
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261735831

FTSPlot: Fast Time Series Visualization for Large Datasets

Article in PLoS ONE · April 2014

DOI: 10.1371/journal.pone.0094694 · Source: PubMed

CITATIONS

3
READS

3,598

1 author:

Michael Riss

Universitat Politècnica de Catalunya

8 PUBLICATIONS 95 CITATIONS

SEE PROFILE

All content following this page was uploaded by Michael Riss on 15 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261735831_FTSPlot_Fast_Time_Series_Visualization_for_Large_Datasets?enrichId=rgreq-743006fb794b8da57b38e79e56128cda-XXX&enrichSource=Y292ZXJQYWdlOzI2MTczNTgzMTtBUzoxMDEyNDczMDY2OTg3NjNAMTQwMTE1MDY0ODkwNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261735831_FTSPlot_Fast_Time_Series_Visualization_for_Large_Datasets?enrichId=rgreq-743006fb794b8da57b38e79e56128cda-XXX&enrichSource=Y292ZXJQYWdlOzI2MTczNTgzMTtBUzoxMDEyNDczMDY2OTg3NjNAMTQwMTE1MDY0ODkwNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-743006fb794b8da57b38e79e56128cda-XXX&enrichSource=Y292ZXJQYWdlOzI2MTczNTgzMTtBUzoxMDEyNDczMDY2OTg3NjNAMTQwMTE1MDY0ODkwNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Riss?enrichId=rgreq-743006fb794b8da57b38e79e56128cda-XXX&enrichSource=Y292ZXJQYWdlOzI2MTczNTgzMTtBUzoxMDEyNDczMDY2OTg3NjNAMTQwMTE1MDY0ODkwNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Riss?enrichId=rgreq-743006fb794b8da57b38e79e56128cda-XXX&enrichSource=Y292ZXJQYWdlOzI2MTczNTgzMTtBUzoxMDEyNDczMDY2OTg3NjNAMTQwMTE1MDY0ODkwNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitat_Politecnica_de_Catalunya?enrichId=rgreq-743006fb794b8da57b38e79e56128cda-XXX&enrichSource=Y292ZXJQYWdlOzI2MTczNTgzMTtBUzoxMDEyNDczMDY2OTg3NjNAMTQwMTE1MDY0ODkwNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Riss?enrichId=rgreq-743006fb794b8da57b38e79e56128cda-XXX&enrichSource=Y292ZXJQYWdlOzI2MTczNTgzMTtBUzoxMDEyNDczMDY2OTg3NjNAMTQwMTE1MDY0ODkwNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael-Riss?enrichId=rgreq-743006fb794b8da57b38e79e56128cda-XXX&enrichSource=Y292ZXJQYWdlOzI2MTczNTgzMTtBUzoxMDEyNDczMDY2OTg3NjNAMTQwMTE1MDY0ODkwNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

FTSPlot: Fast Time Series Visualization for Large Datasets
Michael Riss*

Department of ETSEIB, Technical University of Catalonia (UPC), Barcelona, Spain

Abstract

The analysis of electrophysiological recordings often involves visual inspection of time series data to locate specific
experiment epochs, mask artifacts, and verify the results of signal processing steps, such as filtering or spike detection.
Long-term experiments with continuous data acquisition generate large amounts of data. Rapid browsing through these
massive datasets poses a challenge to conventional data plotting software because the plotting time increases
proportionately to the increase in the volume of data. This paper presents FTSPlot, which is a visualization concept for large-
scale time series datasets using techniques from the field of high performance computer graphics, such as hierarchic level of
detail and out-of-core data handling. In a preprocessing step, time series data, event, and interval annotations are converted
into an optimized data format, which then permits fast, interactive visualization. The preprocessing step has a
computational complexity of O(n|log(n)); the visualization itself can be done with a complexity of O(1) and is therefore
independent of the amount of data. A demonstration prototype has been implemented and benchmarks show that the
technology is capable of displaying large amounts of time series data, event, and interval annotations lag-free with v20 ms.
The current 64-bit implementation theoretically supports datasets with up to 264 bytes, on the x86_64 architecture currently
up to 248 bytes are supported, and benchmarks have been conducted with 240 bytes/1 TiB or 1:3|1011 double precision
samples. The presented software is freely available and can be included as a Qt GUI component in future software projects,
providing a standard visualization method for long-term electrophysiological experiments.

Citation: Riss M (2014) FTSPlot: Fast Time Series Visualization for Large Datasets. PLoS ONE 9(4): e94694. doi:10.1371/journal.pone.0094694

Editor: Jan Aerts, Leuven University, Belgium

Received December 23, 2013; Accepted March 17, 2014; Published April 14, 2014

Copyright: � 2014 Michael Riss. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by AGAUR/Generalitat de Catalunya (http://www.gencat.cat/agaur). The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: Michael.Riss@gmail.com

Introduction

For understanding long-term neuronal processes, such as

growth, plasticity/learning, degeneration and regeneration, it is

necessary to monitor neuron activity over long periods of time.

Currently, numerous single and multichannel extra-cellular

electrophysiology techniques offer long-term recording capability.

For in vivo experiments, protruding electrode arrays are

available to record extra-cellular potentials from cortical areas

for over two years [1–4], microwire bundles can be used to record

extra-cellular potentials from deeper areas within the brain for

more than one year [5–8], and cuff/cone electrodes provide

recordings from enclosed nerves and neural tissue with stable

neuron-electrode connection for up to three years [9–11].

In vitro culture dishes with integrated multi-electrode arrays

(MEAs) are used for experiments on neuron cultures [12–14] and

can keep the cultures alive for w9 months [15]. The cultures can

be patterned either chemically [16] or physically [17–20], enabling

circuit level observation of neuronal development and plasticity.

However, continuous long-term recording results in huge

datasets that pose a challenge to storage and analysis of the data.

For example, when recording at 10 kHz and with 8 bytes per

sample, each recording channel generates *6 gibibyte (GiB, IEC

nomenclature, [21]) per day. In the past, high costs of data storage

were prohibitive for saving the complete recording in raw data

format. Algorithms were developed to conduct filtering, spike

detection, and classification during the experiment in real-time,

and only short sweeps, time stamps, and selected parameters of the

classified spikes were saved to the hard disk [22,23].

Nowadays, the modern off-the-shelf high-capacity hard drives

have made raw data storage of long-term recordings feasible at a

relatively low cost. Raw data storage offers the advantage that the

data can be analyzed after the experiment with access to the

complete recording. This permits the iterative refinement of the

analysis process, testing of alternative analysis algorithms, identi-

fication and processing of unexpected artifacts, and the study of

neurons displaying time-varying activity patterns.

During iterative data analysis, the visual inspection of the time

series data is a reoccurring work step. Initially, artifacts and/or

noise need to be identified and excluded from further analysis, for

example, incomplete power line shielding or manipulation of the

experiment setup. Subsequently, results of the processing steps,

such as filtering, spike detection, and spike sorting need to be

verified. Owing to the interactive nature of such analysis, the user

should be able to quickly navigate through the data and view it at

different magnification levels.

This requirement poses a challenge to traditional plotting

programs. Although there are various ways to visualize the time

series data [24], the most commonly used method for electro-

physiological data is the line plot. The canonical approach for a

line plot is to project the samples one by one onto the canvas and

connect the resulting points with lines. Therefore, the plotting time

depends on the amount of data: more data results in longer

plotting time; the canonical algorithm has linear complexity; in O-

notation [25,26] expressed as O(n). Owing to the large amounts of

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e94694

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0094694&domain=pdf

data produced by long-term recordings, the canonical plotting

method cannot offer the necessary performance despite the

impressive computational power of the current processors and

graphic cards; therefore, a different algorithmic approach is

required.

Currently, there are several techniques that address the

challenge of displaying large time series datasets on finite-

resolution displays. A movable virtual ‘‘lens’’ can be used to

simultaneously display the data both at the overview and detailed

levels. A section of the dataset is magnified and displayed in great

detail within the overview, dynamically pushing aside the rest of

the data and thereby creating a ‘‘lens effect.’’ Handling of datasets

with up to 106 data points has been reported with this method

[27,28].

Binning can be used to display time series data at multiple levels

of aggregation. The data is accumulated in a predefined number

of bins and various parameters are calculated for each bin, for

example, mean value, minimum/maximum value, and standard

deviation. These values are then plotted instead of the original,

complete dataset, thereby permitting, depending on the number of

bins, visualization of the data at different aggregation levels. This

method has been shown to handle 50,000 data points [29].

In the field of 3D computer graphics, similar problems with

displaying large data amounts have been solved in the past by

combining various strategies.

The level-of-detail (LoD) methods are based on the fact that

complex 3D models often have more detail than the monitor can

display with its fixed resolution and pixel size [30,31]. This

especially applies to scenes in which the object is far away and

occupies only a small area on the monitor. The LoD method

generates for each original, high-detail 3D model several

additional 3D models with successively reduced geometric

complexity. Depending on the size occupied by the object on

the monitor, the algorithm selects the 3D model that still provides

the maximum amount of detail that the monitor can display but

avoids excess detail levels that go beyond the capabilities of the

monitor.

This idea is further refined in surface splatting methods [32,33].

These methods are used for models that store information about

the object surface as a high density point cloud without

connectivity. This permits the polygon representation to be

abandoned and only the point cloud is projected as elliptic

‘‘splats’’ onto the pixel matrix of the monitor.

Handling the huge amount of data is an additional challenge.

The size of high detail models usually exceeds the memory

capacity of video cards and the main memory; therefore, the bulk

model data has to remain on the hard disk. However, optimal

performance can only be achieved by processing the data in the

fast access memory levels (main and graphic card memory, and

caches) [34]. Therefore, it is necessary to load the used data

segments on demand into the main and graphic card memory as

the user navigates through the model [35,36].

The FTSPlot project shows how such methods can be applied

and extended to achieve fast, interactive display of large-scale

electrophysiological time series data, event, and interval annota-

tions.

Materials and Methods

Overview
Fig. 1 shows an overview of the FTSPlot concept. The original

datasets are preprocessed to create static hierarchic data repre-

sentations that are stored on the hard drive.

During visualization, the main thread receives user input

(panning/zooming) and quickly paints the current data section,

which is stored in a small OpenGL display list. Every time the user

navigates towards the limits of the current display list, the main

thread requests a new data section at the required detail level

(zoom level) from the background thread. The background thread

reads the data from the adequate static data reduction level,

applies further data reduction (dynamic data reduction) to exactly

match the needed detail level, and stores the new data section in

the second OpenGL display list of the graphics subsystem. Once

completed, the main thread switches the two display lists and can

now present the new data section to the user.

Time series data
FTSPlot works with electrophysiological datasets that store a

single recording channel as a series of floating point values (IEEE

754, 64 bit).

Basic data reduction step. The key technique underlying

most hierarchical visualization techniques is the reduction of detail

in the scene/model to accelerate plotting but without compromis-

ing the final visual result. This is possible because a computer

display discretizes the image into pixels (Fig. 2 (a)). When a large

amount of data is being plotted onto a computer display, the finite

resolution of the display imposes a limit to the amount of details

that can be displayed. If there are more data points than pixels,

several data points get projected onto the same pixel (Fig. 2 (b)).

This permits the use of a replacement representation that has less

detail but yields the same visual result; this is often also called

proxy representation/model [37,38]. For FTSPlot, vertical lines

have been chosen as the proxy representation for time series data

(Fig. 2 (c)). Each line represents an interval of the time series

dataset. The minimum and maximum values in the interval define

the vertical positions of the two ends of the vertical line, and the

average time-value defines the horizontal position. As long as the

intervals are smaller than the pixel columns on the monitor, the

visual result is indistinguishable from the normal, canonical

visualization method.

This basic data reduction by proxy representation is the central

algorithmic technique used in FTSPlot to accelerate data

visualization. Instead of depending on the amount of data, the

plotting time now depends on the resolution of the computer

display. Therefore, because the display resolution is constant, the

algorithm also has constant complexity—O(1).

Before visualization, however, the reduced dataset needs to be

computed, which is a task of linear complexity—O(n)—as all the

data points need to be processed to find the minimum and

maximum values of the intervals. This step needs to be performed

only once and it can be run unsupervised as a batch process before

starting the visualization.

Data reduction hierarchy. The basic data reduction step

described in the previous section solves the problem of quickly

displaying time series data at one predefined magnification level.

Scrolling panning is possible; however, dynamic zooming is not.

When zooming into the data, the vertical lines would eventually

become visible, revealing the data reduction trick and destroying

the impression of looking at proper time series data. When

zooming out, more and more vertical lines would get projected

onto single pixel columns, which would linearly increase the

plotting time and once again result in a linear complexity—O(n).

To solve this problem, the data gets reduced in several steps to

create a static data reduction pyramid (Fig. 3) on the hard disk.

The reduction factors of the pyramid levels are defined by

(THINNING FACTOR)n, with the THINNING FACTOR being

a user configurable parameter (needs to be a power of 2) and n

FTSPlot

PLOS ONE | www.plosone.org 2 April 2014 | Volume 9 | Issue 4 | e94694

being the pyramid level starting with 0 for the level of the original

dataset.

Time series display list generation. During visualization,

the background thread (Fig. 1 (b)) receives requests to prepare data

sections for the main thread at specific reduction factors

(depending on the current zoom level of the visualization). It

chooses the closest static data reduction level in the pyramid

‘‘below’’ the requested reduction factor, that is, the closest static

data reduction level that still contains more detail than requested.

With the dynamic data reduction step, the data then gets further

reduced by an additional reduction factor to match the reduction

factor needed for visualization.

Example: Assuming a THINNING FACTOR of 64, the first

static reduction factor is 64, the second 64|64~4096, etc. If

during visualization, a reduction factor of 512 is requested, the

algorithm would choose the first static reduction factor (64) and

then dynamically reduce the data with an additional reduction

factor of 8 (64|8~512).

The computational cost for the dynamic data reduction depends

on the additional reduction factor; the bigger the additional

reduction factor, the more the data needs to be searched to find

the minimum and maximum values. However, the additional

reduction factor cannot become bigger than the THINNING

FACTOR (the distance between two adjacent static reduction

factors in the pyramid) because the algorithm always chooses the

static reduction level of the pyramid that is closest to the requested

reduction factor. Because the THINNING FACTOR is a constant

set at compile time, the computational cost for the dynamic data

reduction is also constant—O(1).

In summary, both the basic data reduction step and the

hierarchical data reduction have constant computational effort;

combined, they form the algorithmic framework that permits the

Figure 1. FTSPlot overview. (a) Data is prepared in an offline processing step. Time series data is reduced with the batch tool FTSPrep in several
steps to form a static data reduction pyramid. Linear event/interval lists get converted to a hierarchical directory tree data structure directly in the
FTSPlot program. (b) During visualization each dataset gets read by a separate background thread from the hard disk; further dynamic data reduction
is applied to match the current zoom level of the visualization; the resulting data section is stored in the graphics system as an OpenGL display list.
The main thread uses the prepared display lists to quickly draw the data to the screen. OpenGL display list double buffering allows simultaneous
painting of the current display lists by the main thread while new display lists get prepared by the background threads.
doi:10.1371/journal.pone.0094694.g001

FTSPlot

PLOS ONE | www.plosone.org 3 April 2014 | Volume 9 | Issue 4 | e94694

panning and zooming of time series data with constant complex-

ity—O(1).

The initial calculation of the complete data reduction pyramid

has a complexity of O(n|log(n)), because log(n) levels need to be

computed, each with linear complexity.

Event data
When working with time series data, events often need to be

marked. Events are points in time that can indicate the position of

spikes, onsets of stimulation, or other experiment and analysis

parameters. In contrast to time series data, event data is sparse; an

experiment can contain only a few events (e.g., time points at

which the cell culture medium was changed) or a very large

number of events (e.g., when marking all spikes). Events are also

editable; the user may want to add or remove events during visual

inspection.

Directory structure. To address these additional require-

ments, a different storage data structure has been selected. Instead

of continuous files, a hierarchical hard disk data storage is used

(Fig. 4). Events are stored as 64-bit sample positions in block files

on level 0. The storage location of the corresponding block file

within the directory tree can be determined from the event value

(Fig. 5 (a)). This 64-bit event value is divided into a path section

(high-level bits) and a block file section (low-level bits). The path

section is divided into chunks with length BRANCHFACTOR,

which is a tuning parameter set at compile time. Each chunk is

converted into a hexadecimal representation to form a component

of the block file path. All events that share the same path and only

differ in the block file section are stored in the same block file. The

block file section comprises BLOCKFACTOR bits (BLOCK-

FACTOR is a tuning parameter that is set at compile time);

therefore, a block file can contain a maximum of 2BLOCKFACTOR

different events.

The fixed association of the event value and storage location

within the directory tree facilitates the search of the corresponding

block file for the insert and delete operations. The depth of the

directory tree is static and calculated from the BLOCKFACTOR

and BRANCHFACTOR (see also Fig. 5 (a)):

treedepth~
64{BLOCKFACTOR

BRANCHFACTOR
ð1Þ

The directory tree is sparse; directories and block files are created

on demand when inserting a new event and they are deleted when

deleting the last event in a block file or subdirectory.

Data reduction step. The visual representation of an event is

a vertical line at its (sample) position. Several events projected to

the same pixel position on the monitor are indistinguishable from

a single plotted event. A large number of events can therefore be

replaced by a single vertical line (proxy representation).

The reduced data representations are stored in node files

throughout the directory tree and each node file represents its

corresponding sub-directory tree (Fig. 4). For the calculation of a

node file, all the events from the block and node files in the sub-

directory are collected (Fig. 6 (a)). Then, for each event,

n|BRANCHFACTOR low-level bits are zeroed (see also

Figure 2. Time series data reduction. The basic principle of data reduction to accelerate time series plotting: (a) A computer display uses discrete
pixels to display a graph. (b) Plotting large amounts of data results in overdraw; several data points get plotted onto the same pixel column. A
zoomed version of the marked area (red lines) in (b) is shown in (c) as an example for the amount of detail that can collapse onto a single pixel
column. (d) Replacing the original time series dataset with a reduced dataset consisting of minimum and maximum values for each pixel column
gives the same visual result. The reduced dataset in this example consists of only 48 data points compared to the original time series with 38,866
samples in (b) and can therefore be plotted considerably faster.
doi:10.1371/journal.pone.0094694.g002

FTSPlot

PLOS ONE | www.plosone.org 4 April 2014 | Volume 9 | Issue 4 | e94694

Fig. 5 (b)); n is the level of the node file in the directory tree.

Finally, duplicate events that result from the bit zeroing step are

eliminated.

Event display list generation. During visualization, the

background thread receives requests to prepare new display lists

containing the events within a given sample range (defined by the

begin and end points) at a certain zoom factor (data reduction

Figure 3. Time series data reduction pyramid. The data reduction pyramid for time series datasets and a THINNING FACTOR of 64. The original
file with the samples is shown at the bottom. For each block of 64 samples, the minimum and maximum values get computed and stored in the file
with the first-level reduced dataset (middle). The computation of the second-level reduced dataset is similar; for each block of 64 min/max pairs on
the first level, the minimum and maximum value is computed and stored on the second level.
doi:10.1371/journal.pone.0094694.g003

Figure 4. Event and interval data storage structure. Directory structure for the storage of event or interval data. Events or intervals are stored
in block files at the bottom at Level 0. Each block file spans a predefined range of samples; all the events or intervals within that range are stored in
this block file. The events of all block files in a directory get combined into a node file on the directory level above; data reduction occurs during this
step. When storing interval data (yellow boxes), additional block files at higher levels are used to store intervals with end points that do not fit into
the sample range of a single block file at the bottom.
doi:10.1371/journal.pone.0094694.g004

FTSPlot

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e94694

level). Owing to the fixed assignment of event position to the

block/node file path, the routine can directly calculate the path

from where to start the search. Then, it traverses the directory tree

at the level corresponding to the requested zoom factor, reading

events and proxy representations from the block/node files until

the path of the end point is reached. The traversal level is selected

so that the static data reduction level of the events and proxy

representations is just ‘‘below’’ the requested data reduction level.

The events/proxy representations are further reduced (dynamic

data reduction) to match the final reduction level (zoom factor) for

the visualization and are then added to the display list.

The directory tree can store a maximum of one event at each

sample position; therefore, it has the same data density and

topology as a time series dataset (compare Fig. 3 and 4). Analog to

time series visualization, the combination of basic data reduction

step (using a proxy representation to replace several events within

one pixel column) and the data reduction hierarchy permits the

generation of display lists with constant complexity; panning and

zooming of event annotations is possible with constant computa-

tional effort—O(1).

The generation of the directory tree from a flat file of events

takes O(n|log(n)) computation time.

Interval data
Besides marking single time points (events), time series analysis

often also requires the intervals of the recordings to be marked, for

example, spikes/bursts from their onset to their end, artifacts due

to the manipulation of the experiment setup, or interesting periods

of the recording. In FTSPlot, intervals are defined by the sample

positions of the beginning and end of the intervals. Visually,

intervals are represented by semi-transparent colored rectangles

that cover the interval range.

Directory structure. Interval data is stored in a directory

tree structure similar to the directory tree structure for event data

(Fig. 4). Intervals are stored as two 64-bit values (begin and end) in

block files, with begin valueƒend value. Intervals can overlap.

Special care needs to be taken for intervals that are too large to

fit into the range of a single level-0 block file. Such intervals are

stored in high-level block files that can be instantiated on demand

at each node in the directory tree (Fig. 5 (c)). To determine the

corresponding high-level block file for an interval, the common

binary prefix of the begin and end values of the interval is

computed. The prefix is trimmed to a length equal to a multiple of

BRANCHFACTOR bits by cutting away possible surplus low-

significant bits. The trimmed prefix is then converted into a

directory tree path that points to the node at which the

corresponding high-level block file for the interval is located.

Data reduction step. Projecting several intervals into the

same pixel column is indistinguishable from plotting only a single

vertical line into the pixel column. Therefore, intervals are

represented by a single vertical line as proxy representation.

The reduction process is analog to event data reduction, except

that instead of one 64-bit value for an event, two 64-bit values are

processed for an interval. Examples for the reduction process can

be seen in Fig. 6 (b). Once the begin and end values of an interval

collapse into the same value, the interval is represented by a single

proxy line. The additional high-level block files are treated

analogously to normal block files for the creation of node files on

the level above.

Interval display list generation. Interval data display list

generation is similar to event data display list generation. During

the traversal of block and node files, all intervals are included in

the display list that reside either entirely or partially in the

requested section.

To include the long-range intervals stored in the high-level

block files, a stack is maintained during directory traversal, which

contains all the intervals from high-level block files along the path

from the root node to the current block/node file. All the long-

range intervals intersecting with the requested section are added to

form the final display list.

Because the data structure permits overlapping intervals, a block

file spanning n bits can theoretically store a maximum of

22n{1z2n{1 intervals (both the begin and end points can take

on all 2n values under the condition that begin valueƒend value).

Owing to the large span of the high-level block files and the fact

that their intervals are stored on a stack during display list

generation, the worst case computational and memory complexity

is exponential. However, during normal electrophysiology analy-

sis, such a maximally overlapped interval structure is not to be

expected. Rather, it can be assumed that the intervals are mostly

non-overlapping and sparse. In this case, the data density and

topology resemble time series and event data, and the computa-

Figure 5. Bit tricks for event and interval data handling. The 64-
bit values of events and intervals define the storage location of the
value within the directory tree. The high-level bits are divided into
chunks of bits with lengths equal to tuning parameter BRANCHFACTOR.
When converted to hexadecimal format, they represent the path of the
file in which the event or interval is stored. (a) The path of a normal
block file comprises treedepth-1 directories and the block file name.
Each normal block file spans 2BLOCKFACTOR values. (b) Example of a
node file on level 1. BRANCHFACTOR low-level bits are set to zero,
whereas the path section is shortened by BRANCHFACTOR bits (one
directory level). The node files also span 2BLOCKFACTOR values. (c) [only
applies to interval data] If an interval does not begin and end within the
same block file on level 0, it gets stored in a high-level block file which
offers—depending on its level—a larger value span.
doi:10.1371/journal.pone.0094694.g005

FTSPlot

PLOS ONE | www.plosone.org 6 April 2014 | Volume 9 | Issue 4 | e94694

tional complexity for panning and zooming can be assumed to be

constant—O(1).

Under the same assumption of non-overlapping and sparse

intervals, the generation of the directory tree from a flat file of

intervals takes O(n|log(n)) computation time.

Performance tuning parameters
To achieve quick directory tree traversal during display list

generation, the tree structure parameters can be tuned to match

the performance characteristics of the used data storage device and

file system.

N Block file sample range (BLOCKFACTOR). Controls the

sample range covered by the block and node files. An advantage of

small ranges is that inserting and deleting events/intervals in small

files is quick; however for visualization, numerous small files need

to be traversed to create a new display list. This results in more

time-intensive directory and inode lookups, leading to poor

visualization performance.

Block files that cover a large range on the other side have the

advantage of quick visualization; however, they are slow when

inserting or deleting events/intervals.

N Branch width (BRANCHFACTOR). Controls the branch-

ing width of the directories. Small branch widths result in a deep

directory tree that has only a few sub-directories at each node.

Large branch widths result in a shallow directory tree and that has

many sub-directories at each node.

The optimal value depends on the directory lookup character-

istics of the used file system. For file systems that can quickly

Figure 6. Event data reduction example. (a) shows an example of three events at level 0 and their reduced representations at higher levels of
the directory tree. The hexadecimal representation of the events (on the left) correspond to the path to the block file in the directory tree. The gray
boxes mark the bits that are encoded within the files and not in the path. Each reduction step from level n to nz1 consists of chopping off the last
bits (by the amount of BRANCHFACTOR bits; in this example by 4 bits) and then eliminating the duplicate values. (b) Interval data reduction is similar
to event data reduction. The large interval (level 0, 2.block, left) gets reduced but still remains an interval on level 1. The smaller interval (level 0,
2.block, right) gets reduced and changes to a single line on level 1 because in the reduced representation, the interval begin and end values collapse
to the same value. Overlapping intervals are possible, as shown in level 0, 6.block. The high-level block file 3.block at level 1 contains an interval that
would start in 2.block and end in 6.block at level 0. High-level block files, such as 3.block, get combined with the node files at their level (3.node) to
form node files at the level above (level 2, 4.node).
doi:10.1371/journal.pone.0094694.g006

FTSPlot

PLOS ONE | www.plosone.org 7 April 2014 | Volume 9 | Issue 4 | e94694

lookup large directories, a large value is better; however, for file

systems that are better at sequentially looking up several smaller

directories, a small value performs better.

Hiding hard disk latency by double buffering
By using the methods described above, the amount of data that

is needed to plot a single image is significantly reduced. These

small chunks of data can now be loaded on-demand from the hard

disk into the main and graphic card memory. To prevent the

access latencies of the hard disk from stalling real-time navigation,

a display list double buffering system is used (Fig. 1 (b)). While the

main thread presents one display list to the user, a background

thread fills another display list with new data from the hard disk.

The display lists contain more data than required for plotting the

current screen section, that is, the display lists are wider and have

more resolution than the visible section on the monitor. The extra

data acts as a reserve, which permits the user to continue

navigating with the old display list, while the background thread

prepares the new display list. As long as the new display list is

prepared in time, that is, before the user reaches the border of the

current display list, the navigation appears to be seamless without

a noticeable display list switch. The current implementation works

with display lists that are 3| the width and 4| the resolution of

the current screen section. Therefore, the display list size depends

on the screen width; each display list can contain up to

screen width|3|4 elements (lines/rectangles).

Implementation
The software was implemented in C++ using the Qt 4.7.0

toolkit for platform independence; a 64-bit operating system is

required for memory mapping files w2 GiB. FTSPlot was built,

tested, and benchmarked on Linux (gcc 4.4.5); it also successfully

built and passed basic tests on Windows 7 (mingw64 or Microsoft

Visual Studio 2010) and Mac OS X (Xcode 3); however, thorough

tests and benchmarks were not conducted on these platforms.

Standalone programs. FTSPlot: FTSPlot is the main

program and the interactive data viewer. It can display multiple

time series, event, and interval datasets in a single graph window

and provides intuitive navigation (panning and zooming) using the

mouse. For each dataset, it is possible to select the plot color,

temporarily exclude the dataset from plotting, and set the plot

priority (datasets of high priority are plotted in front of lower

priority datasets). The viewer can insert and delete events and

intervals and traverse event and interval lists while optionally

tracking the current event/interval in the graph window.

FTSPrep: Before the time series datasets can be displayed in

FTSPlot, they need to be preprocessed to generate the reduced

data representations. Depending on the amount of data and hard

disk speed, this process can be quite time consuming. Therefore, a

separate program—FTSPrep—has been developed for processing

time series datasets in batch mode.

Application programming interface (API) and Qt

widget. To facilitate the adoption of the FTSPlot visualization

method, it is possible to embed FTSPlot as a graphical user

interface component (Qt GUI widget) into other software projects.

In listing 1, a basic example of how to use the API and library is

shown.

#include ,QApplication.

// Include the header file for the FTSPlot Qt widget

#include ,FTSPlot.h.

// all definitions reside in the FTSPlot namespace

using namespace FTSPlot;

int main(int argc, char** argv)

{

// Qt basic setup

QApplication qapp(argc, argv);

// create and show the FTSPlot viewer widget

SimpleViewWidget viewer(NULL);

viewer.show();

// add a time series dataset

viewer.addTimeSeries(‘‘TestDataSet.cfg’’);

// zoom to view sample positions 7000–8000

viewer.setXRange(7000, 8000);

// at this point, the GUI setup is complete

// control goes to Qt for user input processing

qapp.exec();

}

Listing 1: An example of how to use the FTSPlot API to

display a time series dataset

Benchmarks
The visualization performance of FTSPlot has been evaluated

using benchmarks. FTSPlot was connected to a ‘‘remote-control’’

module, which took control of the view navigation, permitting the

sequence of display commands in different tests to be replayed

reliably. For the benchmarks, a sequence was used, which

visualized in each step n a sample range of length ½0,2n� until

the entire dataset was covered. In this manner, the sequence

permitted the evaluation and comparison of the visualization

performance at different magnification levels. The computation

time was measured with clock_gettime() for both the preparation

of the OpenGL display lists and for the actual painting of the

display list. Several factors that can influence the visualization

performance have been examined and these factors are listed as

follows:

N Tuning parameters

The visualization modules for time series, event, and interval

data each have their performance tuning parameters (THIN-

NING FACTOR for time series data, BLOCKFACTOR and

BRANCHFACTOR for event and interval data). To determine

the optimal values for the tuning parameters, several candidate

values have been benchmarked and compared.

N File system cache

Most modern operating systems use the free main memory to

cache file system data. This speeds up further read access from the

cached data because the main memory is much faster than raw

hard disk access. FTSPlot benefits from the file system cache

because during normal navigation (panning and zooming), most

data is already stored in the file system cache and only small

portions of new data need to be read from the hard disk. To

estimate the impact of the file system cache, benchmarks have

been conducted both with the file system cache and under a setting

in which the file system cache is pruned before each test to

simulate the ‘‘cold-start’’ conditions. This was achieved by writing

a ‘‘3’’ into /proc/sys/vm/drop_caches. Note that this did not prune

the read cache of the hard disk itself; therefore, the data cached

there might still bias the results.

N Directory and inode block fragmentation

Event and interval display list generation depends on quick

directory traversal, which is predominantly influenced by seek

times between directory and inode blocks. Fragmented directories

require more and longer seeks, increasing the total access time. To

estimate the impact of directory and inode fragmentation,

FTSPlot

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e94694

benchmarks were conducted with ‘‘fragmented’’ and ‘‘optimized’’

directories.

For generating a fragmented directory, the original directory

tree was scanned to obtain a list of all the files and sub-directories.

After randomizing this list, the original directory tree was copied to

the new directory tree in the randomized order of the list. This

ensured—on the tested XFS file system—that the directory and

inode blocks in each directory were non-continuous.

For generating optimized directories, the original directory was

copied to the new directory in a ‘‘depth first search’’ tree traversal

order to achieve a mostly continuous directory and inode block

distribution.

The benchmarks were conducted on synthetic datasets. For

time series data, a synthetic dataset with a size of 240 bytes (1 TiB

corresponding to 1:3|1011 double values) was used and it

comprised alternating values of {1 and 1.

For event and interval data, the synthetic datasets were designed

to be densely filled with events/intervals to simulate the ‘‘worst-

case performance.’’ The event dataset contained events at every

possible position (sample positions 0, 1, 2, 3,…).

The interval dataset comprised overlapping intervals with

variable lengths generated by the formula

n2kz1,n2kz1z(2k{1)
� �

, with k ranging from 1 to 63 and n

ranging from 0 to
263{2kz1

2kz1
. The formula generates interval-gap

stipple patterns (50% interval, 50% gap). Parameter k controls the

length of the intervals and gaps (2k{1). For a given k, parameter

n iterates through the individual intervals of the pattern.

Furthermore, for event and interval data, the directory tree was

selectively pruned. The benchmark sequence only considers first

samples in great detail; samples towards the end of the dataset are

only displayed in a ‘‘zoomed-out’’ manner and with significant

data reduction. Because the samples towards the end of the dataset

are never displayed in great detail, their detailed representations

can be omitted to save disk space. In this manner, the benchmark

datasets for event and interval data could virtually extend up to 263

samples.

For evaluating the storage overhead of event/interval directory

structures, additional test datasets have been created. They were

designed to mimic the analysis situation of a recording from a

neuron firing a spike train continuously for 14 days at *33 Hz

frequency. Therefore, the test dataset for event data contained

events (detected spikes) every 300 samples (10 kHz sample

frequency) and the test dataset for interval data contained intervals

of the length of 30 samples every 300 samples.

The storage overhead of time series datasets was determined by

measuring the file sizes with the command ‘‘ls -l.’’ For measuring

the storage overhead of event/interval directories, the command

‘‘df -B 1’’ was used to determine the amount of used bytes on the

hard disk before and after creating the directory tree; the final disk

consumption was then calculated by subtracting the two values.

For comparing the FTSPlot time series display to common

canonical plotting solutions (gnuplot, matlab, and octave +
octplot), benchmarks were conducted with the alternative solutions

using increasing sample ranges analog to the FTSPlot bench-

marks. The canonical solutions load the complete dataset into the

main memory before visualization; therefore, the capacity of the

main memory limited the amount of data that could be

benchmarked.

All the benchmarks were run in a window with a resolution of

800|600 pixels and on a freshly created file system to avoid bias

due to unintentional fragmentation. Each benchmark was

repeated several times and the results were averaged to even out

external influences, such as task-scheduling, interrupts, etc. The

number of repetitions was chosen depending on the duration of

the specific benchmark; short benchmarks were repeated more

often than long-running benchmarks, which automatically evened

out sporadic external influences due to their long duration. Time

series and cached event/interval benchmarks were repeated 1,000

times, matlab and octave + octplot benchmarks were repeated 100

times and non-cached event/interval and gnuplot benchmarks

were repeated 10 times.

N Gnuplot

The Gnuplot benchmarks were controlled by a perl script

stepping through the sample ranges and by measuring the elapsed

time with the Time:: HiRes:: gettimeofday function. Gnuplot was

reading from binary files for improved performance (parsing text

files costs additional processing time).

N Matlab

Matlab offers several different plot modes: Hardware OpenGL,

Software OpenGL, and zBuffer plotting. For the comparison,

Hardware OpenGL was used, which offered the best performance;

the results of the other matlab plot modes are not shown. The

elapsed time was measured with the tic()-toc() mechanism.

N Octave + octplot

The combination of octave and octplot has been included

because it is a free open source solution that uses fast OpenGL

plotting. The elapsed time has been measured with the tic()-toc()

mechanism.

The specifications of the benchmark test machine are as follows:

A personal computer (PC) with an Intel Core 2 Quad CPU

Q9550 CPU @ 2.83GHz, 8 GiB memory, an ATI Radeon HD

4870 graphics card, running Linux with kernel 2.6, and

proprietary ATI graphics driver. The data files were stored on a

Western Digital WD20EARS hard drive (2 TB, 64 MB cache)

using the XFS file system.

FTSPlot has been compiled with gcc 4.4.5 and optimization

option -O3. Other software package versions were gnuplot 4.2.6,

matlab 2009b, and octave 3.2.3 with an adapted octplot extension.

Results

A functional prototype was implemented and tested on the 64-

bit Linux, Windows, and Mac OS X platforms. Benchmarks were

conducted only on Linux.

Fig. 7 shows the complete user interface. Fig. 8 shows the

program displaying an example of a 15 h recording of embryonic

mouse hippocampal neurons cultured in a substrate embedded m-

channel device [18]. At each level of magnification, the data

viewer offers a natural, artifact-free visual impression of the

recording.

Benchmark results
The benchmark results are shown in Figs. 9 and 10. In each

figure, the x-axis corresponds to the amount of data that is

displayed and the y-axis corresponds to the average processing

time required to either plot one image or to generate one display

list.

Fig. 9 (a) shows a comparison of the time series plotting

performance of FTSPlot and canonical solutions. Overall, the

FTSPlot display list generation and painting times remain with

v10 ms below the plotting times of the canonical solutions. For

large amounts of data, the plotting time difference is increasing,

FTSPlot

PLOS ONE | www.plosone.org 9 April 2014 | Volume 9 | Issue 4 | e94694

because for the canonical solutions the plotting times rise with the

amount of data, while FTSPlot can cut off the linear rise of display

list generation and paint times. The start of the FTSPlot data

reduction can be seen to set in at 8,192 samples.

Figs. 9 (b) and 10 show the influence of various parameters on

the performance of FTSPlot. In all the graphs, three performance

phases can be seen. The first phase for displaying very small

amounts of data shows little correlation between the amount of

data and display list generation time (e.g., Fig. 10 (a), 0–250

samples). Here, because the amount of processed data is very

small, the processing time is dominated by the static function call

overhead and therefore remains constant.

In the second phase, the processing time is linearly correlated

with the amount of displayed data (e.g., Fig. 10 (a), 250–8,192

samples). In this phase, the amount of data is still small; therefore,

the data reduction is not yet active and the processing time shows

the typical linear correlation with the amount of data analog to

canonical plotting solutions.

In the third phase (e.g., Fig. 10 (a), 8,192+ samples), the data

reduction is in effect, the processing time is not correlated to the

amount of data anymore, and artifacts that depend on the

properties of the data reduction algorithm and underlying data

structure are visible.

Fig. 9 (b) shows the OpenGL painting times for time series,

event, and interval data. Optimal tuning parameters have been

used for each data type (see below). The three phases—constant

beginning, linear rise, and plateau—are visible; the overall

painting time remains below 0.3 ms.

Fig. 10 contains a grid of benchmark results of OpenGL display

list generation performance and how it is affected by various

tuning parameters and external conditions. The different data

types are arranged top down: times series data (Fig. 10 (a) and 10

(b)), event data (Fig. 10 (c) and 10 (d)), and interval data (Fig. 10 (e)

and 10 (f)). The results in the left column (Fig. 10 (a), 10 (c), and 10

(e)) were measured with the activated file system cache, which is

the normal condition. The results in the right column (Fig. 10 (b),

Figure 7. FTSPlot UI screenshots. Screenshots of the FTSPlot user interface during the display of time series, event, and interval data. The main
FTSPlot window (a) contains the displayed data and receives mouse and keyboard input for navigation and event/interval editing. In the ‘‘Modules’’
window (b), each data source is represented by a module. For each module, various options are available: toggling its display in the main window
(Graph), changing the display color (Color), redirecting the mouse and keyboard input in the main window to a specific event/interval module for
editing (Edit active), or opening/closing the option window for a specific event/interval module (GUI). These option windows (c), (d) contain functions
for managing the datasets (top left section), selecting/manipulating data in the main window (lower left section), numeric data entry, manipulation,
deletion (top right section), and functions to conveniently navigate event/interval lists (lower-right section).
doi:10.1371/journal.pone.0094694.g007

FTSPlot

PLOS ONE | www.plosone.org 10 April 2014 | Volume 9 | Issue 4 | e94694

10 (d), and 10 (f)) were measured with the deactivated file system

cache, simulating the ‘‘cold-start’’ behavior. In each sub-figure, the

results for different tuning parameter values are shown; the event

and interval data benchmarks additionally distinguish between

results from fragmented and optimized file systems.

The detailed results are as follows:

The OpenGL display list generation performance for time series

data (Fig. 10 (a), 10 (b)) shows the typical three-phase structure.

From 0 to 256 samples, the display list generation time is constant,

from 256 to 8,192 samples, no data reduction occurs and the

display list generation time is linearly correlated with the amount

of data. Data reduction starts at 8,192 samples and the processing

time then shows a characteristic saw-tooth profile, which results

from the algorithm switching through several levels of statically

reduced datasets. In the rising phases, the dynamic data reduction

works with the same static reduction level and has to process more

data as more samples are displayed, resulting in rising processing

time. When switching from one static reduction level to the next,

Figure 8. Screenshots with example dataset. Example screenshots of the FTSPlot prototype on Linux showing a real dataset (15 h recording of
hippocampal mice neurons in a device with embedded micro-channels [18]). The units on the x-axis are samples; the units on the y-axis are micro-
volts. Each of the marked intervals shows the view range of the previous sub-figure. (d) Slight variations of maximum signal amplitude in long-term
recordings allow orientation within the data even when the low amplitude signals are too dense and blur together.
doi:10.1371/journal.pone.0094694.g008

FTSPlot

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e94694

the processing time drops again. Setting the tuning parameter

THINNING FACTOR to low values limits the processing time

for display list generation but increases the number of reduced

datasets (in this example, 5 saw-teeth with THINNING FAC-

TOR = 32) and the extra storage space (Table 1). Setting the

tuning parameter THINNING FACTOR to high values increases

the display list generation time but reduces the number of reduced

datasets (here, 3 saw-teeth with THINNING FACTOR = 256)

and extra storage space.

When conducting the benchmarks with the deactivated file

system cache, the display list generation time rises in general

(Fig. 10 (b)). Moreover, the first saw-tooth is now smaller than the

following ones. This is because the first dynamic data reduction

phase uses the original dataset with one 8-byte floating point value

per sample compared to 2|8 bytes floating point values per

sample in the reduced (min/max) datasets for the following

dynamic data reduction phases. Because the display list generation

speed without the file system cache depends mainly on the reading

speed of the hard disk, this difference is reflected in the display list

generation times.

Figs. 10 (c), 10 (d), 10 (e), and 10 (f) show the OpenGL display

list generation times for event and interval data. The third phase

(w8,192 samples) shows a characteristic stepwise decrease in

processing time. This is because the node files with reduced data

are stored closer to the root node than the block files. Therefore,

when displaying more data, the directory traversal from the tree

root to the node files becomes shorter and the display list

generation time becomes stepwise faster whenever the traversal

Figure 9. Performance comparison. (a) FTSPlot time series plotting performance (THINNING FACTOR 64) is compared with canonical plotting
solutions. Plotting times rise for canonical plotting solutions the more data is displayed, whereas FTSPlot can keep the plotting and display list
generation time below 10 ms—independent of the amount of displayed data. (b) shows the time required to paint the display lists for time series,
event, and interval data using optimal parameters; overall, they remain below 0.3 ms.
doi:10.1371/journal.pone.0094694.g009

FTSPlot

PLOS ONE | www.plosone.org 12 April 2014 | Volume 9 | Issue 4 | e94694

switches to the next higher directory level. With the file system

cache, the fragmentation level of the directory and inode blocks

bears only a slight influence on the processing times, which shows

that the data is predominantly served from the file system cache

(Fig. 10 (c), 10 (e)). Without the file system cache, directory

fragmentation bears a strong influence on processing time, because

data is directly read from the hard disk and access times depend on

the directory and inode block layout. Optimized directory and

inode block layouts can be read faster than fragmented block

layouts.

Storage overhead
The statically reduced datasets (proxies) that are required for

accelerating visualization are stored on the hard disk and consume

extra space. Table 1 shows the relative storage overhead for time

series data depending on the used THINNING FACTOR.

Determining the storage overhead for event and interval data is

Figure 10. Display list generation benchmark results. Results of the OpenGL display list generation benchmarks for time series, event and
interval data, showing the influence of tuning parameters, file system cache, and file system fragmentation. See main text for detailed discussion.
doi:10.1371/journal.pone.0094694.g010

FTSPlot

PLOS ONE | www.plosone.org 13 April 2014 | Volume 9 | Issue 4 | e94694

more difficult because storage requirements for directories largely

depend on the used file system and how it organizes its internal

data structures. Moreover, events and intervals are sparsely

distributed, which leads to

N small files, which are often too small to fill up a complete

physical block on the hard disk, resulting in poor disk

utilization and higher disk space consumption.

N a multiplication of data; from each block file, a chain of node

files extends towards the root of the directory tree, consuming

additional disk space.

Two types of datasets were used to evaluate the storage

overhead: ‘‘regular’’ datasets, which were used for simulating a

spike train analysis (see methods section), and the ‘‘sparse’’ pruned

directory datasets, which were used for the benchmarks. The

results are shown in Table 2. Although the regular datasets showed

a noticeable storage overhead of up to four times the original

dataset size, the sparse datasets drastically raised the disk space

consumption up to 2,175 times the original dataset size. Here, the

artificially sparse nature of the pruned directory tree leads to very

small and distributed file and directory entries. Together with a

relatively large disk block size of 4,096 bytes (compared to 8 or 16

bytes for a single event/interval entry), this results in a huge

storage overhead.

In a more realistic, non-sparse dataset, events/intervals can

group more closely together and start sharing the same resources

(using the same disk blocks if they are in the same block file, or

sharing the same directory and node file blocks when they are in

the same sub directory tree).

Optimal tuning parameters
From the benchmark results, optimal parameters can be

determined for the fine-tuning parameters.

For time series data, 64 was chosen as the optimal value for

tuning parameter THINNING FACTOR. It is the best compro-

mise between speed (paint time v0:3 ms; OpenGL display list

generation time v4 ms with the file system cache and v20 ms

without the file system cache) and storage overhead (3.2%).

For event and interval data, the storage overhead did not

influence the decision of the optimal tuning parameters because

the amount of event and interval data is assumed to be small and

therefore negligible compared to the storage requirements for the

time series data. Therefore, only visualization speed and event/

interval insertion/deletion speed (results not shown) were consid-

ered for selecting the optimal tuning parameters, resulting in

BLOCKFACTOR = 20 (max. 1,048,576 samples) and

BRANCHFACTOR = 4 (max. 16 directories) for both event

and interval data.

Discussion

The FTSPlot project has shown that by using preprocessed

datasets the exploration of time series data, event and interval

annotations is possible in constant time—O(1)—and is therefore

independent of the amount of data. Display list generation times of

v20 ms and painting times of v0:3 ms support fast and

continuous interactive navigation of long-term electrophysiological

recordings with at least 50 frames per second (excluding cold-start

conditions). The high drawing speed ensures visual object

constancy and avoids change blindness effects. The necessary

preprocessing step to prepare the datasets for visualization has a

complexity of O(n|log(n)) and can be conducted unattended in a

batch process.

As compared to canonical plotting solutions, which slow down

as more data is plotted, this represents a qualitative improvement

of the algorithmic complexity during visualization from O(n) to

O(1).

In practice, this improvement becomes noticeable when

working with datasets beyond *107 samples (e.g., recordings

w17 minutes at 10 kHz) because then the plotting time with

canonical solutions rises above 1 second and starts hindering

continuous, interactive data navigation (Fig. 9 (a)).

Limitations
x86_64 48-bit virtual addresses. In theory, using a 64-bit

architecture should allow FTSPlot to map datasets with up to 264

bytes into the virtual address space. In practice, current

implementations of the x86_64 architecture often only use 48 bits

for virtual addresses[39]. This limitation reduces the amount of

data that can be addressed from 16 EiB (64 bit) to 256 TiB (48 bit),

Table 1. Time series data overhead.

Thinning factor Relative overhead

32 6.5%

64 3.2%

128 1.6%

256 0.8%

doi:10.1371/journal.pone.0094694.t001

Table 2. Event and interval data overhead.

Type, block/branch parameters Regular dataset overhead Sparse dataset overhead

Event, 16–4 378% 217481%

Event, 16–8 253% 118621%

Event, 20–4 212% 176257%

Event, 20–8 117% 96915%

Interval, 16–4 253% 8696%

Interval, 16–8 128% 4032%

Interval, 20–4 213% 8064%

Interval, 20–8 104% 3780%

doi:10.1371/journal.pone.0094694.t002

FTSPlot

PLOS ONE | www.plosone.org 14 April 2014 | Volume 9 | Issue 4 | e94694

which corresponds to *1013 double values. In reality, this amount

will be even lower because the x86_64 address space is split into

two halves and the address ranges for the operating system and

program code occupy additional address space. The benchmark

above was conducted with 1:3|1011 double values occupying 240

bytes, which is already close to the practical 48-bit limit.

Considering the continuously growing storage capacities, newer

processors in the future are expected to have an extended virtual

address space beyond 48 bits. An alternative to expanded address

ranges would be to change the program to use seek/read

semantics instead of memory mapping.
Visibility. The objective of the FTSPlot project was to

accelerate time series plotting, while still maintaining the visual

result of a canonical line plot. The practical use of FTSPlot with

extra-cellular electrophysiology recordings has shown that at each

zoom level, it is possible to present sensible information regarding

the features at that aggregation level: spike shapes, spike bursts,

and the overall development of spike amplitudes (Fig. 8). In

general, however, plotting large amounts of data can lead to a

crucial loss of information due to overdraw. In particular, periodic

signals with large amplitudes (e.g., artifacts of regular external

stimulation) suffer from a banding effect that inhibits sensible

visualization when plotting data at overview zoom levels. Further

research is required to determine the right visual cues (color

gradients, intensity, transparency, stipple patterns, and multi-plots

with mean, min, max, and standard deviation values [24,29]) to

express sensible information in such situations. For very large

datasets, the cues are likely to also require information about

semantic properties corresponding to the specific type of data and

analysis step, for example, average spike amplitudes, spike

densities, and number of spikes per spike train.

Further performance considerations
The computational effort required to prepare the reduced

datasets with FTSPrep is very small; therefore, the limiting factor

for the static data reduction is the sequential reading speed of the

hard disk. For example, preparing a single channel recording of 1

day (6.4 GiB) takes *1.3 minutes assuming a hard disk

throughput of 85 MiB/sec. In subsequent versions of the software,

the data reduction may even be included into the recording and

analysis software so that the reduction can occur ‘‘on the fly’’

during recording/analysis.

The storage overhead for reduced time series datasets remains

below 4% of the original data size (using the optimal THINNING

FACTOR of 64). In contrast, the storage overhead for event and

interval datasets cannot be bounded by an upper limit because it

depends on the sparseness of the data and on the used file system.

In extreme cases, the storage overhead can grow drastically with

very sparse data (Table 2); however, for practical applications, the

storage overhead should remain below 4| the size of the original

dataset. Although considering today’s hard disk capacities and

prices, this overhead is acceptable in most cases, the increased disk

space consumption should be considered when planning experi-

ment and analysis steps that generate considerable event or

interval data.

Care needs to be taken to ensure that the data hard disks are

used exclusively during visualization. Multi-user/multi-program

access to the data hard disk can lead to increased access times that

the double buffering strategy of FTSPlot may not be able to

compensate. Although time series visualization is quite well

adapted to the sequential access characteristics of hard disks,

event and interval visualization with its random access pattern

may further benefit from Solid State Disks (SSDs) that offer faster

random access.

A requirement of the current implementation is the use of a 64-

bit operating system for memory mapping large data files. This has

the additional advantage that the operating system can provide an

optimal caching strategy at the system level. If FTSPlot is

exclusively used on the system, it can use the entire available

main memory for caching; however, if FTSPlot is idle and other

programs are active and filling the file system cache, its effective

memory consumption is reduced.

FTSPlot is offered as a free standalone software for evaluating

its capabilities and as software component (Qt widget) for inclusion

in further projects. The source code is available from https://

github.com/MichaelRiss/FTSPlot. Together with high perfor-

mance data analysis components, FTSPlot can form a software

infrastructure for analyzing large-scale time series data. This

should permit the continuous monitoring of electrophysiological

experiments towards understanding long-term processes of neural

growth, plasticity, degeneration, and regeneration.

Acknowledgments

I extend my heartfelt gratitude to Ling Wang and the reviewers for their

suggestions on how to improve the manuscript.

Author Contributions

Conceived and designed the experiments: MR. Performed the experi-

ments: MR. Analyzed the data: MR. Wrote the paper: MR.

References

1. Maynard EM, Nordhausen CT, Normann RA (1997) The utah intracortical

electrode array: A recording structure for potential brain-computer interfaces.

Electroencephalography and Clinical Neurophysiology 102: 228–239.

2. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, et al. (2006)

Neuronal ensemble control of prosthetic devices by a human with tetraplegia.

Nature 442: 164–171.

3. O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, et al. (2011) Active

tactile exploration using a brain-machine-brain interface. Nature 479: 228–231.

4. Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR (2011) Neural

control of cursor trajectory and click by a human with tetraplegia 1000 days after

implant of an intracortical microelectrode array. Journal of Neural Engineering

8: 025027.

5. Yamamoto J, Wilson MA (2008) Large-scale chronically implantable precision

632 motorized microdrive array for freely behaving animals. Journal of

Neurophysiology 100: 2430–2440.

6. Tseng WT, Yen CT, Tsai ML (2011) A bundled microwire array for long-term

chronic single-unit recording in deep brain regions of behaving rats. Journal of

Neuroscience Methods 201: 368–376.

7. Porada I, Bondar I, Spatz WB, Krger J (2000) Rabbit and monkey visual cortex:

More than a year of recording with up to 64 microelectrodes. Journal of

Neuroscience Methods 95: 13–28.

8. Jackson A, Fetz EE (2007) Compact movable microwire array for long-term

chronic unit recording in cerebral cortex of primates. Journal of Neurophys-

iology 98: 3109–3118.

9. Polasek KH, Hoyen HA, Keith MW, Kirsch RF, Tyler DJ (2009) Stimulation

stability and selectivity of chronically implanted multicontact nerve cuff

electrodes in the human upper extremity. IEEE transactions on neural systems

and rehabilitation engineering: a publication of the IEEE Engineering in

Medicine and Biology Society 17: 428–437.

10. Kennedy PR (1989) The cone electrode: A long-term electrode that records from

neurites grown onto its recording surface. Journal of Neuroscience Methods 29:

181–193.

11. Bartels J, Andreasen D, Ehirim P, Mao H, Seibert S, et al. (2008) Neurotrophic

electrode: Method of assembly and implantation into human motor speech

cortex. Journal of Neuroscience Methods 174: 168–176.

12. Gross G (2011) Multielectrode arrays. Scholarpedia 6: 5749.

13. Gross G, Rieske E, Kreutzberg G, Meyer A (1977) A new fixed-array multi-

microelectrode system designed for long-term monitoring of extracellular single

unit neuronal activity in vitro. Neuroscience Letters 6: 101–105.

14. Pine J (1980) Recording action potentials from cultured neurons with

extracellular microcircuit electrodes. Journal of Neuroscience Methods 2: 19–31.

FTSPlot

PLOS ONE | www.plosone.org 15 April 2014 | Volume 9 | Issue 4 | e94694

https://github.com/MichaelRiss/FTSPlot
https://github.com/MichaelRiss/FTSPlot

15. Potter SM, DeMarse TB (2001) A new approach to neural cell culture for long-

term studies. Journal of Neuroscience Methods 110: 17–24.
16. Zhao S, Chen A, Revzin A, Pan T (2010) Stereomask lithography (SML): a

universal mul657 ti-object micro-patterning technique for biological applica-

tions. Lab on a Chip 11: 224–230.
17. Claverol-Tinture E, Cabestany J, Rosell X (2007) Multisite recording of

extracellular potentials produced by microchannel-confined neurons in-vitro.
IEEE Transactions on Biomedical Engineering 54: 331–335.

18. Morales R, Riss M, Wang L, Gavin R, Rio JAD, et al. (2008) Integrating multi-

unit electrophysiology and plastic culture dishes for network neuroscience. Lab
on a Chip 8: 1896–1905.

19. Dworak BJ, Wheeler BC (2008) Novel MEA platform with PDMS microtunnels
enables the detection of action potential propagation from isolated axons in

culture. Lab on a Chip 9: 404–410.
20. Maher MP, Pine J, Wright J, Tai YC (1999) The neurochip: A new

multielectrode device for stimulating and recording from cultured neurons.

Journal of Neuroscience Methods 87: 45–56.
21. IEC (2000) IEC 60027-2, Second edition, 2000-11, Letter symbols to be used in

electrical technology Part 2: Telecommunications and electronics. International
Electrotechnical Commission.

22. Asai Y, Aksenova TI, Villa AEP (2005) On-line real-time oriented application

for neuronal spike sorting with unsupervised learning. In: Duch W, . Kacprzyk J,
. Oja E, . Zadrony S, editors, Artificial Neural Networks: Biological Inspirations

ICANN 2005, Berlin, Heidelberg: Springer Berlin Heidelberg, volume 3696. pp.
109–114.

23. Chan HL, Wu T, Lee ST, Lin MA, He SM, et al. (2010) Unsupervised wavelet-
based spike sorting with dynamic codebook searching and replenishment.

Neurocomputing 73: 1513–1527.

24. Aigner W, Miksch S, Schumann H, Tominski C (2011) Visualization of Time-
Oriented Data. Human-Computer Interaction Series. Springer Berlin Heidel-

berg.
25. Knuth DE (1976) Big omicron and big omega and big theta. ACM SIGACT

News 8: 18–24.

26. Cook SA (1983) An overview of computational complexity. Communications of
the ACM 26: 400–408.

27. Brodbeck D, Girardin L (2003) Interactive poster: Trend analysis in large time
series of high-throughput screening data using a distortion-oriented lens with

semantic zooming. In: IEEE Symposium on Information Visualization (InfoVis

2003).
28. Kincaid R (2010) SignalLens: Focus+Context applied to electronic time series.

684 IEEE Transactions on Visualization and Computer Graphics 16: 900–907.

29. Berry L, Munzner T (2004) BinX: dynamic exploration of time series datasets
across aggregation levels. In: IEEE Symposium on Information Visualization,

2004. INFOVIS 2004. p. p2. doi: 10.1109/INFVIS.2004.11.
30. Heok TK, Daman D (2004) A review on level of detail. In: International

Conference on Computer Graphics, Imaging and Visualization, 2004. CGIV

2004. Proceedings. IEEE, pp. 70–75. doi: 10.1109/CGIV.2004.1323963.
31. Luebke DP (2001) A developer’s survey of polygonal simplification algorithms.

IEEE Computer Graphics and Applications 21: 24–35.
32. Zwicker M, Pfister H, van Baar J, Gross M (2001) Surface splatting. In:

Proceedings of the 28th annual conference on computer graphics and interactive
techniques - SIGGRAPH ’01. pp. 371–378. doi:10.1145/383259.383300.

33. Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, et al. (2003) Computing

and rendering point set surfaces. IEEE Transactions on Visualization and
Computer Graphics 9: 315.

34. Salasin J (1973) Hierarchical storage in information retrieval. Communications
of the ACM 16: 291–295.

35. Correa WT, Klosowski JT, Silva CT (2003) Visibility-based prefetching for

interactive out-of-core rendering. In: Proceedings of the 2003 IEEE Symposium
on Parallel and Large-Data Visualization and Graphics. Washington, DC,

USA: IEEE Computer Society, PVG ’03, p. 2. doi: 10.1109/PVG.2003.10002.
36. Wald I, Dietrich A, Slusallek P (2005) An interactive out-of-core rendering

framework for visualizing massively complex models. In: ACM SIGGRAPH
2005 Courses on - SIGGRAPH ’05. Los Angeles, California, p. 17. doi:10.1145/

1198555.1198756.

37. Kruger J, Westermann R (2003) Acceleration techniques for GPU-based volume
rendering. In: Proceedings of the 14th IEEE Visualization 2003 (VIS’03).

Washington, DC, USA: IEEE Computer Society, VIS ’03, p. 38. doi:10.1109/
VIS.2003.10001.

38. Tikhonova A, Correa CD, Ma KL (2010) Visualization by proxy: A novel

framew711 ork for deferred interaction with volume data. IEEE Transactions on
Visualization and Computer Graphics 16: 1551–1559.

39. Intel (2013). Intel 64 and IA-32 architectures software developer’s manual
volume 3A: system programming guide, part 1.

FTSPlot

PLOS ONE | www.plosone.org 16 April 2014 | Volume 9 | Issue 4 | e94694

View publication stats

https://www.researchgate.net/publication/261735831

