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Preface

This book is written as a companion book to the Advanced Linear Models for Data Science
Coursera class. Also check out the Data Science Specialization by Brian Caffo, Roger
Peng and Jeff Leek. However, if you do not take the class, the book mostly stands on its
own. A useful component of the book is a series of [LINK] YouTube videos that comprise
the Coursera class.

The book is intended to be a low cost introduction to the important field of advanced
linear models. The intended audience are students who are numerically and computation-
ally literate, have taken a course on statistical inference, have taken a regression class,
can program in R and have a fairly high level of mathematical sophistication including:
linear algebra, multivariate calculus and some proof-based mathematics. The book is
offered for free with variable pricing (html, pdf, epub, mobi) on LeanPub.
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Chapter 1

Introduction

Linear models are the cornerstone of statistical methodology. Perhaps more than any
other tool, advanced students of statistics, biostatistics, machine learning, data science,
econometrics, etcetera should spend time learning the finer grain details of this subject.

In this book, we give a brief, but rigorous treatment of advanced linear models. It is
advanced in the sense that it is of level that an introductory PhD student in statistics or
biostatistics would see. The material in this book is standard knowledge for any PhD in
statistics or biostatistics.

1.1 Prerequisites

Students will need a fair amount of mathematical prerequisites before trying to undertake
this class. First, is multivariate calculus and linear algebra. Especially linear algebra,
since much of the early parts of linear models are direct applications of linear algebra
results applied in a statistical context. In addition, some basic proof based mathematics
is necessary to follow the proofs.

We will also assume some basic mathematical statistics. The courses Mathematical
Biostatistics Boot Camp 1 and Mathematical Biostatistics Boot Camp 2 by the author on
Coursera would suffice. The Statistical Inference is a lower level treatment that with some
augmentated reading would also suffice. There is a Leanpub book for this course as well.

Some basic regression is necessary. The Regression Models also by the author would
suffice. Note that there is a Leanpub book for this class.

1
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Chapter 2

Background

Watch this video before beginning.
Before we begin we need a few matrix prerequisites. Let, f : Rp → R, be a function

from the p dimensional real line to the real line. Assume that f is linear, i.e. f(x) = atx
Then ∇f = a. That is, the function that contains the elementwise derivatives of f (the
gradient) is constant with respect to x.

Consider now the matrix A (p× p) and the quadratic form:

f(x) = xtAx.

Then ∇f = 2Atx. The second derivative matrix (Hessian) (where the i, j element is the
derivative with respect to the i and j elements of this vector) is then 2A.

2.1 Example

Consider an example that we will become very familiar with, least squares. Let y be
an array of dimension n × 1 and X be an n × p full rank matrix. Let β be a p vector of
unknowns. Consider trying to minimize the function:

f(β) = ||y −Xβ||2 = (y −Xβ)t(y −Xβ) = yty − 2ytXtβ + βtXtXβ.

The gradient of f (with respect to β) is:

∇f(β) = −2Xy + XtXβ. (2.1)

A useful result is that if X is of full column rank then XtX is square and full rank and hence
invertible. Thus, we can calculate the root of the gradient (2.1) and obtain the solution:

β = (XtX)−1Xty.

We will talk about these solutions at length. Also, it remains necessary to show that this is
a minimum and not just an inflection point. We can do this by checking a second derivative
condition. Taking the second derivative of (2.1) we get

XtX,

a positive definite matrix. Thus our solution is indeed a minimum.

2
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2.1.1 Coding example

Watch this video before beginning.
Load the mtcars dataset in R with data(mtcars). Let’s set our y vector as y =

mtcars$mpg and our X matrix as a vector of ones, horsepower and weight: x = cbind(1,

mtcars$hp, mtcars$wt). Let’s find the value of β that minimizes ||y −Xβ||2.

> y = mtcars$mpg

> x = cbind(1, mtcars$hp, mtcars$wt)

> solve(t(x) %*% x) %*% t(x) %*% y

[,1]

[1,] 37.22727012

[2,] -0.03177295

[3,] -3.87783074

> # Compare with the estimate obtained via lm

> coef(lm(mpg ~ hp + wt, data = mtcars))

(Intercept) hp wt

37.22727012 -0.03177295 -3.87783074

2.2 Averages

Watch this video before beginning.
Consider some useful notational conventions we’ll use. 1n is an n vector containing

only ones while 1n×p is an n× p matrix containing ones. I is the identity matrix, which we
will subscript if a reminder of the dimension is necessary.

We denote by ȳ the average of the n vector y. Verify for yourself that ȳ = 1
n
yt1n =

1
n
1tny. Furthermore, note that (1tn1n)−1 = 1

n
so that

ȳ = (1tn1n)−11tny.

Consider our previous least squares problem. If X = 1n and β is just the scalar β. The
least squares function we’d like to minimize is:

(y − 1nβ)t(y − 1nβ) = ||y − 1nβ||2.

Or, what constant vector best approximates y it the terms of minimizing the squared
Euclidean distance? From above, we know that the solution is of the form

β = (XtX)−1Xty

which in this specific case works out to be:

ȳ = (1tn1n)−11tny.

That is, the average is the best scalar estimate to minimize the Euclidean distance.

https://www.youtube.com/watch?v=wW-4P7pl6E0&index=2&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
https://www.youtube.com/watch?v=GbcBLDS1VBw&index=3&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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2.3 Centering

Continuing to work with our vector of ones, note that

y − 1nȳ

is the centered version of y (in that it has the mean subtracted from each element of the
y vector). We can rewrite this as:

ỹ = y − 1nȳ = y − (1tn1n)−11t1y =
{
I− 1n(1tn1n)−11t

}
y.

In other words, multiplication by the matrix {I− 1n(1tn1n)−11t} centers vectors. To check
that ỹ is centered, consider multiplying by 1n (which sums its elements).

1tnỹ = 1tn
{
I− 1n(1tn1n)−11tn

}
y =

{
1tn − 1tn1n(1tn1n)−11tn

}
=
{
1tn − 1tn

}
y = 0.

This operation can be very handy for centering matrices. For example, if X is an
n × p matrix then the matrix X̃ = {I− 1n(1tn1n)−11t}X is the matrix with every column
centered. Conversely, right multiplication by I− 1p(1

t
p1p)

−11tp centers every row of X.

2.3.1 Coding example

Watch this video before beginning.
Let’s take our X matrix defined previously from the mtcars dataset and mean center

it. We’ll contrast using matrix manipulations versus (preferable) R functions.

> n = nrow(x)

> I = diag(rep(1, n))

> H = matrix(1, n, n) / n

> xt = (I - H) %*% x

> apply(xt, 2, mean)

[1] 0.000000e+00 0.000000e+00 2.168404e-16

> ## Doing it using sweep

> xt2 = sweep(x, 2, apply(x, 2, mean))

> apply(xt2, 2, mean)

[1] 0.000000e+00 0.000000e+00 3.469447e-17

2.4 Variance

Watch this video before beginning.
The standard sample variance is the average deviation of the observations from the

sample mean (usually using n− 1 rather than n). That is,

S2 =
1

n− 1
||y − 1nȳ||2 =

1

n− 1
ỹtỹ

https://www.youtube.com/watch?v=sixe0fUr5cg&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=4
https://www.youtube.com/watch?v=hTVkDOojbdw&index=5&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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We can write out the norm component of this as:

yt
{
I− 1n(1tn1n)−11tn

}{
I− 1n(1tn1n)−11tn

}
y = yt

{
I− 1n(1tn1n)−11tn

}
y.

Thus, our sample variance is a fairly simple quadratic form. Notice the fact that the matrix
{I− 1n(1tn1n)−11tn} is both symmetric and idempotent.

Similarly, if we have two vectors, y and z then 1
n−1y {I− 1n(1tn1n)−11tn} z is the empir-

ical covariance between them. This is then useful for matrices. Consider that

1

n− 1
Xt
{
I− 1n(1tn1n)−11tn

}
X =

1

n− 1
X̃tX̃

is a matrix where each element is the empirical covariance between columns of X. This
is called the variance/covariance matrix.

2.4.1 Coding example

Watch this video before beginning.
Let’s manually calculate the covariance of the x matrix from before.

> n = nrow(x)

> I = diag(rep(1, n))

> H = matrix(1, n, n) / n

> round(t(x) %*% (I - H) %*% x / (n - 1), 6)

[,1] [,2] [,3]

[1,] 0 0.00000 0.000000

[2,] 0 4700.86694 44.192661

[3,] 0 44.19266 0.957379

> var(x)

[,1] [,2] [,3]

[1,] 0 0.00000 0.000000

[2,] 0 4700.86694 44.192661

[3,] 0 44.19266 0.957379

Recall, the first column was all ones; thus the row and column of zeros in the variance.

https://www.youtube.com/watch?v=_AHZIy8PRmU&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=6


Chapter 3

Single parameter regression

3.1 Mean only regression

Consider least squares where we only want horizontal lines. Let our outcome be y =
(y1, . . . , yn)t and recall that 1n is an n vector of ones. We want to minimize f(µ) = ||y−1µ||2
with respect to µ.

Taking derivatives with respect to µ we obtain that

df

dµ
= −2nȳ + 2nµ.

This has a root at µ̂ = ȳ. Note that the second derivative is 2n > 0. Thus, the average is
the least squares estimate in the sense of minimizing the Euclidean distance between the
observed data and a constant vector. We can think of this as projecting our n dimensional
onto the best 1 dimensional subspace spanned by the vector 1. We’ll rely on this form of
thinking a lot throughout the text.

3.2 Coding example

Let’s use the diamond dataset

> library(UsingR); data(diamond)

> y = diamond$price; x = diamond$carat

> mean(y)

[1] 500.0833

> #using least squares

> coef(lm(y ~ 1))

[1] 500.0833

Thus, in this example the mean only least squares estimate obtained via lm is the empiri-
cal mean.

6
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3.3 Regression through the origin

Watch this video before beginning.
Let x = (x1, . . . , xn)′ be another vector. Consider now the regression through the

origin problem. We want to minimize f(β) = ||y − xβ||2 with respect to β. This is called
regression through the origin for the following reason. First note that the pairs, (xi, yi),
form a scatterplot. Least squares is then finding the best multiple of the x vector to
approximate y. That is, finding the best line of the form y = βx to fit the scatter plot. Thus
we are considering lines through the origin hence the name regression through the origin.

Notice that f(β) = yty − 2ytx + xtx. Then
df

dβ
= −2y′x + 2xtx

Setting this equal to zero we obtain the famous equation:

β̂ =
ytx

xtx
=
〈y,x〉
〈x,x〉

We’ll leave it up to the reader to check the second derivative condition. Also, we’ll leave
it up to you to show that the mean only regression is a special case that agrees with the
result.

Notice that we have shown the function

g : Rn → R
defined by g(y) = 〈y,x〉

〈x,x〉x projects any n dimensional vector y into the linear space spanned
by the single vector x, {βx | β ∈ R}.

3.4 Centering first

Watch this video before beginning.
A line through the origin is often not useful. Consider centering the y and x first.

The the origin would be at the mean of the y vector and the mean of the x vector. Let
ỹ = {I− 1n(1tn1n)−11tn}y and x̃ = {I− 1n(1tn1n)−11tn}x. Then regression through the
origin (minimizing ||ỹ − x̃γ||2 for γ) for the centered data yields the solution γ̂ = 〈ỹ,x̃〉

〈x̃,x̃〉 .

However, from the previous chapter, we know that

〈ỹ, x̃〉 = yt
{
I− 1n(1tn1n)−11tn

}
xt = (n− 1)ρ̂xyσxσy

and similarly 〈x̃, x̃〉 = (n − 1)σ̂2
y. Here, ρ̂xy and σ̂2

y are the empirical correlation and vari-
ance, respectively. Thus our regression through the origin estimate is

γ̂ = ρxy
σy
σx
.

That is, the best fitting line that has to go through the center of the data has a slope equal
to the correlation times the ratio of the standard deviations. If we reverse the role of x
and y, we simply invert the ratio of the standard deviations. Thus we also note, that if we
center and scale our data first so that the resulting vectors have mean 0 and variance 1,
our slope is exactly the correlation between the vectors.

https://www.youtube.com/watch?v=1ZFED8AcHWc&index=7&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
https://www.youtube.com/watch?v=1ss_FYtiSHo&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=8
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3.4.1 Coding example

Watch this video before beginning.
Let’s continue with the diamond example. We’ll center the variables first.

> yc = y - mean(y);

> xc = x - mean(x)

> sum(yc * xc) / sum(xc * xc)

[1] 3721.025

> coef(lm(yc ~ xc - 1))

xc

3721.025

> cor(x, y) * sd(y) / sd(x)

[1] 3721.025

3.5 Bonus videos

Watch these videos before moving on. (I had created them beofre I reorganized chapters.)
Sneak preview of projection logic.
Coding example.
Sneak preview of linear regression.
Sneak preview of regression generalizations.

https://www.youtube.com/watch?v=CrqNQEYF-nU&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=9
https://www.youtube.com/watch?v=lmv88DtCNiU&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=10
https://www.youtube.com/watch?v=0Ld7sZ8FUs0&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=11
https://www.youtube.com/watch?v=U5FAOdBDb90&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=12
https://www.youtube.com/watch?v=Ir1L-STFKfA&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=13


Chapter 4

Linear regression

4.1 Introduction to linear regression

Watch this video before beginning.
Now let’s consider upping the ante to two parameters. Consider the minimizing

||y − (β01n + β1x)||2 (4.1)

over β1 and β2. Let’s think about this in two ways. First, the space

Γ = {β01n + β1x | β0, β1 ∈ R}

is a two dimensional subspace of Rn. Therefore, the least squares equation finds the
projection of the observed data point onto two dimensional subspace spanned by the two
vectors 1n and x.

The second way to think about the fit is to consider the scatterplot of points (xi, yi).
The goal is to find the best fitting line of the form y = β0 + β1x by minimizing the sum of
the squared vertical distances between the points and the fitted line.

Given what we’ve done already, it’s surprisingly easy to minimize (4.1). Consider fixing
β1 and minimizing with respect to β0.

||y − β1x− β01n||2

Let β̂0(β1) be the least squares minimum for β0 for a given β1. By our results from mean
only regression we know that

β̂0(β1) =
1

n
(y − β1x)1n = ȳ − β1x̄.

Therefore, plugging this into the least squares equation, we know that

(4.1) ≥ ||y − ȳ1n + β1(x− x̄1n)||2 = ||ỹ − β1x̃||2, (4.2)

where ỹ and x̃ are the centered versions of y and x, respectively. We know from the last
chapter (4.2) is minimized by

β̂1 = ρ̂xy
σ̂y
σ̂x
.

9

https://www.youtube.com/watch?v=0PLufpySIcs&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=14
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Plugging this into β̂0(β̂1) we get that

β̂0 = ȳ − β1x̄.

Therefore, the slope estimate from including an intercept is identical to that of re-
gression through the origin after centering the data. The intercept simply forces the line
through the average of the Y’s and X’s.

4.1.1 Coding example

Watch this video before beginning.

> library(UsingR)

> data(diamond)

> x = diamond$carat

> y = diamond$price

> beta1 = cor(x, y) * sd(y) / sd(x)

> beta0 = mean(y) - beta1 * mean(x)

> c(beta0, beta1)

[1] -259.6259 3721.0249

> # versus estimate with lm

> coef(lm(y ~ x))

(Intercept) x

-259.6259 3721.0249

> #Centered regression through the origin

> sum(yc * xc) / sum(xc^2)

[1] 3721.025

4.2 Fitted values

Watch this video before beginning.
We define ŷ = (ŷ1, . . . , ŷn)t to be the vector of fitted values. Whereas y lives in Rn, ŷ

lives in Γ, the two dimensional linear subspace of Rn spanned by the two vectors, 1n and
x. We define ŷ as β̂0 + β̂1x. We can think of our least squares as minmizing

||y − ŷ||

over all ŷ ∈ Γ. The fitted values are the orthogonal projection of the observed data onto
this linear subspace.

4.2.1 Coding example

Watch this video before beginning.
Getting the predicted value for x = 0.20 (refer to the previous section diamond exam-

ple).

https://www.youtube.com/watch?v=fLITbjrkQks&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=15
https://www.youtube.com/watch?v=QwYzfLOAQbo&index=16&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
https://www.youtube.com/watch?v=sFbhaImWA7c&index=17&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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> beta0 + beta1 * .20

[1] 484.5791

> predict(lm(y ~ x), newdata = data.frame(x = .2))

1

484.5791

4.3 Residuals

Watch this video before beginning.
Define e = y − ŷ to be the vector of residuals. Each residual is the vertical distance

between y and the fitted regression line. Thinking geometrically, the residuals are the
orthogonal vector pointing to y from ŷ. Least squares can be thought of as minimizing the
sum of the squared residuals. The quantity ||e||2 is called the sum of the squared errors
while 1

n−2 ||e||
2 is called the mean squared error or the residual variance.

Watch this video of this coding exercise.

> yhat = beta0 + beta1 * x

> e = y - yhat

> max(abs(e - resid(lm(y ~ x))))

4.4 Extension to other spaces

Watch this video before beginning.
It is interesting to note that nothing we’ve discussed is intrinsic to Rn. Any space with

a norm and inner product and absent of extraordinary mathematical pathologies would
suffice. Hilbert spaces are perhaps the most directly extendable.

As an example, let’s develop linear regression for a space of (Lebesgue) square in-
tegrable functions. That is, let y be in the space of functions from [0, 1] → R with finite
squared itegral. Define the inner product as 〈f, g〉 =

∫ 1

0
f(t)g(t)dt. Consider finding the

best multple approximation to y from the function x (also in that space).
Thus, we want to minimize:

||y − β1x||2 =

∫ 1

0

{y(t)− β1x(t)}2dt.

You might have guessed that the solution will be β̂ = 〈y,x〉
〈x,x〉 = 〈y,x〉

||x||2 . Let’s show it (knowing

https://www.youtube.com/watch?v=F5yP2GxXeaI&index=18&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
https://www.youtube.com/watch?v=k8szlEkWmAg&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=19
https://www.youtube.com/watch?v=ax1M0bgi-6E&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=20
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that this is the solution):

||y − β1x||2 = ||y − β̂1x+ β̂1x− β1x||2

= ||y − β̂1x̄||2 − 2〈y − β̂1x, β̂1x− β1x〉+ ||β̂1x− β1x||2

≥ ||y − β̂1x̄||2 − 2〈y − β̂1x, β̂1x− β1x〉
= ||y − β̂1x̄||2 − 2β̂1〈y, x〉+ 2β1〈y, x〉+ 2β̂2

1 ||x||2 − 2β̂1β1||X||2

= ||y − β̂1x̄||2 − 2
〈y, x〉2

||x||2
+ 2β1〈y, x〉+ 2

〈y, x〉2

||x||2
− 2β1〈y, x〉

= ||y − β̂1x||2

Therefore, β̂1 is the least squares estimate.
We can extend this to include an intercept. Let j be a function that is constant at 1. Let

ȳ =
∫ 1

0
y(t)dt be the average of y over the domain and define x̄ similarly. Then consider

minimizing (over β0 and β1)
||y − β0j − β1x||2

First, hold β1 fixed. By our previous result, we have that the minimizer must satisfy:

β0 =< y − β1x, j > /||j||2 = ȳ − β1x̄.

Plugging this back into our least squares equation we obtain that:

||y − β0j − β1x||2 ≥ ||y − ȳ − β1(x− x̄)||2

= ||ỹ − β1x̃||2

where ỹ and x̃ are the centered functions. We know that this is minimized by

β̂1 =
〈ỹ, x̃〉
||x̃||2

= ρxy
σy
σx
.

where ρxy =
∫ 1

0
{y(t) − ȳ}{x(t) − x̄}dt is the functional correlation between x and y and

σ2
y =

∫ 1

0
{y(t) − ȳ}2dt (and σ2

x is defined similarly) is the functional variance. Further, we
have that β̂0 = ȳ − β̂1x̄.

Several take-home points are in order. First, we see that defining empirical means,
covariances and variances for functional data is fairly straightforward. Secondly, we see
that a version of linear regression applied to functional data is identical in all salient re-
spects to ordinary linear regression. Thirdly, I hope that you can start to see a pattern
that multivariate regression (in vector and more general spaces) can be built up easily by
regression through the origin. It’s an interesting, though tedious, exercise to derive mul-
tivariate regression only allowing oneself access to regression through the origin. We’ll
find a more convenient derivation in the next chapter. However, it’s oddly pleasant that so
much of multivariable regression relies on this simple result.



Chapter 5

Least squares

In this chapter we develop least squares.

5.1 Basics

Watch this video before beginning.
Let X be a design matrix, notationally its elements and column vectors are:

X =

 x11 . . . x1p
... . . .

...
xn1 . . . xnp

 = [x1 . . .xp].

We are assuming that n ≥ p and X is of full (column) rank. Consider ordinary least
squares

||y −Xβ||2 = (y −Xβ)t(y −Xβ) = yty − 2ytXβ + βtXtXβ. (5.1)

If we were to minimize (5.1) with respect to β, consider using our matrix derivative results
from Chapter 2.

d

dβ
(5.1) = −2Xty + 2XtXβ.

Solving for 0 leads to the so called normal equations:

XtXβ = Xty.

Recall that XtX retains the same rank as X. Therefore, it is a full rank p × p matrix and
hence is invertible. We can then solve the normal equations as:

β̂ = (XtX)−1Xty. (5.2)

The Hessian of (5.1) is simply 2XtX, which is positive definite. (This is clear since for any
non-zero vector, a, we have that Xta is non-zero since X is full rank and then atXtXa =
||Xa||2 > 0.) Thus, the root of our derivative is indeed a minimum.

13

https://www.youtube.com/watch?v=tcmqwFDm-2c&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=21
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5.1.1 Coding example

Watch this video before beginning.

> y = swiss$Fertility

> x = as.matrix(swiss[,-1])

> solve(t(x) %*% x, t(x) %*% y)

[,1]

1 66.9151817

Agriculture -0.1721140

Examination -0.2580082

Education -0.8709401

Catholic 0.1041153

Infant.Mortality 1.0770481

> summary(lm(y ~ x - 1))$coef

Estimate Std. Error t value Pr(>|t|)

x1 66.9151817 10.70603759 6.250229 1.906051e-07

xAgriculture -0.1721140 0.07030392 -2.448142 1.872715e-02

xExamination -0.2580082 0.25387820 -1.016268 3.154617e-01

xEducation -0.8709401 0.18302860 -4.758492 2.430605e-05

xCatholic 0.1041153 0.03525785 2.952969 5.190079e-03

xInfant.Mortality 1.0770481 0.38171965 2.821568 7.335715e-03

5.2 A second derivation

Watch this video before beginning.
If you know the answer first, it’s possible to derive the minimum to the least squares

equation without taking any derivatives.

||y −Xβ||2 = ||y −Xβ̂ + Xβ̂ −Xβ||
= ||y − xβ̂||2 + 2(y − xβ̂)t(Xβ̂ −Xβ) + ||Xβ̂ −Xβ||2

≥ ||y − xβ̂||2 + 2(y −Xβ̂)t(Xβ̂ −Xβ)

= ||y − xβ̂||2 + 2(y −X(XtX)−1Xty)tX(β̂ − β)

= ||y −Xβ̂||2 + 2yt(I−X(XtX)−1Xt)tX(β̂ − β)

= ||y −Xβ̂||2 + 2yt(I−X(XtX)−1Xt)X(β̂ − β)

= ||y − xβ̂||2 + 2yt(X−X(XtX)−1XtX)(β̂ − β)

= ||y − xβ̂||2 + 2yt(X−X)(β̂ − β)

= ||y − xβ̂||2

Thus, any value of β that we plug into the least squares equation is going to give us a
larger norm than if we plug in β̂ so that it is the unique minimum. Notice that going from
line 5 to 6, we used the fact that I − X(XtX)−1Xt is symmetric. (It is also idempotent.)

https://www.youtube.com/watch?v=walb3qHidJQ&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=22
https://www.youtube.com/watch?v=4aCJQiacet8&index=23&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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Also, we used a fact that is very useful in general, I −X(XtX)−1Xt is orthogonal to any
linear combination of the columns of X. This is try since if Xa is such a combination, then

{I−X(XtX)−1Xt)}bXa = {X−X(XtX)−1XtX}a = (X−X)a = 0.

This fact is extremely handy in working with linear models.

5.3 Connection with linear regression

Watch this video before beginning.
Recall that the slope from linear regression worked out to be

〈x− x̄1n,x− x̄1n〉−1〈x− x̄1n,y − ȳ1n〉 = σ̂−2X σ̂2
XY

where σ̂2
XY is the empirical covariance between X and Y. (We rewrote this formula using

the more convenient correlation.) In this form it is the covariance between x and y divided
by the variance of the x’s. Let’s consider extending this in our matrix results.

Let X = [1nX1], thus X contains an intercept and then p−1 other regressors. Similarly
let β = (β0, . . . , βp−1)

t = (β0β
t
1)
t. Consider now least squares

||y −Xβ|| = ||y − 1nβ0 −X1β1||

If we were to hold β1 fixed we are faced with a mean only regression problem and the
solution to β0(β1) is

1

n
(y −X1β1)

t1n = ȳ − x̄tβ1

where x̄ is the columnwise means of X. Plugging this back into our least squares equation
for β0 we get

||y − 1nȳ − (X1 − 1nx̄
t)β1||2 = ||ỹ − X̃β1||2

where ỹ and X̃ are the centered versions of y and X. This is again just the least squares
equation with the centered variables and thus we get that

β̂1 = (X̃tX̃)−1X̃Ỹ = β̂1 =

(
1

n− 1
X̃tX̃

)−1
1

n− 1
X̃Ỹ.

The matrix 1
n−1X̃

tX̃ is the empirical variance covariance matrix of the columns of X while
1

n−1X̃Ỹ is the vector of correlations of y with the columns of X. Therefore, if we include
an intercept, our slope estimate is

Σ̂
−1
XX ρ̂XY

the inverse of the variance matrix associated with X time the correlation matrix between
X and Y. This draws an exact parallel with the result from linear regression.

https://www.youtube.com/watch?v=FcWYZRAHFfM&index=24&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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5.4 Projections

Watch this video before beginning.
The vector of fitted values is

ŷ = X(XtX)−1Xty

and the vector of residuals is given by

e = y − ŷ = (I−X(XtX)−1Xt)y.

Thus, multiplication by the matrix X(XtX)−1Xt takes any vector in Rn and produces the
fitted values. The matrix X(XtX)−1Xt is called the projection matrix (for reasons that will
become obvious) or the “hat matrix” (I guess because it transforms our Y into “Y hat”, then
perhaps it should be called the “hatting” matrix?).

Multiplication by (I − X(XtX)−1Xt) produces the residuals. Notice that since the ŷ
vector is a linear combination of the X, it is orthogonal to the residuals:

ŷte = ytX(XtX)−1Xt(I−X(XtX)−1Xt)y = 0.

It is useful to think of least squares in the terms of projections. Consider the column
space of the design matrix, Γ = {Xβ | β ∈ Rp}. This p dimensional space lives in Rn, so
think of a plane in R3. Consider the vector y which lives in Rn. Multiplication by the matrix
X(XtX)−1Xt projects y into Γ. That is,

y→ X(XtX)−1Xty

is the linear projection map between Rn and Γ. The point ŷ is the point in Γ that is closest
to y and β̂ is the specific linear combination of the columns of X that yields ŷ. e is the
vector connecting y and ŷ, and it is orthogonal to all elements in Γ.

Logically the projection matrix must be idempotent. Consider that for any vector, mul-
tiplication by the projection matrix finds the closest element in Γ. Therefore, we can’t
multiply again and find a closer one. That is, Py = P 2y for a projection matrix P and any
y and thus P = P 2. Since we are dealing in Euclidean spaces, a projection matrix must
also be symmetric. To see this, note that the residual must be orthogonal to any projected
point, < (I − P )y, Pw >= 0 = yt(I − P t)Pw. Since this holds for all y and w, it must
be the case that (I − P t)P = 0 or in other words P = P tP . Since the right hand side is
symmetric, P must be symmetric. It’s worth noting that this result is dependent the use of
the Euclidean metric. If the inner product is < a, b >= atΣ−1b (Mahalanobis distance), the
the projection metric is necessarily idempotent, but not symmetric.

Thinking this helps us interpret statistical aspects of least squares. First, if W is any
p×p invertible matrix, then the fitted values, ŷ will be the same for the design matrix XW.
This is because the spaces

{Xβ | β ∈ Rp}

and
{XWγ | γ ∈ Rp}

https://www.youtube.com/watch?v=UM7OX4qihGs&index=25&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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are the same, since if a = Xβ then a = Xγ via the relationship γ = Wβ and thus
any element of the first space is in the second. The same argument implies in the other
direction, thus the two spaces are the same.

Therefore, any linear reorganization of the columns of X results in the same column
space and thus the same fitted values. Furthermore, any addition of redundant columns
to X adds nothing to the column space, and thus it’s clear what the fit should be in the
event that X is not full rank. Any full rank subset of the columns of X defines the same
column and thus the same fitted values.

5.5 Full row rank case

In the case where X is n×n of full rank, then the columns of X form a basis for Rn. In this
case, ŷ = y, since y lives in the space spanned by the columns of X. All the linear model
accomplishes is a lossless linear reorganization of y. This is perhaps surprisingly useful,
especially when the columns of X are orthonormal (XtX = I). In this case, the function
that takes the outcome vector and converts it to the coefficients is called a ”transform”.
The most well known versions of transforms are Fourier and wavelet.

5.6 A third derivation

Watch this video before beginning.
In this section we generate a third derivation of least squares. For vectors a (outcome)

and b (predictor), define the coefficient function as:

c(a,b) =
〈a,b〉
||b||2

.

and the residual function as
e(a,b) = a− c(a,b)b

We argue that the least squares estimate of outcome y for predictor matrix X = [x1 . . .xp]
is obtained by taking successive residuals, in the following sense. Consider the least
squares equation holding β2, . . . , βp fixed:

||y − x1β1 − . . .− xpβp||2. (5.3)

This is greater than or equal to if we replace β1 by it’s estimate with the remainder fixed.
That estimate being:

c(y − x2β2 − . . . ,xpβp,x1).

Plugging that back into the least squares equation we get

(5.3) ≥ ||e(y,x1)− e(x2,x1)β2, . . . , e(xp,x1)βp||2. (5.4)

https://www.youtube.com/watch?v=7_-ztDF4cwk&index=26&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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Thus we have a new least squares equation with all residuals having ”removed” x1 from
all other regressors and the outcome. Then we can repeat this process again holding
β3, . . . , βp fixed and obtain

(5.4) ≥ ||e{e(y,x1), e(x2,x1)} − e{e(x3,x1), e(x2,x1)}β3, . . . , e{e(xp,x1), e(x2,x1)}βp||2.

This could then be iterated to the pth regressor. Moreover, because we know the same
inequalities will be obtained no matter what order we get to the pth regressor we can
conclude that the order of taking residuals doesn’t matter. Furthermore, picking the pth

coefficient was arbitrary as well, so the same conclusion applies to all regressors: the
least squares estimate for all coefficients can be obtained by iteratively taking residuals
with all of the other regressors (in any order).

This is interesting for many reasons. First, it is interesting to note that one need only
regression through the origin to develop full multivariable regression. Secondly it helps us
interpret our regression coefficients and how they are ”adjusted” for the other variables.

There was nothing in particular about using vectors. If X = [X1X2], two submatrices
of size p1 and p2, and β = (βt1β

t
2)
t consider minimizing

||y −X1β1 −X2β2||2.

If β2 were held fixed, this would be maximized at

β1(β2) = (Xt
1X1)

−1X2
1(y −X2β2).

Plugging that back in we obtain a smaller quantity

||{I− (Xt
1X1)

−1X2
1}y − {I− (Xt

1X1)
−1X2

1}X2β2||2

This is equivalent to the residual of y having regressed out X1 and the residual matrix of
X2 having regressed X1 out of every column. Thus out β2 estimate will be the regression
matrix of these residuals. Again, this explains why β2’s estimate has been adjusted for X1,
both the outcome and the X2 predictors have been orthogonalized to the space spanned
by the columns of X1!

5.6.1 Coding example

Watch this video before beginning.

> y = swiss$Fertility

> x = as.matrix(swiss[,-1])

> x1 = x[,1 : 3]

> x2 = x[,4 : 6]

> solve(t(x) %*% x, t(x) %*% y)

[,1]

1 66.9151817

Agriculture -0.1721140

https://www.youtube.com/watch?v=qRfydAddY7M&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=27


CHAPTER 5. LEAST SQUARES 19

Examination -0.2580082

Education -0.8709401

Catholic 0.1041153

Infant.Mortality 1.0770481

> ey = y - x1 %*% solve(t(x1) %*% x1, t(x1) %*% y)

> ex2 = x2 - x1 %*% solve(t(x1) %*% x1) %*% t(x1) %*% x2

> solve(t(ex2) %*% ex2, t(ex2) %*% ey)

[,1]

Education -0.8709401

Catholic 0.1041153

Infant.Mortality 1.0770481



Chapter 6

Conceptual examples of least squares

6.1 Mean only regression

Watch this video before beginning.
If our design matrix is X = 1n, we see that our coefficient estimate is:

(1tn1n)−11ny = ȳ.

6.2 Regression through the origin

If our design matrix is X = x, we see that our coefficient is

(xtx)−1xty =
〈y,x〉
||x||2

.

6.3 Linear regression

Section 5.3 of the last chapter showed that multivariable least squares was the direct
extension of linear regression (and hence reduces to it).

6.4 ANOVA

Watch this video before beginning.

20

https://www.youtube.com/watch?v=OSfPvU1Tq0k&index=28&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
https://www.youtube.com/watch?v=3rPoBwGPKAM&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=29
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Let y = [y11, . . . yJK ] and our design matrix look like

X =



1 0 . . . 0
1 0 . . . 0
...

... . . .
...

1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 1 . . . 0
... . . . . . .

...
0 0 . . . 1
... . . . . . .

...
0 0 . . . 1



= IK ⊗ 1n,

where ⊗ is the Kronecker product. That is, our y arises out of J groups where there is K
measurements per group. Let ȳj be the mean of the y measurements in group j. Then

Xty =

 Kȳ1
...

KȳJ

 ,
Note also that XtX = kI. Therefore, (XtX)−1Xty = (ȳ1 . . . , ȳJ)t. Thus, if our design matrix
parcels y into groups, the coefficients are the group means.

Some completing thoughts on ANOVA.

6.5 ANCOVA

Watch this video before beginning.
Consider now an instance where

X =



1 0 x11
1 0 x12
... . . .

...
1 0 x1n
0 1 x21
0 1 x22
... . . . . . .
0 1 x2n


= [I2 ⊗ 1n x].

That is we want to project y onto the space spanned by two groups and a regression
variable. This is effectively fitting two parallel lines to the data. Let β = (µ1 µ2 β)t = (µt β)t.
Denote the outcome vector, y, as comprised of yij for i = 1, 2 and j = 1, . . . , n stacked in
the relevant order. Imagine holding β fixed.

||y −Xβ||2 = ||y − xβ − (I2 ⊗ 1n)µ||2 (6.1)

https://www.youtube.com/watch?v=GSTHLCP8x5U&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=30
https://www.youtube.com/watch?v=fx5OSXmsy_k&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=31
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Then we are in the case of the previous section and the best estimate of µ are the group
means 1

n
(I2 ⊗ 1n)t(y − xβ) = (ȳ1 ȳ2)

t − (x̄1 x̄2)
tβ where ȳi and x̄i are the group means of

y and x respectively. Then we have that (6.1) satisfies:

(6.1) ≥ ||y − xβ − (I2 ⊗ 1n){(ȳ1 ȳ2)t − (x̄1 x̄2)
tβ}||2 = ||ỹ − x̃β||2

where ỹ and x̃ are the group centered versions of y and x. (That is ỹij = yij − ȳi, for
example.) This is now regression through the origin yielding the solution

β̂ =

∑
ij(yij − ȳi)(xij − x̄i)∑

ij(xij − x̄i)2
= pβ̂1 + (1− p)β̂2

where

p =

∑
j(x1j − x̄1)2∑
ij(xij − x̄i)2

and

β̂i =

∑
j(yij − ȳi)(xij − x̄i)∑

j(xij − x̄i)2
.

That is, the estimated slope is a convex combination of the group-specific slopes weighted
by the variability in the x’s in the group. Furthermore, µ̂i = ȳi − x̄iβ̂ and thus

µ̂1 − µ̂2 = (ȳ1 − ȳ2)− (x̄1 − x̄2)β̂.

The ANCOVA model is extremely useful for visualizing adjustment in regression. See the
video here for some examples.

https://www.youtube.com/watch?v=SFPM9IuP2m8&index=26&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.youtube.com/watch?v=SFPM9IuP2m8&index=26&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC


Chapter 7

Bases

Recall that any set of linearly independent vectors forms a basis, specifically for the space
spanned by linear combinations. Therefore, least squares is projecting our data into the
space created by the basis defined by the columns of our design matrix. Of note, cer-
tain bases are of particular importance as the spaces that they create are contextually
meaningful for many scientific problems. The most notable example are Fourier bases. In
this case, we project our data into the space spanned by harmonic functions. In problem
where the study of periodicities is of interest, this is of tremendous use.

7.1 Introduction to full rank bases

Watch this video before beginning.
When our X matrix is n×n of rank n, then the least squares fitted values X(XtX)−1Xty =

Xβ = ŷ is simply a linear reorganization of y as it’s projecting it from Rn to Rn. Despite
not summarizing y in any meaningful way, this is often a very meaningful thing to do,
particularly when the basis is orthonormal. This full rank linear transformation of y is sim-
ply called a “transform”. Notable bases then get named as their name then “transform”.
The best examples include the Fourier transform and the Wavelet transform. Often, be-
cause we’re applying the transform to vectors with discrete indices, rather than continuous
functions, the label “discrete” is affixed, such as the discrete Fourier transform. Looking
back to our Hilbert space discussion from earlier the extension to continuous spaces is
conceptually straightforward.

Let X = [x1 . . . xn] be our basis so that XtX = I. In this case note that

β̂ = Xty =

 〈x1,y〉
...

〈xn,y〉

 .

Thus, our coefficients are exactly the inner products of the basis elements (columns of X)
and the outcome. Our fitted values are

ŷ = Xβ̂ =
n∑
i=1

xi〈xi,y〉.
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https://www.youtube.com/watch?v=vsm9AY6YN-Q&index=32&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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Consider deleting columns from X, say

W = [xi1 . . .xip ]

and minimizing ||y −Wγ||2. Since W is also orthonormal (but not full rank) we get that

γ̂ =

p∑
j=1

〈xij ,y〉 and ŷ =

p∑
j=1

xij〈xij ,y〉. =

p∑
j=1

xijβij .

That is, the coefficients from the model with columns removed are identical to the coef-
ficients from the full model. Transforms are often then accomplished by getting the full
transform and using a subset of the coefficients to get the fitted values.

Watch this discussion of different kinds of bases.

7.2 Principal component bases

Watch this video before beginning.
One orthonormal basis is always at our disposal, the principal component basis. Con-

sider the case where X has p > n columns of full row rank. Let X = UDVt be the
singular value decomposition of X so that U is n× n, so that, UtU = I and Vt is n× p so
that VtV = I and D is diagonal containing n singular values. The matrix U is a full rank
version of the column space of X. Notice that minimizing

||y −Xβ||2

has n equations and p > n unknowns and that

||y −Xβ||2 = ||y −UDVtβ||2

So that by defining γ = DVtβ and minimizing

||y −Uγ||2.

we have a full rank design matrix created out of the columns of X since U = XVD−1.
The fitted values are merely Uty.

Note, if X has been centered, then

1

n− 1
XtX =

1

n− 1
VD2Vt

is the covariance matrix between the columns of X. Furthermore, notice that the total
variability represented by the trace of the covariance matrix is,

1

n− 1
tr(XtX) =

1

n− 1
tr(VD2Vt) =

1

n− 1
tr(D2VtV) =

1

n− 1
tr(D2)

The sum of the squared singular values equals the total variability in the design matrix.
The singular vectors and values are typically ordered in the terms of decreasing variability.

https://www.youtube.com/watch?v=E-GvgGkYSoQ&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=33
https://www.youtube.com/watch?v=mVrm4CxQ1Xs&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=34
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Therefore, keeping only a few of them represents a dimension reduction that preserves
the greatest amount of variability.

Thus, we once one calculates UtY we have all possible submodel fits of the columns
of U, where U is an meaningful summary of X. Typically one takes a few of the first
columns of U so that the related eigenvalues explain a large proportion of the total vari-
ability. We haven’t discussed an intercept. However, one usually mean centers Y and X
first.

7.2.1 Coding example

Watch this video before beginning.
The following code goes through calculation of SVD and eigenvalue decompositions.

data(swiss)

y = swiss$Fertility

x = as.matrix(swiss[,-1])

n = nrow(x)

decomp = princomp(x, cor = TRUE)

plot(cumsum(decomp$sdev^2) / sum(decomp$sdev^2), type = "l")

decomp2 = eigen(cor(x))

xnorm = apply(x, 2, function(z) (z - mean(z)) / sd(z))

decomp3 = svd(xnorm)

round(rbind(decomp2$vectors, decomp$loadings, decomp3$v),3)

round(rbind(decomp2$values, decomp$sdev^2, decomp3$d ^ 2 / (n - 1)), 3)

plot(decomp3$u[,1], decomp$scores[,1])

plot(decomp3$u[,1], xnorm %*% decomp2$vectors %*% diag(1 / sqrt(decomp2$values))[,1])

https://www.youtube.com/watch?v=sC_NiEVKvn0&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=35


Chapter 8

Residuals and variability

8.1 Residuals

Watch this video before beginning.
The residuals are the variability left unexplained by the projection onto the linear space

spanned by the design matrix. The residuals are othogonal to the space spanned by the
design matrix and thus are othogonal to the design matrix itself.

We define the residuals as
e = y − ŷ.

Thus, our least squares solution can be though of as minimizing the squared norm of the
residuals. Notice further that by expanding the column space of X by adding any new
linearly indpendent variables, the normal of the residuals must decrease. In other words,
if we add any non-redundant regressors, we necessarily remove residual variability. Fur-
thermore, as we already know, X is of full column rank, then our residuals are all zero,
since y = ŷ.

Notice that the residuals are equal to:

e = y − ŷ = y −X(XtX)−1Xty = {I−X(XtX)−1Xt}y.

Thus multiplication by the matrix I−X(XtX)−1Xt transforms a vector to the residual. This
matrix is interesting for several reasons. First, note that {I − X(XtX)−1Xt}X = 0 thus
making the residuals orthogonal to any vector, Xγ, in the space spanned by the columns
of X. Secondly, it is both symmetric and idempotent.

A consequence of the orthogonality is that if an intercept is included in the model, the
residuals sum to 0. Specifically, since the residuals are orthogonal to any column of X,
et1 = 0.

8.2 Partitioning variability

Watch this video before beginning.
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https://www.youtube.com/watch?v=sYFWVRglLLY&index=36&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
https://www.youtube.com/watch?v=uv3yZWGyE2Y&index=37&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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For convenience, define HX = X(XtX)−1Xt. Note that the variability in a vector y is
estimated by

1

n− 1
yt(I−H1)y.

Omitting the n− 1 term define the total sums of squares as

SSTot = ||y − ȳ1||2 = yt(I−H1)y.

This is an unscaled measure of the total variability in the sample. Given a design matrix,
X, define the residual sums of squares as

SSRes = ||y − ŷ||2 = yt(I−HX)y

and the regression sums of squares as

SSReg = ||Ȳ 1− ŷ||2 = yt(HX −H1)y.

The latter equality is obtained by the following. First note that since (I−HX)1 = 0 (since
X contains an intercept) we have that HX1 = 1 and then HXH1 = H1 and H1 = H1HX.
Also, note that HX is symmetric and idempotent. Now we can perform the following
manipulation

||Ȳ 1− ŷ||2 = yt(HX −H1)t(HX −H1)y

= yt(HX −H1)(HX −H1)y

= yt(HX −H1HX −HXH1 + H1)y

= yt(HX −H1)y.

Using this identity we can now show that

SSTot = yt(I−H1)y

= yt(I−HX + HX −H1)y

= yt(I−HX)y + yt(HX −H1)y

= SSRes + SSReg

Thus our total sum of squares partitions into the residual and regression sums of squares.
We define

R2 =
SSReg

SSTot

.

as the percentage of our total variability explained by our model. Via our equality above,
this is guaranteed to be between 0 and 1.



Chapter 9

Expectations

Up to this point, our exploration of linear models only relied on least squares and projec-
tions. We begin now discussing the statistical properties of our estimators. We start by
defining expected values. We assume that the reader has basic univariate mathematical
statistics.

9.1 Expected values

Watch this video before beginning.
If X is a random variable having density funciton f , the kth moment is defined as

E[X] =

∫ ∞
−∞

xkf(x)dx.

In the multivariate case where X is a random vector then the kth moment of element i of
the vector is given by

E[Xk
i ] =

∫ ∞
−∞

. . .

∫ ∞
−∞

xki f(x1, . . . , xn)dx1, . . . , dxn.

It is worth asking if this definition is consistent with all of the subdistributions defined by
the subvectors of X. Let i1, . . . , ip is any subset of indices of 1, . . . , n and ip+1, . . . , in are
the remaining, then the joint distribution of (Xi1 , . . . , Xip)t is

g(xi1 , . . . , xip) =

∫ ∞
−∞

. . .

∫ ∞
−∞

f(x1, . . . , xn)dxip+1 , . . . , dxin .

The kth moment of Xij for j ∈ {1, . . . , p} is equivalently:

E[Xij ] =

∫ ∞
−∞

. . .

∫ ∞
−∞

xkijg(xi1 , . . . , xip)dxi1 , . . . , dxip

=

∫ ∞
−∞

. . .

∫ ∞
−∞

xkijf(x1, . . . , xn)dx1, . . . , dxn.

28

https://www.youtube.com/watch?v=6WKTzqZQgJE&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=38
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(HW, prove this.) Thus, if we know only the marginal distribution of Xij or any level of joint
information, the expected value is the same.

If X is any random vector or matrix, the E[X] is simply the elementwise expected value
defined above. Often we will write E[X] = µ, or some other Greek letter, adopting the
notation that population parameters are Greek. Standard notation is hindered somewhat
in that uppercase letters are typically used for random values, though are also used for
matrices. We hope that the context will eliminate confusion.

Watch this video before beginning.
Expected value rules translate well in the multivariate settings. If A, B, C are vectors

or matrices that satisfy the operations then

E[AX + BY + C] = AE[X] + BE[Y] + C.

Further, expected values commute with transposes and traces

E[Xt] = E[X]t

and
E[tr(X)] = tr(E[X]).

9.2 Variance

Watch this video before beginning.
The multivariate variance of random vector X is defined as

Var(X) = Σ = E[(X− µ)(X− µ)t].

Direct use of our matrix rules for expected values gives us the analog of the univariate
shortcut formula

Σ = E[XXt]− µµt.

Variance satisfy the properties

Var(AX + B) = AVar(X)At.

9.3 Multivariate covariances

Watch this video before beginning.
The multivariate covariance is given by

Cov(X,Y) = E[(X− µx)(Y − µy)
t] = E[XYt]− µxµ

t
y.

This definition applies even if X and Y are of different length. Notice the multivariate
covariance is not symmetric in its arguments. Moreover,

Cov(X,X) = Var(X).

https://www.youtube.com/watch?v=GgNUixhQ6oI&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=39
https://www.youtube.com/watch?v=Z5L0dU6Chmc&index=40&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
https://www.youtube.com/watch?v=mddVO0zW64U&index=41&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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Covariances satisfy some useful rules in that

Cov(AX,BY) = ACov(X,Y)Bt

and
Cov(X + Y,Z) = Cov(X,Y) + Cov(X,Z)

Multivariate covariances are useful for sums of random vectors.

Var(X + Y) = Var(X) + Var(Y) + Cov(X,Y) + Cov(Y,X).

A nifty fact from covariances is that the covariance of AX and BX is AΣBt. Thus AX
and BX are uncorrelated iff AΣBt = 0.

9.4 Quadratic form moments

Watch this video before beginning.
Let X be from a distribution with mean µ and variance Σ. Then

E[XtAX] = µtAµ + tr(AΣ).

Proof

E[XtAX] = E[tr(XtAX)]

= E[tr(AXXt)]

= tr(E[AXXt])

= tr(AE[XXt])

= tr{A[Var(X) + µµt]}
= tr{AΣ + Aµµt}
= tr(AΣ) + tr(Aµµt)

= tr(AΣ) + tr(µtAµ)

= tr(AΣ) + µtAµ

9.5 BLUE

Watch this video before beginning.
Now that we have moments, we can discuss mean and variance properties of the least

squares estimators. Particularly, note that if Y satisfies E[Y] = Xβ and Var(Y ) = σ2I
then, β̂ satisfies:

E[β̂] = (XtX)−1XtE[Y] = (XtX)−1XtXβ = β.

Thus, under these conditions β̂ is unbiased. In addition, we have that

Var(β̂) = Var{(XtX)−1XtY} = (XtX)−1XtVar(Y)X(XtX)−1 = (XtX)−1σ2.

https://www.youtube.com/watch?v=gdyG8FSxlqc&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=42
https://www.youtube.com/watch?v=oeN8IzLFHls&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=43
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We can extend these results to linear contrasts of β to say that qtβ̂ is the best estimator
of qtβ in the sense of minimizing the variance among linear (in Y) unbiased estimators. It
is important to consider unbiased estimators, since we could always minimize the variance
by defining an estimator to be constant (hence variance 0). If one removes the restriction
of unbiasedness, then minimum variance cannot be the definition of “best”. Often one
then looks to mean squared error, the squared bias plust the variance, instead. In what
follows we only consider linear unbiased estimators.

We give Best Linear Unbiased Estimators the acronym BLUE. It is remarkable easy to
prove the result.

Consider estimating qtβ. Clearly, qtβ̂ is both unbiased and linear in Y. Also note
that Var(qtβ̂) = qt(XtX)−1qσ2. Let ktY be another linear unbiased estimator, so that
E[ktY] = qtβ. But, E[ktY] = ktXβ. It follows that since qtβ = ktXβ must hold for all
possible β, we have that ktX = qt. Finally note that

Cov(qtβ̂,ktY) = qt(XtX)−1Xtktσ2.

Since ktX = qt, we have that

Cov(qtβ̂,ktY) = Var(qtβ).

Now we can execute the proof easily.

Var(qtβ̂ − ktY) = Var(qtβ̂) + Var(ktY)− 2Cov(qtβ̂,ktY)

= Var(ktY)− Var(qtβ̂)

≥ 0.

Here the final inequality arises as variances have to be non-negative. Then we have that
Var(ktY) ≥ Var(qtβ̂) proving the result.

Notice, normality was not required at any point in the proof, only restrictions on the
first two moments. In what follows, we’ll see the consequences of assuming normality.



Chapter 10

The normal distribution

Watch this before beginning.

10.1 The univariate normal distribution

Z follows a standard normal distribution if its density is

φ(z) =
1√
2π

exp(−z2/2).

We write the associated distribution function as Φ. A standard normal variate has mean 0
and variance 1. All odd numbered moments are 0. The non-standard normal variate, say
X, having mean µ and standard deviation σ can be obtained as X = µ+ σZ. Conversely,
(X − µ)/σ is standard normal if X is any non-standard normal. The non-standard normal
density is:

φ

(
x− µ
σ

)
/σ

with distribution function Φ
(
x−µ
σ

)
.

10.2 The multivariate normal distribution

The multivariate standard normal distribution for a random vector Z has density given by:

(2π)−n/2 exp(−||Z||2/2).

Z has mean 0 and variance I. Non standard normal variates, say X, can be obtained as
X = µ + Σ1/2Z where E[X] = µ and Var(X) = Σ1/2Σ1/2 = Σ (assumed to be positive
definite). Conversely, one can go backwards with Z = Σ−1/2(X − µ). The non-standard
multivariate normal distribution is given by

(2π)−n/2|Σ|−1/2 exp

{
−1

2
(X− µ)tΣ−1(X− µ)

}
.
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https://www.youtube.com/watch?v=bI2YDQ8ABiA&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=44
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Commit this density to memory.
The normal distribution is nice to work with in that all full row rank linear transformations

of the normal are also normal. That is, if a + AX is normal if A is full row rank. Also,
all conditional and submarginal distributions of the multivariate normal are also normal.
(We’ll discuss the conditional distribution more later.)

10.3 Singular normal

Watch this video before beginning.
What happens if the A in the paragraph above is not of full row rank? Then Var(X) =

AΣAt is not full rank. There are redundant elements of the vector X in that if you know
some of them, you know the remainder. An example is our residuals. The matrix (I −
X(XtX)−1Xt) is not of full rank (it’s rank is n− p). For example, if we include an intercept,
the residuals must sum to 0. Know any n−1 of them and you know the nth. A contingency
for this is to define the singular normal distribution. A singular normal random variable is
any random variable that can be written as AZ + b for a matrix A and vector b and
standard normal vector Z.

As an example, consider the case where Y ∼ N(Xβ, σ2I). Then the residuals, defined
as {I−X(XtX)−1Xt}Y = {I−X(XtX)−1Xt}(Xβ + 1

σ
Z) are a linear transformation of iid

normals. Thus the residuals are singular normal.
The singular normal is such that all linear combinations and all submarginal and con-

ditional distributions are also singular normal (prove this using the definition above!). The
singular normal doesn’t necessarily have a density function, because of the possibility of
redundant entries. For example, the vector (Z Z), where Z is a standard normal, doesn’t
have a joint density since the covariance matrix is 12×2, which isn’t invertible.

In our treatment, the multivariate normal is the special case of the singular normal
where the covariance matrix is full rank. In other treatments of linear models, the defini-
tion of the multivariate normal allows for the possibility of rank deficient covariance matri-
ces. However, personally, I think the distinction is useful, so reserve the term multivariate
normal for the full rank case.

10.4 Normal likelihood

Watch this video before beginning.
Let Y ∼ N(Xβ, σ2I) then note that minus twice the log-likelihood is:

n log(σ2) + ||Y −Xβ||2/2σ2

Holding σ2 fixed we see that minmizing minus twice the log likelihood (thus maximizing
the likelihood) yields the least squares solution:

β̂ = (XtX)−1Xty.

https://www.youtube.com/watch?v=JGoX7lokhyc&index=45&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
https://www.youtube.com/watch?v=HqlMCQwvjYw&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=46
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Since this doesn’t depend on σ it is the MLE. Taking derivatives and setting equal to zero
we see that

σ̂2 = ||e||2/n

(i.e. the average of the squared residuals). We’ll find that there’s a potentially preferable
unbiased estimate given by

S2 = ||e||2/(n− p).

This model can be written in a likelihood equivalent fashion of

Y = Xβ + ε

where ε ∼ N(0, σ2I). However, one must be careful with specifying linear models this
way. For example, if one wants to simulate Y = X + Z where X and Z are generated
independently, one can not equivalently simulate X by generating Y and Z independently
and taking Z − Y . (Note Y and Z are correlated in the original simulation specification.)
Writing out the distributions explicitly removes all doubt. Thus the linear notation, espe-
cially when there are random effects, is sort of lazy and imprecise (though everyone, your
author included, uses it).

Let’s consider another case, suppose that Y1, . . . ,Yn are iid p vectors N(µ,Σ). Then,
disregarding constants, minus twice the log likelihood is

n log |Σ|+
n∑
i=1

(Yi − µ)tΣ−1(Yi − µ).

Assume that Σ is known, then using our derivative rules from earlier, we can minimize
this to obtain the MLE for µ

µ̂ = Ȳ

and the following for Σ

Σ̂ =
1

n

n∑
i=1

(Yi − Ȳ)(Yi − Ȳ)t

Consider yet another case Y ∼ N(Xβ,Σ) with known Σ. Minus twice the log-
likelihood is:

log |Σ|+ (Y −Xβ)tΣ−1(y −Xβ).

Using our matrix rules we find that

β̂ = (XtΣ−1X)−1XtΣ−1y.

This is the so-called weighted least squares estimate.

10.5 Conditional distributions

Watch this video before beginning.

https://www.youtube.com/watch?v=2VTf-XNmfAk&index=47&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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The conditional distribution of a normal is of interest. Let X = [Xt
1 Xt

2]
t be comprised

of an n1 × 1 and n2 × 1 matrix where n1 + n2 = n. Assume that X ∼ N(µ,Σ) where
µ = [µt

1 µ
t
2] and [

Σ11 Σ12

Σt
12 Σ22

]
.

Consider now the conditional distribution of X1 | X2. A clever way to derive this (shown to
me by a student in my class) is as follows let Z = X1 + AX2 where A = −Σ12Σ

−1
22 . Then

note that the covariance between X2 and Z is zero (HW).
Thus the distribution of Z | X2 is equal to the distribution of Z and that it is normally

distributed being a linear transformation of normal variates. Thus we know both

E[Z | X2 = x2] = E[X1 | X2 = x2] + AE[X2 | X2 = x2] = E[X1 | X2 = x2] + Ax2

and
E[Z | X2 = x2] = E[Z] = µ1 + Aµ2.

Setting these equal we get that

E[X1 | X2] = µ1 + Σ12Σ
−1
22 (x2 − µ2).

As a homework, using the same technique to derive the conditional variance

Var(Z | X2 = x2) = Σ11 −Σ12Σ
−1
22 Σt

12.

10.5.1 Important example

Consider an example. Consider the vector (Y Xt)t where Y is 1 × 1 and X is p × 1.
Assume that the vector is normal with E[Y] = µy, E[X] = µx and the variances as σ2

y

(1× 1) and Σx (p× p) and covariance ρxy (p× 1).
Consider now predicting Y given X = x. Clearly the a good estimate for this would be

E[Y | X = x]. Our results suggest that Y | X = x is normal with mean:

µy + ρtxyΣ
−1
x (x− µx) = µy − µxΣ

−1
x ρxy + xtΣ−1x ρxy = β0 + xtβ

where β0 = µy − µxΣ
−1
x ρxy and β = Σ−1x ρxy. That is, the conditional mean in this

case mirrors the linear model. The slope is defined exactly as the inverse of the vari-
ance/covariance matrix of the predictors times the cross correlations between the predic-
tors and the response. We discussed the empirical version of this in Section 5.3 where
we saw that the empirical coefficients are the inverse of the empirical variance of the pre-
dictors times the empirical correlations between the predictors and response. A similar
mirroring occurs for the intercept as well.

This correspondence simply says that empirical linear model estimates mirror the pop-
ulation parameters if both the predictors and response are jointly normal. It also yields a
motivation for the linear model in some cases where the joint normality of the predictor
and response is conceptually reasonable. Though we note that often such joint normality
is not reasonable, such as when the predictors are binary, even though the linear model
remains well justified.
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10.5.2 Gaussian graphical models

Consider our partitioned variance matrix.

Σ =

[
Σ11 Σ12

Σ12t Σ22

]
.

The upper diagonal element of Σ−1 is given by the inverse of Σ11 − Σ12Σ
−1
22 Σt

12. Recall
that Σ11 − Σ12Σ

−1
22 Σt

12 = Var(X1 | X2). Suppose that X1 = (X11 X12)
t. Then this result

suggests that X11 is independent of X12 given X2 if the (1, 2) off diagonal element of Σ−1

is zero. (Recall that independence and absence of correlation are equivalent in the mul-
tivariate normal.) There’s nothing in particular about the first two positions, so we arrive
at the following remarkable fact: whether or not the off diagonal elements of Σ−1 are zero
determines the conditional independence of those random variables given the remain-
der. This forms the basis of so-called Gaussian graphical models. The graph defined by
ascertaining which elements of Σ−1 are zero is called a conditional independence graph.

10.5.3 Bayes calculations

We assume a slight familiarity of Bayesian calculations and inference for this section. In
a Bayesian analysis, one multiplies the likelihood times a prior distribution on the param-
eters to obtain a posterior. The posterior distribution is then used for inference. Let’s go
through a simple example. Suppose that y | µ ∼ N(µ1n, σ

2I) and µ | N(µ0, τ
2) where y

is n× 1 and µ is a scalar. The normal distribution placed on µ is called the ”prior” and µ0

and τ 2 are assumed to be known. For this example, let’s assume that σ2 is also known.
The goal is to calculate µ | y, the posterior distribution. This is done by multiplying prior
times likelihood. Symbolically,

f(Param|Data) =
f(Param,Data)

f(Data)
∝ f(Data|Param)f(Param) = Likelihood× Prior.

Here, the proportional symbol, ∝, is with respect to the parameter.
Consider our problem, retaining only terms involving µ we have that minus twice the

natural log of the distribution of µ | y is given by

−2 log(f(y | µ))− 2 log(f(µ))

= ||y − µ1n||2/σ2 + (µ− µ0)
2/τ 2

= −2µnȳ/σ2 + µ2n/σ2 + µ2/τ 2 − 2µµ0/τ
2

= −2µ

(
ȳ

σ2/n
+
µ0

τ 2

)
+ µ2

(
1

σ2/n
+

1

τ 2

)
This is recognized as minus twice the log density of a normal distribution for µ with vari-
ance of

Var(µ | y) =

(
1

σ2/n
+

1

τ 2

)−1
=

τ 2σ2/n

σ2/n+ τ 2
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and mean of

E[µ | y] =

(
1

σ2/n
+

1

τ 2

)−1(
ȳ

σ2/n
+
µ0

τ 2

)
= pȳ + (1− p)µ0

where

p =
τ 2

τ 2 + σ2/n
.

Thus E[µ | y] is a mixture of the empirical mean and the prior mean. How much the
means are weighted depends on the ratio of the variance of the mean (σ2/n) and the
prior variance (τ 2). As we collect more data (n→∞), or if the data is not noisy (σ → 0) or
we have a lot of prior uncertainty (τ → ∞) the empirical mean dominates. In contrast as
we become more certain a priori (τ → 0) the prior mean dominates.



Chapter 11

Distributional results

In this chapter we assume that Y ∼ N(Xβ, σ2I). This is the standard normal linear model.
We saw in the previous chapter that the maximum likelihood estimate for

11.1 Quadratic forms

Watch this video before beginning.
Let A be a symmetric matrix (not necessarily full rank) and let X ∼ N(µ,Σ). Then

(X− µ)tA(X− µ) ∼ χ2
p if AΣ is idempotent and p = Rank(A).

As an example, note that (X− µ)tΣ−1(X− µ) is clearly Chi-squared(n). This is most
easily seen by the fact that Σ−1/2(X−µ) = Z is a vector of iid standard normals and thus
the quadratic form is the sum of their squares. Using our result, A = Σ−1 in this case and
AΣ = I, which is idempotent. The rank of Σ−1 is n.

Let’s prove our result. Let A = VD2Vt where D is diagonal (with p non zero entries)
and VVt = I. The assumption of idempotency gives us that AΣAΣ = AΣ. Plugging
in our decomposition for A and using the orthonormality of the columns of V we get that
DVtΣVD = I. Then note that

(X− µ)tA(X− µ) = (X− µ)tVDDVt(X− µ). (11.1)

But DVt(X − µ) ∼ N(0,DVtΣVD), which has variance equal to I. Thus in Equation
(11.1) we have the sum of p squared iid standard normals and is thus Chi-squared p.

11.2 Statistical properties

For homework, show that β̂ is normally distributed with moments:

E[β̂] = β and Var(β̂) = (XtX)−1σ2.

38

https://www.youtube.com/watch?v=Qx9_Z6khHjA&index=48&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y
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The residual variance estimate is S2 = 1
n−pe

te. Using Section 9.4 we see that it is unbi-
ased, E[S2] = σ2. Note also that:

n− p
σ2

S2 =
1

σ2
yt(I−X(XtX)−1Xt)y

=
1

σ2
(y −Xβ)t{I−X(XtX)−1Xt}(y −Xβ)

is a quadratic form of as discussed in Section (11.1). Furthermore

1

σ2
{I−X(XtX)−1Xt}Var(Y ) = {I−X(XtX)−1Xt},

which is idempotent. For symmetric idempotent matrices, the rank equals the trace; the
latter of which is easily calculated as

tr{I−X(XtX)−1Xt} = tr{I} − tr{X(XtX)−1Xt} = n− tr{(XtX)−1XtX} = n− p.

Thus, n−p
σ2 S

2 is Chi-squared n− p. The special case of this where X has only an intercept
yields the usual empirical variance estimate.

11.2.1 Confidence interval for the variance

We can use the Chi-squared result to develop a confidence interval for the variance. Let
χ2
n−p,α be the α quantile from the chi squared distribution with n − p degrees of freedom.

Then inverting the probability statement

1− α = P

(
χ2
n−p,α/2 ≤

e′e

n− p
≤ χ2

n−p,1−α2

)

11.3 T statistics

Watch this video before beginning.
We can now develop T statistics. Consider the linear contrast β̂

t
t. First note that β̂

t
t is

N(βtt, tt(XtX)−1tσ2). Furthermore, Cov(β̂, e) = Cov((XtX)−1XtY, {I−X(XtX)−1Xt}Y) =
0 since (XtX)−1Xt{I−X(XtX)−1Xt} = 0. Thus the residuals and estimated coefficients
are independent, implying that β̂

t
t and S2 are independent. Therefore,

β̂t− βt√
tt(XtX)−1tσ2

/

√
n− p
σ2

S2/(n− p) =
β̂t− βt√

tt(XtX)−1tS2

is a standard normal divided by the square root of an independent Chi-squared over its
degrees of freedom, thus is T distributed with n− p degrees of freedom.

https://www.youtube.com/watch?v=l_DQwnvswUg&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=49
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11.4 F tests

Watch this video before beginning.
Consider testing the hypothesis that H0 : Kβ = 0 versus not equal for K of full row

rank (say v). Notice that Kβ̂ ∼ N(Kβ,K(XtX)−1Ktσ20 and thus

(Kβ̂ −Kβ)t{K(XtX)−1Ktσ2}−1(Kβ̂ −Kβ)

is Chi-squared with v degrees of freedom. Furthermore, it is independent of e being a
function of β̂. Thus:

(Kβ̂ −Kβ)t{K(XtX)−1Kt}−1(Kβ̂ −Kβ)/vS2

forms the ratio of two independent Chi-squared random variables over their degrees of
freedom, which is an F distribution.

11.5 Coding example

Watch this video before beginning.
Consider the swiss dataset. Let’s first make sure that we can replicate the coefficient

table obtained by R.

> ## First let’s see the coeficient table

> fit = lm(Fertility ~ ., data = swiss)

> round(summary(fit)$coef, 3)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.915 10.706 6.250 0.000

Agriculture -0.172 0.070 -2.448 0.019

Examination -0.258 0.254 -1.016 0.315

Education -0.871 0.183 -4.758 0.000

Catholic 0.104 0.035 2.953 0.005

Infant.Mortality 1.077 0.382 2.822 0.007

> # Now let’s do it more manually

> x = cbind(1, as.matrix(swiss[,-1]))

> y = swiss$Fertility

> beta = solve(t(x) %*% x, t(x) %*% y)

> e = y - x %*% beta

> n = nrow(x); p = ncol(x)

> s = sqrt(sum(e^2) / (n - p))

> #Compare with lm

> c(s, summary(fit)$sigma)

[1] 7.165369 7.165369

> #calculate the t statistics

> betaVar = solve(t(x) %*% x) * s ^ 2

> ## Show that standard errors agree with lm

https://www.youtube.com/watch?v=H9rmN7lliXE&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=50
https://www.youtube.com/watch?v=bvoV41m5TQ8&list=PLpl-gQkQivXhdgUCdaUQcdb31CRe8Mm2y&index=51
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> cbind(summary(fit)$coef[,2], sqrt(diag(betaVar)))

[,1] [,2]

(Intercept) 10.70603759 10.70603759

Agriculture 0.07030392 0.07030392

Examination 0.25387820 0.25387820

Education 0.18302860 0.18302860

Catholic 0.03525785 0.03525785

Infant.Mortality 0.38171965 0.38171965

> # Show that the tstats agree

> tstat = beta / sqrt(diag(betaVar))

> cbind(summary(fit)$coef[,3], tstat)

[,1] [,2]

(Intercept) 6.250229 6.250229

Agriculture -2.448142 -2.448142

Examination -1.016268 -1.016268

Education -4.758492 -4.758492

Catholic 2.952969 2.952969

Infant.Mortality 2.821568 2.821568

> # Show that the P-values agree

> cbind(summary(fit)$coef[,4], 2 * pt(- abs(tstat), n - p)

[,1] [,2]

(Intercept) 1.906051e-07 1.906051e-07

Agriculture 1.872715e-02 1.872715e-02

Examination 3.154617e-01 3.154617e-01

Education 2.430605e-05 2.430605e-05

Catholic 5.190079e-03 5.190079e-03

Infant.Mortality 7.335715e-03 7.335715e-03

> # Get the F statistic

> # Set K to grab everything except the intercept

> k = cbind(0, diag(rep(1, p - 1)))

> kvar = k %*% solve(t(x) %*% x) %*% t(k)

> fstat = t(k %*% beta) %*% solve(kvar) %*% (k %*% beta) / (p - 1) / s ^ 2

> #Show that it’s equal to what lm is giving

> cbind(summary(fit)$fstat, fstat)

> #Calculate the p-value

> pf(fstat, p - 1, n - p, lower.tail = FALSE)

[,1]

[1,] 5.593799e-10

> summary(fit)

## ... only showing the one relevant line ...

F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10
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11.6 Prediction intervals

It’s worth discussing prediction intervals. The obvious prediction at a new set of covari-
ates, x0, is xt0β̂. This is then just a linear contrast of the β and so the interval would
be

xt0β̂ ± tn−p,1−α/2s
√

xt0(X
tX)−1x0.

If you’ve taken an introductory regression class, you it will have noted the difference
between a prediction interval and a confidence interval for a mean at a new value of x.
For a prediction interval, we want to estimate a range of possible values for y at that value
of x, a different statement than trying to estimate the average value of y at that value of x.
As we collect infinite data, we should get the average value exactly. However, predicting
a new value involves intrinsic variability that can’t go away no matter how much data we
use to build our model.

As an example, imagine the difference between the following two tasks: guess the
sale price of a diamond given its weight versus guess the average sale price of diamonds
given a particular weight. With enough data, we should get the average sale price exactly.
However, we still won’t know exactly what the sale price of a diamond would be.

To account for this, we develop prediction intervals. These are not confidence intervals,
because they are trying to estimate something random, not a fixed parameter. Consider
estimating Y0 at x value x0. Note that

Var(Y0 − xt0β̂) = (1 + xt0(X
tX)−1x0)σ

2

For homework, show that
Y t
0 − xt0β̂

s
√

1 + xt0(X
tX)−1x0σ2

follows a T distribution with n− p degrees of freedom. Finish, by showing that

P{y0 ∈ [xt0β̂ ± tn−p,1−α/2s
√

1 + xt0(X
tX)−1x0]} = 1− α.

This is called a prediction interval. Notice the variability under consideration contains
xt0(X

tX)−1x0, which goes to 0 as we get more X variability and 1, which represents the
intrinsic part of the variability that doesn’t go away as we collect more data.

11.6.1 Coding example

Let’s try to predict a car’s MPG from other characteristics.

> fit = lm(mpg ~ hp + wt, data = mtcars)

> newcar = data.frame(hp = 90, wt = 2.2)

> predict(fit, newdata = newcar)

1

25.83648

> predict(fit, newdata = newcar, interval = "confidence")
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fit lwr upr

1 25.83648 24.46083 27.21212

> predict(fit, newdata = newcar, interval = "prediction")

fit lwr upr

1 25.83648 20.35687 31.31609

> #Doing it manually

> library(dplyr)

> y = mtcars$mpg

> x = as.matrix(cbind(1, select(mtcars, hp, wt)))

> n = length(y)

> p = ncol(x)

> xtxinv = solve(t(x) %*% x)

> beta = xtxinv %*% t(x) %*% y

> x0 = c(1, 90, 2.2)

> yhat = x %*% beta

> e = y - yhat

> s = sqrt(sum(e^2 / (n - p)))

> yhat0 = sum(x0 * beta)

> # confidence interval

> yhat0 + qt(c(0.025, .975), n - p) * s * sqrt(t(x0) %*% xtxinv %*% x0)

[1] 24.46083 27.21212

> # prediction interval

> yhat0 + qt(c(0.025, .975), n - p) * s * sqrt(1 + t(x0) %*% xtxinv %*% x0)

[1] 20.35687 31.31609

11.7 Confidence ellipsoids

An hyper-ellipsoid with center v is defined as the solutions in x of (x − v)tA(x − v) = 1.
The eigenvalues of A determine the length of the axes of the ellipsoid. The set of points
{x | (x− v)tA(x− v) ≤ 1} lie in the interior of the hyper-ellipsoid.

Now consider our F statistic from earlier on in the chapter:

(Kβ̂ −m)t{K(XtX)−1Kt}−1(Kβ̂ −m)/vS2

We would fail to reject H0 : Kβ = m is less than the appropriate cut off from an F
distribution, say F1−α. So, the set of points

{m | (Kβ̂ −m)t{K(XtX)−1Kt}−1(Kβ̂ −m)/vS2F1−α ≤ 1}

forms a confidence set. From the discussion above, we see that this is a hyper ellipsoid.
This multivariate form of confidence interval is called a confidence ellipse. These are of
course most useful when the dimension is 2 or 3 so that we can visualize it as an actual
ellipse.

fit = lm(mpg ~ disp + hp , mtcars)
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open3d()

plot3d(ellipse3d(fit), col = "red", alpha = .5, aspect = TRUE)

## Doing it directly

beta = coef(fit)

Sigma = vcov(fit)

n = nrow(mtcars); p = length(beta)

A = Sigma * (3 * qf(.95, 3, n - p))

nms = names(beta)

open3d()

## Using the definition of an elipse

##(x - b)’ A (x - b) = 1

plot3d(ellipse3d(A, centre = beta, t = 1),

color = "blue", alpha = .5, aspect = TRUE,

xlab = nms[1], ylab = nms[2], zlab = nms[3])

## Using the more statistical version

## Provide ellipse3d with the variance covariance matrix

plot3d(ellipse3d(Sigma, centre = beta, t = sqrt(3 * qf(.95, 3, n - p))),

color = "green", alpha = .5, aspect = TRUE,

xlab = nms[1], ylab = nms[2], zlab = nms[3], add = TRUE)
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Residuals revisited

12.1 Introduction to residuals

For a good treatment of residuals and the other topics in this chapter, see the book by
Myers (Myers, 1990).

Now with some distributional results under our belt, we can discuss distributional prop-
erties of residuals. Note that, as a non-full rank linear transformation of normals, the
residuals are singular normal. When y ∼ N(Xβ, σ2I), the mean of the residuals is 0,
variance of the residuals is: given by

Var(e) = Var{(I−HX)y} = σ2(I−HX).

As a consequence, we see that the diagonal elements of I−HX ≥ 0 and thus the diagonal
elements of HX must be less than one. (A fact that we’ll use later).

A problem with the residuals is that they have the units of Y and thus are not compa-
rable across experiments. Taking

Diag{S2(I −Hx)}−1/2e,

i.e., standardizing the residuals by their estimated standard deviation, does get rid of
the units. However, the resulting quantities are not comparable to T-statistics since the
numerator elements (the residuals) are not independent of S2. The residuals standardized
in this way are called “studentized” residuals. Studentized residuals are a standard part
of most statistical software.

12.1.1 Coding example

> data(mtcars)

> y = mtcars$mpg

> x = cbind(1, mtcars$hp, mtcars$wt)

> n = nrow(x); p = ncol(x)

> hatmat = x %*% solve(t(x) %*% x) %*% t(x)

> residmat = diag(rep(1, n)) - hatmat

45
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> e = residmat %*% y

> s = sqrt(sum(e^2) / (n - p))

> rstd = e / s / sqrt(diag(residmat))

> # compare with rstandard, r’s function

> # for calculating standarized residuals

> cbind(rstd, rstandard(lm(y ~ x - 1)))

[,1] [,2]

1 -1.01458647 -1.01458647

2 -0.62332752 -0.62332752

3 -0.98475880 -0.98475880

4 0.05332850 0.05332850

5 0.14644776 0.14644776

6 -0.94769800 -0.94769800

...

12.2 Press residuals

Consider the model y ∼ N(Wγ, σ2I) where γ = [βt ∆i], W = [X δi] where δi is a vector
of all zeros except a 1 for row i. This model has a shift in position i, for example if there is
an outlier at that position. The least squares criterion can be written as

∑
k 6=i

(
yk −

p∑
j=1

xkjβj

)2

+

(
yi −

p∑
j=1

xijβj −∆i

)2

. (12.1)

Consider holding β fixed, then we get that the estimate of ∆i must satisfy

∆i = yi −
p∑
j=1

xijβj

and thus the right hand term of (12.1) is 0. Then we obtain β by minimizing

∑
k 6=i

(
yk −

p∑
j=1

xkjβj

)2

.

Therefore β̂ is exactly the least squares estimate having deleted the ith data point; nota-
tionally, β̂

(−i)
. Thus, δ̂i is a form of residual obtained when deleting the ith point from the

fitting then comparing it to the fitted value,

∆̂i = yi −
p∑
j=1

xijβ̂
(−i)
k .

Notice that the fitted value at the ith data point is then
∑p

j=1 xijβ̂
(−i)
k + ∆̂i = yi and thus

the residual is zero. The term ∆̂i is called the PRESS residual, the difference between
the observed value and the fitted value with that point deleted.
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Since the residual at the ith data point is zero, the estimated variance from thsi model
is exactly equal to the variance estimate having removed the ith data point. The t test for
δi is then a form of standardized residual, that exactly follows a t distribution under the null
hypothesis that δi = 0.

12.2.1 Computing PRESS residuals

It is interesting to note that PRESS residuals don’t actually require recalculating the model
with the ith datapoint deleted. Let Xt = [z1 . . . zn] so that zi is the ith row of the matrix
z (hence column i of zt). We use z for the rows, since we’ve already reserved x for the
columns of X. Notice, then that

XtX =
n∑
i=1

ziz
t
i.

Thus, X(−i),tX(−i), the x transpose x matrix with the ith data point deleted is simply

X(−i),tX(−i) = XtX− ziz
t
i.

We can appeal to the Sherman, Morrison, Woodbury theorem for the inverse (Wikipedia)

(X(−i),tX(−i))−1 = (XtX)−1 +
(XtX)−1ziz

t
i(X

tX)−1

1− zti(X
tX)−1zi

Define hii as diagonal element i of X(XtX)−1Xt which is equal to zti(X
tX)−1zi. (To see

this, pre and post multiply this matrix by a vector of zeros with a one in the position i, an
operation which grabs the ith diagonal entry.) Furthermore, note that Xty =

∑n
i=1 ziyi so

that
X(−i),ty(−i) = Xty − ziyi.

Then we have that the predicted value for the ith data point where it was not used in the
fitting is:

ŷ
(−i)
i = zti(X

(−i),tX(−i))−1X(−i),ty(−i)

= zti

(
(XtX)−1 +

(XtX)−1ziz
t
i(X

tX)−1

1− hii

)
(Xty − ziyi)

= ŷi +
hii

1− hii
ŷi − hiiyi −

h2iiyi
1− hii

=
ŷi

1− hii
+ yi −

yi
1− hii

So that we wind up with the equality:

yi − ŷ(−i)i =
yi − ŷi
1− hii

=
ei

1− hii

In other words, the PRESS residuals are exactly the ordinary residuals divided by 1− hii.

https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula
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12.3 Externally studentized residuals

It’s often useful to have standardized residuals where a data point in question didn’t in-
fluence the residual variance. The normalized PRESS residuals are, as seen in 12.2.
However, the PRESS residuals are leave one out residuals, and thus the ith point was
deleted for the fitted value. An alternative strategy is to normalize the ordinary residuals
by dividing by a standard deviation estimate calculated with the ith data point deleted.
That is,

ei

s(−i)
√

1− hii
.

In this statistic, observation i hasn’t had the opportunity to impact the variance estimate.
Given that the PRESS residuals are ei

1−hii , their variance is σ2/
√

1− hii. Then we have
that the press residuals normalized (divided by their standard deviations) are

ei

σ
√

1− hii
If we use the natural variance estimate for the press residuals, the estimated variance
calculated with the ith data point deleted, then the estimated normalized PRESS residuals
are the same as the externally standardized residuals. As we know that these also arise
out of the T-test for the mean shift outlier model from Section 12.2.

12.4 Coding example

First let’s use the swiss dataset to show how to calculate the ordinary residuals and show
that they are the same as those output by resid.

> y = swiss$Fertility

> x = cbind(1, as.matrix(swiss[,-1]))

> n = nrow(x); p = ncol(x)

> hatmat = x %*% solve(t(x) %*% x) %*% t(x)

> ## ordinary residuals

> e = (diag(rep(1, n)) - hatmat) %*% y

> fit = lm(y ~ x)

> ## show that they’re equal by taking the max absolute difference

> max(abs(e - resid(fit)))

[1] 4.058975e-12

Next, we calculate the standardized residuals and show how to get them automatically
with rstandard

> ## standardized residuals

> s = sqrt(sum(e ^ 2) / (n - p))

> rstd = e / s / sqrt(1 - diag(hatmat))

> ## show that they’re equal by taking the max absolute difference

> max(abs(rstd - rstandard(fit)))

[1] 6.638023e-13
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Next, let’s calculate the PRESS residuals both by leaving out the ith observation (in this
case observation 6) and by the shortcut formula

> i = 6

> yi = y[i]

> yihat = predict(fit)[i]

> hii = diag(hatmat)[i]

> ## fitted model without the ith data point

> y.minus.i = y[-i]

> x.minus.i = x[-i,]

> beta.minus.i = solve(t(x.minus.i) %*% (x.minus.i)) %*% t(x.minus.i) %*% y.minus.i

> yhat.i.minus.i = sum(x[i,] * beta.minus.i)

> pressi = yi - yhat.i.minus.i

> c(pressi, e[i] / (1 - hii))

Porrentruy

-17.96269 -17.96269

Now show that the rstudent (externally studentized) residuals and normalized PRESS
residuals are the same

> ## variance estimate with i deleted

> e.minus.i = y.minus.i - x.minus.i %*% beta.minus.i

> s.minus.i = sqrt(sum(e.minus.i ^ 2) / (n - p - 1))

> ## show that the studentized residual is the PRESS residual standardized

> ei / s.minus.i / sqrt(1 - hii)

Porrentruy

-2.367218

> rstudent(fit)[i]

6

-2.367218

Finally, show that the mean shift outlier model residuals give the PRESS and the rstudent
residuals.

> delta = rep(0, n); delta[i] = 1

> w = cbind(x, delta)

> round(summary(lm(y ~ w - 1))$coef, 3)

Estimate Std. Error t value Pr(>|t|)

w 65.456 10.170 6.436 0.000

wAgriculture -0.210 0.069 -3.067 0.004

wExamination -0.323 0.242 -1.332 0.190

wEducation -0.895 0.174 -5.149 0.000

wCatholic 0.113 0.034 3.351 0.002

wInfant.Mortality 1.316 0.376 3.502 0.001

wdelta -17.963 7.588 -2.367 0.023

So notice that the the estimate for wdelta is the PRESS residual while the t value is the
externally studentized residual.



Chapter 13

Under and overfitting

In linear models, we can characterize forms of under and overfitting. For this chapter
consider the following:

Model 1: Y = X1β1 + ε

Model 2: Y = X1β1 + X2β2 + ε

where the ε are assumed iid normals with variance σ2. We further differentiate between
the assumed model and the true model. If we assume Model 1 and Model 2 is true, we
have underfit the model (omitted variables that were necessary). In contrast, if we as-
sume Model 2 and Model 1 is true, we have overfit the model (included variables that
were unnecessary).

13.1 Impact of underfitting

Consider underfitting the model. That is we errantly act as if Model 1 is true, but in fact
model 2 is true. Such a situation would arise if there were unmeasured or unknown
confounders. Then consider the bias of our estimate of β1.

E[β̂1] = E[(Xt
1X1)

−1Xt
1Y] = (Xt

1X1)
−1Xt

1(X1β1 + X2β2) = β1 + (Xt
1X1)

−1Xt
1X2β2.

Thus, (Xt
1X1)

−1Xt
1X2β2 is the bias in estimating β1. Notice that there is no bias if

Xt
1X2 = 0. Consider the case where both design matrices are centered. Then 1

n−1X
t
1X2

is the empirical variance/covariance matrix between the columns of X1 and X2. Thus,
if our omitted variables are uncorrelated with our included variables, then no bias exists.
One way to try to force this in practice is to randomize the levels of the variables in X1.
Then, the empirical correlation will be low with high probability. This is very commonly
done when X1 contains only a single treatment indicator.

Our theoretical standard errors for the β̂1 are still correct in that

Var(β̂1) = (Xt
1X1)

−1σ2.
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However, we still have to estimate σ2.
We can also see the impact of underfitting on the bias of residual variance estimation.

E[(n− p1)S2] = E[Yt(I−X1(X
t
1X1)

−1Xt
1Y]

= (X1β1 + X2β2)
t{I−X1(X

t
1X1)

−1Xt
1}(X1β1 + X2β2)

+ trace[{I−X1(X
t
1X1)

−1Xt
1}σ2]

= βt2X
t
2{I−X1(X

t
1X1)

−1Xt
1}X2β2 + (n− p1)σ2

Therefore S2 is biased upward. It makes sense that we would tend to overestimate the
residual variance if we’ve attributed to the error structure variation that is actually struc-
tured and due to unmodeled systematic variation.

13.2 Impact of overfitting

Consider now fitting Model 2 when, in fact, Model 1 is true. There is no bias in our estimate
of β1, since we have fit the correct model; it’s just β2 = 0.

13.3 Variance under an overfit model

If we fit Model 2, but Model 1 is correct, then our variance estimate is unbiased. We’ve fit
the correct model, we just allowed the possibility that β2 was non-zero when it is exactly
zero. Therefore S2 is unbiased for σ2. Recall too that

(n− p1 − p2)S2
2

σ2
∼ χ2

n−p1−p2 ,

where the subscript 2 on S2
2 is used to denote the fitting where Model 2 was asssumed.

Similarly,
(n− p1)S2

1

σ2
∼ χ2

n−p1 ,

where S2
1 is the variance assuming Model 1 is true. Using the fact that the variance of a

Chi squared is twice the degrees of freedom, we get that

Var(S2
2)

Var(S2
1)

=
(n− p1)2

(n− p1 − p2)2
.

Thus, despite both estimates being unbiased, the variance of the estimated variance
under Model 2 is higher.

13.3.1 Variance inflation

Now consider Var(β̂1) = (XtX)−1σ2, where X = [X1 X2]. Recall, that the estimate for β̂1

can be obtained by regression of eX1|X2 on ey|X2. Thus,

β̂1 = (etX1|X2
eX1|X2)

−1etX1|X2
ey|X2
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Let HX2 be the hat matrix for X2. Thus,

Var(β̂1) = (etX1|X2
eX1|X2)

−1etX1|X2
(I−HX2)eX1|X2(e

t
X1|X2

eX1|X2)
−1σ2

= (etX1|X2
eX1|X2)

−1σ2 − (etX1|X2
eX1|X2)

−1etX1|X2
HX2eX1|x2(e

t
X1|X2

eX1|X2)
−1σ2

= (etX1|X2
eX1|X2)

−1σ2.

The latter term drops out since

etX1|X2
HX2 = Xt

1(I−HX2)HX2 = 0.

Consider any linear contrast qtβ1 then

Var(qtβ̂1) = qt(etX1|X2
eX1|X2)

−1qσ2

= qt(Xt
1X1 −Xt

1HX2X1)
−1qσ2

= qt{(Xt
1X1)

−1 + W}qσ2

where W is a symmetric matrix. This latter identity can be obtained via the Woodbury
theorem Wikipedia. Thus we can say that

Var(qtβ̂1) = qt{(Xt
1X1)

−1 + W}qσ2 ≥ qt(Xt
1X1)

−1qσ2

Therefore, the variance assuming Model 2 will always be greater than the variance as-
suming Model 1. Note that at no point did we utilize which model was actually true. Thus
we arrive at an essential point, adding more regressors into a linear model necessarily in-
creases the standard error of the ones already included. This is called “variation inflation”.
The estimated variances need not go up, since σ2 will go down as we include variables.
However, the central point is that one concern with including unnecessary regressors is
inflating a component of the standard error needlessly.

Further note that σ2 drops out in the ratio of the variances. We can thus exactly cal-
culate the percentage increase in variance caused by including regressors. A particularly
useful such summary is the variance inflation factor (VIF).

13.3.2 Variance inflation factors

Assume that X1 is a vector and that the intercept has been regressed out of both of X1

and X2. Recall from above that the variance for β1 assuming Model 2 is (note β1 is a
scalar since we’re assuming X1 is a vector)

Var(β1) = (etX1|X2
eX1|X2)

−1σ2.

=
σ2

Xt
1(I−HX2)X1

=
σ2

Xt
1X

t
1

× Xt
1X1

Xt
1(I−HX2)X1

Recall from partitioning sums of squares (remember that we’ve removed the intercept
from both)

Xt
1X1 = Xt

1HX2X1 + Xt
1(I−HX2)X1

https://en.wikipedia.org/wiki/Woodbury_matrix_identity


CHAPTER 13. UNDER AND OVERFITTING 53

and that Xt
1HX2

X1

Xt
1X1

is the R2 value for X1 as an outcome and X2 as a predictor. Let’s call
it R2

1 so as not to confuse it with the R2 calcualted with Y as an outcome. Then we can
write

Var(β1) =
σ2

Xt
1X

t
1

1

1−R2
1

.

Note that R2 = 1 if X2 is orthogonal X1. Thus,

1

1−R2
1

Is the relative increase in variability in estimating β1 comparing the data as it is to the ideal
case where X1 is orthogonal to X2. Similarly, since σ2

Xt
1X

t
1

is the variance if X2 is omitted
from the model. So 1/(1 − R2

1) is also the increase in the variance by adding the other
regressors in X2.

This calculation can be performed for each regressor in turn. The 1/(1 − R2) value
for each regressor as an outcome with the remainder as predictors are the so-called
Variance Inflation Factors (VIFs). They give information about how much addition variance
is incurred by multicolinearity among the regressors.

13.3.3 Coding example

Let’s look at variance inflation factors for the swiss dataset.

> library(car)

> data(swiss)

> fit4 = lm(Fertility ~ ., data = swiss)

> vif(fit4)

Agriculture Examination Education Catholic Infant.Mortality

2.284129 3.675420 2.774943 1.937160 1.107542

Thus, consider examination. The VIF of 3.7 suggest there’s almost four times as much
variability in estimating the Examination coefficient by the inclusion of the other variables.
We can show the calculation of these statistics manually as such.

1 / (1 - summary(lm(Examination ~ . - Fertility, data = swiss))$r.squared)

[1] 3.67542

Consider comparing the estimated standard errors for the examination variable

> summary(lm(Fertility ~ Examination, data = swiss))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 86.818529 3.2576034 26.651043 3.353924e-29

Examination -1.011317 0.1781971 -5.675275 9.450437e-07

> summary(lm(Fertility ~ ., data = swiss))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.9151817 10.70603759 6.250229 1.906051e-07
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Agriculture -0.1721140 0.07030392 -2.448142 1.872715e-02

Examination -0.2580082 0.25387820 -1.016268 3.154617e-01

Education -0.8709401 0.18302860 -4.758492 2.430605e-05

Catholic 0.1041153 0.03525785 2.952969 5.190079e-03

Infant.Mortality 1.0770481 0.38171965 2.821568 7.335715e-03

Here the increase in variance is (0.25387820 / 0.1781971) squared which is approxi-
mately 2. This is much less than is predicted by the VIF because it involves the estimated
variance rather than the actual variance.



Chapter 14

Parameter estimability and penalties

In this section we consider parameter estimability and penalties.

14.1 Estimability

This section draws heavily from the wonderful book by Searle (2012).
We define a linear combination of the slope parameters, qtβ, as being estimable if it is

equal to a linear combination of the expected value of Y. In other words, qtβ is estimable
if it is equal to ttE[Y] for some value of t.

I find estimability most useful when X is over-specified (not full rank). For example,
consider an ANOVA model

Yij = µ+ βi + εij.

Verify for yourself that the X matrix from this model is not full rank.
Because ttE[Y] = ttXβ for all possible β, q = ttX and we obtain that estimable

contrasts are necessarily linear combinations of the rows of the design matrix.
The most useful result in estimability is the invariance properties of estimable con-

trasts. Consider an not full rank design matrix. Then any solution to the normal equations:

XtXβ = XtY

will minimize the least squares criteria (or equivalently maximize the likelihood under
spherical Gaussian assumptions). (If you don’t see this, verify it yourself using the tools
from the first few chapters.) Since X is not full rank, this will have infinite solutions. Let
β̂ and β̃ be any two such solutions. For estimable quantities, qtβ̂ = qtβ̃. That is, the
particular solution to the normal doesn’t matter for estimable quantities. This should be
clear given the definition of estimability. Recall that least squares projects onto the plane
defined by linear combinations of the columns of X. The projection, Ŷ, is unique, while
the particular linear combination is not in this case.

To discuss further. Suppose qtβ̂ 6= qtβ̃ for two solutions to the normal equations,
β̂ and β̃ and estimable qtβ. Then ttXβ̂ 6= ttXβ̃. Let Ŷ be the projection of Y on the
space of linear combinations of the columns of X. However, since both are projections,
Ŷ = Xβ̂ = Xβ̃. Multiplying by tt then yields a contradiction.
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14.1.1 Why it’s useful

Consider the one way ANOVA setting again.

Yij = µ+ βi + εij.

For i = 1, 2, j = 1, . . . , J . One can obtain parameter identifiability by setting β2 = 0, β1 = 0,
µ = 0 or β1 + β2 = 0 (or one of infinitely many other linear contrasts). These constraints
don’t change the column space of the X matrix. (Thus the projection stays the same.)
Recall that ŷij = ȳi. Estimable functions are linear combinations of E[Yij] = µ + βi. So,
note that

E[Y21]− E[Y11] = β2 − β1
is estimable and it will always be estimated by ȳ2 − ȳ1. Thus, regardless of which linear
constraints one points on the model to achieve identifiability, the difference in the means
will have the same estimate.

This also gives us a way to go between estimates with different constraints without
refitting the models. Since for two sets of constraints we have:

ȳi = µ̂+ β̂i = µ̃+ β̃i,

yielding a simple system of equations to convert between estimates with different con-
straints.

14.2 Linear constraints

Consider performing least squares under the full row rank linear constraints

Ktβ = z.

One could obtain these estimates using Lagrange multipliers

||y −Xβ||2 + 2λt(ktβ − Z) = yty − 2β2Xty + βtXtXβ + 2λt(Ktβ − z).

Taking a derivative with respect to lambda yields

2(Ktβ − z) = 0 (14.1)

Taking a derivative with respect to β we have:

−2Xty + 2XtXβ + 2Kλ = 0

which has a solution in β as

β = (XtX)−1(Xty −Kλ) = β̂ − (XtX)−1Kλ, (14.2)

where β̂ is the OLS (unconstrained) estimate. Multiplying by Kt and using (14.1) we have
that

z = Ktβ̂ −Kt(XtX)−1Kλ
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yielding a solution for λ as

λ = {Kt(XtX)−1K}−1(Ktβ̂ − z).

Plugging this back into (14.2) yields the solution:

β = β̂ − (XtX)−1K{Kt(XtX)−1K}−1(Ktβ̂ − z).

Thus, one can fit constrained least squares estimates without actually refitting the model.
Notice, in particular, that if one where to multiply this estimate by Kt, the result would be
z.

14.2.1 Likelihood ratio tests

One can use this result to derive likelihood ratio tests of H0 : Kβ = z versus the general
alternative. From the previous section, under the null hypothesis, the estimate under the
null hypothesis,

β̂H0
= β̂ − (XtX)−1K{Kt(XtX)−1K}−1(Ktβ̂ − z).

Of course, under the alternative, the estimate is β̂ = (XtX)−1XtY. In both cases, the
maximum likelihood variance estimate is 1

n
||Y−Xβ||2 with β as the estimate under either

the null or alternative hypothesis. Let σ̂2
H0

and σ̂2 be the two estimates.
The likelihood ratio statistic is

L(β̂H0
, σ̂2

H0
)

L(β̂, σ̂2)
=

(
σ̂2
H0

σ̂2

)−n/2
.

This is monotonically equivalent to nσ̂2/nσ̂2
H0

. However, we reject if the null is less sup-
ported than the alternative, i.e. this statistic is small, so we could equivalently reject if
nσ̂2

H0
/nσ̂2 is large. Further note that

nσ̂2
H0

= ||Y −Xβ̂H0
||2

= ||Y −Xβ̂ + Xβ̂ −Xβ̂H0
||2

= ||Y −Xβ̂||2 + ||Xβ̂ −Xβ̂H0
||2

= nσ̂2 + ||Xβ̂ −Xβ̂H0
||2

Notationally, let
SSreg = ||Xβ̂ −Xβ̂H0

||2 = ||Ŷ − ŶH0||2

and SSres = nσ̂2. The note that the inverse of our likelihood ratio is monotonically equiva-
lent to SSreg

SSres

However, SSreg/σ2 and SSres/σ2 are both independent Chi-squared random variables
with degrees of freedom Rank(K) and n − p under the null. (Prove this for homework.)
Thus, our likelihood ratio statistic can exactly be converted into the F statistic of section
11.4. We leave the demonstration that the two are identical as a homework exercise.
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This line of thinking can be extended. Consider the sequence of hypotheses:

H1 : K1β = z

H2 : K2K1β = K2z

H3 : K3K2K1β = K3K2z

...

Each Ki is assumed full row rank and of fewer rows than Ki−1. These hypotheses are
nested with H1 being the most restrictive, H2 being the second most, and so on. (Note,
if H1 holds then H2 holds but not vice versa.) Consider testing H1 (null) versus H2 (alter-
native). Note that under our general specification, discussing this problem will apply to
testing Hi versus Hj. Under the arguments above, our likelihood ratio statistic will work
out to be inversely equivalent to the statistic: nσ̂2

H1
/nσ̂2

H2
.

Further note that

nσ̂2
H1

= ||Y − ŶH1||
= ||Y − ŶH2||2 + ||ŶH2 − ŶH1||2 + 2(Y − ŶH2)

t(ŶH2 − ŶH1)

= ||Y − ŶH2||2 + ||ŶH2 − ŶH1||2

= SSRES(H2) + SSREG(H1 | H2)

Here the cross product term in the second line is zero by (tedious yet straightforward)
algebra and the facts that: K2K1β̂H1

= K2K1β̂H2
= K2z and etX = 0.

Thus, our likelihood ratio statistic is monotically equivalent to

SSREG(H1 | H2)/SSRES(H2).

Furthermore, Using the developed methods in the class the numerator is Chi-Squared
withRank(K1) degrees of freedom, while the denominator has n−{Rank(K1)−Rank(K2)}
degrees of freedom, and they are independent. Thus we can construct an F test for nested
linear hypotheses.

This process can be iterated, decomposing SSRES(H2), so that:

nσ̂2
H1

= SSREG(H1 | H2) + SSREG(H2 | H3) + SSRES(H3)

And it could be iterated again so that:

nσ̂2
H1

= SSREG(H1 | H2) + SSREG(H2 | H3) + . . . SSRES(Hp)

where SSRES(Hp) is the residual sums of squares under the most elaborate model con-
sidered. The sums of squares add so that, for example,

SSREG(H1 | H3) = SSREG(H1 | H2) + SSREG(H2 | H3)

and
SSRES(H3) = SSREG(H3 | H4) + . . .+ SSRES(H4).

Thus, one could test any subset of the nested hypotheses by appropriately adding the
sums of squares.
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14.2.2 Example use

The most popular use of the general linear hypothesis is to consider nested hypotheses.
That is, consider a linear model where βt = [β0 β1 . . . βp] so that the βi are ordered in
decreasing scientific importance.

H1 : β1 = β2 = β3 = . . . = βp = 0

H2 : β2 = β3 = . . . = βp = 0

H3 : β3 = . . . = βp = 0

...
Hp : βp = 0

Then testing H1 versus H2 tests whether β1 is zero under the assumption that all of the re-
maining coefficients (excepting the intercept) are zero. TestingH2 versusH5 tests whether
β2 = β3 = β4 = 0 under the assumption that β5 through βp are 0.

14.2.3 Coding examples

Let’s go through an example of fitting multiple models. We’ll look at the swiss dataset.
The following code fits three models for the dataset. First, we model the outcome, regional
fertility, as a function of various aspects of the region. Imagine if we are particularly inter-
ested in agriculture as a variable. We fit three models: one a linear regression with just
agriculture, then one including educational level variables (examination and education)
and then one including all of the previous variables plus information on religion (percent
Catholic) and infant mortality rates.

data(swiss)

fit1 = lm(Fertility ~ Agriculture, data = swiss)

fit2 = update(fit1, Fertility ~ Agriculture + Examination + Education)

fit3 = update(fit1, Fertility ~ Agriculture + Examination + Education + Catholic + Infant.Mortality)

anova(fit1, fit2, fit3)

The anova comand gets the relevant sums of squares for each of the models, resulting
in the output

Analysis of Variance Table

Model 1: Fertility ~ Agriculture

Model 2: Fertility ~ Agriculture + Examination + Education

Model 3: Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

Res.Df RSS Df Sum of Sq F Pr(>F)

1 45 6283.1

2 43 3180.9 2 3102.2 30.211 8.638e-09 ***

3 41 2105.0 2 1075.9 10.477 0.0002111 ***
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Here, it would appear that inclusion of the other variables is necessary. However, let’s
see if we can create these sums of squares manually using our approach.

> xtilde = as.matrix(swiss);

> y = xtilde[,1]

> x1 = cbind(1, xtilde[,2])

> x2 = cbind(1, xtilde[,2:4])

> x3 = cbind(1, xtilde[,-1])

> makeH = function(x) x %*% solve(t(x) %*% x) %*% t(x)

> n = length(y); I = diag(n)

> h1 = makeH(x1)

> h2 = makeH(x2)

> h3 = makeH(x3)

> ssres1 = t(y) %*% (I - h1) %*% y

> ssres2 = t(y) %*% (I - h2) %*% y

> ssres3 = t(y) %*% (I - h3) %*% y

> ssreg2g1 = t(y) %*% (h2 - h1) %*% y

>ssreg3g2 = t(y) %*% (h3 - h2) %*% y

> out = rbind( c(n - ncol(x1), ssres1, NA, NA),

c(n - ncol(x2), ssres2, ncol(x2) - ncol(x1), ssreg2g1),

c(n - ncol(x3), ssres3, ncol(x3) - ncol(x2), ssreg3g2)

)

> out

[,1] [,2] [,3] [,4]

[1,] 45 6283.116 NA NA

[2,] 43 3180.925 2 3102.191

[3,] 41 2105.043 2 1075.882

It is interesting to note that the F test comapring Model 1 to Model 2 from the anova

command is obtained by dividing 3102.191 / 2 (a chi-squared divided by its 2 degrees
of freedom) by 2105.043 / 41 (an independent chi-squared divided by its 3 degrees of
freedom). The denominator of the F statistic is then the residual sum of squares from
Model 3, not from Model 2.

This is why the following give two different answers for the F statistic:

> anova(fit1, fit2)

Analysis of Variance Table

Model 1: Fertility ~ Agriculture

Model 2: Fertility ~ Agriculture + Examination + Education

Res.Df RSS Df Sum of Sq F Pr(>F)

1 45 6283.1
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2 43 3180.9 2 3102.2 20.968 4.407e-07 ***

---

> anova(fit1, fit2, fit3)

Analysis of Variance Table

Model 1: Fertility ~ Agriculture

Model 2: Fertility ~ Agriculture + Examination + Education

Model 3: Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

Res.Df RSS Df Sum of Sq F Pr(>F)

1 45 6283.1

2 43 3180.9 2 3102.2 30.211 8.638e-09 ***

3 41 2105.0 2 1075.9 10.477 0.0002111 ***

In the first case, the denominator of the F statistic is 3180.9 / 43, the residual mean
squared error for Model 2, as opposed to the latter case where it is dividing by the residual
mean squared error for Model 3. Of course, under the null hypothesis, either approach
yields an independent chi squared statistic in the denominator. However, using the Model
3 residual mean squared error reduces the denominator degrees of freedom, though
also necessarily reduces the residual sum of squared errors (since extra terms in the
regression model always do that).

14.3 Ridge regression

Consider quadratic constraints to least squares.

||Y −Xβ||2 + βtΓβ.

In this case we consider instances where X is not necessarily full rank. The addition of
the penalty is called “Tikhonov regularization” for the mathematician of that name. The
specific instance of this regularization in regression is called ridge regression. The matrix
Γ is typically assumed known or set to γI.

Another way to envision ridge regression is to think in the terms of a posterior mode
on a regression model. Specifically, Σ−1 = Γ/σ2 and consider the model where y | β ∼
N(Xβ, σ2I) and β ∼ N(0,Σ). Then one obtains the posterior for β and σ by multiplying
the two densities. The posterior mode would be obtained by minimizing minus twice the
log of this product

||Y −Xβ||2/σ2 + βtΓβ/σ2.

which is equivalent to above in the terms of maximization for β.
We’ll leave it as an exercise to obtain that the estimate actually obtained is

β̂ridge = (XtX + Γ)−1XtY.

To see how this regularization helps with invertibility of XtX, consider the case where
Γ = γI. If γ is very large then XtX + γI is simply small numbers added around an identity
matrix, which is clearly invertible.
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Consider the case where X is column centered and is of full column rank. Let UDVt

be the SVD of X where UtU = VtV = I. Note then XtX = VD2Vt and (XtX)−1 =
VD−2Vt so that the ordinary least squares estimate satisfies

Ŷ = X(XtX)−1XtY = UDVtVD−2VtVDUY = UUtY.

Consider now the fitted values under ridge regression with Γ = γI:

Ŷridge = X(XtX + γI)−1XtY

= UDVt(VD2Vt + γI)−1VDUtY

= UDVt(VD2Vt + γVVt)−1VDUtY

= UDVt{V(D2 + γI)Vt}−1VDUtY

= UDVtV(D2 + γI)−1VtVDUtY

= UD(D2 + γI)−1DUtY

= UWUtY

where the third line follows since X is full column rank so that V is p × p of full rank and
V−1 = Vt so that VtV = VVt = I. Here W is a diagonal matrix with elements

D2
i

D2
i + γ

where D2
i are the eigenvalues.

In the not full rank case, the same identity can be found, though it takes a bit more
work. Now assume that X is of full row rank (i.e. that n < p and there are no redundant
subjects). Now note that V does not have an inverse, while U does (and U−1 = Ut.
Further note via the Woodbury theorem (where θ = 1/λ)d:

(XtX + γI)−1 = θI− θ2Xt(I + θXXt)−1X

= θI− θ2VDUt(UUt + θUD2Ut)−1UDVt

= θI− θ2VDUt{U(I + θD2)Ut)}−1UDVt

= θI− θ2VDUt{U(I + θD2)−1Ut)}UDVt

= θI− θ2VD(I + θD2)−1DVt

= θI− θ2VD̃Vt

where D̃ is diagonal with entries D2
i /(1 + θD2

i ) where Di are the diagonal entries of D.
Then:

ŶRidge = X(XtX + γI)−1XtY

= UDVt(θI− θ2VD̃Vt)VDUtY

= UD(θI− θ2D̃)DUtY

= UWUtY

Thus we’ve covered the full row and column rank cases. (Omitting the instance where X
is neither full row nor column rank.)
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14.3.1 Coding example

In the example below, we use the swiss data set to illustrate fitting ridge regression. In
this example, penalization isn’t really necessary, so the code is more used to simply show
the fitting. Notice that lm.ridge and our code give slightly different answers. This is due
to different scaling options for the design matrix.

data(swiss)

y = swiss[,1]

x = swiss[,-1]

y = y - mean(y)

x = apply(x, 2, function(z) (z - mean(z)) / sd(z))

n = length(y); p = ncol(x)

##get ridge regression estimates for varying lambda

lambdaSeq = seq(0, 100, by = .1)

betaSeq = sapply(lambdaSeq, function(l) solve(t(x) %*% x + l * diag(rep(1, p)), t(x) %*% y))

plot(range(lambdaSeq), range(betaSeq), type = "n", xlab = "- lambda", ylab = "Beta")

for (i in 1 : p) lines(lambdaSeq, betaSeq[i,])

##Use R’s function for Ridge regression

library(MASS)

fit = lm.ridge(y ~ x, lambda = lambdaSeq)

plot(fit)

14.4 Lasso regression

The Lasso has been somewhat of a revolution of sorts in statistics and biostatistics of
late. The central idea of the lasso is to create a penalty that forces coefficients to be zero.
For centered Y and centered and scaled X, consider minimizing

||Y −Xβ||2

subject to
∑p

i=1 |βi| < t. The Lagrangian form of this minimization can be written as
minimizing

||Y −Xβ||2 + λ
n∑
i=1

|βi|.

Here λ is a penalty parameter. As the Lasso constrains
∑p

i=1 |βi| < t, which has sharp
corners on the axes, it has a tendency to set parameters exactly to zero. Thus, it is
thought of as doing model selection along with penalization. Moreover, the Lasso handles
the p > n problem. Finally, it’s a convex optimization problem, so that numerically solving
for the Lasso is stable. We can more generally specify the parameter as

||Y −Xβ||2 + λ

n∑
i=1

|βi|q.
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for q > 0. We obtain a case of ridge regression when q = 2 and the Lasso when q = 1.
Since (

∑n
i=1 |βi|q)1/q is a norm, usually called the lq norm, the various forms of regression

are often calld lq regression. For example, ridge regression could be called l2 regression,
the Lasso L1 regression and so on. We could write the penalized regression estimate as

||Y −Xβ||2 + λ||β||qq

where || · ||q is the lq norm.
You can visualize the parameters easily using Wolfram’s alpha: |x1|+ |x2|, |x1|2 + |x2|2,

|x1|0.5 + |x2|0.5, and |x1|4 + |x2|4. Notice that as q tends to zero, it tends to all of the mass
on the axes where as q tends to infinity, it tends to a square. The limit as q tends to 0 is
called the l0 norm, which just penalizes the number of non-zero coefficients.

Just like with ridge regression, the Lasso has a Bayesian representation. Let the prior
on βi be iid from a Laplacian distribution with mean 0, which has density θ

2
exp(−θ|βi|),

and is denoted Lapplace(0, θ). Then, the Lasso estimate is the posterior mean assuming
y ∼ N(Xβ, σ2I) and βi ∼iid Laplace(0, λ/2σ2). Then minus twice the log of the posterior
for β, conditioning on σ, is proportional to

||Y −Xβ||2 + λ||β||1.

The connection with Bayesian statistics is somewhat loose for lasso regression. While the
Lasso is the posterior mode under a specific prior, whether or not that prior makes sense
from a Bayesian perspective is not clear. Furthermore, the full posterior for a parameter
in the model is averaged over several sparse models, so is actually not sparse. Also, the
posterior mode is conditioned on σ under these assumptions, Bayesian analysis usually
take into account the full posterior.

14.4.1 Coding example

Let’s give an example of coding the Lasso. Here, because the optimization problem isn’t
closed form, we’ll rely on the lars package from Tibshirani and Efron. Also assume the
code from the ridge regression exmaple.

library(lars)

fit2 = lars(x, y, type = c("lasso"))

plot(fit2)

http://www.wolframalpha.com/input/?i=abs%28x1%29+%2B+abs%28x2%29+%3D+1
http://www.wolframalpha.com/input/?i=abs%28x1%29%5E2+%2B+abs%28x2%29%5E2+%3D+1
http://www.wolframalpha.com/input/?i=abs%28x1%29%5E0.5+%2B+abs%28x2%29%5E0.5+%3D+1
http://www.wolframalpha.com/input/?i=plot+abs%28x1%29%5E4+%2B+abs%28x2%29%5E4+%3D+1


Chapter 15

Asymptotics

15.1 Convergence in probability

A series of random variables, Yn, is said the converge in probability to a constant c if
P (|Yn − c| > ε) → 0 for any ε. A standard result is that convergence in probability to
the mean is implied if the variance of random variable goes to zero (a consequence of
Chebyshev’s inequality). Specifically, let Zn = Yn − µ have mean 0, variance σ2

n and
distribution Fn

P (|Zn| ≥ ε) =

∫
|zn|≥ε

dFn(zn)

=

∫
z2n/ε

2≥1
dFn(zn)

≤
∫
z2n/ε

2≥1

z2n
ε2
dFn(zn)

≤
∫
z2n
ε2
dFn(zn)

= σ2
n/ε

2.

Thus, according to our definition, Zn converges in probability to 0 (thus Yn converges in
probability to µ) if the sequence of variances tends to zero.

Consider now convergence in probability of our slope estimate

β̂n = (Xt
nXn)−1Xt

nYn

where subscripts have been added to denote the dependence on the sample size. This
estimator is unbiased for all n. Under the assumption of iid errors, with a finite variance of
Yn of Iσ2, the variance of a linear contrast of β̂n is

qt(Xt
nXn)−1qσ2.

Thus a sufficient condition for consistency of qtβ̂n is for qt(Xt
nXn)−1q to converge to zero.

Probably more useful is if sample variance covariance associated with the Xn converges,
then the estimate is consistent for all linear contrasts.
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https://en.wikipedia.org/wiki/Chebyshev%27s_inequality
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In the particular case for linear regression, recall that the variance of the slope is

σ2∑n
i=1(xi − x̄)2

=
σ2

(n− 1)s2x,n

where s2x,n is the sample variance of the x’s. Thus, as long as s2x,n converges, the estimate
is consistent. Alternatively, if the Xi are bounded, then the estimate will converge.

Consider now the case where E[Yn] = Xnβ but Var(Yn) = Σn. Consider a working
covariance matrix, Wn, and the estimate

β̂(Wn) = (Xt
nW

−1
n Xn)−1Xt

nW
−1
n Yn.

The OLS estimate is the case where Wn = I. (Notice that the estimate is invariant to
scale changes in Wn.). Notice that β̂(Wn) is unbiased for all n regardless of Wn. The
variance of β̂(Wn) is given by

(Xt
nW

−1
n Xn)−1Xt

nW
−1
n ΣnW

−1
n Xn(Xt

nW
−1
n Xn)−1

Thus, linear contrasts associated with β̂(Wn) will be consistent if both

1

n
(Xt

nW
−1
n Xn)

and
1

n
(Xt

nW
−1
n ΣnW

−1
n Xn)

converge. These are both weighted covariance matrices, weighting subjects via the work-
ing covariance matrix in the first case and W−1

n ΣnW
−1
n in the latter. In the event that

Wn = I then the convergence of the former reduces to convergence of the variance co-
variance matrix of the regression variables. However, in more general cases, and the
convergence of the latter weighted variance estimate, cannot be given without further re-
strictions. One setting where convergence can be obtained is where Wn and Σn have
block diagonal structures as would be seen if one had repeated measurements on sub-
jects.

In that case let n be the number of subjects and J be the number of observations
within subjects. Further let: Xt

n = [Zt
1 . . .Z

t
n], Wn = In ⊗W and Σn = In ⊗ Σ for J × p

matrices Zi and J × J matrices W and Σ. Think of each Zi as the covariates associated
with the repeated measurements on subject i, Σ is the within subject correlation and W is
our working version of the within subject correlation. Then our two necessary convergent
series are:

1

n
(Xt

nW
−1
n Xn) =

1

n

n∑
i=1

Zt
iW

−1Zi,

and
1

n
(Xt

nW
−1
n ΣnW

−1
n Xn) =

1

n

n∑
i=1

Zt
iW

−1ΣW−1zi =
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15.2 Normality

Ascertaining convergence to normality is a bit more involved. Fortunately, there’s some
convenient asymptotic theory to make life easier for us. Particularly, a version of the
Central Limit Theorem states that if E[εi] = 0 and Var(εi) = σ2 for εi iid and constants,
dt = [dn1 . . . dnn] then ∑n

i=1 dniεi

σ
√∑n

i=1 d
2
ni

=
dtnε

σ||dn||
→ N(0, 1)

if max d2ni = o(
∑n

i=1 d
2
ni).

With this theorem, we have all that we need. Let Y = Xnβ + ε. Then note that

β̂n − β = (Xt
nXn)−1Xt

nε.

And so,
qt(β̂n − β)

σ
√

qt(Xt
nXn)−1q

=
qt(Xt

nXn)−1Xt
nε

σ
√

qt(Xt
nXn)−1q

=
dtε

σ||d||

for d = qt(Xt
nXn)−1Xn. Thus, our linear contrast isN(0, 1), provided max qt(Xt

nXn)−1Xt
n =

o(qt(Xt
nXn)−1q). This will always be true if our Xn matrix is bounded.

Consider now our case where β̂(wn) = (XtWnX)−1XtY. We assume that Yt =
[Yt

1 . . .Y
t
n], Xt = [Zt

1 . . .Z
t
n], Wn is a block matrix of W as assumed before. For context

consider repeated measurements per subject. Let Yi = Ziβ+εi where Var(εi) = Σ. Then
relying on our earlier work:

qt(β̂(Wn)− β)

SD{qtβ̂(Wn)}
=

qt(
∑n

i=1 Zt
iWzi)

−1∑n
i=1 Zt

iWΣ1/2Σ−1/2εi

SD{qtβ̂(Wn)}

=
qt(
∑n

i=1 Zt
iWzi)

−1∑n
i=1 Zt

iWΣ1/2ε̃i

SD{qtβ̂(Wn)}

=

∑n
i=1 diε̃i√∑n
i=1 ||di||2

=

∑n
i=1 ||di||

dt
i ε̃i
||di||√∑n

i=1 ||di||2

=

∑n
i=1 ||di||zi√∑n
i=1 ||di||2

here ε̃i isN(0, IJ), zi are iid with mean 0 and variance 1 and di = qt(
∑n

i=1 Zt
iWzi)

−1Zt
iWΣ1/2.

Thus we have reduced our statements down to the form of our generalized central limit
theorem. Thus, we have shown that our estimates are asymptotically normal.

A final concern is that our statistic required Σ. However, a consequence of Slutsky’s
theorem allows us to replace it with any consistent estimate. Let:

ei = Yi − (Zt
iZi)

−1Zt
iYi

https://en.wikipedia.org/wiki/Slutsky%27s_theorem
https://en.wikipedia.org/wiki/Slutsky%27s_theorem
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then
1

n

n∑
i=1

eie
t
i

is a consistent estimate of Σ. A last concern is the issue of assuming equal numbers
of observations per subject. Generalizing this results in the same theory, just with more
notational difficulties. (So we’ll just assume that it’s taken care of). Thus we have a fully
formed methodology for performing inference on repeated measures data, where at no
point did we presume knowledge of Σ, or even a good estimate of it. This form of analysis
was later generalized into Generalized Estimating Equations (GEEs).



Chapter 16

Mixed models

It is often the case that parameters of interest in linear models are naturally thought of as
being random rather than fixed. The rational for this can come about for many reasons.
The first occurs when the natural asymptotics have the number of parameters tending
to infinity with the sample size. As an example, consider the Rail dataset in nlme. The
measurements are echo times for sound traveling along railroad lines (a measure of health
of the line). Multiple (3) measurements are collected for each rail. Consider a model of
the form

Yij = µ+ ui + εij,

where i is rail and j is measurement within rail. Treating the ui as fixed effects results
in a circumstance where the number of parameters goes to infinity with the rails. This
can lead to inconsistent parameter estimates (Neyman and Scott, 1948) (for a simple
example, see).

A solution to this problem is to put a distribution on the ui, say ui ∼iid N(0, σ2
u). This is

highly related to ridge regression (from the penalization chapter). However, unlike penal-
ization, this problem allows for thinking about the random effect distribution as a popula-
tion distribution (the population of rails in our example).

Perhaps the easiest way to think about random effects is to consider a fixed effect
treatment of the ui terms. Since we included an intercept, we would need to add one
linear constraint on the ui for identifiability. Consider the constraint,

∑n
i=1 ui = 0. Then,

µ would be interpreted as and overal mean and the ui terms would be interpreted as the
rail-specific deviation around that mean. The random effect model simply specifies that
the Ui are iid N(0, σ2

u) and mutually independent from εij. The mean of the distribution on
the Ui has to be 0 (or fixed at a number), since it would not be identified from µ otherwise.

A perhaps preferable way to specify the model is hierarchically, Yij | Ui ∼ N(µ, σ2) and
Ui | ∼ N(0, σ2

U). Consider the impications of this model. First, note that
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http://www.stat.berkeley.edu/~census/neyscpar.pdf
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Cov(Yij, Yi′j′) = Cov(Ui + εij, Ui′ + εi′j′) (16.1)
= Cov(Ui, Ui′) + Cov(εij, εi′j′) (16.2)

=


σ2 + σ2

U if i = i′1 and j = j′

σ2 if i = i′ and j 6= j′

0 Otherwise
(16.3)

And thus the correlation between observations in the same cluster is σ2
u/(σ

2
u+σ2). This

is the ratio between the between subject variability, σ2
u, and the total variability, σ2

u + σ2.
Notice that the marginal model for Yi = (Yi1, . . . , Yini

)t is normally distributed with
mean µ × Jni

and variance σ2Ini
+ Jni

Jtni
σ2
u. It is by maximizing this (marginal) likelihood

that we obtain the ML estimates for µ, σ2, σ2
U .

We can predict the Ui by considering the estimate E[Ui | Y]. To derive this, note that
the density for Ui |Y is equal to the density of Ui |Yi, since Ui is independent of every Yi′j
for i 6= i′. Then further note that the density for Ui | Yi is propotional to the joint density
of Yi, Ui, which is equal to the density of Yi | Ui times the density for Ui. Omitting anything
that is not proportional in Ui, and taking twice the natural logarithm of the the densities,
we obtain:

||Yi − µJni
− Ui||2/σ2 + Ui/σ

2
U .

Expanding the square, and discarding terms that are constant in Ui, we obtain that Ui is
normally distributed with mean

σ2
u

σ2
u + σ2

n

(Ȳi − µ).

Thus, if µ̂ = Ȳ , our estimate of Ui is the estimate that we would typically use shrunken
toward zero. The idea of shrinking estimates when simultaneously estimating several
quantities is generally a good one. This has similarities with James/Stein estimation (see
this review Efron and Morris, 1977).

Shrinkage estimation works by trading bias for lower variance. In our example, the
shrinkage factor is σ2

u/(σ
2
u + σ2/n). Thus, the better estimated the mean for that group

is (σ2/n is small), or the more variable the group is (σ2
u is large), the less shrinkage we

have. On the other hand, the fewer observations that we have, the larger the residual
variation or the smaller the inter-subject variation, the more shrinkage we have. In this
way the estimation is optimally calibrated to weigh the contribution of the individual versus
the contribution of the group to the estimate regarding this specific individual.

16.1 General case

In general, we might write Y |U ∼ N(Xβ+ZU, σ2I) and U ∼ N(0,ΣU). This is marginally
equivalent to specifying

Y = Xβ + ZU + ε.
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Here, the marginal likelihood for Y is normal with mean Xβ and variance ZΣuZ
t + σ2I.

Maximum likelihood estimates maximize the marginal likelihood via direct numerical max-
imization or the EM algorithm (Dempster et al., 1977). Notice, for fixed variance compo-
nents, the estimate of β is a weighted least squares estimate.

It should be noted the distinction between a mixed effect model and simply specifying
a marginal variance structure. The same marginal likelihood could be obtained via the
model:

Y = Xβ + ε

where ε ∼ N(0,ZΣuZ
t + σ2I). However, some differences tend to arise. Often, the

natural specification of a marginal variance structure doesn’t impose positivity constraints
that random effects do. For example, in the previous section, we saw that the covariance
between measurements in the same cluster was σ2

u/(σ
2
u + σ2), which is guaranteed to be

positive. However, if fitting a general marginal covariance structure, one would typically
simply parameterize the covariance structure as either positive or negative.

Another difference lies in the hierarchical model itself. We can actually estimate
the random effects if we specify them, unlike marginal models. This is a key (perhaps
“the” key) defining attribute of mixed models. Again, our Best Linear Unbiased Predictor
(BLUPs) is given by

E[bU | Y]

As a homework exercise, derive the general form of the BLUPs

16.2 REML

Let HX be the hat matrix for X. Then note that

e = (I−HX)Y = (I−HX)ZU + (I−HX)ε

Then, we can calculate the marginal distribution for ε as singular normal with mean (I −
HX)ZΣUZt(I−HX)+σ2(I−HX). Taking any full rank sub-vector of the ε and maximizing
the marginal likelihood for ΣU and σ2 is called restricted maximum likelihood (REML).
REML estimates tend to be less biased than the ML estimates. For example, if yi ∼iid
N(µ, σ2), maximizing the likelihood for any n − 1 of the ei = yi − ȳ yields the unbiased
variance estimate (divided by n−1) rather than the biased variance estimate obtained via
maximum likelihood. REML estimates are often the default for linear mixed effect model
programs.

An alternative way to derive the REML estimates is via Bayesian thinking. Consider a
model where Y | β ∼ N(Xβ,ZΣuZ

t + σ2I) and β ∼ N(0, θI). Calculating the mode for
Σu and σ2 after having integrated out β as θ → ∞ results in the REML estimates. While
this is not terribly useful for general linear mixed effect modeling, it helps us think about
REML as it relates to Bayesian analysis and it allows us to extend REML in settings where
residuals are less well defined, like generalized linear mixed models.
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16.3 Prediction

Consider generally trying to predict U from observed data Y . Let fuy, fu, fy, fu|y and fy|u
be the joint, marginal and conditional densities respectively. Let θ(Y ) be our estimator of
U . Consider evaluating the prediction error via the expected squared loss

E[(U − θ(Y ))2]

We now show that this is minimized at θ(Y ) = E[U | Y ]. Note that

E[(U − θ(Y ))2]

= E[(U − E[U | Y ] + E[U | Y ]− θ(Y ))2]

= E[(U − E[U | Y ])2]− 2E[(U − E[U | Y ])]E[(E[U | Y ]− θ(Y ))] + E[(E[U | Y ]− θ(Y ))2]

= E[(U − E[U | Y ])2] + E[(E[U | Y ]− θ(Y ))2]

≥ E[(U − E[U | Y ])2].

This argument should seem familiar. (In fact, Hilbert space results generalize these
kinds of arguments into one theorem.) Therefore, E[U | Y ] is the best predictor. Note,
that it is always the best predictor, regardless of the settting. Furthermore, in the context
of linear models, this predictor is both linear (in Y) and unbiased. We mean unbiased in
the sense of:

E[U − E[U | Y ]] = 0.

Therefore, even in the more restricted class of linear estimators, in the case of mixed
models, E[U | Y ] remains best.

A complication arises in that we do not know the variance components. As that is the
case, we must plug in the estimates (either REML or ML). The BLUPs lose their optimality
properties then and are thus often called EBLUPs (for empirical BLUPs).

Prediction of this sort relates to so-called empirical Bayesian prediction and shrinkage
estimation. In your more advanced classes on decision theory, you’ll learn about loss
functions and uniform desirability of shrinkage estimators over the straightforward estima-
tors. (In our case the straightforward estimator is the one that treats the random effects
as if fixed.) This line of thinking yields yet another use for random effect models, where
we might apply them merely for the benefits of shrinkage, but don’t actually think of our
random effects as if random. Consider settings like genomics. The genes being studied
are exactly the quantities of interest, not a random sample from a population of genes.
However, it remains useful to treat effects associated with genes as if random to obtain
the benefits of shrinkage.

16.4 P-splines

16.4.1 Regression splines

The application to splines has been a very successful, relatively new, use of mixed mod-
els. To discuss the methodology, we need to introduce splines briefly. We will only
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overview this area and focus on regression splines, while acknowledging that other spline
bases may be preferable.

Let (a)+ = a if a > 0 and 0 otherwise. Let ξ be a known knot location. Now consider
the model:

E[Yi] = β0 + β1xi + γ1(xi − ξ)+.

For xi values less than or equal to ξ, we have

E[Yi] = β0 + β1xi

and for xi values above ξ we have

E[Yi] = (β0 + γ1xi) + (β1 + γ1)xi.

Thus, the response function f(x) = β0 = β1x + γ1(x− ξ)+ is continuous at ξ and is a line
before and after. This allows us to create ”hockey stick” models, with a line below ξ and a
line with a different slope afterwards. Furthermore, we could expand the model as

E[Yi] = β0 + β1xi +
K∑
k=1

γk(xi − ξk)+.

where ξk are knot points. Not the model is a spiky, but flexible, function that is linear
between the knots and meets at the knots.

To make the fit less spiky, we want continuous differentiability at the knot points. First
note that the function (x)p+ has p− 1 continuous derivatives at 0. To see this, take the limit
to zero of the derivatives from the right and the left. Thus, the function

f(x) = β0 + β1x+ β2x
2 +

K∑
k=1

γk(xi − ξk)2+

will consist of parabolas between the knot points and will have one continuous derivative
at the knot points. This will fit a smooth function that can accommodate a wide variety of
data shapes.

16.4.2 Coding example

16.5 Further reading

A great book on mixed models in R is Pinheiro and Bates (2006). In addition, the books by
Searle, McCulloch, Verbeke and Molenberghs are wonderful treatments of the topic (Mc-
Culloch and Searle, 2001; Verbeke and Molenberghs, 2009). Finally, the newer package
lme4 has a series of vignettes.

https://cran.r-project.org/web/packages/lme4/index.html


Chapter 17

Bayes analysis

17.1 Introduction to Bayesian analysis

Bayesian analysis is a form of statistical inference relying on Baye’s rule. The general
version of Baye’s rule states that

f(y|x) = f(x|y)f(y)/f(x)

where we’re using f (loosely) as the appropriate density, mass function or probability and
x and y represent random variables or events.

In the context of Bayesian analysis, Baye’s rule is used in the following way. Let L(θ; y)
be the likelihood associated with data, y, and parameter θ. We codify our prior knowledge
about θ with a prior distribution, π(θ). Then, a Bayesian analysis is performed via the
posterior distribution

π(θ | y) = f(y | θ)π(θ)/f(y) ∝θ f(y | θ)π(θ) ∝θ L(θ; y)π(θ).

Therefore, one obtains the posterior, up to multiplicative constants, by multiplying the
likelihood times the prior.

Coupled with Bayesian analysis is Bayesian interpretation of the probabilities. The
prior is viewed a belief and the posterior is then an updated belief coupling the objective
evidence (the likelihood) with the subjective belief (the prior). By viewing probabilities as
personal quantifications of beliefs, a Bayesian can talk about the probability of things that
frequentists cant. So, for example, if I roll a die and don’t show you the result, you as a
Bayesian can say that the probability that this specific roll is a six is one sixth. You as
a frequentist, in contrast, must say that in one sixth of repetitions of this experiment, the
result will be a six. To a frequentist, this specific roll is either six or not.

This distinction in probabilistic interpretation has consequences in statistical interpre-
tations. For example in diagnostic tests, a Bayesian can talk about the probability that
a person has a disease, whereas a frequency interpretation relies on the percentage of
diseased people in a population of those similar.

Personally, I’ve never minded either interpretation, but to many, the Bayesian inter-
pretation seems more natural. In contrast, many practitioners dislike Bayesian analysis
because of the prior specification, and the heavy reliance on fully specified models.

74
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It should be noted that the discussion up to this point contrasted classical frequency
thinking with classical subjective Bayesian thinking. In fact, most modern applied statisti-
cians use hybrid approaches. They might, for example, develop a procedure with Bayesian
tools (the manipulation of conditional distributions with priors on the parameters), but eval-
uate the procedure using frequency error rates. For all intents and purposes, such a
procedure is frequentist, just developed with a Bayesian mindset. In contrast, many fre-
quency statistical practitioners interpret their results with an approximate Bayesian mind-
set. Such procedures are simply Bayesian without the formalism. Even between these
approaches there’s continuous shades of gray. Therefore, saying a modern statistician is
either Bayesian or frequentist is usually misleading, unless that person does research or
writes on statistical foundations. Nonetheless, foundational thinking is useful for under-
standing and clarifying thinking. It’s worth then reading and internatlizing the literature on
foundations for this reason alone. It’s a lot like working on core drills to get better at a
sport. That and it’s quite a bit of fun! Some of my favorite modern writers on the topic
include (heavily emphasizing people I know pretty well or have run into recently): Jim
Berger, Nancy Reid, Richard Royall, Deborah Mayo, David Cox, Charles Rohde, Andrew
Gelman, Larry Wasserman and Jeff Blume. Their work will point to many others (Basu,
Birnbaum, De Finetti, Lindley all also come to mind).

Finally, it should also be noted that Bayes versus frequency is far from the only schism
in statistical foundations. Personally, I find the distinction between direct use of the design
in frequency analysis to obtain robustness, like is often done is randomization testing and
survey sampling, versus fully specified modeling a larger distinction than how one uses
the model (Bayes versus frequentist). In addition, causal analysis versus association
(non-causal) analysis forms a large distinction and one can perform Bayes or frequentists
causal analysis and non-causal analyses. Furthermore, the likelihood paradigm (Royall,
1997) offers a third inferential technique given a model over Bayes and frequency inter-
pretations.

17.2 Basic Bayesian models

17.2.1 Binomial

We’ll begin our discussion of Bayesian models by using some count outcome cases to
build intuition. First, consider a series of coin flips, X1, . . . , Xn ∼ Bernoulli(θ). The likeli-
hood associated with this experiment is

L(θ) ∝ θ
∑

i xi(1− θ)n−
∑

i xi = θx(1− θ)n−x

where x =
∑

i xi. Notice the likelihood depends only on the total number of successes.
Consider putting a Beta(α, β) prior on θ. The the posterior is

π(θ | x) ∝θ L(θ)× π(θ) ∝ θx+α−1(1− θ)n−x+β−1

therefore the posterior distribution is Beta(x+ α, n− x+ β). The posterior mean is

E[θ | x] =
x+ α

n+ α + β
= δp̂+ (1− δ) α

α + β
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Therefore, the posterior mean is a weighted average of the MLE (p̂) and the prior mean
α

α+β
. The weight is

δ =
n

n+ α + β
.

Notice that, as n → ∞ for fixed α and β, δ → 1 and the MLE dominates. That is, as
we collect more data, the prior becomes less relevant and the data, in the form of the
likelihood, dominates. On the other hand, for fixed n, as either α or β go to infinity (or
both), the prior dominates (δ → 0). For the Beta distribution α or β going to infinity makes
the distribution much more peaked. Thus, if we are more certain of our prior distribution,
the data matters less.

17.2.2 Poisson

Let X ∼ Poisson(tλ). Then
L(λ) ∝ λxe−tλ.

Consider putting a Gamma(α, τ−1) prior on λ. Then we have that

π(λ | x) ∝ λx+α−1e−λ(t+τ)

and thus the posterior is Gamma(x+α, (t+ τ)−1). Because of the inversion of the second
scale parameter of the Gamma, often Bayesians specify it in the terms of the inverse (as
in Gamma(x + α, t + τ )). Often to avoid confusion, the mean of the gamma will be given
to ensure no confusion over the parameterization.

The posterior mean is:

E[λ | x] =
x+ α

t+ τ
= δλ̂+ (1− δ)α

τ

where λ̂ = x/t is the MLE (the observed rate) and α/τ is the prior estimate. In this case

δ =
t

t+ τ

so that as t→∞ the MLE dominates while the prior dominates as τ →∞.

17.3 Bayesian Linear Models

17.3.1 Bayesian Linear Models

Recall our standard Gaussian linear model, where Y | X,β, σ2 ∼ N(Xβ, σ2I). Consider
three common prior specifications:

1. β | σ2 ∼ N(β0, σ
2Σ0) and σ−2 ∼ Gamma(α0, τ

−1
0 ).

2. β ∼ N(β0,Σ0) and σ−2 ∼ Gamma(α0, τ
−1
0 ).
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3. (β, σ2) ∼ σ−2.

The final prior specification is not a proper density. It doesn’t have a defined integral for
the elements of β from −∞ to ∞ and for 0 ≤ σ2 < ∞. However, proceeding as if it were
a proper density yields a proper distribution for the posterior. Such “improper” priors are
often used to specify putatively uninformative distributions that yield valid posteriors. In
this case, the posterior has the property of the posterior mode being centered around β̂.

The distinction between the first case and the second is the inclusion of σ2 in the
prior specification for β. This is useful for making all posterior distributions tractable,
including that of β integrated over σ2. However, it may or may not reflect the desired prior
distribution.

The second specification has tractable full conditionals. That is, we can easily figure
out β | σ2,y,X and σ2 | β,y,X. However, the posterior marginals of the parameters
(β | y,X in particular) are not tractable. This posterior is often explored using Monte
Carlo.

The third specification is also completely tractable.

17.4 Monte Carlo sampling

Even though many of our Bayesian models are completely tractable, we will explore the
posteriors via Monte Carlo. The reason for this is to get students familiar with Monte Carlo
so that they can apply it in the more complex settings that they are likely to encounter in
practice. Specifically, usually fully tractable posteriors are more of an exception than the
rule. For the most part, for linear models, one should use the fully tractable results as they
are much faster.

We now give some strategies for Monte Carlo sampling from a posterior.

17.4.1 Sequential Monte Carlo

Notice for three variables, X, Y and Z, sampling fz(z), fy|z(y) and fx|y,z(x | y, z) yields a
multivariate draw from the joint distribution f(x, y, z). So, for example, consider setting 3
of our prior specifications

β | σ2,y,X ∼ N(β̂,XtXσ2) and σ−2 | y,X ∼ Gamma{(n− p)/2, 2/(n− p)S2}

Notice that E[σ−2 | X,y] = 1/S2. To simualte from this distribution, we first simulate from
σ−2 | X,y then plug that simulation into β | σ2,y,X and simulate an β. The pair is a draw
from the joint posterior distribution of β and σ−2.

17.4.2 Gibbs sampling

Consider again our three random variables. Suppose that an initial value of x and y, say
x(1) and y(1) was obtained. Then consider simulating
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1. z(1) ∼ fz|x,y(z | x(1), y(1))

2. x(2) ∼ fx|y,z(x | y(1), z(2))

3. y(2) ∼ fy|x,z(y | x(2), z(2))

4. z(2) ∼ fz|x,y(z | x(2), y(2))

5. x(3) ∼ fx|y,z(x | y(2), z(3))

and so on. In other words, always update a simulated variable using the most recently
simulated version of the other variables. In fact, one need not use the full conditionals.
Any collection of conditionals would work. Moreover, any random order works, or even
randomizing the order each iteration. However, some conditions have to be met for the
asymptotics of the sampler to work. For example, you have to update every variable
infinitely often and the whole space has to be explorable by the sampler. If the conditions
are met, the sampler is a Markov chain whose stationary distribution, i.e. the limiting
distribution, is f(x, y, z). Moreover, there’s lots of results saying that you can use the ouput
of the sampler in much the same way one uses iid samples. For example approximating
posterior means with the average of the simulated variables. However, the Markovian
nature of the sampler makes using the samples a little trickier. One could try to combat
this by running the chain for a while and throwing out all of the early simulations used to
“burn in” the sampler. This throws away a lot of data. Our preferred method is to use good
starting values (why not start at the MLE?) and use all of the simulated data.

Let’s illustrate the sampler with prior specification prior 2. Consider the simplified
model:

Y | β,X, θ ∼ N(Xβ, θ−1I) and β ∼ N(0, ψ−1I) and θ ∼ Gamma(α/2, τ−1.

Under this specification, the full conditionals are:

β | y,X, θ ∼ N{(XtXθ + ψI)−1Xty, (XtXθ + ψI)−1}
θ | y,X,β ∼ Gamma{(n+ α)/2, 2(||y −Xβ||2 + τ)−1}

data("mtcars")

y = mtcars$mpg - mean(mtcars$mpg)

x = cbind(1, mtcars$wt - mean(mtcars$wt))

n = length(y)

p = ncol(x)

fitML = lm(y ~ x - 1)

xtx = t(x) %*% x

xty = as.vector(t(x) %*% y)
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nosim = 10000

rmvnorm = function(mu, Sigma) as.vector(mu + chol(Sigma) %*% rnorm(length(mu)))

thetaCurrent = 1 / summary(fitML)$sigma^2

beta = NULL

theta = thetaCurrent * 100

psi = .01

alpha = .01

tau = .01 * summary(fitML)$sigma^2

for (i in 1 : nosim){

V = solve(xtx * thetaCurrent + psi * diag(1, p, p))

mu = V %*% xty * thetaCurrent

betaCurrent = rmvnorm(mu, V)

sumesq = sum((y - x %*% betaCurrent)^2)

thetaCurrent = rgamma(1, (n + alpha) / 2, rate = (sumesq + tau)/2)

theta = c(theta, thetaCurrent)

beta = rbind(beta, betaCurrent)

}

sigma = sqrt(1/ theta)

quantile(beta[,1], c(.025, .975))

quantile(beta2[,2], c(.025, .975))

quantile(sigma, c(0.025, .975))
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