ExDoc.Markdown - ExDoc v0.18.0 http://localhost:8080/ExDoc.Markdown.html

ExDoc.Markdown behaviour f>

Adapter behaviour and conveniences for converting Markdown to
HTML.

ExDoc is compatible with any markdown processor that

implements the functions defined in this module. The markdown

processor can be changed via the :markdown_processor option in

your mix.exs orviathe :markdown_processor configuration in the
:ex_doc configuration.

ExDoc supports the following Markdown parsers out of the box:

e Earmark
e Cmark

ExDoc uses Earmark by default.

Summary

Functions

get_markdown_processor()

Gets the current markdown processor set globally

pretty_codeblocks(bin)
Helper to handle plain code blocks (...) with and without

language specification and indentation code blocks

put_markdown_processor(processor)

Changes the markdown processor globally

to_html(text, opts \\ [1)
Converts the given markdown document to HTML

Ctp.1u35b 19.01.2018, 18:00

ExDoc.Markdown - ExDoc v0.18.0

Ctp.2u35

Callbacks

assets(atom)

Assets specific to the markdown implementation

before_closing_body_tag(atom)
Literal content to be written to the file just before the closing body

tag

before_closing_head_tag(atom)

Literal content to be written to the file just before the closing head
tag

configure(any)

A function that accepts configuration options and configures the
markdown processor

to_html(argd, argl)
Converts markdown into HTML

Functions

‘ get_markdown_processor() <>

Gets the current markdown processor set globally.

‘ pretty_codeblocks(bin) <>

Helper to handle plain code blocks (...) with and without
language specification and indentation code blocks.

‘ put_markdown_processor(processor) <>

Changes the markdown processor globally.

http://localhost:8080/ExDoc.Markdown.html

19.01.2018, 18:00

ExDoc.Markdown - ExDoc v0.18.0 http://localhost:8080/ExDoc.Markdown.html

to_html(text, opts \\ []1) <>

Converts the given markdown document to HTML.

Callbacks

assets(atom) <>
assets(atom()) :: [{String.t(), String.t()}]

Assets specific to the markdown implementation.

This callback takes the documentation format (:html or :epub)
as an argument and must return a list of pairs of the form
{basename, content} where:

e basename - relative path that will be written inside the doc/

directory.
e content - isabinary with the full contents of the file that

will be written to basename .
EPUB Documentation Gotchas

Generating HTML documentation is simple, and it works exacly
as you would expect for a webpage. The EPUB file format, on the
other hand, may cause some surprise.

Apparently, an EPUB file expects all assets to have a unique name
when discarding the file extension.

This creates problems if you include, for example, the files
custom.js and custom.css . Because the filename without the
extension is equal (custom), you will get an unreadable EPUB. It’s
possible to go around this limitation by simply giving the files
unique names:

Ctp.3u35b 19.01.2018, 18:00

ExDoc.Markdown - ExDoc v0.18.0 http://localhost:8080/ExDoc.Markdown.html

e custom.js becomes custom-js.js and

® custom.css becomes custom-css.css

Example

def callback assets(_) do
[{"dist/custom-css.css", custom_css_content()},
{"dist/custom-js.js", custom_js_content()}]

end

before_closing_body_tag(atom) <>
before_closing_body_tag(atom()) :: String.t()

Literal content to be written to the file just before the closing
body tag.

This callback takes the documentation format (:html or :epub)
as an argument and returns a literal string. It is useful when the
markdown processor needs to a include extra JavaScript.

Example

def callback before_closing_body_tag(_) do
Include the Javascript specified in the assets/1 callback
~S(<script src="dist/custom-js.js"></script>)

end

before_closing_head_tag(atom) <>
before_closing_head_tag(atom()) :: String.t()

Literal content to be written to the file just before the closing
head tag.

This callback takes the documentation format (:html or :epub)
as an argument and returns a literal string. It is useful when the

Ctp.4wus3b 19.01.2018, 18:00

ExDoc.Markdown - ExDoc v0.18.0 http://localhost:8080/ExDoc.Markdown.html

markdown processor needs to a include extra CSS.

Example

def callback before_closing_head_tag(_) do
Include the CSS specified in the assets/1 callback
~S(<link rel="stylesheet" href="dist/custom-css.css"/>)

end

configure(any) <>
configure(any()) :: :ok

A function that accepts configuration options and configures the
markdown processor.

It is run once when :ex_doc isloaded, and the return value is
discarded. Modules that implement this behaviour will probably
store the options somewhere so that they can be accessed when
needed.

The format of the options as well as what the function does with
them is completely up to the module that implements the
behaviour.

to_html(arg0, argl) <>
to_html(String.t(), Keyword.t()) :: String.t()

Converts markdown into HTML.

Built using ExDoc (vo.18.1), designed by Friedel Ziegelmayer.

Ctp.5u3b 19.01.2018, 18:00

