2C500%2C500italic%2C600%2C600italic%2C700%2C700italic%2C800%2C800italic%2C900%2C900italic&display=swap&ver=6.5.3

09/05/2024 03:54 about:blank

Transfer Potential
URL

Size Savings

...css/frontend.css (localhost) 492.0 KiB 492.0 KiB
...css/frontend.css (localhost) 191.9 KiB 185.0 KiB
...css/global.css (localhost) 40.8 KiB 40.8 KiB
...css/swiper.css (localhost) 18.8 KiB 18.2 KiB

A Reduce unused JavaScript — Potential savings of 652 KiB N

Reduce unused JavaScript and defer loading scripts until they are required to decrease bytes consumed by network activity.
Learn how to reduce unused JavaScript.

Consider reducing, or switching, the number of WordPress plugins loading unused JavaScript in your page. To
identify plugins that are adding extraneous JS, try running code coverage in Chrome DevTools. You can identify the

@ theme/plugin responsible from the URL of the script. Look out for plugins that have many scripts in the list which
have a lot of red in code coverage. A plugin should only enqueue a script if it is actually used on the page.

Transfer Potential
URL . .
Size Savings

localhost 1,129.0KiB 551.8 KiB

...jquery/jquery.js (localhost) 278.6 KiB 152.4 KiB
...js/svete-test.js (localhost) 189.1 KiB 102.5 KiB
.../node_modules/svelte/src/runtime/internal/dom.js 29.8 KiB 21.3 KiB
.../node_modules/svelte/src/runtime/internal/Component.js 14.7 KiB 9.0 KiB
.../node_modules/svelte/src/runtime/internal/transitions.js 10.6 KiB 8.7 KiB
.../node_modules/svelte/src/runtime/internal/dev.js 9.0 KiB 5.8 KiB
.../node_modules/svelte/src/runtime/internal/utils.js 6.8 KiB 5.1 KiB
...js/frontend-modules.js (localhost) 180.9 KiB 76.0 KiB
...jslelements-handlers.js (localhost) 100.4 KiB 48.2 KiB
...vendor/wp-polyfill.js (localhost) 125.8 KiB 40.8 KiB
...js/frontend.js (localhost) 100.8 KiB 40.8 KiB
...ui/core.js (localhost) 48.7 KiB 39.0KiB
...js/frontend.js (localhost) 56.0 KiB 30.5KiB
...dist/i18n.js (localhost) 48.7 KiB 21.6 KiB
Unattributable 173.8 KiB 100.3 KiB
chrome-extension://bgnkhhnnamicmpeenaelnjfhikgbkllg/pages/content-script-start.js 173.8 KiB 100.3 KiB
A Minify JavaScript — Potential savings of 580 KiB ~

Minifying JavaScript files can reduce payload sizes and script parse time. Learn how to minify JavaScript.

@ A number of WordPress plugins can speed up your site by concatenating, minifying, and compressing your scripts.
You may also want to use a build process to do this minification up front if possible.

about:blank 4/12

https://developer.chrome.com/docs/lighthouse/performance/unused-javascript/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/devtools/coverage/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/unminified-javascript/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/search/minify+javascript/?utm_source=lighthouse&utm_medium=devtools
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/global.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/swiper/v8/css/swiper.css
http://localhost/dev/wordpressbase/wp-includes/js/jquery/jquery.js
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor-child/assets/js/svete-test.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend-modules.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/elements-handlers.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-includes/js/jquery/ui/core.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/i18n.js

09/05/2024 03:54 about:blank

- URL Transfer Potential]
Size Savings
localhost 1,250.6 KiB 466.4 KiB
...jquery/jquery.js (localhost) 278.6 KiB 142.4 KiB
...js/svete-test.js (localhost) 189.1 KiB 73.6 KiB
...vendor/wp-polyfill.js (localhost) 125.8 KiB 39.8 KiB
...js/frontend-modules.js (localhost) 180.9 KiB 36.9 KiB
...dist/i18n.js (localhost) 48.7 KiB 34.0 KiB
...js/frontend.js (localhost) 100.8 KiB 29.2 KiB
...vendor/wp-polyfill-inert.js (localhost) 29.5KiB 18.3 KiB
...Uilcore.js (localhost) 48.7 KiB 17.7 KiB
...jslelements-handlers.js (localhost) 100.4 KiB 17.2 KiB
...vendor/regenerator-runtime.js (localhost) 24.6 KiB 13.7 KiB
...js/frontend.js (localhost) 56.0 KiB 12.1 KiB
...dist/hooks.js (localhost) 19.3KiB 11.7KiB
...jslwebpack.runtime.js (localhost) 15.1 KiB 74 KB
...js/webpack-pro.runtime.js (localhost) 15.5 KiB 6.8 KiB
...waypoints/waypoints.js (localhost) 17.5KiB 5.5 KiB
Unattributable 231.3 KiB 114.0 KiB
chrome-extension://bgnkhhnnamicmpeenaelnjfhikgbkllg/pages/content-script-start.js 173.8 KiB 88.4 KiB
chrome-extension://bgnkhhnnamicmpeenaelnjfhikgbkllg/pages/subscribe. js 37.5KiB 17.2 KiB
chrome-extension://bgnkhhnnamicmpeenaelnjfhikgbkllg/pages/content-script-end.js 20.0 KiB 8.4 KiB
A Minify CSS — Potential savings of 79 KiB ~
Minifying CSS files can reduce network payload sizes. Learn how to minify CSS.
A number of WordPress plugins can speed up your site by concatenating, minifying, and compressing your styles.
@ You may also want to use a build process to do this minification up-front if possible.
URL Transfer Potential
Size Savings
localhost 715.7KiB 78.6 KiB
...css/frontend.css (localhost) 492.3 KiB 47.2 KiB
...css/frontend.css (localhost) 192.3 KiB 22.5KiB
...hello-elementor/style.css (localhost) 11.9 KiB 5.9KiB

about:blank 5/12

https://developer.chrome.com/docs/lighthouse/performance/unminified-css/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/search/minify+css/?utm_source=lighthouse&utm_medium=devtools
http://localhost/dev/wordpressbase/wp-includes/js/jquery/jquery.js
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor-child/assets/js/svete-test.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend-modules.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/i18n.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill-inert.js
http://localhost/dev/wordpressbase/wp-includes/js/jquery/ui/core.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/elements-handlers.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/regenerator-runtime.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/hooks.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/webpack.runtime.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/webpack-pro.runtime.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/waypoints/waypoints.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor/style.css

09/05/2024 03:54 about:blank

- URL Transfer Potential]

Size Savings
...css/swiper.css (localhost) 19.2 KiB 3.0KiB

Serve static assets with an efficient cache policy — 25 resources found A

Along cache lifetime can speed up repeat visits to your page. Learn more about efficient cache policies.
@ Read about Browser Caching_in WordPress.

URL Cache Transfer
TTL Size
localhost 2,026 KiB
...css/frontend.css (localhost) None 492 KiB
...jqueryl/jquery.js (localhost) None 279 KiB
...css/frontend.css (localhost) None 192 KiB
...js/svete-test.js (localhost) None 189 KiB
...js/frontend-modules.js (localhost) None 181 KiB
...vendor/wp-polyfill.js (localhost) None 126 KiB
...jslfrontend.js (localhost) None 101 KiB
...jslelements-handlers.js (localhost) None 101 KiB
...js/frontend.js (localhost) None 56 KiB
...dist/i18n.js (localhost) None 49 KiB
...ui/core.js (localhost) None 49 KiB
...css/global.css (localhost) None 41 KiB
...vendor/wp-polyfill-inert.js (localhost) None 30 KiB
...vendor/regenerator-runtime.js (localhost) None 25 KiB
...dist/hooks.js (localhost) None 20 KiB
...css/swiper.css (localhost) None 19 KiB
...waypoints/waypoints.js (localhost) None 18 KiB
...js/webpack-pro.runtime.js (localhost) None 16 KiB
...js/webpack.runtime.js (localhost) None 15 KiB
...hello-elementor/style.css (localhost) None 12 KiB
...hello-elementor/theme.css (localhost) None 7 KiB
...jslwpa.js (localhost) None 5KiB

about:blank 6/12

https://developer.chrome.com/docs/lighthouse/performance/uses-long-cache-ttl/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/support/article/optimization/?utm_source=lighthouse&utm_medium=devtools#browser-caching
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/swiper/v8/css/swiper.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-includes/js/jquery/jquery.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor-child/assets/js/svete-test.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend-modules.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/elements-handlers.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/i18n.js
http://localhost/dev/wordpressbase/wp-includes/js/jquery/ui/core.js
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/global.css
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill-inert.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/regenerator-runtime.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/hooks.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/swiper/v8/css/swiper.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/waypoints/waypoints.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/webpack-pro.runtime.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/webpack.runtime.js
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor/style.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor/theme.css
http://localhost/dev/wordpressbase/wp-content/plugins/honeypot/includes/js/wpa.js

09/05/2024 03:54

about:blank

about:blank
Cache Transfer
URL

TTL Size

...css/post-7.css (localhost) None 1 KiB

...css/wpa.css (localhost) None 1KiB

...css/post-8.css (localhost) None 1KiB
Avoid serving legacy JavaScript to modern browsers — Potential savings of 0 KiB A

Polyfills and transforms enable legacy browsers to use new JavaScript features. However, many aren't necessary for
modern browsers. For your bundled JavaScript, adopt a modern script deployment strategy using module/nomodule feature
detection to reduce the amount of code shipped to modern browsers, while retaining support for legacy browsers. Learn how
to use modern JavaScript

URL Potential Savings

localhost 0.2 KiB

...vendor/wp-polyfill-inert.js (localhost) 0.2 KiB
wp-polyfill-inert.js:g @babel/plugin-transform-classes
...vendor/regenerator-runtime.js (localhost) 0.1 KiB
| regenerator-runtime.js:151 I @babel/plugin-transform-regenerator
Initial server response time was short — Root document took 550 ms A

Keep the server response time for the main document short because all other requests depend on it. Learn more about the

Time to First Byte metric.

@ Themes, plugins, and server specifications all contribute to server response time. Consider finding a more optimized
theme, carefully selecting an optimization plugin, and/or upgrading your server.

URL Time Spent

localhost

550 ms

/dev/wordpressbase/ (localhost) 550 ms

Avoids enormous network payloads — Total size was 2,072 KiB N

Large network payloads cost users real money and are highly correlated with long load times. Learn how to reduce payload

sizes.
@ Consider showing excerpts in your post lists (e.g. via the more tag), reducing the number of posts shown on a given

page, breaking your long posts into multiple pages, or using a plugin to lazy-load comments.

Transfer
URL .
Size

localhost m 1,767.5 KiB

...css/frontend.css (localhost) 492.3 KiB
...jqueryl/jquery.js (localhost) 279.0 KiB
...css/frontend.css (localhost) 192.3 KiB

712

https://web.dev/articles/publish-modern-javascript?utm_source=lighthouse&utm_medium=devtools
https://web.dev/articles/publish-modern-javascript?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/time-to-first-byte/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/time-to-first-byte/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/total-byte-weight/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/total-byte-weight/?utm_source=lighthouse&utm_medium=devtools
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/post-7.css
http://localhost/dev/wordpressbase/wp-content/plugins/honeypot/includes/css/wpa.css
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/post-8.css
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill-inert.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/regenerator-runtime.js
http://localhost/dev/wordpressbase/
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-includes/js/jquery/jquery.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/css/frontend.css

09/05/2024 03:54

about:blank

about:blank

URL Transfer

Size

...jsIsvete-test.js (localhost) 189.4 KiB

...js/frontend-modules.js (localhost) 181.2 KiB

...vendor/wp-polyfill.js (localhost) 126.1 KiB

...js/frontend.js (localhost) 101.1 KiB

...jslelements-handlers.js (localhost) 100.7 KiB

...js/frontend.js (localhost) 56.3 KiB

...dist/i18n.js (localhost) 49.1 KiB
Avoids an excessive DOM size — 43 elements ~

Alarge DOM will increase memory usage, cause longer style calculations, and produce costly layout reflows. Learn how to
avoid an excessive DOM size.

Statistic Element

Total
DOM
Elements

input.svelte-1gvrw7w
Maximum
DOM
Depth

Maximum
Child
Elements

body.home.page-template-default.page.page-id-8.elementor-default.elementor-kit-7.elementor-page.elementor-page-8.e--ua-blink.e--ua-chror

Avoid chaining critical requests — 26 chains found ~

The Critical Request Chains below show you what resources are loaded with a high priority. Consider reducing the length of

chains, reducing the download size of resources, or deferring the download of unnecessary resources to improve page load.

Learn how to avoid chaining_critical requests.

Maximum critical path latency: 617.501 ms
Initial Navigation
/dev/wordpressbase/ (localhost)

...css/wpa.css (localhost) - 8.891 ms, 1.02 KiB
...hello-elementor/style.css (localhost) - 11.71 ms, 11.92 KiB
...hello-elementor/theme.css (localhost) - 12.359 ms, 6.66 KiB
...css/frontend.css (localhost) - 13.534 ms, 192.25 KiB
...css/swiper.css (localhost) - 12.574 ms, 19.15 KiB
...css/post-7.css (localhost) - 12.023 ms, 1.44 KiB
...css/frontend.css (localhost) - 14.185 ms, 492.33 KiB
...css/global.css (localhost) - 16.448 ms, 41.07 KiB

8/12

https://developers.google.com/web/fundamentals/performance/rendering/reduce-the-scope-and-complexity-of-style-calculations?utm_source=lighthouse&utm_medium=devtools
https://developers.google.com/speed/articles/reflow?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/dom-size/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/dom-size/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/critical-request-chains/?utm_source=lighthouse&utm_medium=devtools
http://localhost/dev/wordpressbase/
http://localhost/dev/wordpressbase/wp-content/plugins/honeypot/includes/css/wpa.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor/style.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor/theme.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/swiper/v8/css/swiper.css
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/post-7.css
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/css/frontend.css
http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/global.css
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor-child/assets/js/svete-test.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend-modules.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/elements-handlers.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/i18n.js

09/05/2024 03:54

about:blank

about:blank

...css/post-8.css (localhost) - 16.959 ms, 0.55 KiB
/css?family=... (fonts.googleapis.com) - 57.754 ms, 1.90 KiB
...jqueryl/jquery.js (localhost) - 18.477 ms, 278.96 KiB
...jslwpa.js (localhost) - 17.077 ms, 4.75 KiB

...jsIsvete-test.js (localhost) - 17.805 ms, 189.40 KiB
...jslwebpack-pro.runtime.js (localhost) - 17.021 ms, 15.83 KiB
...Jslwebpack.runtime.js (localhost) - 20.628 ms, 15.46 KiB
...js/frontend-modules.js (localhost) - 22.405 ms, 181.21 KiB
...vendor/wp-polyfill-inert.js (localhost) - 21.698 ms, 29.79 KiB
...vendor/regenerator-runtime.js (localhost) - 21.63 ms, 24.93 KiB
...vendor/wp-polyfill.js (localhost) - 21.871 ms, 126.15 KiB
...dist/hooks.js (localhost) - 21.492 ms, 19.58 KiB
...dist/i18n.js (localhost) - 24.231 ms, 49.05 KiB
...js/frontend.js (localhost) - 24.452 ms, 56.29 KiB
...waypoints/waypoints.js (localhost) - 2.948 ms, 17.86 KiB
...ui/core.js (localhost) - 2.617 ms, 49.00 KiB

...jslfrontend.js (localhost) - 2.808 ms, 101.13 KiB

...jslelements-handlers.js (localhost) - 3.585 ms, 100.68 KiB

JavaScript execution time — 0.2's

Consider reducing the time spent parsing, compiling, and executing JS. You may find delivering smaller JS payloads helps
with this. Learn how to reduce Javascript execution time.

Total CPU

URL Time Script Evaluation Script Parse
localhost 259 ms 100 ms 57 ms
/dev/wordpressbase/ (localhost) 180 ms 37 ms 48 ms
...jquery/jquery.js (localhost) 79 ms 64 ms 9ms
Unattributable 83 ms 3ms 0ms
Unattributable 83 ms 3ms 0ms

Minimizes main-thread work — 0.5 s

Consider reducing the time spent parsing, compiling and executing JS. You may find delivering smaller JS payloads helps

with this. Learn how to minimize main-thread work
Category Time Spent
Script Evaluation 197 ms
Other 118 ms
Script Parsing & Compilation 103 ms
Style & Layout 63 ms
Parse HTML & CSS 59 ms
Rendering 2ms

9/12

http://localhost/dev/wordpressbase/wp-content/uploads/elementor/css/post-8.css
https://fonts.googleapis.com/css?family=Roboto%3A100%2C100italic%2C200%2C200italic%2C300%2C300italic%2C400%2C400italic%2C500%2C500italic%2C600%2C600italic%2C700%2C700italic%2C800%2C800italic%2C900%2C900italic%7CRoboto+Slab%3A100%2C100italic%2C200%2C200italic%2C300%2C300italic%2C400%2C400italic%2C500%2C500italic%2C600%2C600italic%2C700%2C700italic%2C800%2C800italic%2C900%2C900italic&display=swap&ver=6.5.3
http://localhost/dev/wordpressbase/wp-includes/js/jquery/jquery.js
http://localhost/dev/wordpressbase/wp-content/plugins/honeypot/includes/js/wpa.js
http://localhost/dev/wordpressbase/wp-content/themes/hello-elementor-child/assets/js/svete-test.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/webpack-pro.runtime.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/webpack.runtime.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend-modules.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill-inert.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/regenerator-runtime.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/hooks.js
http://localhost/dev/wordpressbase/wp-includes/js/dist/i18n.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/lib/waypoints/waypoints.js
http://localhost/dev/wordpressbase/wp-includes/js/jquery/ui/core.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor/assets/js/frontend.js
http://localhost/dev/wordpressbase/wp-content/plugins/elementor-pro/assets/js/elements-handlers.js
https://developer.chrome.com/docs/lighthouse/performance/bootup-time/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/mainthread-work-breakdown/?utm_source=lighthouse&utm_medium=devtools
http://localhost/dev/wordpressbase/
http://localhost/dev/wordpressbase/wp-includes/js/jquery/jquery.js

09/05/2024 03:54 about:blank

Minimize third-party usage — Third-party code blocked the main thread for 0 ms A

Third-party code can significantly impact load performance. Limit the number of redundant third-party providers and try to
load third-party code after your page has primarily finished loading. Learn how to minimize third-party impact.

Third-Party Transfer Size Main-Thread Blocking Time

Google Fonts 2 KiB 0ms
/css?family=... (fonts.googleapis.com) 2 KiB 0Oms

Avoid long main-thread tasks — 2 long tasks found ~

Lists the longest tasks on the main thread, useful for identifying worst contributors to input delay. Learn how to avoid long
main-thread tasks

URL Start Time Duration

localhost 161 ms
/dev/wordpressbase/ (localhost) 601 ms 102 ms

...vendor/wp-polyfill-inert.js (localhost) 11,705 ms 59 ms

More information about the performance of your application. These numbers don't directly affect the Performance score.

PASSED AUDITS (22) Hide

Properly size images A

Serve images that are appropriately-sized to save cellular data and improve load time. Learn how to size images.

Upload images directly through the media library to ensure that the required image sizes are available, and then
insert them from the media library or use the image widget to ensure the optimal image sizes are used (including

@ those for the responsive breakpoints). Avoid using Full Size images unless the dimensions are adequate for their
usage. Learn More.

Defer offscreen images ~

Consider lazy-loading offscreen and hidden images after all critical resources have finished loading to lower time to

interactive. Learn how to defer offscreen images.

@ Install a lazy-load WordPress plugin that provides the ability to defer any offscreen images, or switch to a theme that
provides that functionality. Also consider using the AMP plugin.

Efficiently encode images A
Optimized images load faster and consume less cellular data. Learn how to efficiently encode images.

@ Consider using an image optimization WordPress plugin that compresses your images while retaining quality.

Serve images in next-gen formats A

Image formats like WebP and AVIF often provide better compression than PNG or JPEG, which means faster downloads
and less data consumption. Learn more about modern image formats.

@ Consider using the Performance Lab plugin to automatically convert your uploaded JPEG images into WebP,

wherever supported.

about:blank 10/12

https://developers.google.com/web/fundamentals/performance/optimizing-content-efficiency/loading-third-party-javascript/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/articles/long-tasks-devtools?utm_source=lighthouse&utm_medium=devtools
https://web.dev/articles/long-tasks-devtools?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/performance-scoring/?utm_source=lighthouse&utm_medium=devtools
https://fonts.googleapis.com/css?family=Roboto%3A100%2C100italic%2C200%2C200italic%2C300%2C300italic%2C400%2C400italic%2C500%2C500italic%2C600%2C600italic%2C700%2C700italic%2C800%2C800italic%2C900%2C900italic%7CRoboto+Slab%3A100%2C100italic%2C200%2C200italic%2C300%2C300italic%2C400%2C400italic%2C500%2C500italic%2C600%2C600italic%2C700%2C700italic%2C800%2C800italic%2C900%2C900italic&display=swap&ver=6.5.3
http://localhost/dev/wordpressbase/
http://localhost/dev/wordpressbase/wp-includes/js/dist/vendor/wp-polyfill-inert.js
https://developer.chrome.com/docs/lighthouse/performance/uses-responsive-images/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/support/article/media-library-screen/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/support/article/inserting-images-into-posts-and-pages/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/offscreen-images/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/search/lazy+load/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/amp/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/uses-optimized-images/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/search/optimize+images/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/uses-webp-images/?utm_source=lighthouse&utm_medium=devtools
https://wordpress.org/plugins/performance-lab/?utm_source=lighthouse&utm_medium=devtools

09/05/2024 03:54

about:blank

about:blank

Preconnect to required origins A

Warnings: A “<link rel=preconnect>" was found for "https://fonts.gstatic.com" but was not used by the browser. Only use

“preconnect” for important origins that the page will certainly request.

Consider adding preconnect or dns-prefetch resource hints to establish early connections to important third-party origins.
Learn how to preconnect to required origins.

Avoid multiple page redirects N

Redirects introduce additional delays before the page can be loaded. Learn how to avoid page redirects.

Preload key requests ~

Consider using <link rel=preload> to prioritize fetching resources that are currently requested later in page load. Learn

how to preload key requests.

Use HTTP/2 A~

HTTP/2 offers many benefits over HTTP/1.1, including binary headers and multiplexing. Learn more about HTTP/2.

Use video formats for animated content N

Large GIFs are inefficient for delivering animated content. Consider using MPEG4/WebM videos for animations and
PNG/WebP for static images instead of GIF to save network bytes. Learn more about efficient video formats

@ Consider uploading your GIF to a service which will make it available to embed as an HTMLS5 video.

Remove duplicate modules in JavaScript bundles A

Remove large, duplicate JavaScript modules from bundles to reduce unnecessary bytes consumed by network activity.
TBT

Preload Largest Contentful Paint image A

If the LCP element is dynamically added to the page, you should preload the image in order to improve LCP. Learn more
about preloading LCP elements.

User Timing marks and measures ~

Consider instrumenting your app with the User Timing API to measure your app's real-world performance during key user
experiences. Learn more about User Timing_marks.

All text remains visible during webfont loads N

Leverage the font-display CSS feature to ensure text is user-visible while webfonts are loading. Learn more about font-

display. (FCP)

Lazy load third-party resources with facades ~

Some third-party embeds can be lazy loaded. Consider replacing them with a facade until they are required. Learn how to
defer third-parties with a facade.

Largest Contentful Paint image was not lazily loaded N

Above-the-fold images that are lazily loaded render later in the page lifecycle, which can delay the largest contentful paint.
Learn more about optimal lazy. loading.

Avoid large layout shifts ~

11/12

https://developer.chrome.com/docs/lighthouse/performance/uses-rel-preconnect/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/redirects/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/uses-rel-preload/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/uses-rel-preload/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/best-practices/uses-http2/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/efficient-animated-content/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/articles/optimize-lcp?utm_source=lighthouse&utm_medium=devtools#optimize_when_the_resource_is_discovered
https://web.dev/articles/optimize-lcp?utm_source=lighthouse&utm_medium=devtools#optimize_when_the_resource_is_discovered
https://developer.chrome.com/docs/lighthouse/performance/user-timings/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/font-display/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/font-display/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/third-party-facades/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/third-party-facades/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/articles/lcp-lazy-loading?utm_source=lighthouse&utm_medium=devtools

09/05/2024 03:54

about:blank

about:blank

These are the largest layout shifts observed on the page. Each table item represents a single layout shift, and shows the
element that shifted the most. Below each item are possible root causes that led to the layout shift. Some of these layout
shifts may not be included in the CLS metric value due to windowing. Learn how to improve CLS

Uses passive listeners to improve scrolling performance A

Consider marking your touch and wheel event listeners as passive to improve your page's scroll performance. Learn more
about adopting_passive event listeners.

Avoids document.write() N

For users on slow connections, external scripts dynamically injected via document.write() can delay page load by tens of

seconds. Learn how to avoid document.write().

Avoid non-composited animations A

Animations which are not composited can be janky and increase CLS. Learn how to avoid non-composited animations

Image elements have explicit width and height N

Set an explicit width and height on image elements to reduce layout shifts and improve CLS. Learn how to set image

dimensions

Has a <meta name="viewport"> tag with width or initial-scale A

A <meta name="viewport"> not only optimizes your app for mobile screen sizes, but also prevents a 300 millisecond delay
to user input. Learn more about using the viewport meta tag.

Page didn't prevent back/forward cache restoration A

Many navigations are performed by going back to a previous page, or forwards again. The back/forward cache (bfcache)

can speed up these return navigations. Learn more about the bfcache

[Captured at May 9, 2024, 3:00 Emulated Moto G Power with [l Single page session
AM EDT Lighthouse 11.6.0
[l 'nitial page load Il S'ow.4G throttiing Il Using.Chromium.124.0.0.0.with

Generated by Lighthouse 11.6.0 | File an issue

12/12

https://github.com/GoogleChrome/Lighthouse/issues
https://web.dev/articles/cls?utm_source=lighthouse&utm_medium=devtools#what_is_cls
https://web.dev/articles/optimize-cls?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/best-practices/uses-passive-event-listeners/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/best-practices/uses-passive-event-listeners/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/best-practices/no-document-write/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/non-composited-animations/?utm_source=lighthouse&utm_medium=devtools
https://web.dev/articles/optimize-cls?utm_source=lighthouse&utm_medium=devtools#images_without_dimensions
https://web.dev/articles/optimize-cls?utm_source=lighthouse&utm_medium=devtools#images_without_dimensions
https://developer.chrome.com/blog/300ms-tap-delay-gone-away/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/blog/300ms-tap-delay-gone-away/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/pwa/viewport/?utm_source=lighthouse&utm_medium=devtools
https://developer.chrome.com/docs/lighthouse/performance/bf-cache/?utm_source=lighthouse&utm_medium=devtools

