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1. Simulation-based dispersal 
models



Simulated Invasion Dynamics
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Simulated Invasion Dynamics
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True Invasion Dynamics
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Simulated Invasion Dynamics
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True Invasion Dynamics



Generalized Dispersal Kernel 

GDK

Hudgins et al. (2017) Ecology Letters
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GDK

Predictors = Species + Dispersal In + Dispersal Out

Generalized Dispersal Kernel 
(GDK)
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Temporal Changes
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PP (t+1)= (PP(t) – Emigration + Immigration) * Growth
Kot et al. 1996 Ecology

(PP) Threshold 𝞥

Max 1
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Metrics of fit

• Root mean squared error 
in dispersal distance

• Sensitivity TP/(TP+FN)
• Specificity TN/(TN+FP)
• Accuracy 

(TP+TN)/(TP+TN+FP+FN)
• Spatial Accuracy (complex 

functions)
13
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Hudgins et al. (2017) Ecology Letters



Pest Load
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1800

Hudgins et al. (2017) Ecology Letters

2010



2. Economic models of impacts
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Nature-based solutions under threat



Street tree 
distributions

Insect 
spread

Tree 
Mortality

Hudgins, E.J., Koch, F. H., Ambrose, M. J., & Leung, B. (2022). Journal of Applied Ecology 18



Extrapolating from 600 to ~30,000 communities

Koch et al. (2018) Forest Ecol. Manage.
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Hurdle Model:

Predicted number of trees 
of a given genus= 
Probability of tree 
presence * number of 
trees present, given 
presence

Binomial model * Poisson 
Model



Genus-level models

20

Small: R2 = 0.78
Medium: R2 = 0.83
Large: R2 = 0.77
Overall R2 = 0.80



GDK vs. SDK
Semi-Generalized Dispersal 

Kernel (SDK)

Hudgins et al. (2022). Journal of Applied Ecology
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Street Tree Abundance



GDK vs. SDK
Semi-Generalized Dispersal 

Kernel (SDK)

From Hudgins et al. (2019). Ecological Applications 22

Future insect spread



GDK vs. SDK
Semi-Generalized Dispersal 

Kernel (SDK)

Hudgins et al. (2022) Journal of Applied Ecology
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Future street tree-insect
interactions
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Street Tree Mortality
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Street tree mortality

Mortality
Hudgins et al. 2022 Journal of Applied Ecology 25
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1.5M trees killed

94% in 23% of communities

$31M USD/yr, $907M total 

Damage estimates 
to 2050

Triblive.comHudgins et al. 2022. Journal of Applied Ecology
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damages up to $13M

A. Milwaukee, WI
B. Chicago Region, IL
C. New York City, NY 
D. Seattle, WA
E. Philadelphia, PA
F.  Warwick, RI
G. Indianapolis, IN 

Hudgins et al. 2022. Journal of Applied Ecology
27



So far

• Focused on getting the best estimate of the current situation
• Descriptive rather than prescriptive
• Doesn’t take into account which management options are 

available, budget, and interactive effect of spread
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This is where Optimization and Spatial 
Planning come in!
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Spatial Planning
• Structured decision problem: 

selection of an option among a set 
of alternatives

• Alternatives are typically locations 
and therefore spatially explicit

• Parameters are known and the 
solution (decision) can be 
computed

• Forces transparency around 
management decisions

• Transparent and more defensible 
decision making process

30https://mathmarecol.github.io/SpatialPlanning_Workshop2021/overview-of-the-conservation-planning-problem.html



Key Terms

• Study Area: all the areas relevant to the decision 
maker 

• Planning units: discrete localities in the study area 
that can be managed independently of other areas, 
often created as grid cells that are sized according to 
the scale of the management actions

• Cost: This should be specified for each potential 
intervention, and could either be a function of pest 
density or constant. 

31



Key Terms Cont’d

• Objectives: the overall goal of a conservation 
planning problem (either a minimization or 
maximization)

• Constraints: Constraints can be used to ensure that 
solutions exhibit a range of different characteristics, 
such as total costs meeting a budget

• Efficiency: A common specification for the impact a 
decision has on the objective function (e.g. % 
population reduction)
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Optimizations

• The objective function describes the quantity we are trying to 
minimize (e.g. exposed hosts, cost) or maximize (e.g. healthy hosts, 
benefit-cost ratio). 

• The decision variables describe the entities that we can control, and 
indicate which areas are selected for management, which of those 
are not, and what type of management is applied.

• Constraints can be thought of as rules that the need decision 
variables need to follow. They not only include the budget, but can 
also formalize how management impacts the objective function (e.g.
a treatment knocking down pest density)
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Optimizations

Optimizations minimize (or maximize) an objective function

e.g. Minimize the number of trees exposed to a given pest across a 
study area of n planning units

min$
"#$

%

𝑝",'ℎ"

pi,t= pest presence/absence in site i
hi,t= host abundance in site
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Optimizations
Optimizations minimize (or maximize) an objective function that is calculated using a 
set of decision variables, subject to a series of constraints

min$
"#$

%

𝑝"ℎ"

Such that
𝑝" = 1 −𝑚" Effect of management

∑"#$% 𝑚" ≤ 𝐵 Budget constraint

𝑚" ∈ {0,1} Binary Decision Variable
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Optimizations

36

5 2 3

10 1 8

7 2 6

For B=3, optimal 
management decision is 
to manage the 3 sites with 
the greatest host volume

min$
!"#

$

𝑝!ℎ!

Objective value at optimal solution 
= 5+2+3+0+1+0+0+2+6

= 19



Optimizations

37

5 2 3

10 1 8

7 2 6

For B=3, optimal 
management decision is 
to manage the 3 sites with 
the greatest host volume

min$
!"#

$

𝑝!ℎ!

Objective value at suboptimal solution 
= 0+0+0+10+1+8+7+2+6

= 34



Mixed Integer Linear Programs

• Statistical models tend to have continuous 
values of variables

• Decision variables are all or nothing 
(usually)

• It is much harder for computers to fit 
integers, and continuous solutions can be 
wildly different than integer solutions 

• The solver works on the continuous 
problem and then tries to work back to an 
integer version

38
Towardsdatascience.com



Large decision problems

• Complexity of possible decisions 
scales combinatorically (for binary 
decisions, 2n where n is the 
number of planning units)

• We need to use software to help
• This software works best when 

problems are specified as simple 
inequalities where variables do not 
get multiplied (these are 
considered nonlinear problems)
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Example 1. Optimal Emerald Ash Borer 
management

Hudgins, E.J., Hanson, J.O., MacQuarrie, C., Yemshanov, D., McDonald-
Madden, E., Holden, M., Baker, C., Bennett, J.R., in prep 40



Predicted EAB density Predicted street ash
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Management Actions

Immigration Quarantine 𝛼!,#

Emigration Quarantine 𝛽!,#

Biological control release 𝛾!,#
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Rationale

Immigration Quarantines limit 
dispersal in

Emigration Quarantines limit 
dispersal out

Biological control reduces focal 
densities
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Objective

44

Minimize the number of street 
trees exposed to EAB over time 
within the budget

Exposure = Ash trees in cell * EAB 
density in cell

!
!

!
"

𝑃",!𝑉"



Constraints

𝛼!,# , 𝛽!,# , 𝛾!,# 𝜖 {0,1} Decision variables

𝛼!,# + 𝛽!,# + 𝛾!,# ≤1 One action per cell

∑! 𝛼!,#𝑐$ + 𝛽!,#𝑐% + 𝛾!,#𝑐& ≤ 𝐵 Management Budget 

with costs c

0 ≤ 𝑃!,# ≤ 1 Continuous pest density 

(expressed as proportion of carrying capacity)
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Impact of Management

𝑃# ,%&' = 𝑃#,% +$
(

𝑃(,%𝑀(,#,% −$
(

𝑃#,%𝑀#,(,% 𝛿

Density at the next timestep in the absence of management = 
[Current Density
+Sum(Immigrant propagules)
– Sum(Emigrant propagules)]*Growth Rate
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Impact of Management

𝑃" ,'($ = 𝑃",' (1 − 𝜀)𝛾",') +$
*

𝑃*,'𝑀*,",' (1 − 𝜀+𝛼",') −$
*

𝑃",'𝑀",*,' (1 − 𝜀,𝛽",') 𝛿

Density at the next timestep with management  = 
[Current Density*(1-Biocontrol Decision*Biocontrol efficiency) 
+Sum (Immigrant propagules*(1-Immigration Quarantine 
Decision*Immigration Quarantine efficiency)
– Sum(Emigrant Propagules*(1-Emigration Quarantine 
Decision*Emigration Quarantine Efficiency))]*Growth Rate
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Example biocontrol sites: 
Detroit MI, Cleveland OH, Boston MA,
New York, NY
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50

Up to 1 million street 
trees saved in the next 

30 years



Take Home Messages

• Statistical models work to describe and predict a system, but 
are not sufficient to decide what should be done to change 
dynamics

• Spatial planning requires tools designed for binary decision 
variables, and involves setting an objective subject to 
constraints

• Optimizations can lead to huge cost and conservation benefits 
compared to conventional wisdom
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Example 2. MPB Cooperation
Saskatchewan currently pays 
Alberta to manage Mountain 
Pine Beetle and limit its 
eastward spread
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How much, if any, 
money should 
Saskatchewan transfer 
to Alberta in order to 
control the spread of 
mountain pine beetle?

Optimization + Game 
Theory can help!



Two-Way Nash Game
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The Prisoner’s Dilemma
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Extended for Mountain Pine Beetle

56

X X 100, 20

X 50, 15 X

40, 10 X XAl
be

rt
a

Saskatchewan

Spend 500

Spend 600

Spend 800

Spend 200 Spend 400 Spend 500

Assume both provinces have a 
budget of 500, and 
Saskatchewan can transfer 
funds to Alberta

The matrix shows infested 
area in each province as a 
result of the strategy

The payoff is highest for both 
parties when Saskatchewan 
transfers 300 to Alberta to 
give it a budget of 800.



Extended for Mountain Pine Beetle

57

X X 100, 18

X 50, 19 X

40, 20 X XAl
be

rt
a

Saskatchewan

Spend 500

Spend 600

Spend 800

Spend 200 Spend 400 Spend 500 In contrast, there is no 
mutually beneficial strategy 
here

BUT the transfer of funds 
reduces the total area of the 
infestation

Increase federal funding for 
Alberta?



This problem is linear

min!
!"#

$

𝑝!ℎ!

Such that
𝒑𝒊 = 𝟏 −𝒎𝒊 Effect of management
∑!"#$ 𝑚! ≤ 𝐵 Budget constraint
𝑚! ∈ {0,1} Binary Decision Variable
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This one isn’t – intertemporal constraint

min!
&"#

'

!
!"#

$

𝑝!&ℎ!

Such that
𝒑𝒊𝒕)𝟏 = (𝟏 −𝒎𝒊𝒕)𝒑𝒊𝒕 Effect of management

∑!"#$ 𝑚!& ≤ 𝐵 Budget constraint
𝑚! ∈ 0,1 Binary Decision Variable
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This one isn’t – intertemporal constraint

min!
&"#

'

!
!"#

$

𝑝!&ℎ!

Such that
𝑝!&)# = 𝑝!& −𝑚!& 𝑝!& Effect of management
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This one isn’t – intertemporal constraint

min'
#23

4

'
!23

5

𝑝!#ℎ!

Such that
𝑝!#63 = 𝑝!# −𝑚!# 𝑝!# Effect of management
𝑝!#63 = 𝑝!# − 𝑣!# Where 𝑣!#= 𝑚!#𝑝!#

Minimizing host exposure over time depends on previous pest 
exposure, and management has a lasting effect over time 
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Linearization

𝑣!&= 𝑚!&𝑝!&

𝑣!& ∈ [0,1]
We want it to equal 0 when either mit or pit is equal to 0

We want it equal to 1 when both are equal to 1
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Linearization

𝑣!&= 𝑚!&𝑝!&
𝑣!& ∈ {0,1}

𝑣!& ≥ 𝑚!& + 𝑝!&-1
𝑣!& ≤ 𝑚!&
𝑣!& ≤ 𝑝!&

63

Think through the different scenarios of values of m and p to convince 
yourself that this is equivalent to multiplying the two binary variables


