
A recent open source embedded implementation
of the DESFire specification designed for

on-the-fly logging with NFC based systems

Maxie Dion Schmidt

Georgia Institute of Technology, Atlanta, GA 30318, USA
mschmidt34@gatech.edu

WWW home page: http://people.math.gatech.edu/~mschmidt34
Public software profile: https://github.com/maxieds

Abstract. The Chameleon Mini is a portable device that interfaces with
the NFC protocol over RFID. This device is designed to facilitate on-the-
fly logging of data exchanges between contactless cards and tag readers
operating over NFC in the 13.56MHz band. It is an indispensible tool
for researchers, reverse engineers and system penetration testers that
perform security analysis over the protocol. The Chameleon Mini also
supports emulation of many contactless card types over NFC that are
enabled by contributions to its open source embedded firmware. In 2020,
we set out to offer a fully functional open source implementation to
provide a frequently requested interface to the complex and proprietary
DESFire tag command set and internal architecture specification from
within the open source firmware for the Chameleon Mini RevG. In this
application note, we describe the technologies utilized, applications of
this work, and describe the challenges of the low-level implementation of
the embedded software.

Keywords: Near field communication, NFC technology, Chameleon Mini,
contactless smartcards, open source software, DESFire command set,
RFID cryptographic protocols, embedded systems firmware.

That brings me to the most important piece of advice that I can give to
all of you: if you’ve got a good idea, and it’s a contribution, I want you
to go ahead and DO IT. It is much easier to apologize than it is to get
permission. – Grace Hopper

I think a lot of the basis of the open source movement comes from pro-
crastinating students. – Andrew Tridgell

Life would be much easier if I had the source code. – Anonymous

1 Introduction

The Near Field Communication (NFC) protocol is a wireless connectivity stan-
dard for short-distance operation over RFID technology. NFC hardware enables

2 M. D. Schmidt

contactless data exchange and authentication between a passive contactless card,
or tag (the PICC) and and an active host (the PCD) that is possible over the
13.56 MHz RF band within proximity of approximately 10 centimeters. The
NFC protocol is commonly used in applications to open physical NFC-enabled
doors, generating reprogrammable spare keys for hotel rooms, renting bicycles or
motorized scooters, authenticating access to barriers of restricted parking decks,
and charging limited credit transactions via virtual payment card interfaces.
Contactless card or tag specifications that are in wide spread use in applictions
include the NXP Mifare Classic/Plus/Ultralight series of tags, Mifare DESFire
Legacy/EV1/EV2/EV3/Light tags, TI Tag-it branded tags, HID iClass types,
LEGIC prime tags, and many other variants of passive contactless cards that
are compliant with the ISO-14443 and ISO-15693 standards.

The Chameleon Mini is an open source re-programmable contactless NFC
device capable of issuing, receiving and logging bidirectional exchanges of low-
level protocol headers and payload data. The recent generation of Chameleon
hardware (the RevG series of devices) is frequently employed to analyze the
security of RFID based NFC systems. The Chameleon Mini can be leveraged
to participate in multiple environment attack scenarios including replay or relay
and state restoration attacks, as well as serve as a tool for researchers to sniff
and enumerate NFC communication on-the-fly and to perform functional tests
of installations of RFID equipment [4]. The freely available firmware sources for
the most recent Chameleon Mini profiles are used to emulate as many as eight
8 Kb virtual profiles for contactless cards in a single credit card sized device [2].

The Chameleon RevG hardware offers support for portable and covert on-the-
go security analysis of the NFC protocol with a LIVE logging feature that prints
the recovered data transfers sniffed over its RF antennas over an integrated serial
USB interface in realtime. Use of an open source Android OS based scriptable
GUI-based logger application developed and actively maintained by the author
since 2017 enables quick resetting of emulated NFC tags, sniffing and reading
modes as well as the ability to conveniently navigate the Chameleon command
terminal over serial USB to actively engage with newly discovered NFC instal-
lations [13]. Future generations of NFC sophisticated hardware designed to log,
sniff and initiate low-level NFC interactions and exchanges between the PICC
and PCD are being developed based on this model platform through the Prox-
mark3 devices [11].

The proprietary DESFire specification is perhaps the most sophisticated com-
mand set and integrated PICC memory storage structure scheme available. It
adds an extra layer of security to NFC based data transmissions by including
support for modern cryptographic protocols and hash functions [10]. NFC tags
that offer DESFire support are common to find in practice, even though they
require relatively expensive manufacturing compared to other traditional lighter
weight contactless tag technology. Most NFC card specifications feature smaller
memory size profiles than the DESFire tags and lack full featured native sup-
port for secure modern cryptographic algorithms. DESFire tags are often used
to distribute physical university ID cards that secure physical access to resi-

Embedded DESFire support on the Chameleon Mini 3

dence locations and buildings and can interact with self-serve vending kiosks to
authorize debited transactions based on the exhangeof credentials stored by the
contactless IC.

Significance of the project, limitations and related work

We present the progress on NFC emulation software that provides full featured
support of the DESFire stack specification for the Chameleon Mini RevG gen-
eration of devices. Figure 3 provides a clear illustration of the functional imple-
mentation of DESFire emulation on the Chameleon Mini in practice. Support for
the DESFire specification is also available using host card emulation (HCE) on
Android OS and through PC and MacOS-based exchanges with externally con-
nected NFC hardware using the LibFreeFare and LibNFC libraries [1, 6, 7]. The
work on this project over the last year or so is to the best of our knowledge the
first of its kind as a complete and verified functional embedded proof-of-concept
implementation that is freely available as open source software to researchers,
security experts and end users alike.

Limitations of the current implementation include a lack of interoperabil-
ity between the Chameleon Mini emulation of these tags and many PCD hosts
due to incomplete support for variations of transfer modes involving the different
cryptographic integrity checks supported in revisions of the tag specification and
default encryption data exchange modes. The reasons for the incomplete sup-
port are in part due to the unavailability of recent freely available documentation
for the multitude of active revisions of the DESFire tag specifications encoun-
tered with in-the-wild applications. Additionally, we surmise that knowledge of
the default transfer mode and PCD requirements local to an implementation of
a NFC system utilizing contactless DESFire tags is necessary to ensure com-
patibility and interoperability. That is, a singular expected mode of transfer is
non-standard and hard to predict á priori without more knowledge of the work-
ing physical environment of the Chameleon Mini emulation support. We have
also developed this open source software without the benefit of a substantial
toolbox of hardware to support testing nor a large-sized R&D budget on par
with that of large manufacturers of this type of NFC technology.

Outline of topics in the article

The next section of the article elaborates on the details of the Chameleon Mini
device hardware platform for to which this software project added the DESFire
tag NFC support integrated into its open source embedded firmware (see Section
2). An overview of the DESFire tag specification, its unique sophistication and
complexity as a modern NFC tag type, and the key features its supports is
given in Section 3. The key features of and challenges inherent in writing the
open source software contribution documented in this application note are the
focus of Section 4. The Appendix A provides a number of annotated examples
documenting the low-level byte-wise data exchanges used to communicate with

4 M. D. Schmidt

the Chameleon Mini running the new configuration to natively emulate DESFire
tags.

2 The Chameleon Mini device profile and applications

The Chameleon Mini is a programmable standalone tool with a small, portable
form factor that facilitates emulation of common NFC tag types, reading, writing
and cloning of these tags, and provides integrated support for the sniffing and
logging of low-level raw NFC protocol headers and payload data. The Chameleon
RevG devices have a few breakthrough features that have distiguished these
hardware-based NFC loggers over the last several years. The features of the
Chameleon RevG improving on past designs include the following upgrades:

– Integration of a modern AVR XMega chip (the ATxmega128A4U [8]) with
enough onboard memory space (at 128Kb of FLASH, 8Kb of SRAM, and
2Kb of EEPROM spaces) to provide native emulation modes for over a dozen
of passive contactless NFC cards;

– Support for faster FRAM-based memory access;
– Accelerated hardware support for AES and DES cryptographic engines;
– Embedded firmware and flashable bootloader support to memory map the

integrated RF hardware on the PCB;
– The ability to upload and download up to 8Kb sized binary memory dumps

of NFC tag configurations stored within the onboard FRAM or EEPROM.
The data exchanges of the binary dump data are performed using the XModem
protocol in sequential rounds of 128-byte blocks transferred serially over
USB.

The embedded firmware sources and hardware design specification that run on
the Chameleon Mini are freely available under an open source license. There
is a large international community of developers and users of the Chameleon
devices online resulting in frequent modifications to improve on existing support
and add new features to the firmware. The integrated serial micro-USB on the
integrated AVR XMega chip provides an easy-to-reflash interface over which
new firmware binaries (formatted as avr-gcc compiler generated hex and eep

files) can be uploaded with the support from the USB bootloader flashed on the
device. Several core features provided by the low-level C and assembly language
source code for the Chameleon firmware are cited as follows:

– A convenient interface to the Chameleon hardware is provided by a serial
terminal that has a human-readable command set. In contrast, traditional
mechanisms for communicating with contactless cards over NFC are based on
structured APDU-formatted exchanges of hexadecimal data. The Chameleon
terminal enables easy on-the-fly reconfiguration of the settings and content
stored within as many as eight 8Kb sized partitions of the onboard memory
that can be used to emulate the storage of virtualized clones of passive
contactless NFC cards;

Embedded DESFire support on the Chameleon Mini 5

– The ability to emulate passive NFC devices (e.g., contactless cards and varied
tag types);

– The ability to act as an active NFC device (e.g., as a RFID tag reader);

– Support for configuration modes to sniff low-level communication and mon-
itor the raw bidirectional bits transmitted over the RF interface;

– Supported modes to log time-stamped communication details and status
events triggered by NFC exchanges to FRAM memory or optionally to print
them over the USB interface in realtime via an integrated LIVE logging
mode. The logging functionality in the RevG devices is designed to archive
significant events and data exchanges triggered by any of the emulation,
sniffing or reader modes supported in the firmware.

A block diagram illustrating the key modular components of the design of the
firmware and the way these components interface with the embedded hardware
on the Chameleon PCB is shown in Figure 1.

Fig. 1. Block diagram illustrating the core Chameleon Mini firmware design (illustra-
tion reproduced from [5] with the permission of David Oswald).

3 The proprietary DESFire tag specification

The Mifare DESFire series of contactless NFC tags conform to a sophisticated
and atypically complex proprietary specification over this protocol [10, 9]. NFC

6 M. D. Schmidt

tags of this type are predecessors to the wide spread use of modern secure cryp-
tographic exchange protocols to authenticate short distance NFC based RFID
data transfer. As of 2021, there are multiple nested and semi-interoperable gen-
erations of DESFire tags, e.g., including the legacy Mifare DESFire, EV1, EV2,
EV3 and Light variants. The larger scale integrated memory storage sizes for
these tags are usually 2 Kb, 4 Kb or 8Kb [4].

DESFire tags support multiple data transfer modes of command type in-
structions and data between the PICC and PCD. The format to exchange in-
structions can either be performed by sending unpadded native commands or by
communicating ISO standardized wrapped APDU messages that allow for the
PCD to parse both DESFire-specific command sets as well as commands taken
from several well known ISO standards [3, 10, 9]. Separate from the format of
the messages exchanged over the NFC interface, DESFire tags also support sev-
eral modes for data tranfer that includes compatibility for both encrypted and
unencrypted messages that are optionally padded with crytographically hashed
bytes to ensure data integrity over the physical interface using either 2-byte
CRC checksums or 4-byte MAC trailers hashed using DES/3DES/AES based
primitives.

The precise specification details of the latest generation of DESFire tags
are only thinly available to end users from the manufacturer and are as such
proprietary in nature. As such, the working details needed to implement an
exact clone of these tag types is more difficult than most routes. A fortunate
discovery of a publicly posted datasheet for the EV1 generation of DESFire tags
from April of 2004 was uncovered by the author a few years ago by data mining
for information about these specification details with an internet search engine
[10]. The notes and documentation with respect to instruction codes, expected
parameters and the conditional return values of the host PCD to the tag upon
issuing these commands was indispensible in decoding the secretive operation
protocol of NFC tags of this type.

Structure and support for the filesystem in PICC memory Access to
PICC memory is flexibly supported and provides a specification to interface with
several useful characteristic file types. Individual files are associated to the stor-
age allocations of the physical IC memory into subdirectories called applications
that are indexed by a unique 3-byte application identifier (AID). There is a de-
fault master (PICC) application with associated master keys for authentication
that is the default selected AID upon initial handshaking from PICC to PCD
and vice versa. The actively selected AID can be changed via another subsequent
structured command call initiated from PICC to PCD.

Within each application space, the file entries are partitioned into data files
or records that can store variable length hexadecimal-formatted binary data
or signed integer values that can be debited and credited by invoking native
instructions. The DESFire specification minimally supports access to the follow-
ing native file types: standard data files (type 0), backup data files (type 1),
value files (type 2), linear record files (type 3), and cyclic record files (type 4).

Embedded DESFire support on the Chameleon Mini 7

Each file has 2-bytes of access rights associated with it to indicate one of the
following permission categories: read, write, read and write or change. In many
instances, the requirements to access sensitive files secured by the cryptographic
mechanisms supported by these tags requires both a base round of initial hand-
shaking (PICC-to-PCD) that generates a session key, which is then followed by
a crytographic checksum verified exchange of the authentication process using a
secret DES/3DES/AES key.

Commands and native instruction support The multiple formats of na-
tive and wrapped APDU structured packaged message data over NFC allow
for easy transitions between the communication (PICC to PCD and back) of
DESFire-only instructions (with CLA byte 0x90), commands compliant with the
ISO-14443 and ISO-15693 specifications, or the limited support for a subset of
commands taken from the ISO-7816 standard [3]. Figure 2 illustrates the key
components of the APDU wrapped data packet exchanges supported by these
tags. The ISO-14443(4A) standard provides the protocol and command data
formats to initiate and complete the anti-collision loop wakeup routines and op-
tional request for snswer to select (RATS) queries that are a form of low-level
first-contact handshaking between the PICC and PCD. A list of commands that
is assimilated from several online references cataloging known DESFire support,
their associated 1-byte instruction codes, and high-level descriptions of the func-
tionality provided by each command is listed in Table 1.

CLA INS P1 P2 Lc Data Bytes Le

0x90 command code 0x00 0x00 variable length of data command data 0x00

Wrapped APDU format for native DESFire commands in the PICC-to-PCD direction
(ISO-7816-5 message structure).

Data Bytes SW1 SW2 (Status)

DESFire command response data 0x91 0xYY

Format of the response message for native DESFire commands in the PCD-to-PICC
direction. The SW2 status code byte returned by the PCD (denoted by 0xYY above) is
set to either 0x00 to indicate no error in processing the command or is encoded as a
reserved byte code to provide an explanation of an error that occurred on the PCD side.
The returned error codes are used to indicate problems ranging from hardware errors,
to authentication and access permissions errors, to AID and file not found warnings,
or to communicate that invalid parameters were passed in the issuing command call.

Fig. 2. Formats of the incoming (PICC to PCD) native-wrapped APDU command
structure for the DESFire EV1 tags and the outgoing response format (PCD to PICC)
[10].

8 M. D. Schmidt

Command Long Name INS Description

AUTHENTICATE 0x0A Legacy mode authentication
AUTHENTICATE ISO 0x1A ISO authentication with 3DES
AUTHENTICATE AES 0xAA Standard AES authentication
AUTHENTICATE EV2 FIRST 0x71 More recent EV2 authentication mode
AUTHENTICATE EV2 NONFIRST 0x77 More recent EV2 authentication mode
CHANGE KEY SETTINGS 0x54 Modify PICC master key properties
SET CONFIGURATION 0x5C Used to configure DESFire card or application

specific attributes
CHANGE KEY 0xC4 Changes the key data stored on the PICC
GET KEY VERSION 0x64 Returns the active key version stored on the PICC
CREATE APPLICATION 0xCA Creates new applications by unique AID
DELETE APPLICATION 0xDA Non-restorable deletion operation
GET APPLICATION IDS 0x6A Returns a list of all AID codes stored on the PICC
FREE MEMORY 0x6E Returns the total free memory on the tag in bytes
GET DF NAMES 0x6D Obtain the ISO7816-4 DF names associated with

the tag
GET KEY SETTINGS 0x45 Get permissions data and format for PICC and

application master keys
SELECT APPLICATION 0x5A Select a specific application by AID for further

access
FORMAT PICC 0xFC Releases the previously stored user memory (not

reversible)
GET VERSION 0x60 Returns manufacturing header data stored in the

PICC
GET CARD UID 0x51 Returns the 7-byte card UID assigned by the man-

ufacturer
GET FILE IDS 0x6F Get a list of the file identifiers (by index) within

the selected AID
GET FILE SETTINGS 0xF5 Obtain properties and permissions about a file
CHANGE FILE SETTINGS 0x5F Modify access permissions of an existing file
CREATE STDDATA FILE 0xCD Add new unformatted binary data storage file

type
CREATE BACKUPDATA FILE 0xCB Create unformatted binary file with a shadow

backup mechanism
CREATE VALUE FILE 0xCC Create new 32-bit integer storage file
CREATE LINEAR RECORD FILE 0xC1 Create new fixed size file for sequential storage of

structurally similar record data structures
CREATE CYCLIC RECORD FILE 0xC0 Similar to the linear record case except that there

is a wrap-around storage functionality when the
file size limit is exceeded

DELETE FILE 0xDF Non-restorable deactivation of a file within the ac-
tive AID

GET ISO FILE IDS 0x61 Returns a list of the 2-byte file identifiers of all
files within the active AID

READ DATA 0xBD Read byte-wise contents of standard or backup file
types

WRITE DATA 0x3D Write data at an offset to stadard or backup file
types

Embedded DESFire support on the Chameleon Mini 9

GET VALUE 0x6C Reads the last permanently stored integer from
value records

CREDIT 0x0C Increase the integer value type in the value type
DEBIT 0xDC Decrease the integer value type in the value type
LIMITED CREDIT 0x1C Increase by a preset limited amount the integer

in a value record (must commit the transaction
changes at a later time)

WRITE RECORD 0x3B Write data to a linear or cyclic record file type
READ RECORDS 0xBB List the set of complete records in the associated

file type
CLEAR RECORD FILE 0xEB Reset a linear or cyclic record type to an empty

state
COMMIT TRANSACTION 0xC7 Validates the previous write access permissions

and credit permissions of all files within the se-
lected AID

ABORT TRANSACTION 0xA7 Invalidates the previous changes to the files within
the selected AID

SELECT 0xA4 ISO7816-4 standard command support
GET CHALLENGE 0x84 ISO7816-4 standard command support
EXTERNAL AUTHENTICATE 0x82 ISO7816-4 standard command support
INTERNAL AUTHENTICATE 0x88 ISO7816-4 standard command support
READ BINARY 0xB0 ISO7816-4 standard command support
UPDATE BINARY 0xD6 ISO7816-4 standard command support
READ RECORDS 0xB2 ISO7816-4 standard command support
APPEND RECORD 0xE2 ISO7816-4 standard command support

Table 1. Listing of the DESFire command set integrated into the new
Chameleon Mini firmware emulation support [10].

4 Key features of and challenges writing the embedded
software implementation

The majority of testing and development for the project to add support for DES-
Fire tag emulation was done with the open source LibNFC library in C starting
from stock firmware sources compiled using the avr-gcc compiler toolchain on
MacOS and Linux. The results of the author’s work on this project was merged
into the main firmware sources [2] in October of 2020 after approximately six
to eight months of active development1. The following crucial modifications and
extensions of the application layer, codec layer and logging support modules (re-
fer to Figure 1) in the code were necessary to finalize fully featured Chameleon
DESFire support:

– New native AES support using hardware acceleration support from the in-
tegrated Microchip AVR XMega microcontrollers;

– Extensions of prior work to add hardware based DES and 3DES support to
the Chameleon Mini firmware;

1 See https://github.com/emsec/ChameleonMini/pull/287.

10 M. D. Schmidt

– A built-in customized extension of the Chameleon terminal commands to
enhance DESFire configuration support for users (See Figure 3);

– Enhancements to the LIVE logging functionality of the Chameleon RevG
devices. The implementation of this new “tick“ functionality added to the
live logging required a non-standard linked list implementation whereby we
handled with the AVR memory structures by assigning pointer values with
calls to the C standard library function memcpy(3).

The modifieed DESFire firmware has been confirmed as non-functional on the
RevE generation of Chameleon Mini devices due to memory constraints and the
lack of hardware acceleration for cryptographic functions by the integrated AVR
microcontroller (the ATxmega32A4U chip).

During the development process (from start to finish) there were a number
of road blocks to overcome. The significant obstacles encountered in writing
the native DESFire firmware support for the Chameleon Mini include the next
issues:

– We were forced by local embedded system constraints to cleverly optimize
and organize our use of the embedded AVR memory to resolve insufficient
memory type exceptions throughout the development process. Most notably,
the structures and buffer space needed to store cryptographic structures for
use with AES and 3DES were carefully leveraged on the stack to avoid
unrecoverable overflow errors and race conditions.

– After first trying to resolve support for cryptographic primitives purely at the
software level by adapating open source numerical libraries for AVR chips,
tests conclusively identified the need for the hardware accelerated crypto-
graphic engines developed by Microchip. As noted in [4], the speedup in
computations for AES and 3DES operations provides an order of magnitude
improvement available within the expected short timing windows for data
responses over NFC from PICC to PCD.

– A complicated nested, quasi-linked pointer based structure was required to
efficiently store the filesystem entries and tag accounting metadata (such
as unique AID sequences, keys and key versions). This structure requires
sequential access to arrays within memory that store further pointers to
locations in memory to interface with and coordinate access to the distinct
EEPROM/FRAM/FLASH sections on the integrated AVR XMega chip.

The runtime behavior of our new Chameleon DESFire tag emulation was care-
fully tested and debugged with LibNFC [7] on MacOS in conjunction with an
external USB-powered NFC reader that interfaced with the Chameleon device
connected to a logging interface running the Chameleon Mini Live Debugger
GUI-based application on Android OS [12, 13]. Documentation to verify correct-
nessserves as a benchmark reference point for what future revisions of the source
code should generate. The LibNFC based testing code developed produced the ex-
amples of wrapped DESFire command exchanges cited for reference in Appendix
A (see page 13).

Embedded DESFire support on the Chameleon Mini 11

The resulting emulation support provides not only an interface for the DES-
Fire command set, but also critically allows security researchers to clone the
unique maufacturer header data that is presumed as a sacred marker by which
a PCD gateway point can uniquely identify any user in the NFC system. These
sensitive, hard-to-clone data fields include the tag ATS bytes, hardware and
software version bytes, batch number, production date bytes, and the 7-byte
UID assigned by the manufacturer to uniquely distinguish NFC based passive
PICC devices when they are manufactured in production. The sublistings shown
in Figure 3 provide a working example of basic configuration and handshaking
with an emulated DESFire tag configuration on the Chameleon Mini by the end
user.

5 Acknowlegements, credits and funding sources

The sources for the DESFire emulation support in the public firmware sources
for the Chameleon Mini software and embedded firmware are derived from a
fork of the main project [2] due to Dmitry Janushkevich in 2017. The author
credits Professor Josephine Yu and the School of Mathematics at the Georgia
Institute of Technology for allowing me to work on this as a secondary project as
a Ph.D. candidate over the Summer and Fall of 2020 and for providing funding
for hardware used in testing of the project. We similarly thank the Kasper and
Oswald (KAOS) manufacturers of the original generations of Chameleon Mini
devices for providing support in the form of discounted devices to support our
efforts on the project development.

References

1. Android HCE DESFire: A software implementation of Desfire in an Android app.
https://github.com/jekkos/android-hce-desfire

2. Chameleon Mini Firmware (authoritative sources). https://github.com/emsec/
ChameleonMini

3. ISO/IEC 14443, 15693 and 7816 Standards. Identification Cards - Contactless In-
tegrated Circuit Cards. www.iso.org

4. Kasper T., von Maurich I., Oswald D., Paar C. (2011) Chameleon: A Versatile Emu-
lator for Contactless Smartcards. In: Rhee KH., Nyang D. (eds) Information Security
and Cryptology - ICISC 2010. ICISC 2010. Lecture Notes in Computer Science, vol
6829. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24209-0 13

5. Kasper, T. and Oswald, D. Presentation slides on the history of the
Chameleon Mini devices. https://raw.github.com/wiki/emsec/ChameleonMini/
Images/160110 ChameleonMini history smaller.pdf

6. LibFreeFare: A convenience API for NFC cards manipulations on top of LibNFC.
https://github.com/nfc-tools/libfreefare

7. LibNFC: A platform independent NFC library. https://github.com/nfc-tools/libnfc
8. Microchip. ATxmega1284U Data Sheet. https://ww1.microchip.com/downloads/

en/DeviceDoc/ATxmega128-64-32-16A4U-DataSheet-DS40002166A.pdf
9. NXP Semiconductors. MIFARE DESFire Functional specification. Publicly avail-

able MF3ICD81 datasheet (2008). https://tinyurl.com/kwweanp9

12 M. D. Schmidt

> CONFIG=MF_DESFIRE

> DF_SETHDR=ATS 0675F7B102

> UID=2377000B99BF98

Chameleon Mini terminal input for firmware compiled with DESFire emulation support
to configure an IBM-JCOP branded NFC tag.

NFC reader: SCM Micro / SCL3711-NFC&RW opened

Sent bits: 26 (7 bits)

Received bits: 03 44

Sent bits: 93 20

Received bits: 88 23 77 00 dc

Sent bits: 93 70 88 23 77 00 dc 4b b3

Received bits: 04

Sent bits: 95 20

Received bits: 0b 99 bf 98 b5

Sent bits: 95 70 0b 99 bf 98 b5 2f 24

Received bits: 20

Sent bits: e0 50 bc a5

Received bits: 75 77 81 02 80

Sent bits: 50 00 57 cd

Found tag with

UID: 2377000b99bf98

ATQA: 4403

SAK: 20

ATS: 75 77 81 02 80

Output of reading the resulting DESFire tag emulated by the Chameleon Mini device
using an externally connected USB NFC reader with the LibNFC nfc-anticol utility
[7].

[usb] pm3 --> hf 14a read

[+] UID: 23 77 00 0B 99 BF 98

[+] ATQA: 44 03

[+] SAK: 20 [1]

[+] ATS: 75 77 81 02 80

[=] field dropped.

Confirmed support of the firmware emulation support using the Proxmark3 hardware.

Fig. 3. Verification of DESFire emulation support using cloned manufacturer data for
an IBM-JCOP tag with a randomized 7-byte UID.

10. Philips Semicondictors. Mifare DESFire: Contactless multi-application IC with
DES and 3DES security. Publicly available MF3-IC-D40 datasheet (2004). https:
//tinyurl.com/5era3dx2

11. Proxmark III. A Radio Frequency IDentification Tool. http://www.proxmark.org

Embedded DESFire support on the Chameleon Mini 13

12. Schmidt, M. D. Chameleon Mini DESFire Stack (development sources). https:
//github.com/maxieds/ChameleonMiniDESFireStack

13. Schmidt, M. D. Chameleon Mini Live Debugger. https://github.com/maxieds/
ChameleonMiniLiveDebugger

A Examples of the emulated DESFire tag authentication
and wrapped APDU command exchanges

A.1 Testing the DESFire application management command set

1 >>> Select Application By AID:

2 -> 90 5a 00 00 03 00 00 00 | 00

3 <- 91 00

4 >>> Start AES Authenticate:

5 -> 90 aa 00 00 01 00 00

6 <- 54 b8 9e fe 19 9b c6 a5 | fd 8f 00 be c1 23 99 c0 | 91 af

7 -> 90 af 00 00 10 df a0 79 | 13 59 ac 4c 75 5f 81 69 |

8 bc 9c 3e c6 7e 00

9 <- a9 e2 79 42 11 63 9c 14 | 07 b3 02 2f 2e 4b 2e c5 | 91 00

10 >>> Get AID List From Device:

11 -> 90 6a 00 00 00 00

12 <- 77 88 99 01 00 34 91 00

13 >>> CreateApplication command:

14 -> 90 ca 00 00 05 77 88 99 | 0f 03 00

15 <- 91 de

16 >>> Get AID List From Device:

17 -> 90 6a 00 00 00 00

18 <- 77 88 99 01 00 34 91 00

19 >>> CreateApplication command:

20 -> 90 ca 00 00 05 01 00 34 | 0f 03 00

21 <- 91 de

22 >>> Get AID List From Device:

23 -> 90 6a 00 00 00 00

24 <- 77 88 99 01 00 34 91 00

25 >>> CreateApplication command:

26 -> 90 ca 00 00 05 77 88 99 | 0f 03 00

27 <- 91 de

28 >>> Get AID List From Device:

29 -> 90 6a 00 00 00 00

30 <- 77 88 99 01 00 34 91 00

31 >>> Select Application By AID:

32 -> 90 5a 00 00 03 77 88 99 | 00

33 <- 91 00

34 >>> Start AES Authenticate:

35 -> 90 aa 00 00 01 00 00

36 <- f4 1a ea 8f ab cd a2 89 | c9 78 e4 da 99 7c 0a 98 | 91 af

37 -> 90 af 00 00 10 49 04 ee | b6 bc 9b 22 63 7e 0e 19 |

38 ea cb 7f 1c e5 00

39 <- 26 71 50 b0 a8 01 da 95 | 15 90 23 e3 0c de 6e b9 | 91 00

14 M. D. Schmidt

40 >>> DeleteApplication command:

41 -> 90 da 00 00 03 77 88 99 | 00

42 <- 91 00

43 >>> Get AID List From Device:

44 -> 90 6a 00 00 00 00

45 <- 01 00 34 91 00

46 >>> Select Application By AID:

47 -> 90 5a 00 00 03 00 00 00 | 00

48 <- 91 00

49 >>> Start AES Authenticate:

50 -> 90 aa 00 00 01 00 00

51 <- d2 92 d5 f7 81 de 5f e2 | 8d 32 38 1a b2 44 74 88 | 91 af

52 -> 90 af 00 00 10 2b d2 cf | 9f 86 e5 76 ac 30 50 45 |

53 ac ec 0c 4e ea 00

54 <- ff 8d 5a c6 3c cc 9f 01 | 9e b4 06 8d 09 5d cb ca | 91 00

55 >>> DeleteApplication command:

56 -> 90 da 00 00 03 01 00 34 | 00

57 <- 91 00

58 >>> Get AID List From Device:

59 -> 90 6a 00 00 00 00

60 <- 91 00

61 >>> DeleteApplication command:

62 -> 90 da 00 00 03 00 00 00 | 00

63 <- 91 9d

64 >>> Get AID List From Device:

65 -> 90 6a 00 00 00 00

66 <- 91 00

A.2 Using the DESFire key management commands

1 >>> Select Application By AID:

2 -> 90 5a 00 00 03 00 00 00 | 00

3 <- 91 00

4 >>> Start AES Authenticate:

5 -> 90 aa 00 00 01 00 00

6 <- 1f 97 25 a3 ee 58 29 04 | f1 b9 d3 da fa 61 a9 2d | 91 af

7 -> 90 af 00 00 10 ca 3a df | 84 8e 24 5d 8e 1a 3d 61 |

8 3f 81 25 2b 62 00

9 <- ca f1 0f 36 8f a5 34 31 | 87 b5 fc dd 2c 7d 1a b7 | 91 00

10 >>> ChangeKey command:

11 -> 90 c4 00 00 11 00 00 00 | 00 00 00 00 00 00 00 00 |

12 00 00 00 00 00 00 00

13 <- 91 00

14 >>> Select Application By AID:

15 -> 90 5a 00 00 03 00 00 00 | 00

16 <- 91 00

17 >>> Start AES Authenticate:

18 -> 90 aa 00 00 01 00 00

19 <- ea 32 f1 97 06 1d d8 99 | ed 6b bc ca 71 d6 d5 13 | 91 af

Embedded DESFire support on the Chameleon Mini 15

20 -> 90 af 00 00 10 3f 4b 03 | 28 cc 22 9b cc 8a 5e 32 |

21 9e b9 44 4a 60 00

22 <- 4d 5f da 4e 47 7a 58 a2 | 6a 6f b3 69 2d f0 8b ea | 91 00

23 >>> GetKeySettings command:

24 -> 90 45 00 00 00 00

25 <- 0f 03 91 00

26 >>> ChangeKeySettings command:

27 -> 90 54 00 00 01 0f 00

28 <- 91 00

29 >>> GetKeyVersion command:

30 -> 90 64 00 00 01 00 00

31 <- 02 91 00

A.3 Using the DESFire file management commands

1 >>> CreateApplication command:

2 -> 90 ca 00 00 05 01 00 34 | 0f 03 00

3 <- 91 00

4 >>> Select Application By AID:

5 -> 90 5a 00 00 03 01 00 34 | 00

6 <- 91 00

7 >>> Start AES Authenticate:

8 -> 90 aa 00 00 01 00 00

9 <- c8 d6 4e ee 3a d2 7c 1b | 44 71 76 62 b6 ec 9d 0a | 91 af

10 -> 90 af 00 00 10 a8 d0 f8 | ae 30 64 ae 23 e5 20 18 |

11 38 e5 1d 1d 33 00

12 <- a5 22 c2 3b 5f f2 bc 9e | 18 0e 87 c0 71 ca ef 69 | 91 00

13 >>> CreateStdDataFile command:

14 -> 90 cd 00 00 07 00 00 0f | 00 04 00 00 00

15 <- 91 00

16 >>> CreateBackupDataFile command:

17 -> 90 cb 00 00 07 01 00 0f | 00 08 00 00 00

18 <- 91 00

19 >>> CreateValueFile command:

20 -> 90 cc 00 00 11 02 00 0f | 00 00 00 00 00 00 01 00 |

21 00 80 00 00 00 01 00

22 <- 91 00

23 >>> CreateLinearRecordFile command:

24 -> 90 c1 00 00 0a 03 00 0f | 00 04 00 00 0c 00 00 00

25 <- 91 00

26 >>> CreateCyclicRecordFile command:

27 -> 90 c0 00 00 0a 04 00 0f | 00 01 00 00 05 00 00 00

28 <- 91 00

29 >>> GetFileIds command:

30 -> 90 6f 00 00 00 00

31 <- 00 01 02 03 04 91 00

32 >>> DeleteFile command:

33 -> 90 df 00 00 01 01 00

34 <- 91 00

16 M. D. Schmidt

35 >>> GetFileIds command:

36 -> 90 6f 00 00 00 00

37 <- 00 02 03 04 91 00

38 >>> GetFileSettings command:

39 -> 90 f5 00 00 01 00 00

40 <- 00 00 0f 00 04 00 00 91 | 00

41 >>> GetFileSettings command:

42 -> 90 f5 00 00 01 02 00

43 <- 02 00 0f 00 00 00 00 00 | 00 01 00 00 80 00 00 00 | 01 91 00

44 >>> GetFileSettings command:

45 -> 90 f5 00 00 01 03 00

46 <- 03 00 0f 00 04 00 00 0c | 00 00 00 00 00 91 00

47 >>> GetFileSettings command:

48 -> 90 f5 00 00 01 04 00

49 <- 04 00 0f 00 01 00 00 05 | 00 00 00 00 00 91 00

A.4 Using the DESFire file manipulation commands

1 >>> CreateStdDataFile command:

2 -> 90 cd 00 00 07 00 00 0f | 00 04 00 00 00

3 <- 91 de

4 >>> CreateBackupDataFile command:

5 -> 90 cb 00 00 07 01 00 0f | 00 08 00 00 00

6 <- 91 de

7 >>> GetFileIds command:

8 -> 90 6f 00 00 00 00

9 <- 00 01 91 00

10 >>> ReadData command:

11 -> 90 bd 00 00 07 00 00 00 | 00 04 00 00 00

12 <- 8f f9 2d 9f 91 00

13 >>> DeleteFile command:

14 -> 90 df 00 00 01 01 00

15 <- 91 00

16 >>> GetFileIds command:

17 -> 90 6f 00 00 00 00

18 <- 00 91 00

19 >>> ReadData command:

20 -> 90 bd 00 00 07 00 00 00 | 00 04 00 00 00

21 <- 8f f9 2d 9f 91 00

22 >>> ReadData command:

23 -> 90 bd 00 00 07 00 02 00 | 00 02 00 00 00

24 <- 8f f9 91 00

25 >>> WriteData command:

26 -> 90 3d 00 00 0b 00 00 00 | 00 04 00 00 00 00 00 00 | 00

27 <- 91 00

28 >>> ReadData command:

29 -> 90 bd 00 00 07 00 00 00 | 00 04 00 00 00

30 <- 00 00 00 00 91 00

31 >>> WriteData command:

Embedded DESFire support on the Chameleon Mini 17

32 -> 90 3d 00 00 09 00 02 00 | 00 02 00 00 04 05 00

33 <- 91 00

34 >>> ReadData command:

35 -> 90 bd 00 00 07 00 00 00 | 00 04 00 00 00

36 <- 8f 09 04 05 91 00

37 >>> CreateValueFile command:

38 -> 90 cc 00 00 11 02 00 0f | 00 00 00 00 00 00 01 00 |

39 00 80 00 00 00 01 00

40 <- 91 de

41 >>> GetFileIds command:

42 -> 90 6f 00 00 00 00

43 <- 02 91 00

44 >>> GetValue command:

45 -> 90 6c 00 00 01 02 00

46 <- a0 00 00 00 91 00

47 >>> Credit(ValueFile) command:

48 -> 90 0c 00 00 05 02 40 00 | 00 00 00

49 <- 91 00

50 >>> GetValue command:

51 -> 90 6c 00 00 01 02 00

52 <- a0 00 00 00 91 00

53 >>> Debit(ValueFile) command:

54 -> 90 dc 00 00 05 02 40 00 | 00 00 00

55 <- 91 00

56 >>> GetValue command:

57 -> 90 6c 00 00 01 02 00

58 <- a0 00 00 00 91 00

59 >>> LimitedCredit(ValueFile) command:

60 -> 90 1c 00 00 05 02 20 00 | 00 00 00

61 <- 91 00

62 >>> GetValue command:

63 -> 90 6c 00 00 01 02 00

64 <- a0 00 00 00 91 00

65 >>> CommitTransaction command:

66 -> 90 c7 00 00 00 00

67 <- 91 00

68 >>> GetValue command:

69 -> 90 6c 00 00 01 02 00

70 <- c0 00 00 00 91 00

71 >>> Debit(ValueFile) command:

72 -> 90 dc 00 00 05 02 c8 00 | 00 00 00

73 <- 91 be

74 >>> CommitTransaction command:

75 -> 90 c7 00 00 00 00

76 <- 91 00

77 >>> GetValue command:

78 -> 90 6c 00 00 01 02 00

79 <- c0 00 00 00 91 00

80 >>> CreateValueFile command:

81 -> 90 cc 00 00 11 03 00 0f | 00 00 00 00 00 00 01 00 |

18 M. D. Schmidt

82 00 80 00 00 00 00 00

83 <- 91 00

84 >>> GetFileIds command:

85 -> 90 6f 00 00 00 00

86 <- 02 03 91 00

87 >>> GetValue command:

88 -> 90 6c 00 00 01 03 00

89 <- 80 00 00 00 91 00

90 >>> Credit(ValueFile) command:

91 -> 90 0c 00 00 05 03 40 00 | 00 00 00

92 <- 91 00

93 >>> GetValue command:

94 -> 90 6c 00 00 01 03 00

95 <- 80 00 00 00 91 00

96 >>> Debit(ValueFile) command:

97 -> 90 dc 00 00 05 03 40 00 | 00 00 00

98 <- 91 00

99 >>> GetValue command:

100 -> 90 6c 00 00 01 03 00

101 <- 80 00 00 00 91 00

102 >>> LimitedCredit(ValueFile) command:

103 -> 90 1c 00 00 05 03 20 00 | 00 00 00

104 <- 91 9d

105 >>> GetValue command:

106 -> 90 6c 00 00 01 03 00

107 <- 80 00 00 00 91 00

108 >>> AbortTransaction command:

109 -> 90 a7 00 00 00 00

110 <- 91 00

111 >>> GetValue command:

112 -> 90 6c 00 00 01 03 00

113 <- 80 00 00 00 91 00

114 >>> CreateLinearRecordFile command:

115 -> 90 c1 00 00 0a 01 00 0f | 00 02 00 00 06 00 00 00

116 <- 91 de

117 >>> GetFileIds command:

118 -> 90 6f 00 00 00 00

119 <- 01 91 00

120 >>> ReadRecords command:

121 -> 90 bb 00 00 07 01 00 00 | 00 06 00 00 00

122 <- 00 00 00 e5 b9 b2 91 00

123 >>> WriteRecords command:

124 -> 90 3b 00 00 0a 01 00 00 | 00 03 00 00 00 00 00 00

125 <- 91 00

126 >>> ReadRecords command:

127 -> 90 bb 00 00 07 01 00 00 | 00 06 00 00 00

128 <- 00 00 00 e5 b9 b2 91 00

Embedded DESFire support on the Chameleon Mini 19

A.5 Testing the DESFire general utility command set

1 >>> GetVersion command:

2 -> 90 60 00 00 00 00

3 <- 04 01 01 00 01 18 05 91 | af

4 -> 90 af 00 00 00 00

5 <- 04 01 01 00 01 18 05 91 | af

6 -> 90 af 00 00 00 00

7 <- 3f 0f 20 82 5e eb 16 ff | ff ff ff ff ff ff 91 00

8 >>> FormatPICC command:

9 -> 90 fc 00 00 00 00

10 <- 91 00

11 >>> GetCardUID command:

12 -> 90 51 00 00 00 00

13 <- 3f 0f 20 82 5e eb 16 91 | 00

14 >>> FreeMemory command:

15 -> 90 6e 00 00 00 00

16 <- 60 00 91 0c

