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A NEAR-OPTIMAL SOLUTION TO A TWO-DIMENSIONAL
CUTTING STOCK PROBLEM

CLAIRE KENYON AND ERIC R(EMILA

We present an asymptotic fully polynomial approximation scheme for strip-packing, or packing
rectangles into a rectangle of 6xed width and minimum height, a classical NP-hard cutting-stock
problem. The algorithm, based on a new linear-programming relaxation, 6nds a packing of n
rectangles whose total height is within a factor of (1 + �) of optimal (up to an additive term),
and has running time polynomial both in n and in 1=�.

1. Introduction.

1.1. Results. We consider the strip-packing problem, which is the following version
of a two-dimensional cutting stock problem: Given a supply of material consisting of one
rectangular strip of 6xed width 1 and large height, given a demand of n rectangles with
widths and heights in the interval [0,1], the problem is to cut the strip into the demand
rectangles while minimizing the waste, i.e., minimizing the total height used.
This is a natural generalization of bin-packing to two dimensions. We do not allow the

demand rectangles to be rotated (in many applications, rotations are not allowed because
of constraints such as the patterns of the cloth or of the grain of the wood). In computer
science, strip-packing models the scheduling of independent tasks, each requiring a certain
number of contiguous processors or memory locations for a certain length of time; the
width of the strip represents the total number of processors or memory locations available,
and the height represents the completion time.
Strip-packing is NP-hard because it includes bin-packing as a special case (when all

heights are equal). Thus, unless P=NP, one cannot 6nd an eDcient algorithm for con-
structing the optimal packing. One then seeks to design approximate heuristics A with
good performance guarantees.
DEFINITION 1. Let A(L) denote the height used by A on input L, and let Opt(L) denote

the height used by the optimal algorithm on input L. The absolute performance ratio of A is
supL A(L)=Opt(L). The asymptotic performance ratio of A is lim supOpt(L)→∞ A(L)=Opt(L).
In this paper, we focus on the asymptotic performance ratio. Our main result is the

following:

THEOREM 1. There is an algorithm A which; given a list L of n rectangles whose side
lengths are at most 1; and a positive number �; produces a packing of L in a strip of
width 1 and height A(L) such that:

A(L) ≤ (1 + �)Opt(L) + O(1=�2):

The time complexity of A is polynomial in n and 1=�.
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646 C. KENYON AND E. R (EMILA

In other words, the paper presents an asymptotic fully polynomial time approximation
scheme for strip-packing.
The running time is O(n(log n)�−8 polylog(�) + (log2 n)�−16 polylog(�)) by appealing

to the result from Karmarkar et al. (1982) Theorem 1. (It may be possible to improve on
this by using ideas from Plotkin et al. 1995 and Young 1995).
Two-dimensional stock-cutting with stages goes as far back as 1965 with work by

Gilmore and Gomory (1965). In computer science, many ideas for strip-packing originally
arose from bin-packing studies. In 1980, Baker et al. showed that the “Bottom-Left”
heuristic has asymptotic performance ratio equal to 3 when the rectangles are sorted by
decreasing widths (Baker et al. 1980). CoPman et al. (1980) studied algorithms where
the rectangles are placed on “shelves” using one-dimensional bin-packing heuristics, and
showed that the First-Fit shelf algorithm has asymptotic performance ratio of 2.7 when
the rectangles are sorted by decreasing height (this de6nes the First-Fit-Decreasing-Height
algorithm) (CoPman et al. 1980). The asymptotic performance ratio of the best heuristic
was further reduced to 2.5 (Sleater 1980), then to 4=3 (Golan 1981) and 6nally to 5=4
(Baker et al. 1981). The absolute performance ratio has also been the object of much
research, with the best current algorithm having a performance of ratio 2 (Steinberg 1997
and Schiermeyer 1994).
In 1991, Fernandez de la Vega and Zissimopoulos used a very diPerent approach, based

on a reduction to integer linear programming, to design a (1+�) asymptotic approximation
scheme for strip packing, in the case when all rectangle widths and heights are bounded
below and above by constants (Fernandez de la Vega and Zissimopoulos 1991). In other
words, they solve the strip-packing problem as long as the rectangles are neither too Sat
nor too narrow. Their work was inspired by approximation schemes developed for one-
dimensional bin-packing, based on linear programming. This direction was explored by
Fernandez de la Vega and Lueker in 1981 (with a reduction of bin-packing to constant-
size integer linear programming) (Fernandez de la Vega and Lueker 1981) and later by
Karp and Karmarkar, to yield an asymptotic fully polynomial time approximation scheme
for bin-packing (Karmarkar and Karp 1982). To compare our algorithm with the one
developed in Fernandez de la Vega and Zissimopoulos (1991), one must note that the
algorithm in that paper, though linear-time in terms of the number of rectangles, is worse
than exponential in terms of �, thus inherently impractical.
In this paper (which is an extended version of Kenyon and Remila 1996), we use many

ideas from Fernandez de la Vega and Zissimopoulos (1991), Fernandez de la Vega and
Lueker (1981), and Karmarkar and Karp (1982).

1.2. Methods. Bin-packing and strip-packing are closely related, and many ideas that
originally arose from bin-packing can also be applied to strip-packing. It is thus natural to
try to extend the linear programming approach from bin-packing (Fernandez de la Vega
and Lueker 1981, Karmarkar and Karp 1982) to strip-packing.
One obstacle to such an extension comes from the small input items (rectangles of

small width or height), since both approximation schemes developed in Fernandez de la
Vega and Lueker (1981) and Karmarkar and Karp (1982) for bin-packing 6rst set small
input values aside, then construct an eDcient packing of the other values, and 6nally add
the small values in a greedy way so as to form a packing which is still eDcient.
In the case of strip-packing, however, there is no eDcient way in general to complete

a packing of a strip (which may have many little gaps of odd shapes), when adding the
rectangles of small width or of small height.
However, one should note that rectangles of small width are not inherently diDcult:

In the extreme case when all input rectangles have small width, the First-Fit-Decreasing-
Height shelf heuristic (FFDH) is very eDcient.
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A TWO-DIMENSIONAL CUTTING STOCK PROBLEM 647

THEOREM 2 (COFFMAN ET AL. 1980). If all rectangles of L have width less than or equal
to 1=k; then the height FFDH(L) achieved by the FFDH heuristic on list L satis&es

FFDH (L)≤ s(L)(1 + 1=k) + 1;

where s(L) is the total area of the rectangles in L.

Our original hope was that the method of Fernandez de la Vega and Zissimopoulos
(1991) and the FFDH heuristics might be combined to get an eDcient approximation
scheme for general strip-packing. The integer linear program devised in Fernandez de
la Vega and Zissimopoulos (1991) unfortunately cannot be combined with FFDH, but
another linear programming approach, which only constructs packings with few odd-
shaped gaps, works.
The algorithm is structured as follows: First, the rectangles are divided into two sublists:

the “narrow” rectangles, i.e., whose widths are less than a positive constant �′, and the
“wide” rectangles (i.e., which are not narrow). We take the wide rectangles and change
their widths by using a variation of Karmarkar and Karp’s linear rounding, so as to
build another list Lsup of wide rectangles with only a bounded number of distinct widths.
Relaxing the constraints to allow horizontal cuts of the rectangles (in the scheduling setting
this corresponds to allowing preemption), we obtain a fractional bin-packing problem,
de6ned in the next section, from which (either by Karmarkar and Karp 1982 or by
Plotkin et al. 1995) we deduce a strip-packing for Lsup that is close to optimal. Finally,
the packing produced has a speci6c “nice” shape, which makes the insertion of narrow
rectangles possible while still keeping the packing close to optimal.
For stock-cutting applications, where machines can only perform edge-to-edge cuts

parallel to the strip’s length or width, called “guillotine cuts,” it is worthwhile to re-
mark that our algorithm is also applicable to guillotine cuts. In fact, it can be realized by
6ve stages of consecutive parallel (and, consequently, permutable) guillotine cuts. This
will be explained further at the time of the presentation of the algorithm.

2. The algorithm.

2.1. De�nitions. A rectangle is given by its width wi and height hi, with 0¡wi;
hi ≤ 1. The area (resp. height) of a list L=((w1; h1); (w2; h2); : : : ; (wn; hn)) of rectangles
is the sum of the areas (resp. heights) of the rectangles of L. We assume that the list is
ordered by nonincreasing widths: w1≥w2≥ · · · ≥wn.
REMARK. The assumption that the heights are less than 1 is also made in several other

papers such as CoPman et al. (1980). Without it, one could scale the items arbitrarily
and thus the absolute and the asymptotic performance ratios would coincide, so that there
would be no hope of getting a fully polynomial asymptotic scheme.
A strip-packing of a list L of rectangles is a positioning of the rectangles of L within

the vertical strip [0; 1]× [0;+∞), so that all rectangles have disjoint interiors. If rectangle
(wi; hi) is positioned at [x; x + wi] × [y; y + hi], then y is called the lower boundary
and (y+ hi) the upper boundary of the rectangle. The height of a strip-packing is the
uppermost boundary of any rectangle. Let Opt(L) denote the minimum height of a strip-
packing of L: Opt(L)= inf{height of f such that f is a packing of L}.
A fractional strip-packing of L is a packing of any list L′ obtained from L by subdividing

some of its rectangles by horizontal cuts: Each rectangle (wi; hi) is replaced by a sequence
(wi; hi1 ); (wi; hi2 ); : : : ; (wi; hiki ) of rectangles, such that hi=

∑
j hij .

First we present the algorithm when the number of distinct widths of the rectangles is
bounded by some value m, and all widths are larger than some constant �′. This special
case is called the “few and wide” case.
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648 C. KENYON AND E. R (EMILA

con6guration �1j =number of As �2j =number of Bs
C1 3=7; 2=7; 2=7 1 2
C2 3=7; 3=7 2 0
C3 2=7; 2=7; 2=7 0 3
C4 3=7; 2=7 1 1
C5 2=7; 2=7 0 2
C6 3=7 1 0
C7 2=7 0 1

FIGURE 1. A strip-packing of L.

2.2. Solving the “few and wide” case.

2.2.1. From the “few and wide” case to fractional strip-packing. Throughout this
subsection, we assume that the n rectangles of L only have m distinct widths, w′

1¿w′
2¿ · · ·

¿w′
m¿�′.

This section contains one main new idea: a reduction from this special case of strip-
packing to fractional strip-packing.
To the input L, we associate a set of con&gurations. A con6guration is de6ned as

a nonempty multiset of widths (chosen among the m widths) that sum to less than 1
(i.e., capable of occurring at the same level). Their sum is called the width of the con6g-
uration. Without loss of generality, the con6gurations can be assumed to be ordered by
nonincreasing widths.
Let q be the number of distinct con6gurations, and let �ij denote the number of occur-

rences of width w′
i in con6guration Cj.

To each (possibly fractional) strip-packing of L of height h, we associate a vector
(x1; : : : ; xq); xi ≥ 0, in the following manner. Scan the packing bottom-up with a horizontal
sweep line y= a; 0≤ a≤ h. Each such line is canonically associated to a con6guration
(�1; : : : ; �m), where �i is the number of rectangles of width w′

i whose interior is intersected
by the sweep line. Let xj; 1≤ j≤ q, denote the measure of the as such that the sweep
line y= a is associated with con6guration Cj. For example, let A denote the rectangle
3=7 × 1 and B denote the rectangle 2=7 × 3=4, and assume that the input L consists of
three rectangles of type A and four rectangles of type B. There are seven con6gurations,
listed in Figure 1.
The vector corresponding to the strip-packing in Figure 1 is (3=2; 5=4; 0; 0; 0; 0; 0).
The fractional strip-packing problem is canonically de6ned as follows: Given a list L

of rectangles, construct a fractional strip packing of minimal height.

LEMMA 1. Consider the linear program:

minimize (1: x) subject to x≥ 0 and Ax≥B;
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A TWO-DIMENSIONAL CUTTING STOCK PROBLEM 649

where 1 is the all-ones vector; A is the m× q matrix (�ij)1≤i≤m;1≤j≤q; and B=( 1; : : : ;  m);
 i denoting the sum of the heights of all rectangles of width w′

i . Then any fractional
strip-packing naturally corresponds to a feasible vector x; and conversely to any feasible
vector x we can associate a fractional strip-packing of height (1: x) and in which the
number of con&gurations actually occurring is at most m plus the number of nonzero
variables xi.

PROOF. Consider the vector (x1; : : : ; xq) associated to a fractional strip-packing of L of
height h. We clearly have: xj ≥ 0;

∑
j xj = h, and for every i;

∑
j �ijxj =  i.

Conversely, take a vector (x1; : : : ; xq) such that xi ≥ 0 and
∑

j �ijxj ≥  i; we can associate
a fractional strip-packing of L of height

∑
j xj in the following manner.

Partition the strip of width 1 and height
∑

j xj into j pieces of width 1 and heights
xj (1≤ j≤ q). In the jth piece, for each i such that �ij =0, draw �ij columns of width
w′
i and height xj. Finally, for each i, 6ll up the columns of width w′

i with the input
rectangles of width w′

i in a greedy manner, cutting the rectangles as you go so as to 6ll
each column exactly up to height xj (note that each column possibly contains the top part
of a rectangle which had been started in a diPerent column, followed by a few rectangles,
possibly followed by the bottom part of a rectangle which is too tall to 6t in the column
and has to be cut). Since

∑
j �ijxj is greater than or equal to  i, the total height of

the rectangles of width w′
i , we will have enough or more than enough rectangles of each

width w′
i . If we have too much, we can just erase the extraneous part. We have constructed

a fractional strip-packing of L of height
∑

j xj. Moreover the number of con6gurations
which are actually present in the fractional strip-packing thus constructed is at most m
plus the number of nonzero variables xj.
We now recall the fractional bin-packing problem studied by Karmarkar and Karp

(1982). In this problem, the input is a set of n items of m diPerent types; i.e., they
take only m distinct sizes in (�; 1]. A con6guration is a multi-set of types which sum
to at most 1 (i.e., capable of being packed within a bin). If q denotes the number of
con6gurations, then a feasible solution to the fractional bin-packing problem is a vector
(x1; : : : ; xq) of nonnegative numbers such that if �ij is the number of pieces of type i
occurring in con6guration j, then for every i;

∑
j �ijxj is at least equal to the number ni

of input pieces of type i. The goal is to minimize
∑

j xj.
Notice that fractional bin-packing and fractional strip-packing give rise to the same

linear program. The only diPerence is that vector B=( 1; : : : ;  m) of the strip-packing is
replaced by the vector B′=(n1; : : : ; nm) with integer coordinates.
Let OPT be the minimum possible value of

∑
j xj. The fractional bin-packing problem

with tolerance t has for its goal to 6nd a basic feasible solution such that
∑

j xj ≤OPT+ t,
and was solved in Karmarkar and Karp (1982) in polynomial time. More precisely, we
have the following theorem:

THEOREM 3 (KARMARKAR AND KARP (1982, THEOREM 1).) There exists a polynomial-
time algorithm for fractional bin-packing with additive tolerance t; such that if n is the
number of items; m the number of distinct items; and a the size of the smallest item; then
the running time is

O
(
m8 logm log2

(mn
at

)
+
m4n logm

t
log

(mn
at

))
:

The proof of this theorem uses linear programming techniques but does not use the fact
that vector B′ is integer. It can obviously be extended to strip-packing: with the notations
of Lemma 1, there exists an algorithm with positive tolerance t whose running time is
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650 C. KENYON AND E. R (EMILA

polynomial in m;
∑

i  i (which is less than the number n of rectangles) and t, which
gives a solution with at most 2m nonzero coordinates.
In our setting a; m and t will all be polynomials in 1=�, and so the running time will

be O�(n log n). Note that using a Lagrangian relaxation technique, in Plotkin et al. (1995,
Theorem 5.11), an alternative approach is proposed.

2.2.2. From fractional strip-packing to strip-packing. We now relate fractional strip-
packing to strip-packing.

LEMMA 2. If L has a fractional strip-packing (x1; : : : ; xq) of height h and with at most
2m nonzero xjs; then L has an (integral) strip-packing of height at most h+2m.

PROOF. Consider a fractional strip-packing (x1; : : : ; xq) of L, of height
∑

i xi= h, and
with at most 2m nonzero coordinates xis. Up to renaming, we assume that the nonzero
coordinates are x1; : : : ; xm′ , with m′ ≤ 2m. Let hmax be the maximum height of any rectangle
of L. We construct a strip packing of L of height h+2mhmax in the following way.
We 6ll in the strip bottom up, taking each con6guration in turn. Let xj¿0 denote the

variable corresponding to the current con6guration. Con6guration j will be used between
level lj =(x1 + hmax)+ · · ·+(xj−1 + hmax) and level lj+1 = lj + xj + hmax (initially l1 = 0).
For each i such that �ij �=0, we draw �ij columns of width w′

i going from level lj to level
lj+1.
In this way, each column C of the fractional strip-packing of width w′

i and height xj
can be associated to a column C+ width w′

i and height xj + hmax. In C+, we place the
rectangles which are completely in C, and the rectangle whose bottom is in C and whose
top is in another column. There is at most one rectangle of this type from the proof of
Lemma 1. Obviously, C+ is suDciently large to contain those rectangles. This proves that
the construction yields a valid strip-packing of L. Its height is (x1 + hmax) + · · ·+ (xm′ +
hmax)= h+ m′hmax≤ h+ 2m, hence the lemma.
This gives a straightforward algorithm for strip-packing in the special case studied in

this section.
(1) Solve fractional strip-packing on L with tolerance 1 (the solution has at most 2m

nonzero coordinates).
(2) From the fractional strip-packing, construct a strip-packing of L as in the proof of

the lemma above.
Moreover, a crucial point for the sequel (i.e., for the addition of narrow rectangles)

is that this strip packing leaves some well-structured free space. Note that in the proof
of Lemma 2, column C+ is almost fully used: the unused part of the column has height
at most 2, one for the bottom rectangle of C which may have been placed in another
column, and one for the extra space on top.
IMPORTANT REMARK: STRUCTURE OF A LAYER (SEE FIGURE 2). Let c1≥ c2≥ · · ·≥ cm′ denote

the widths of the m′ con6gurations used above. The layer [0; 1]× [li; li+1] can be divided
into three rectangles:
(i) the rectangle Ri= [ci; 1]× [li; li+1], which is completely free and will later be used

to place the narrow rectangles;
(ii) the rectangle R′

i = [0; ci]× [li; li+1−2], which is completely 6lled by wide rectangles;
and
(iii) the rectangle R′′

i = [0; ci]× [li+1− 2; li+1], which is partially 6lled in some compli-
cated way by wide rectangles overlapping from Ri, and whose free space is now considered
as wasted space, and will not be used in the remainder of the construction.

2.3. From general strip-packing to the “few and wide” case. In the general case,
we have a list Lgeneral with many distinct widths, some of which may be arbitrarily small.
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A TWO-DIMENSIONAL CUTTING STOCK PROBLEM 651

FIGURE 2. Structure of a layer.

We use appropriate extensions of two ideas of Fernandez de la Vega and Lueker (1981):
elimination of small pieces, and grouping. The purpose of elimination is to insure all
rectangles are wider than some �′. The purpose of grouping is to insure that the number
of distinct widths of the wide rectangles is bounded.

2.3.1. Elimination of narrow rectangles. During the elimination phase, we partition
the list Lgeneral into two sublists: Lnarrow, containing all the rectangles of width at most
�′, and L, containing all the rectangles of width larger than �′. During the next stage, we
will focus on L.

2.3.2. Grouping. This is one of the main ideas of the paper.
We de6ne a partial order on lists of rectangles by saying that L≤L′ if there is an

injection from L to L′ such that each rectangle of L has smaller width and height than
the associated rectangle of L′.
Given a list L of rectangles whose widths are larger than �′, we will now approximate

L by a list Lsup such that L≤Lsup, and such that the rectangles of Lsup only have m distinct
widths.
To de6ne Lsup, we 6rst stack up all the rectangles of L by order of nonincreasing

widths, to obtain a left-justi6ed stack of total height h(L). We de6ne (m − 1) threshold
rectangles, where a rectangle is a threshold rectangle if its interior or lower boundary
intersects some line y= ih(L)=m, for some i between 1 and m − 1 (see, for example,
Figure 3). The threshold rectangles separate the remaining rectangles into m groups. The
widths of the rectangles in the 6rst group are then rounded up to 1, and the widths of the
rectangles in each subsequent group are then rounded up to the width of the threshold
rectangle below their group. This de6nes Lsup. Note that if all rectangle heights are equal,
this is exactly the linear grouping de6ned in Fernandez de la Vega and Lueker (1981),
and thus this can be seen as an extension of that paper. Also note that Lsup consists of
rectangles which have only m distinct widths, all greater than �′.
We construct a strip-packing of Lsup using the ideas of §2.2. A packing of L is trivially

deduced by using the relation L≤Lsup and placing each rectangle of L inside the position
of the associated rectangle of Lsup.
To get a packing of Lgeneral, the narrow rectangles must now be added.

2.3.3. Adding the narrow rectangles. Order the rectangles of Lnarrow by decreasing
heights. We add the rectangles of Lnarrow to the current strip-packing, trying to use the m′

free rectangular areas R1; R2; : : : ; Rm′ as much as possible, according to a Modi6ed-Next-
Fit-Decreasing-Height algorithm as follows. Use the Next-Fit-Decreasing-Height (NFDH)
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652 C. KENYON AND E. R (EMILA

FIGURE 3. Grouping the rectangles, example when m=3. The thick lines show how to extend the rectangles to
construct Lsup.

heuristic to pack rectangles in R1: In this heuristic, the rectangles are packed so as to form
a sequence of sublevels. The 6rst sublevel is simply the bottom line. Each subsequent
sublevel is de6ned by a horizontal line drawn through the top of the 6rst (and hence
highest) rectangle placed on the previous sublevel. Rectangles are packed in a left-justi6ed
greedy manner, until there is insuDcient space to the right to accommodate the next
rectangle; at that point, the current sublevel is discontinued, the next sublevel is de6ned
and packing proceeds on the new sublevel.
When a new sublevel cannot be started in R1, start the next sublevel at the bottom left

corner of R2 using NFDH again, and so on until Rm′ . When a rectangle cannot be packed
in R1; : : : ; or Rm′ , use NFDH to pack the remaining rectangles in the strip of width 1
starting above Rm′ , at level lm′+1. This gives a packing of Lgeneral.
We are now ready to summarize the overall algorithm.

2.4. The overall algorithm.
Parameters: �′ (the threshold narrow=wide) and m (the number of groups). We set

�′= �=(2 + �) and m=(1=�′)2.
Input: a list of rectangles Lgeneral.
(1) Perform the partition Lgeneral =Lnarrow ∪L to set aside the rectangles of width less

than �′.
(2) Sort the rectangles of L according to their widths; form m groups of rectangles of

approximately equal cumulative heights; round up the widths in each group, to yield a
list Lsup with L≤Lsup.
(3) Solve fractional strip-packing on Lsup with tolerance 1.
(4) From the fractional strip-packing, construct an integral strip-packing of Lsup and

hence a well-structured strip-packing of L.
(5) Sort Lnarrow according to decreasing heights and add the rectangles of Lnarrow to the

strip-packing of L using the Modi6ed-Next-Fit-Decreasing-Height heuristic.
REMARK ON GUILLOTINE CUTS. We remark that this algorithm can be performed in 6ve

stages of guillotine cuts. First, we perform the horizontal cuts which perform the layers.
Second, in each layer j, we perform a vertical cut at Cj, thus separating the part reserved
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A TWO-DIMENSIONAL CUTTING STOCK PROBLEM 653

to the wide rectangles from the part Rj for the narrow rectangles, and also perform all
the vertical cuts de6ning the columns of con6guration used in layer j. Third, we cut the
columns with horizontal cuts, and in Rj, we cut all the sublevels with horizontal cuts.
Fourth, we 6nish cutting out the wide rectangles using vertical cuts to adjust the widths
to their true values and in each sublevel, we perform vertical cuts corresponding to the
narrow rectangles. Finally, in each sublevel, we perform horizontal cuts to 6nish cutting
out the narrow rectangles. All in all, we have used 6ve stages of guillotine cuts.

3. The analysis. The running time is clearly polynomial in n and 1=�. Its bottleneck
lies in the resolution of the fractional bin-packing problem in Step (3), which can be
done as in Karmarkar and Karp (1982) or Plotkin et al. (1995). Thus the main diDculty
in the analysis consists in showing that the strip-packing is close to optimal. This is done
through a series of lemmas.

LEMMA 3. The list Lsup obtained after the grouping of Step (2) is such that

lin(Lsup)≤ lin(L)(1 + 1=(m�′))

and

s(Lsup)≤ s(L)(1 + 1=(m�′));

where s(L) is the area of L and lin(L) is the height of the optimal fractional strip-
packing of L.

PROOF. We follow the same plan as Fernandez de la Vega and Lueker (1981). De6ne
the following extension of our partial order on lists of rectangles: L≤L′ if the stack
associated to L (used for the grouping), viewed as a region of the plane, is contained in
the stack associated to L′. Thus, L≤L′ clearly implies lin(L)≤ lin(L′) and s(L)≤ s(L′).
We now de6ne lists L′inf and L′sup such that L

′
inf ≤L≤Lsup≤L′sup. These lists are obtained

by 6rst cutting the threshold rectangles using the lines y= ih(L)=m (1≤ i≤m− 1), then
considering the m subsequent groups of rectangles in turn (where each group now has
cumulative height exactly h(L)=m); to de6ne L′sup, we round the widths in each group up
to the widest width of the group (up to 1 for the 6rst group); to de6ne L′inf , we round
the widths within each group down to the widest width of the next group (down to 0
for the last group). It is easy to see that L′inf ≤L≤Lsup≤L′sup. Moreover, the fractional
bin-packing problem for L′inf is almost the same as for L

′
sup: the stack associated to L′sup

is the union of a bottom part of width 1 and height h(L)=m, and of a translated copy of
the stack of L′inf . This implies

lin(L′sup)= lin(L′inf ) + h(L)=m

and

s(L′sup)= s(L′inf ) + h(L)=m:

Finally, we note that since all rectangles have width at least �′, we have h(L)�′ ≤ s(L)≤
lin(L). This implies the statement of the lemma.

LEMMA 4. Let Laux be the list formed from the union Lsup ∪Lnarrow. If the height h&nal
at the end of Step (5) is larger than the height h′ of the packing of the wide rectangles;
then: h&nal ≤ s(Laux)=(1− �′) + 4m+ 1.

PROOF. As in CoPman et al. (1980), we will charge the surface of a sublevel to the
rectangles in the sublevel immediately below it. The core of the proof is in Figure 4.
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654 C. KENYON AND E. R (EMILA

FIGURE 4. Addition of narrow rectangles: notations. Notice that the rectangle (1 − cj − �′)× b′i is completely
covered. Moreover this rectangle has surface area larger than the rectangle (1− cj− �′)× bi+1. This is the main
argument of the proof of Lemma 4.

Assume that the height h6nal at the end of Step (5) is larger than the height h′ of the
packing of the wide rectangles.
Let (a1; a2; : : : ; ar) be the ordered sequence of the lower boundaries of the succes-

sive levels constructed by Modi6ed NFDH when inserting the narrow rectangles (hence
a1¡a2¡ · · ·¡ar) and let bi (respectively b′i) be the height of the 6rst (respectively last)
narrow rectangle placed on the ith sublevel (see Figure 4). We focus on the sublevels be-
tween lj and lj+1. By de6nition of NFDH, sublevel i is closed only when the next narrow
rectangle is too wide to 6t in the current level, which must thus have remaining unused
width less than �′. The total surface occupied in Rj on sublevel i is at least b′i(1−cj�′).
Since b′i ≥ bi+1, the total surface occupied in Rj is at least

∑
i s:t: sublevel i is in [lj ; lj+1]

bi+1(1−cj − �′)≥ (lj+1 − lj − 2)(1− cj − �′);

since this accounts for all sublevels between lj and lj+1, except the 6rst one. Adding this to
R′
j, we get that the total surface occupied between lj and lj+1 is at least (lj+1−lj−2)(1−�′).
In the part between h′ and h6nal, an analysis similar to the analysis of Rj shows that

the surface occupied is at least (1 − �′)(h6nal − h′ − 1). Overall, since there are at most
2m layers [lj; lj+1], the total surface occupied by Laux is

s(Laux)≥ (h′ − 4m)(1− �′) + (h6nal − h′ − 1)(1− �′);

from which we obtain

h6nal≤ s(Laux)
1− �′

+ 4m+ 1:
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A TWO-DIMENSIONAL CUTTING STOCK PROBLEM 655

Notice that Lemma 3 obviously implies that s(Laux)≤ s(Lgeneral)(1+1=m�′), which yields
the following corollary:

COROLLARY 1. If the height h&nal at the end of Step (5) is larger than the height h′

of the packing of the wide rectangles; then:

h&nal ≤ s(Lgeneral)(1 + 1=(m�′))=(1− �′) + 4m+ 1:

PROOF OF THEOREM 1. Let h6nal be the height of the packing of Lgeneral constructed by
our algorithm. Then

h6nal≤ max{h′; s(Lgeneral)(1 + 1=(m�′))=(1− �′) + 4m+ 1};
where h′ is the height of the strip-packing of the wide rectangles constructed in Step
(4). But h′ ≤ h+ 2m, where h is the height of the fractional strip-packing constructed in
Step (3). By Karp and Karmarkar’s theorem (with tolerance 1), h is at most lin(Lsup)+1.
Noticing that lin(L)≤Opt(L), we obtain:

h′ ≤ h+ 2m from Lemma 2;

≤ lin(Lsup) + 1 + 2m

≤ lin(L)(1 + 1=m�′) + 1 + 2m from Lemma 3;

≤ Opt(L)(1 + 1=m�′) + 1 + 2m;

≤ Opt(Lgeneral)(1 + 1=m�′) + 1 + 2m:

Noticing that s(Lgeneral)≤Opt(Lgeneral), we obtain:

h6nal≤Opt(Lgeneral)(1 + 1=(m�′))=(1− �′) + 4m+ 1:

Replacing m and �′ by their values �′= �=(2 + �) and m=(1=�′)2, we get

h6nal≤Opt(Lgeneral)(1 + �) + 4(2 + �)2=(�2) + 1;

hence the theorem.

4. Remarks. In this paper, we proposed a fully polynomial time approximation
scheme for strip-packing when the rectangle widths and heights are in (0; 1]. In many
applications, it makes sense to allow rotations of the rectangles (in the case of cutting
window panes out of glass or shapes out of leather, for example). We conjecture that
our approach can be extended to solve the strip-packing problem when rotations of 90
degrees are allowed. It should however be noted that sometimes the optimal packing may
use rotations of angles other than 90 degrees, even in the simple situation when one wants
to pack squares in a strip (El Moumni 1997, ErdUos and Graham 1975).
We also note that since the preliminary version of this work (Kenyon and Remila

1996), subsequent papers have used similar linear programming relaxations for various
scheduling applications (Amoura et al. 1997, Jansen and Porkolab 1999). Finally, since we
6nd the solution developed here relatively simple, we hope that it may help for attacking
the three-dimensional version of the problem, as well as other variants of multidimensional
cutting-stock problems.

Acknowledgments. The authors would like to thank Neal Young for a fruitful discussion
that simpli6ed Stage(3) of the algorithm. This simpli6cation later enabled them to appeal
to the fractional packing results from Karmarkar and Karp (1982), thus easily rendering
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the scheme fully polynomial. The authors would also like to thank Klaus Jansen for
valuable comments.
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