Skip to content

elnino9ykl/OOSS

master
Switch branches/tags
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

OOSS

Omnisupervised Omnidirectional Semantic Segmentation

Datasets

PASS Datast Panoramic Annular Semantic Segmentation Dataset with pixel-wise labels (400 images).

Chengyuan Dataset Panoramas captured with an instrumented vehicle (650 images).

Streetview Dataset Panoramas collected in different cities including New York, Beijing, Shanghai, Changsha, Hangzhou, Huddersfield, Madrid, Karlsruhe and Sydney.

Example segmentation

Codes

Training:

CUDA_VISIBLE_DEVICES=0,1,2,3
python3 segment.py
--basedir /home/kyang/Downloads/
--num-epochs 200
--batch-size 12
--savedir /erfpsp
--datasets 'MAP' 'IDD20K'
--num-samples 18000
--alpha 0
--beta 0
--model erfnet_pspnet

Evaluation:

python3 eval_color.py
--datadir /home/kyang/Downloads/Mapillary/
--subset val
--loadDir ./trained/
--loadWeights model_best.pth
--loadModel erfnet_pspnet.py
--basedir /home/kyang/Downloads/
--datasets 'MAP' 'IDD20K'

Publications

If you use our code or dataset, please consider referencing the following paper:

Omnisupervised Omnidirectional Semantic Segmentation. K. Yang, X. Hu, Y. Fang, K. Wang, R. Stiefelhagen. IEEE Transactions on Intelligent Transportation Systems (T-ITS), September 2020. [PDF]

@article{yang2020omnisupervised,
title={Omnisupervised Omnidirectional Semantic Segmentation},
author={Yang, Kailun and Hu, Xinxin and Fang, Yicheng and Wang, Kaiwei and Stiefelhagen, Rainer},
journal={IEEE Transactions on Intelligent Transportation Systems},
year={2020},
publisher={IEEE}
}

About

Omnisupervised Omnidirectional Semantic Segmentation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages