COMP5121 Data Mining & Data Warehousing Applications

FAQ on Clustering (with suggested answers)

1. Given the following medical data records where all attributes except *gender* are asymmetric.

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	М	Y	Ν	Р	Ν	Ν	Ν
Mary	F	Y	Ν	Р	Ν	Р	Ν
Jim	М	Y	Y	N	N	N	N
Nick	М	Ν	Ν	N	Р	Ν	Ν
Elaine	F	Y	N	N	N	N	N

a) Compute the missing Jaccard coefficients to complete the matrix above.

	Jack	Mary	Jim	Nick	Elain
Jack	0	-	—	-	-]
Mary	0.33	0	_	_	-
Jim	0.67	0.75	0	_	-
Nick	1	1	1	0	-
Elaine	0.5	0.67	0.5	1	0

b) Cluster the data records using the single-link agglomerative clustering algorithm and the Jaccard coefficient matrix computed in part (a). Make your own assumption(s) if necessary.

Merging Jack and Mary (d=0.33), we have

	J&M	Jim	Nick	Elaine
J & M	0	_	_	-]
Jim	0.67	0	_	-
Nick	1	1	0	-
Elaine	0.50	0.50	1	0

If merging of more than 2 records is allowed, J&M, Jim and Elaine should be merged next. Thus, the last record being grouped is Nick.

c) Based on the result of part (b), divide the records into two clusters. Could we obtain three clusters?

Since 2 groups are required, they are formed when the inter-cluster distance using Jaccard coefficient is larger 0.5 but less than 1. Group 1: Jack, Mary, Jim, Elaine Group 2: Nick

It is not reasonable to split the data into 3 clusters.

	Wah	Keywords Found						
URL		Popstar	Actor	Actress	Music	Movie	Holly-	
	rage ID						wood	
Jackchan.com	P100							
Nictsz.com	P200							
Faywang.com	P300							
Allantam.com	P400							
SammyChen.com	P500							

2. Given the following web page content database records.

By considering the occurrence of a keyword as a symmetric binary attribute, a partially filled simple matching coefficient matrix is depicted below. Here, the present of a keyword is set to 1 while its absent is set to 0.

	<i>P</i> 100	P200	P300	P400	P500
P100	0	—	_	—	-]
P200	0.5	0	_	_	-
P300			0	-	-
P400		0.33		0	-
P500	L			0.5	0

a) Compute and fill in the missing simple matching coefficients in the matrix above. *Answer*

	P	100	P200	P300	P400	P500	
P100	[0	-	-	-	-]	
P200		0.5	0	-	-	-	
P300		0.66	0.83	0	-	-	
P400		0.5	0.33	0.5	0	-	
P500		0.66	0.5	0.33	0.5	0	

b) Based on the coefficient matrix completed in part (a), cluster the data records using the single-link agglormerative hierarchical clustering algorithm.

Answer:

1st round: Merging P200 & P400 (distance=0.33)

- 2nd round: Merging P300 & P500 (distance=0.33)
- 3rd round: Merging C1(P200,P400) to C2(P300, P500) (distance=0.5) or Merging C1(P200,P400) to P100 (distance=0.5)
- 4th round: Merging the remaining two clusters

Detail steps are omitted here.