11/14/23, 4:05 PM MPLAB XC16 and XC-DSC DWAREF Differences - Development Tools - Microchip Confluence

Pages /... / Tools Tips and Tricks

MPLAB XC16 and XC-DSC DWARF Differences

Created by Calum Wilkie, last modified less than a minute ago

Although XCxx is based upon GCC and uses the common GCC DWARF generation code, the ELF container that holds
this information has some oddities. These oddities are mostly related to the way we store data in the ELF file. Here we
attempt to highlight these differences so that our DWAREF files may be properly decoded.

In this tutorial | will be using the XCxx compiler and some of the binary utilities included with the compiler to inspect
resulting object files. | will also be using the unix tool 'od' (octal dump) to dump raw files; any other appropriate tool (for
Windows users) can be substituted.

XC16 vs XC-DSC

In this document | will refer to XC16 and XC-DSC together or interchangeably. XC-DSC is the successor to XC16
targeting Microchip DSC devices. Any command line that mentions xc16 or xc-dsc, can be substituted with the other
command line.

dsPIC30F and similar devices

ELF Sections

Most ELF sections are padded with null bytes. This is usually thought of for 'Flash' type sections, so that we can fit a
24-bit word into a 16-bit address hole. An oddity of the architecture is that the address increments by 2 for each
program word, and each program word is 24-bits wide. Therefore a word in program memory is represented with 4
bytes of data. For example, the program word 0x112233 is encoded as 0x112233xx, where xx (the padding byte) is
typically null, although a customer might specify a different padding byte value with a command option.

To allow for address compatibility between data memory and program memory, each word in data memory (16 bits) is
also represented with 4 bytes of data. This is accomplished by inserting a padding byte between each original data byte.
For example, the data word 0x1122 is encoded as 0x11002200. All data sections are represented in this way, including
DWARF debugging sections.

If an external tool is used to interpret DWARF debugging information for PIC24, dsPIC30F, or dsPIC33C/E/F
devices, then the padding bytes must be recognized and discarded.

A Short Example

Consider this short example (dwarf.c):
int an_int = 0xFO00D;
char *a string = "This is a string";
main() {}

In this example, an_int and a_string are data objects, while the value pointed to by a string is usually located in
Flash. main () exists solely to get a linked executable.

Compiling this file (with -save-temps) will leave behind dwarf.o and a.out (and some other detritus); be sure to use -g to
get relevant DWARF information. We can use xc16-objdump to inspect both the object file and executable file (these
are both the same kind of ELF object file). The tool xc16-readelf can be used to inspect these ELF files in a more
specific way and also to decode the DWARF information into a more readable form. For our purposes today, this will
not be as helpful.

| compiled this file with: xcl16-gcc -g -save-temps dwarf.c toproduce dwarf.o and a.out | then use xc16-
objdump -h to display the section information for the object file:

dwarf.o: file format elf32-pic30
Sections:

https://confluence.microchip.com/display/DTS/MPLAB+XC16+and+XC-DSC+DWARF+Differences 1/4


https://confluence.microchip.com/collector/pages.action?key=DTS&src=breadcrumbs-collector
https://confluence.microchip.com/display/DTS/Tools+Tips+and+Tricks?src=breadcrumbs-parent
https://confluence.microchip.com/display/~C11401
https://confluence.microchip.com/pages/diffpagesbyversion.action?pageId=525284123&selectedPageVersions=2&selectedPageVersions=3
https://confluence.microchip.com/display/DTS/MPLAB+XC16+and+XC-DSC+DWARF+Differences

11/14/23, 4:05 PM

Idx Name Size VMA LMA File off Algn
0 .text 00000006 00000000 00000000 00000034 2**1
CONTENTS, ALLOC, LOAD, CODE
1 .data 00000000 00000000 00000000 00000040 2**1
ALLOC, LOAD, DATA
2 .bss 00000000 00000000 00000000 00000040 2**1
ALLOC

3 .debug _abbrev 0000004e 00000000 00000000 00000040 2**0
CONTENTS, DEBUGGING

4 .debug info 000000bb 00000000 00000000 000000dc 2**0
CONTENTS, RELOC, DEBUGGING

5 .debug line 00000033 00000000 00000000 00000252 2**0
CONTENTS, RELOC, DEBUGGING

6 .ndata 00000004 00000000 00000000 0000028 2**1
CONTENTS, ALLOC, LOAD, RELOC, DATA, NEAR
7 .const 00000012 00000000 00000000 000002cO 2**1

CONTENTS, ALLOC, LOAD, READONLY, PSV, PAGE

8 .debug frame 0000002e 00000000 00000000 000002e4 2**0
CONTENTS, RELOC, DEBUGGING

9 .debug pubnames 00000033 00000000 00000000 00000340 2**0
CONTENTS, RELOC, DEBUGGING

10 .debug _aranges 00000018 00000000 00000000 000003a6 2**0
CONTENTS, RELOC, DEBUGGING

11 .debug_str 00000000 00000000 00000000 000003d6 2**0
DEBUGGING

12 ¢330 info 00000000 00000000 00000000 000003d6 2**0
DEBUGGING

13  c30 _signature 00000006 00000000 00000000 000003d6 2**0
CONTENTS, DEBUGGING

We can use the options -s and - <name> to dump the raw data for a particular section. | will dump the data for
section .ndata (a near data section which should contain an _int) and . const (the flash const section which should

contain the data for our string):

dwarf.o: file format elf32-pic30
Contents of section .ndata:

0000 0000
dwarf.o: file format elf32-pic30

Contents of section .const:
0000 54686973 20697320 61207374 72696e67 This is a string
0010 0000

I have high-lit the value for an_int; the string is quite visible.

The 'Flle off' output from xc16-objdump gives the raw offset for the data for each file. Using a hex editor, or od (octal

MPLAB XC16 and XC-DSC DWAREF Differences - Development Tools - Microchip Confluence

dump), we can inspect the raw data at each offset. Here is the offset for the . ndata section; the addresses are in hex

and line is displayed in single byte hex and single byte (escaped) ASCII, | have highlighted the raw data starting at

0x2B8 (there are 4 bytes):

00002b0 04 00 00 00 01 00 01 OO0 00 00 00 00
004 NO \NO \O 001 \NO 001 NO AN\r \O 360 \NO \NO \NO \O \O

And for the . const section:

00002c0 00 00 00 00 00 00 00 00
T \O h \O i \O s \O \O i \O s \O \O
00002d0 61 00 20 00 73 00 74 00 72 00 69 00 6e 00 67 00
a \O \O s \O t \O r \O i \O n \O g \O
000020 00 00 00 00 10 00 0O OO0 00 o0O OO0 00 ff 00 f£ff 00

N0 N0 \NO N0 020 \NO NO \NO \NO NO \NO \O 377 \O 377 \O

https://confluence.microchip.com/display/DTS/MPLAB+XC16+and+XC-DSC+DWARF+Differences

2/4



11/14/23, 4:05 PM MPLAB XC16 and XC-DSC DWAREF Differences - Development Tools - Microchip Confluence
In each case, the real data is followed by a byte of padding (in green).

The content for a.out (the linked executable) is similar, but addresses have been filled in.

DWARF Content

How does this relate to the DWARF content? DWAREF information is content, like any other, and is stored as ELF
sections in a similar way.

debug_abbrev:

Contains padding bytes:

0000040 01 00 11 00 01 00
001 \O 021 \O 001 \O

N
ul

00 08 00 13 00 Ob 00 03 00
N0 \b \O 023 \O A\v \0 003 \O

o°

debug_info:
Hard to see, but ... contains padding bytes:

0000040 0Ob 00 49 00 13 00 00 00O 00 00 00 00 b7 00 00 00
\v  \O I N0 023 NO NO NO NO NO NO NO 267 \O \O \O

00000e0 0o 00 00 00 02 OO 00O 00 O©0O 00O OO0 00O 00 00 00 o0
\NO \NO \NO \O 002 \NO \NO \NO \NO \NO \NO \NO \NO \NO \O \O
00000f0 04 00 01 00 47 00 4e 00 55 00 20 00 43 00 20 0O
004 \O 001 \O G \O N \O U \O \ 0 c \O \O
and so on...

Comparing Raw data with xc16-readelf

Using xc16-readelf to dump the . debug info section into a readable form, | will highlight one particular abbreviation:

<1><62>: Abbrev Number: 2 (DW_TAG subprogram)

DW AT external 1

DW AT name : main

DW AT decl file 1

DW AT decl line H

DW AT type : <79>

DW AT low pcC : 00

DW AT high pc : 00

DW AT frame base : 1 byte block: 5e (DW_OP regld)
<1><79>: Abbrev Number: 3 (DW_TAG base type)

DW AT byte size HE

DW AT encoding 5 (signed)

DW AT name : int

This abbreviation is located at offset 0x62 from the start of the .debug info section. This offset is in 'unpadded’
bytes. To calculate the actual file offset, we can start with the file offset for the section (0xDC). The location of this
entry is 0x62 unpadded bytes from the start of the section, or file offset 0xXDC+(0x62*) == 0x1A0. Here is some of the
raw, with padding, data from that area of the file:

00001a0 00 00 6d 00 61 00 69 00 6e 00 00 0O 00
002 \0 001 \O \O \O \O \O \0 001 \O
00001b0 00 0o 00 00 00 00 OO 00 00 00 00 0O OO0 ©0O0
\a \O y N0 N0 N0 \NO NO N0 NO NO \NO NO \NO NO \O
00001cO o 00 00 00 00 00 00 00 00 00 01 00 b5e 00 03 0O

NO N0 N0 NO \NO NO \NO \NO \NO \O 001 \O ~ N0 003 \O

Without going to the specifics of the format, or knowing much about the sizes of each element, we can see roughly how
it all lines up. Squint, to remove the padding, and you can find each of the values (high-lit above to help with the

https://confluence.microchip.com/display/DTS/MPLAB+XC16+and+XC-DSC+DWARF+Differences 3/4



11/14/23, 4:05 PM MPLAB XC16 and XC-DSC DWAREF Differences - Development Tools - Microchip Confluence
squinting)!

Most integers are stored in SLEB128 or ULEB128, which stores values in a variable length. The value is chunked into
7-bit quantities and emitted in least endian form; if the remaining bits are all 0 we stop emitting the 7-bit chunks, if there
is more data to follow we set the high-bit in the 8-bit value. le, the value 0x79 would be encoded in 1 byte (0x79) but

the value 0x80 would be encoded in two bytes (0x80 0x01) - the first byte gives the low 7-bits (000.0000) and says
'more to come' and the next byte gives the next 7-bits (000.0001) and says 'finshed'.

Note here that the value '0x79' which gives an offset for the function type (DW_TAG_subprogram) is unpadded.

To Make a Long Story Short

To decode the data from our DWARF sections when compiled for PIC24, dsPIC30F, or dsPIC33C/E/F devices; skip

every other byte. Remember FILE offsets will refer to the padded offset, but DWARF offsets will refer to the unpadded
offset.

Microchip MPLAB XC-DSC uses the same elf machine number for all dsPIC type devices. To determine if padding
bytes require removal, examine the E_FLAGS field in the ELF header; bit 31 is clear to indicate that padding is included
and set if it is not. All devices supported by MPLAB XC16 will have this bit clear.

The XC16 and XC-DSC compilers define the following flags in the ELF file header field:

#define EF_PIC30_PROC Ox0000FFFF /* 2 bytes in the e_flags field
for encoding processor ID */
#define EF_PIC30_NO_PHANTOM_ BYTE 0x80000000 /* set if encoding has no phantom byte */

If an external tool is used to interpret DWARF debugging information created by the XC16 and/or XC-DSC
compilers, the EF_PIC30_NO_PHANTOM_BYTE flag can be used to determine if phantom bytes in DWARF
sections must be recognized and discarded.

For example:

» When EF_PIC30_NO_PHANTOM_BYTE is clear, DWARF sections include phantom bytes.
e When EF_PIC30_NO_PHANTOM_BYTE is set, DWARF sections do not include phantom bytes.

No labels

https://confluence.microchip.com/display/DTS/MPLAB+XC16+and+XC-DSC+DWARF+Differences 4/4


http://www.atlassian.com/

