
PIMGAVir User Manual
The current document drives the user to a quick usage of PIMGAVir pipeline.
The document is organized as a “use-of-case” to be easier to follow.

Running pimgavir
Suppose to run the pimgavir pipeline using the following files as input:

-rw-rw-r-- 1 emilio emilio 383M 9 月 28 12:03 Pool-3-1_FKDL210225623-1a-AK25938-

AK25939_1.fq.gz

-rw-rw-r-- 1 emilio emilio 391M 9 月 28 12:04 Pool-3-1_FKDL210225623-1a-AK25938-

AK25939_2.fq.gz

If we call the pimgavir.sh without indicating any parameters, the following message will be shown,

indicating which parameters the pipeline is expecting:

emilio@Alienware:~/Downloads/veryfasttree-master$ pimgavir.sh

Error. Not enough arguments.

Usage pimgavir.sh R1.fastq.gz R2.fastq.gz SampleName NumbOfCores ALL|[--read_based --

ass_based --clust_based] [--filter]

The user can instruct the pipeline to execute one of the following strategies using the appropriate option:

• --read_based, will run the pipeline under the “read based” strategy

• --ass_based, will run the pipeline under the “assembly based” strategy

• --clust_based, will run the pipeline under the “clustering-based” strategy

As an example, the user could run the pipeline with the following command. Note the "time" command is

used to get the time used by the command to end.

time pimgavir.sh Pool-3-1_FKDL210225623-1a-AK25938-AK25939_1.fq.gz Pool-3-1_FKDL210225623-1a-

AK25938-AK25939_2.fq.gz FKDL210225623 24 –read_based --filter

The next sections will report some technical information that could be helpful to the user, such as the list

of files created, the running time, or specific requirements according to the involved shell script.

Independently of which strategy the user will choose, the pre-processing task is executed running the pre-

process.sh shell script.

pre-proprocess.sh

The following files will be created:

1. Log files: pimgavir.log, pre-process.log, trim-galore.log, and FKDL210225623_rRNA.fq

(sortmeRNA log file)

2. Trimgalore/FastQC report files: Pool-3-1_FKDL210225623-1a-AK25938-

AK25939_1.fq.gz_trimming_report.txt, Pool-3-1_FKDL210225623-1a-AK25938-

AK25939_2.fq.gz_trimming_report.txt, Pool-3-1_FKDL210225623-1a-AK25938-

AK25939_1_val_1_fastqc.html, Pool-3-1_FKDL210225623-1a-AK25938-

AK25939_2_val_2_fastqc.html

3. sortmeRNA_wd: folder containing kvdb and readb sub-folders, symbolic link idx ->

/mnt/NTFS/NGS-DBs/SILVA/idx/ (save time avoiding to re-create the idx of SILVA db)

4. Out data files: FKDL210225623_not_rRNA.fq, FKDL210225623_rRNA.fq

The time required is reported:

real 27m51.073s

user 322m21.479s

sys 2m1.279s

The size of the created files is:

3.4G FKDL210225623_not_rRNA.fq

1.8G FKDL210225623_R1_trimmed.fq

1.8G FKDL210225623_R2_trimmed.fq

98M FKDL210225623_rRNA.fq

In case the --filter has been expressed, the pipeline will execute the reads-filtering.sh and

Misaele_Filter_Param.sh scripts.

reads-filtering.sh
The read-filtering.sh bash script needs the list of undesired species or organisms reported in a text file

named unwanted.txt (as the next example) and placed in the same location as the input files:

The following files will be created:

1. Log files: diamond.log, reads-filtering.log

2. Out data files: blastx_diamond.m8

Misaele_Filter_Param.sh
The following files will be created:

1. Log files: Misaele_Filter_Param.log

2. Out data files in m8 format: blastx_diamond_NoDup.m8, blastx_diamond_NoDup_wanted.m8,

blastx_diamond_NoDup_withTaxa.m8, blastx_diamond_NoDup_withTaxa_wanted.m8

3. Out data files in html format: NoDup.taxonomy.krona.html (taxonomic classification before

filtering), WantedReads.taxonomy.krona.html (taxonomic classification after filtering)

Eubacteria
Achaeabacteria
Plantae
 Figure 1 unwanted.txt text file

The required time for executing both scripts is equal to:
real 121m52.584s

user 1432m2.949s

sys 48m18.972s

In case the user expressed the --ass_based option, the pipeline will execute the assembly.sh shell script.

assembly.sh
The following files will be created:

1. Log files: assembly.log

2. Out data files: assembly_based folder (results container)

The assembly-based folder is a container of the results after the assembly operation.

The time required is:
real 1m45.927s

user 21m58.417s

sys 2m20.214s

The assembly-based-taxonomy folder is a container of the results after the assembly taxonomy

operation.

It will contain the following files:

krakViral.krona.html_MEGAHIT, krakViral.krona.html_SPADES,

reads_kaiju.kron.html_MEGAHIT, reads_kaiju.kron.html_SPADES

The krona-blast.sh based on the assembly will create two folders, one for each assembly: assembly-

based-MEGAHIT-KRONA-BLAST, assembly-based-SPADES-KRONA-BLAST

Every folder will contain the following files, obtained from the relative assembly: blastn.out, krona-

blast.log, krona_out.html, krona_stderr, krona_stdout krona_tax.lst

In the case of the user expressed the --clust_based option, the pipeline will execute the clustering.sh

shell script.

clustering.sh
The following files will be created:

1. Log files: clustering-based.log

2. Out data files: clustering-based folder (results container)

The clustering-based folder will contain the otus.fasta file and the sub-folder named

readsNotrRNA_filtered.fq.split within the files coming from the clustering task:

1. Fasta files: Combined.fasta, derep_Concatenated_Unmerged.fasta, derep_Forward.fasta,

Forward.fasta, preclustered.fasta, Concatenated_Unmerged.fasta, derep.fasta,

derep_Reverse.fasta, nonchimeras.fasta, Reverse.fasta, MSA.fa

2. UC files: clustered.uc, combined.uc, Concatenated_Unmerged.uc, Forward.uc, Reverse.uc

3. Other files: otutab.txt, otu.biom

The time required is:

real 0m44.192s

user 2m15.007s

sys 0m6.057s

The clustering-based-taxonomy folder is a container of the results after the clustering taxonomy

operation.

It will contain the following files:

1. HTML files: krakViral.krona.html_OTU, reads_kaiju.kron.html_OTU

2. OUT files: krakViral_class.out_OTU, krakViral.out_OTU, krakViral_report.out_OTU,

krakViral_unclass.out_OTU, readskaiju.out_OTU

The clustering-based-KRONA-BLAST will contain the following files:

1. HTML files: krona_out.html

2. OUT files: blastn.out, krona_stdout, krona_tax.lst

3. Other files: krona-blast.log, krona_stderr

The read-based-taxonomy folder will contain the taxonomic classification obtained directly from the

reads (filtered or not).

The folder will contain the following files:

1. HTML files: krakViral.krona.html_READ, reads_kaiju.kron.html_READ

2. OUT files: krakViral_class.out_READ, krakViral.out_READ, krakViral_report.out_READ,

krakViral_unclass.out_READ, readskaiju.out_READ

grouping-reads.sh
Being accomplished the taxonomic classification (regardless of which strategy has been run), the user can

group into the same file the organisms sharing the same genus or family. In detail, taking as input the file

text from the Kraken blast (with krona taxonomy already done) and the desired "key" of grouping (by

genus or by family), the grouping-reads.sh shell script will create one file for each "key" value containing

all the reads/contigs belonging to the same "key" value. Once called without any option, the script will

print out the following message:

Error. Not enough arguments.

Usage grouping-reads.sh InputFile [--f/--g]

InputFile must be in KrakViral.Krona format [ReadId TaxId] // TaxId==0 stays for unclassified

[--f/--g] It can be --f (family) or --g (genus)

The script will take as input the file containing the taxonomic classification from KrakViral.Krona and as

option --f (if the user wishes to group the read sharing the same family) or --g (if the user wishes to group

the read sharing the same genus). Depending on the user option (--f/--g), the script will create the folder

family/genus containing one file for each family/genus identified in the KrakViral.Krona input file. Every

file will store the reads/contigs sharing the same family/genus.

The following files will be created:

1. Log files: grouping-reads.log

2. Out data files: grouping-based folder (results container)

	Running pimgavir
	pre-proprocess.sh
	reads-filtering.sh
	Misaele_Filter_Param.sh
	assembly.sh
	clustering.sh
	grouping-reads.sh

