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Preface
About this book

This book is written as a companion book to the Regression Models¹ Coursera class as part of the
Data Science Specialization². However, if you do not take the class, the book mostly stands on its
own. A useful component of the book is a series of YouTube videos³ that comprise the Coursera
class.

The book is intended to be a low cost introduction to the important field of regression models. The
intended audience are students who are numerically and computationally literate, who would like
to put those skills to use in Data Science or Statistics. The book is offered for free as a series of
markdown documents on github and in more convenient forms (epub, mobi) on LeanPub.

This book is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License⁴, which requires author attribution for derivative works, non-commercial use
of derivative works and that changes are shared in the same way as the original work.

About the cover

The picture on the cover is a public domain image taken from Francis Galton’s paper on hereditary
stature. It represents an important leap in the development of regression and correlation as well as
regression to the mean.

¹https://www.coursera.org/course/regmods
²https://www.coursera.org/specialization/jhudatascience/1?utm_medium=courseDescripTop
³https://www.youtube.com/playlist?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
⁴http://creativecommons.org/licenses/by-nc-sa/4.0/
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Introduction
Before beginning

This book is designed as a companion to the Regression Models⁵ Coursera class as part of the Data
Science Specialization⁶, a ten course program offered by three faculty, Jeff Leek, Roger Peng and
Brian Caffo, at the Johns Hopkins University Department of Biostatistics.

The videos associated with this book can be watched in full here⁷, though the relevant links to
specific videos are placed at the appropriate locations throughout.

Before beginning, we assume that you have a working knowledge of the R programming language.
If not, there is a wonderful Coursera class by Roger Peng, that can be found here⁸. In addition,
students should know the basics of frequentist statistical inference. There is a Coursera class here⁹
and a LeanPub book here¹⁰.

The entirety of the book is onGitHub here¹¹. Please submit pull requests if you find errata! In addition
the course notes can be found also on GitHub here¹². While most code is in the book, all of the code
for every figure and analysis in the book is in the R markdown files (.Rmd) for the respective lectures.

Finally, we should mention swirl (statistics with interactive R programming). swirl is an intelligent
tutoring system developed by Nick Carchedi, with contributions by Sean Kross and Bill and Gina
Croft. It offers a way to learn R in R. Download swirl here¹³. There’s a swirl module for this course!¹⁴.
Try it out, it’s probably the most effective way to learn.

Regression models

Watch this video before beginning¹⁵

Regression models are the workhorse of data science. They are the most well described, practical
and theoretically understood models in statistics. A data scientist well versed in regression models
will be able to solve an incredible array of problems.

⁵https://www.coursera.org/course/regmods
⁶https://www.coursera.org/specialization/jhudatascience/1?utm_medium=courseDescripTop
⁷https://www.youtube.com/playlist?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
⁸https://www.coursera.org/course/rprog
⁹https://www.coursera.org/course/statinference
¹⁰https://leanpub.com/LittleInferenceBook
¹¹https://github.com/bcaffo/regmodsbook
¹²https://github.com/bcaffo/courses/tree/master/07_RegressionModels
¹³http://swirlstats.com
¹⁴https://github.com/swirldev/swirl_courses#swirl-courses
¹⁵https://www.youtube.com/watch?v=58ZPhK32sU8&index=1&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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https://www.coursera.org/specialization/jhudatascience/1?utm_medium=courseDescripTop
https://www.youtube.com/playlist?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.coursera.org/course/rprog
https://www.coursera.org/course/statinference
https://leanpub.com/LittleInferenceBook
https://github.com/bcaffo/regmodsbook
https://github.com/bcaffo/courses/tree/master/07_RegressionModels
http://swirlstats.com/
https://github.com/swirldev/swirl_courses#swirl-courses
https://www.youtube.com/watch?v=58ZPhK32sU8&index=1&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.coursera.org/course/regmods
https://www.coursera.org/specialization/jhudatascience/1?utm_medium=courseDescripTop
https://www.youtube.com/playlist?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.coursera.org/course/rprog
https://www.coursera.org/course/statinference
https://leanpub.com/LittleInferenceBook
https://github.com/bcaffo/regmodsbook
https://github.com/bcaffo/courses/tree/master/07_RegressionModels
http://swirlstats.com/
https://github.com/swirldev/swirl_courses#swirl-courses
https://www.youtube.com/watch?v=58ZPhK32sU8&index=1&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Perhaps the key insight for regression models is that they produce highly interpretable model fits.
This is unlike machine learning algorithms, which often sacrifice interpretability for improved
prediction performance or automation. These are, of course, valuable attributes in their own rights.
However, the benefit of simplicity, parsimony and interpretability offered by regression models (and
their close generalizations) should make them a first tool of choice for any practical problem.

Motivating examples

Francis Galton’s height data

Francis Galton, the 19th century polymath, can be credited with discovering regression. In his
landmark paper Regression Toward Mediocrity in Hereditary Stature¹⁶ he compared the heights of
parents and their children. He was particularly interested in the idea that the children of tall parents
tended to be tall also, but a little shorter than their parents. Children of short parents tended to be
short, but not quite as short as their parents. He referred to this as “regression to mediocrity” (or
regression to the mean). In quantifying regression to the mean, he invented what we would call
regression.

It is perhaps surprising that Galton’s specific work on height is still relevant today. In fact this
European Journal of Human Genetics manuscript¹⁷ compares Galton’s prediction models versus
those using modern high throughput genomic technology (spoiler alert, Galton wins).

Some questions from Galton’s data come to mind. How would one fit a model that relates parent
and child heights? How would one predict a child’s height based on their parents? How would we
quantify regression to the mean? In this class, we’ll answer all of these questions plus many more.

Simply Statistics versus Kobe Bryant

Simply Statistics¹⁸ is a blog by Jeff Leek, Roger Peng and Rafael Irizarry. It is one of the most widely
read statistics blogs, written by three of the top statisticians in academics. Rafa wrote a (somewhat
tongue in cheek) post regarding ball hogging¹⁹ among NBA basketball players. (By the way, your
author has played basketball with Rafael, who is quite good, but certainly doesn’t pass up shots;
glass houses and whatnot.)

Here’s some key sentences:

• “Data supports the claim that if Kobe stops ball hogging the Lakers will win more”
• “Linear regression suggests that an increase of 1% in % of shots taken by Kobe results in a drop
of 1.16 points (+/- 0.22) in score differential.”

¹⁶http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
¹⁷http://www.nature.com/ejhg/journal/v17/n8/full/ejhg20095a.html
¹⁸http://simplystatistics.org/
¹⁹http://simplystatistics.org/2013/01/28/data-supports-claim-that-if-kobe-stops-ball-hogging-the-lakers-will-win-more/

http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
http://www.nature.com/ejhg/journal/v17/n8/full/ejhg20095a.html
http://www.nature.com/ejhg/journal/v17/n8/full/ejhg20095a.html
http://simplystatistics.org/
http://simplystatistics.org/2013/01/28/data-supports-claim-that-if-kobe-stops-ball-hogging-the-lakers-will-win-more/
http://galton.org/essays/1880-1889/galton-1886-jaigi-regression-stature.pdf
http://www.nature.com/ejhg/journal/v17/n8/full/ejhg20095a.html
http://simplystatistics.org/
http://simplystatistics.org/2013/01/28/data-supports-claim-that-if-kobe-stops-ball-hogging-the-lakers-will-win-more/
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In this book we will cover how to create summary statements like this using regression model
building. Note the nice interpretability of the linear regression model. With this model Rafa
numerically relates the impact of more shots taken on score differential.

Summary notes: questions for this book

Regression models are incredibly handy statistical tools. One can use them to answer all sorts of
questions. Consider three of the most common tasks for regression models:

1. Prediction e.g.: to use the parent’s heights to predict children’s heights.
2. Modeling e.g.: to try to find a parsimonious, easily described mean relationship between

parental and child heights.
3. Covariation e.g.: to investigate the variation in child heights that appears unrelated to parental

heights (residual variation) and to quantify what impact genotype information has beyond
parental height in explaining child height.

An important aspect, especially in questions 2 and 3 is assessingmodeling assumptions. For example,
it is important to figure out how/whether and what assumptions are needed to generalize findings
beyond the data in question. Presumably, if we find a relationship between parental and child
heights, we’d like to extend that knowledge beyond the data used to build the model. This requires
assumptions. In this book, we’ll cover the main assumptions necessary.

Exploratory analysis of Galton’s Data

Watch this video before beginning²⁰

Let’s look at the data first. This data was created by Francis Galton²¹ in 1885. Galtonwas a statistician
who invented the term and concepts of regression and correlation, founded the journal Biometrika²²,
and was the cousin of Charles Darwin²³.

You may need to run install.packages("UsingR") if the UsingR library is not installed. Let’s look
at the marginal (parents disregarding children and children disregarding parents) distributions first.
The parental distribution is all heterosexual couples. The parental average was corrected for gender
via multiplying female heights by 1.08. Remember, Galton didn’t have regression to help figure out
a better way to do this correction!

²⁰https://www.youtube.com/watch?v=1akVPR0LDsg&index=2&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
²¹https://en.wikipedia.org/wiki/Francis_Galton
²²http://biomet.oxfordjournals.org/
²³https://en.wikipedia.org/wiki/Charles_Darwin

https://www.youtube.com/watch?v=1akVPR0LDsg&index=2&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://en.wikipedia.org/wiki/Francis_Galton
http://biomet.oxfordjournals.org/
https://en.wikipedia.org/wiki/Charles_Darwin
https://www.youtube.com/watch?v=1akVPR0LDsg&index=2&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://en.wikipedia.org/wiki/Francis_Galton
http://biomet.oxfordjournals.org/
https://en.wikipedia.org/wiki/Charles_Darwin
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Loading and plotting Galton’s data.

library(UsingR); data(galton); library(reshape); long <- melt(galton)

g <- ggplot(long, aes(x = value, fill = variable))

g <- g + geom_histogram(colour = "black", binwidth=1)

g <- g + facet_grid(. ~ variable)

g

Plotting the galton dataset

Finding the middle via least squares

Consider only the children’s heights. How could one describe the “middle”? Consider one definition.
Let Yi be the height of child i for i = 1, . . . , n = 928, then define the middle as the value of µ that
minimizes

n∑
i=1

(Yi − µ)2.

This is physical center of mass of the histogram. You might have guessed that the answer µ = Ȳ .
This is called the least squares estimate for µ. It is the point that minimizes the sum of the squared
distances between the observed data and itself.

Note, if there was no variation in the data, every value of Yi was the same, then there would be no
error around the mean. Otherwise, our estimate has to balance the fact that our estimate of µ isn’t
going to predict every observation perfectly. Minimizing the average (or sum of the) squared errors
seems like a reasonable strategy, though of course there are others. We could minimize the average
absolute deviation between the data µ (this leads to the median as the estimate instead of the mean).
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However, minimizing the squared error has many nice properties, so we’ll stick with that for this
class.

Experiment

Let’s use RStudio’s manipulate to see what value of µ minimizes the sum of the squared deviations.
The code below allows you to create a slider to investigate estimates and their mean squared error.

Using manipulate to find the least squares estimate.

library(manipulate)

myHist <- function(mu){

mse <- mean((galton$child - mu)^2)

g <- ggplot(galton, aes(x = child)) + geom_histogram(fill = "salmon", colour = "\

black", binwidth=1)

g <- g + geom_vline(xintercept = mu, size = 3)

g <- g + ggtitle(paste("mu = ", mu, ", MSE = ", round(mse, 2), sep = ""))

g

}

manipulate(myHist(mu), mu = slider(62, 74, step = 0.5))

The least squares estimate is the empirical mean.

g <- ggplot(galton, aes(x = child)) + geom_histogram(fill = "salmon", colour = "blac\

k", binwidth=1)

g <- g + geom_vline(xintercept = mean(galton$child), size = 3)

g
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The best mean is the vertical line.

The math (not required)

Watch this video before beginning²⁴

Why is the sample average the least squares estimate for µ? It’s surprisingly easy to show. Perhaps
more surprising is how generally these results can be extended.

²⁴https://www.youtube.com/watch?v=FV8D_fI5SRk&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=3

https://www.youtube.com/watch?v=FV8D_fI5SRk&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=3
https://www.youtube.com/watch?v=FV8D_fI5SRk&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=3
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n∑
i=1

(Yi − µ)2 =

n∑
i=1

(Yi − Ȳ + Ȳ − µ)2

=

n∑
i=1

(Yi − Ȳ )2 + 2

n∑
i=1

(Yi − Ȳ )(Ȳ − µ) +

n∑
i=1

(Ȳ − µ)2

=

n∑
i=1

(Yi − Ȳ )2 + 2(Ȳ − µ)

n∑
i=1

(Yi − Ȳ ) +

n∑
i=1

(Ȳ − µ)2

=

n∑
i=1

(Yi − Ȳ )2 + 2(Ȳ − µ)(

n∑
i=1

Yi − nȲ ) +

n∑
i=1

(Ȳ − µ)2

=

n∑
i=1

(Yi − Ȳ )2 +

n∑
i=1

(Ȳ − µ)2

≥
n∑

i=1

(Yi − Ȳ )2

Comparing children’s heights and their parent’s
heights

Watch this video before beginning²⁵

Looking at either the parents or children on their own isn’t interesting. We’re interested in how the
relate to each other. Let’s plot the parent and child heights.

ggplot(galton, aes(x = parent, y = child)) + geom_point()

²⁵https://www.youtube.com/watch?v=b34mXkyCH0I&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=4

https://www.youtube.com/watch?v=b34mXkyCH0I&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=4
https://www.youtube.com/watch?v=b34mXkyCH0I&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=4
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Plot of parent and child heights.

The overplotting is clearly hiding some data. Here you can get the code ²⁶ to make the size and color
of the points be the frequency.

²⁶https://github.com/bcaffo/courses/blob/master/07_RegressionModels/01_01_introduction/index.Rmd

https://github.com/bcaffo/courses/blob/master/07_RegressionModels/01_01_introduction/index.Rmd
https://github.com/bcaffo/courses/blob/master/07_RegressionModels/01_01_introduction/index.Rmd
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Re plot of the data

Regression through the origin

A line requires two parameters to be specified, the intercept and the slope. Let’s first focus on the
slope. We want to find the slope of the line that best fits the data. However, we have to pick a good
intercept. Let’s subtract the mean from both the parent and child heights so that their subsequent
means are 0. Now let’s find the line that goes through the origin (has intercept 0) by picking the best
slope.

Suppose that Xi are the parent heights with the mean subtracted. Consider picking the slope β that
minimizes
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n∑
i=1

(Yi −Xiβ)
2.

Each Xiβ is the vertical height of a line through the origin at point Xi. Thus, Yi −Xiβ is the vertical
distance between the line at each observed Xi point (parental height) and the Yi (child height).

Our goal is exactly to use the origin as a pivot point and pick the line that minimizes the sum of the
squared vertical distances of the points to the line. Use RStudio’s manipulate function to experiment.
Subtract the means so that the origin is the mean of the parent and children heights.

Code for plotting the data.

library(dplyr)

y <- galton$child - mean(galton$child)

x <- galton$parent - mean(galton$parent)

freqData <- as.data.frame(table(x, y))

names(freqData) <- c("child", "parent", "freq")

freqData$child <- as.numeric(as.character(freqData$child))

freqData$parent <- as.numeric(as.character(freqData$parent))

myPlot <- function(beta){

g <- ggplot(filter(freqData, freq > 0), aes(x = parent, y = child))

g <- g + scale_size(range = c(2, 20), guide = "none" )

g <- g + geom_point(colour="grey50", aes(size = freq+20), show.legend = FALSE)

g <- g + geom_point(aes(colour=freq, size = freq))

g <- g + scale_colour_gradient(low = "lightblue", high="white")

g <- g + geom_abline(intercept = 0, slope = beta, size = 3)

mse <- mean( (y - beta * x) ^2 )

g <- g + ggtitle(paste("beta = ", beta, "mse = ", round(mse, 3)))

g

}

manipulate(myPlot(beta), beta = slider(0.6, 1.2, step = 0.02))

The solution

In the next few lectures we’ll talk about why this is the solution. But, rather than leave you hanging,
here it is:
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> lm(I(child - mean(child))~ I(parent - mean(parent)) - 1, data = galton)

Call:

lm(formula = I(child - mean(child)) ~ I(parent - mean(parent)) -

1, data = galton)

Coefficients:

I(parent - mean(parent))

0.646

Let’s plot the best fitting line. In the subsequent chapter we will learn all about creating, interpreting
and performing inference on such mode fits. (Note that I shifted the origin back to the means of the
original data.) The results suggest that for every 1 inch increase in the parents’ height, we estimate
a 0.646 inch increase in the child’s height.
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Data with the best fitting line.

Exercises

1. Consider the dataset given by x=c(0.725,0.429,-0.372 ,0.863). What value of muminimizes
sum((x - mu)^2)? Watch a video solution.²⁷

2. Reconsider the previous question. Suppose that weights were given, w = c(2, 2, 1, 1) so that
we wanted to minimize sum(w * (x - mu) ^ 2) for mu. What value would we obtain? Watch
a video solution.²⁸

3. Take the Galton dataset and obtain the regression through the origin slope estimate where the
centered parental height is the outcome and the child’s height is the predictor. Watch a video

²⁷https://www.youtube.com/watch?v=Uhxm58rylec&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=1
²⁸https://www.youtube.com/watch?v=DS-Wl2dRxCA&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=2

https://www.youtube.com/watch?v=Uhxm58rylec&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=1
https://www.youtube.com/watch?v=DS-Wl2dRxCA&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=2
https://www.youtube.com/watch?v=DS-Wl2dRxCA&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=2
https://www.youtube.com/watch?v=IGVRkmrOrww&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=3
https://www.youtube.com/watch?v=IGVRkmrOrww&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=3
https://www.youtube.com/watch?v=DS-Wl2dRxCA&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=2
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solution.²⁹

²⁹https://www.youtube.com/watch?v=IGVRkmrOrww&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=3

https://www.youtube.com/watch?v=IGVRkmrOrww&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=3


Notation
Watch this video before beginning³⁰

Some basic definitions

In this chapter, we’ll cover some basic definitions and notation used throughout the book. We will
try to minimize the amount of mathematics required so that we can focus on the concepts.

Notation for data

We write X1, X2, . . . , Xn to describe n data points. As an example, consider the data set {1, 2, 5} then
X1 = 1, X2 = 2, X3 = 5 and n = 3.

Of course, there’s nothing in particular about the variable X. We often use a different letter, such as
Y1, . . . , Yn to describe a data set. We will typically use Greek letters for things we don’t know. Such
as, µ being a population mean that we’d like to estimate.

The empirical mean

The empirical mean is a measure of center of our data. Under sampling assumptions, it estimates a
population mean of interest. Define the empirical mean as

X̄ =
1

n

n∑
i=1

Xi.

Notice if we subtract the mean from data points, we get data that has mean 0. That is, if we define

X̃i = Xi − X̄.

then the mean of the X̃i is 0. This process is called centering the random variables. Recall from the
previous lecture that the empirical mean is the least squares solution for minimizing

n∑
i=1

(Xi − µ)2

³⁰https://www.youtube.com/watch?v=T5UXxVKD0sA&index=5&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://www.youtube.com/watch?v=T5UXxVKD0sA&index=5&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.youtube.com/watch?v=T5UXxVKD0sA&index=5&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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The empirical standard deviation and variance

The variance and standard deviation are measures of how spread out our data is. Under sampling
assumptions, they estimate variability in the population. We define the empirical variance as:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1

(
n∑

i=1

X2
i − nX̄2

)

The empirical standard deviation is defined as S =
√
S2.

Notice that the standard deviation has the same units as the data. The data defined by Xi/s have
empirical standard deviation 1. This is called scaling the data.

Normalization

We can combine centering and scaling of data as follows to get normalized data. In particular, the
data defined by:

Zi =
Xi − X̄

s

has empirical mean zero and empirical standard deviation 1. The process of centering then scaling
the data is called normalizing the data. Normalized data are centered at 0 and have units equal to
standard deviations of the original data. Example, a value of 2 from normalized data means that
data point was two standard deviations larger than the mean.

Normalization is very useful for creating data that comparable across experiments by getting rid of
any shifting or scaling effects.

The empirical covariance

This class is largely considering how variables covary. This is estimated by the empirical covariance.
Consider now when we have pairs of data, (Xi, Yi). Their empirical covariance is defined as:

Cov(X,Y ) =
1

n− 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
1

n− 1

(
n∑

i=1

XiYi − nX̄Ȳ

)

This measure is of limited utility, since its units are the product of the units of the two variables. A
more useful definition normalizes the two variables first.

The correlation is defined as:
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Cor(X,Y ) =
Cov(X,Y )

SxSy

where Sx and Sy are the estimates of standard deviations for theX observations and Y observations,
respectively. The correlation is simply the covariance of the separately normalized X and Y data.
Because the data have been normalized, the correlation is a unit free quantity and thus has more of
a hope of being interpretable across settings.

Some facts about correlation

First, the order of the arguments is irrelevant Cor(X,Y ) = Cor(Y,X) Secondly, it has to be between
-1 and 1, −1 ≤ Cor(X,Y ) ≤ 1. Thirdly, the correlation is exactly -1 or 1 only when the observations
fall perfectly on a negatively or positively sloped, line, respectively. Fourthly, Cor(X,Y ) measures
the strength of the linear relationship between the two variables, with stronger relationships as
Cor(X,Y ) heads towards -1 or 1. Finally, Cor(X,Y ) = 0 implies no linear relationship.

Exercises

1. Take the Galton dataset and find the mean, standard deviation and correlation between the
parental and child heights. Watch a video solution.³¹

2. Center the parent and child variables and verify that the centered variable means are 0. Watch
a video solution.³²

3. Rescale the parent and child variables and verify that the scaled variable standard deviations
are 1. Watch a video solution.³³

4. Normalize the parental and child heights. Verify that the normalized variables have mean 0
and standard deviation 1 and take the correlation between them. Watch a video solution.³⁴

³¹https://www.youtube.com/watch?v=6zq-excgkHg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=4
³²https://www.youtube.com/watch?v=OT9tn_jtzus&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=5
³³https://www.youtube.com/watch?v=y32m9mjEQsk&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=6
³⁴https://www.youtube.com/watch?v=D7LmrbjenZk&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=7

https://www.youtube.com/watch?v=6zq-excgkHg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=4
https://www.youtube.com/watch?v=OT9tn_jtzus&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=5
https://www.youtube.com/watch?v=OT9tn_jtzus&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=5
https://www.youtube.com/watch?v=y32m9mjEQsk&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=6
https://www.youtube.com/watch?v=D7LmrbjenZk&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=7
https://www.youtube.com/watch?v=6zq-excgkHg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=4
https://www.youtube.com/watch?v=OT9tn_jtzus&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=5
https://www.youtube.com/watch?v=y32m9mjEQsk&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=6
https://www.youtube.com/watch?v=D7LmrbjenZk&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=7


Ordinary least squares
Watch this video before beginning³⁵

Ordinary least squares (OLS) is the workhorse of statistics. It gives a way of taking complicated
outcomes and explaining behavior (such as trends) using linearity. The simplest application of OLS
is fitting a line.

General least squares for linear equations

Consider again the parent and child height data from Galton.

³⁵https://www.youtube.com/watch?v=LapyH7MG3Q4&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=6

https://www.youtube.com/watch?v=LapyH7MG3Q4&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=6
https://www.youtube.com/watch?v=LapyH7MG3Q4&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=6
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Plot of parent and child heights.

Let’s try fitting the best line. Let Yi be the ith child’s height and Xi be the ith (average over the pair
of) parental heights. Consider finding the best line of the form

Child Height = β0 + Parent Heightβ1,

Let’s try using least squares by minimizing the following equation over β0 and β1:

n∑
i=1

{Yi − (β0 + β1Xi)}2.

Minimizing this equation will minimize the sum of the squared distances between the fitted line at
the parents’ heights (β1Xi) and the observed child heights (Yi).
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The result actually has a closed form. Specifically, the least squares of the line:

Y = β0 + β1X,

through the data pairs (Xi, Yi) with Yi as the outcome obtains the line Y = β̂0 + β̂1X where:

β̂1 = Cor(Y,X)
Sd(Y )

Sd(X)
and β̂0 = Ȳ − β̂1X̄.

At this point, a couple of notes are in order. First, the slope, β̂1, has the units of Y /X. Secondly, the
intercept, β̂0, has the units of Y .

The line passes through the point (X̄, Ȳ ). If you center your Xs and Ys first, then the line will pass
through the origin. Moreover, the slope is the same one you would get if you centered the data,
(Xi − X̄, Yi − Ȳ ), and either fit a linear regression or regression through the origin.

To elaborate, regression through the origin, assuming that β0 = 0, yields the following solution to
the least squares criteria:

β̂1 =

∑n
i=1 XiYi∑n
i=1 X

2
i

,

This is exactly the correlation times the ratio in the standard deviations if the both the Xs and Ys
have been centered first. (Try it out using R to verify this!)

It is interesting to think about what happens when you reverse the role of X and Y . Specifically, the
slope of the regression line with X as the outcome and Y as the predictor is Cor(Y,X)Sd(X)/Sd(Y ).

If you normalized the data, {Xi−X̄
Sd(X) ,

Yi−Ȳ
Sd(Y )}, the slope is simply the correlation, Cor(Y,X), regardless

of which variable is treated as the outcome.

Revisiting Galton’s data

Watch this video before beginning³⁶

Let’s double check our calculations using R

³⁶https://www.youtube.com/watch?v=O7cDyrjWBBc&index=7&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://www.youtube.com/watch?v=O7cDyrjWBBc&index=7&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.youtube.com/watch?v=O7cDyrjWBBc&index=7&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Fitting Galton’s data using linear regression.

> y <- galton$child

> x <- galton$parent

> beta1 <- cor(y, x) * sd(y) / sd(x)

> beta0 <- mean(y) - beta1 * mean(x)

> rbind(c(beta0, beta1), coef(lm(y ~ x)))

(Intercept) x

[1,] 23.94 0.6463

[2,] 23.94 0.6463

We can see that the result of lm is identical to hard coding the fit ourselves. Let’s reverse the
outcome/predictor relationship.

> beta1 <- cor(y, x) * sd(x) / sd(y)

> beta0 <- mean(x) - beta1 * mean(y)

> rbind(c(beta0, beta1), coef(lm(x ~ y)))

(Intercept) y

[1,] 46.14 0.3256

[2,] 46.14 0.3256

Now let’s show that regression through the origin yields an equivalent slope if you center the data
first

> yc <- y - mean(y)

> xc <- x - mean(x)

> beta1 <- sum(yc * xc) / sum(xc ^ 2)

c(beta1, coef(lm(y ~ x))[2])

x

0.6463 0.6463

Now let’s show that normalizing variables results in the slope being the correlation.

> yn <- (y - mean(y))/sd(y)

> xn <- (x - mean(x))/sd(x)

> c(cor(y, x), cor(yn, xn), coef(lm(yn ~ xn))[2])

xn

0.4588 0.4588 0.4588

The image below plots the data again, the best fitting line and standard error bars for the fit. We’ll
work up to that point later. But, understanding that our fitted line is estimated with error is an
important concept. You can find the code for the plot here³⁷.

³⁷https://github.com/bcaffo/courses/blob/master/07_RegressionModels/01_03_ols/index.Rmd

https://github.com/bcaffo/courses/blob/master/07_RegressionModels/01_03_ols/index.Rmd
https://github.com/bcaffo/courses/blob/master/07_RegressionModels/01_03_ols/index.Rmd
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Image of the data, the fitted line and error bars.

Showing the OLS result

If you would like to see a proof of why the ordinary least squares result works out to be the way
that it is: watch this video³⁸.

³⁸https://www.youtube.com/watch?v=COVQX8WZVA8&index=8&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://www.youtube.com/watch?v=COVQX8WZVA8&index=8&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.youtube.com/watch?v=COVQX8WZVA8&index=8&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Exercises

1. Install and load the package UsingR and load the father.son data with data(father.son). Get
the linear regression fit where the son’s height is the outcome and the father’s height is the
predictor. Give the intercept and the slope, plot the data and overlay the fitted regression line.
Watch a video solution.³⁹

2. Refer to problem 1. Center the father and son variables and refit the model omitting the
intercept. Verify that the slope estimate is the same as the linear regression fit from problem 1.
Watch a video solution.⁴⁰

3. Refer to problem 1. Normalize the father and son data and see that the fitted slope is the
correlation. Watch a video solution.⁴¹

4. Go back to the linear regression line from Problem 1. If a father’s height was 63 inches, what
would you predict the son’s height to be? Watch a video solution.⁴²

5. Consider a data set where the standard deviation of the outcome variable is double that of the
predictor. Also, the variables have a correlation of 0.3. If you fit a linear regression model, what
would be the estimate of the slope? Watch a video solution.⁴³

6. Consider the previous problem. The outcome variable has a mean of 1 and the predictor has a
mean of 0.5. What would be the intercept? Watch a video solution.⁴⁴

7. True or false, if the predictor variable has mean 0, the estimated intercept from linear regression
will be the mean of the outcome? Watch a video solution.⁴⁵

8. Consider problem 5 again. What would be the estimated slope if the predictor and outcome
were reversed? Watch a video solution.⁴⁶

³⁹https://www.youtube.com/watch?v=HH78kFrT-5k&index=8&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁴⁰https://www.youtube.com/watch?v=Bf0euQ_-CuE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=10
⁴¹https://www.youtube.com/watch?v=Bf0euQ_-CuE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=10
⁴²https://www.youtube.com/watch?v=46eu_SrKVNE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=11
⁴³https://www.youtube.com/watch?v=rRADoy09tXg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=12
⁴⁴https://www.youtube.com/watch?v=TRxhUJB2zfg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=13
⁴⁵https://www.youtube.com/watch?v=XBXL70A9eDw&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=14
⁴⁶https://www.youtube.com/watch?v=kzmyzpHcNtg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=15

https://www.youtube.com/watch?v=HH78kFrT-5k&index=8&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=Bf0euQ_-CuE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=10
https://www.youtube.com/watch?v=Bf0euQ_-CuE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=10
https://www.youtube.com/watch?v=46eu_SrKVNE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=11
https://www.youtube.com/watch?v=rRADoy09tXg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=12
https://www.youtube.com/watch?v=TRxhUJB2zfg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=13
https://www.youtube.com/watch?v=XBXL70A9eDw&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=14
https://www.youtube.com/watch?v=kzmyzpHcNtg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=15
https://www.youtube.com/watch?v=HH78kFrT-5k&index=8&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=Bf0euQ_-CuE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=10
https://www.youtube.com/watch?v=Bf0euQ_-CuE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=10
https://www.youtube.com/watch?v=46eu_SrKVNE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=11
https://www.youtube.com/watch?v=rRADoy09tXg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=12
https://www.youtube.com/watch?v=TRxhUJB2zfg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=13
https://www.youtube.com/watch?v=XBXL70A9eDw&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=14
https://www.youtube.com/watch?v=kzmyzpHcNtg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=15


Regression to the mean
Watch this video before beginning⁴⁷

A historically famous idea, regression to the mean

Here is a fundamental question. Why is it that the children of tall parents tend to be tall, but not
as tall as their parents? Why do children of short parents tend to be short, but not as short as their
parents? Conversely, why do parents of very short children, tend to be short, but not a short as their
child? And the same with parents of very tall children?

We can try this with anything that is measured with error. Why do the best performing athletes this
year tend to do a little worse the following? Why do the best performers on hard exams always do
a little worse on the next hard exam?

These phenomena are all examples of so-called regression to the mean. Regression to the mean,
was invented by Francis Galton in the paper “Regression towards mediocrity in hereditary stature”
The Journal of the Anthropological Institute of Great Britain and Ireland , Vol. 15, (1886). The idea
served as a foundation for the discovery of linear regression.

Think of it this way, imagine if you simulated pairs of random normals. The largest first ones would
be the largest by chance, and the probability that there are smaller for the second simulation is
high. In other words P (Y < x|X = x) gets bigger as x heads to the very large values. Similarly
P (Y > x|X = x) gets bigger as x heads to very small values. Think of the regression line as the
intrinsic part and the regression to the mean as the result of noise. Unless Cor(Y,X) = 1 the intrinsic
part isn’t perfect and so we should think about how much regression to the mean should occur. In
other words, what should we multiply tall parent’s heights by to predict their children’s height?

Regression to the mean

Let’s investigate this with Galton’s father and son data. Suppose that we normalizeX (child’s height)
and Y (father’s height) so that they both have mean 0 and variance 1. Then, recall, our regression
line passes through (0, 0) (the mean of the X and Y). The slope of the regression line is Cor(Y,X),
regardless of which variable is the outcome (recall, both standard deviations are 1). Notice if X is
the outcome and you create a plot where X is the horizontal axis, the slope of the least squares line
that you plot is 1/Cor(Y,X). Let’s plot the normalized father and son heights to investigate.

⁴⁷https://www.youtube.com/watch?v=-I0_4JIeGws&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=9

https://www.youtube.com/watch?v=-I0_4JIeGws&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=9
https://www.youtube.com/watch?v=-I0_4JIeGws&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=9
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Code for the plot.

library(UsingR)

data(father.son)

y <- (father.son$sheight - mean(father.son$sheight)) / sd(father.son$sheight)

x <- (father.son$fheight - mean(father.son$fheight)) / sd(father.son$fheight)

rho <- cor(x, y)

library(ggplot2)

g = ggplot(data.frame(x, y), aes(x = x, y = y))

g = g + geom_point(size = 5, alpha = .2, colour = "black")

g = g + geom_point(size = 4, alpha = .2, colour = "red")

g = g + geom_vline(xintercept = 0)

g = g + geom_hline(yintercept = 0)

g = g + geom_abline(position = "identity")

g = g + geom_abline(intercept = 0, slope = rho, size = 2)

g = g + geom_abline(intercept = 0, slope = 1 / rho, size = 2)

g = g + xlab("Father's height, normalized")

g = g + ylab("Son's height, normalized")

g
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Regression to the mean, illustrated.

Let’s investigate the plot and the regression fits. If you had to predict a son’s normalized height,
it would be Cor(Y,X) ∗ Xi where Xi was the normalized father’s height. Conversely, if you had to
predict a father’s normalized height, it would be Cor(Y,X) ∗ Yi.

Multiplication by this correlation shrinks toward 0 (regression toward the mean). It is in this way
that Galton used regression to account for regression toward the mean. If the correlation is 1 there
is no regression to the mean, (if father’s height perfectly determines child’s height and vice versa).

Note since Galton’s original seminal paper, the idea of regression to the mean has been generalized
and expanded upon. However, the core remains. In paired measurements, if there’s randomness then
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the extreme values of one element of the pair will be likely less extreme in the other element.

The number of applications of this phenomena is staggering. Some financial advisors recommend
putting your money in your worst performing fund because of regression to the mean. (If there’s
a lot of noise, those are the most likely to gain in value.) An example that I’ve run into is that
students performing the best on midterm exams often do much worse on the final. Athletes often
follow a phenomenal season with merely a good season. It’s a useful exercise to think whenever
paired observations are being evaluated whether real intrinsic properties are being discussed, or just
regression to the mean.

Exercises

1. You have two noisy scales and a bunch of people that you’d like to weigh. You weigh each
person on both scales. The correlation was 0.75. If you normalized each set of weights, what
would you have to multiply the weight on one scale to get a good estimate of the weight on
the other scale? Watch a video solution.⁴⁸

2. Consider the previous problem. Someone’s weight was 2 standard deviations above the mean
of the group on the first scale. How many standard deviations above the mean would you
estimate them to be on the second? Watch a video solution.⁴⁹

3. You ask a collection of husbands and wives to guess how many jellybeans are in a jar. The
correlation is 0.2. The standard deviation for the husbands is 10 beans while the standard
deviation for wives is 8 beans. Assume that the data were centered so that 0 is the mean for
each. The centered guess for a husband was 30 beans (above the mean). What would be your
best estimate of the wife’s guess? Watch a video solution.⁵⁰

⁴⁸https://youtu.be/rZsnJ0EzVHo
⁴⁹http://youtu.be/2lHYXeRl0eg
⁵⁰https://youtu.be/htFH-4-vjS8

https://youtu.be/rZsnJ0EzVHo
http://youtu.be/2lHYXeRl0eg
https://youtu.be/htFH-4-vjS8
https://youtu.be/rZsnJ0EzVHo
http://youtu.be/2lHYXeRl0eg
https://youtu.be/htFH-4-vjS8


Statistical linear regression models
Watch this video before beginning⁵¹

Up to this point, we’ve only considered estimation. Estimation is useful, but we also need to know
how to extend our estimates to a population. This is the process of statistical inference. Our approach
to statistical inference will be through a statistical model. At the bare minimum, we need a few
distributional assumptions on the errors. However, we’ll focus on full model assumptions under
Gaussianity.

Basic regression model with additive Gaussian errors.

Consider developing a probabilistic model for linear regression. Our starting point will assume a
systematic component via a line and then independent and identically distributed Gaussian errors.
We can write the model out as:

Yi = β0 + β1Xi + ϵi

Here, the ϵi are assumed to be independent and identically distributed as N(0, σ2). Under this model,

E[Yi | Xi = xi] = µi = β0 + β1xi

and

V ar(Yi | Xi = xi) = σ2.

This model implies that the Yi are independent and normally distributed with means β0 + β1xi and
variance σ2. We could write this more compactly as

Yi | Xi = xi ∼ N(β0 + β1xi, σ
2).

While this specification of the model is a perhaps better for advanced purposes, specifying the
model as linear with additive error terms is generally more useful. With that specification, we can
hypothesize and discuss the nature of the errors. In fact, we’ll even cover ways to estimate them to
investigate our model assumption.

Remember that our least squares estimates of β0 and β1 are:

⁵¹https://www.youtube.com/watch?v=ewS1Kkzl8mw&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=10

https://www.youtube.com/watch?v=ewS1Kkzl8mw&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=10
https://www.youtube.com/watch?v=ewS1Kkzl8mw&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=10
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β̂1 = Cor(Y,X)
Sd(Y )

Sd(X)
and β̂0 = Ȳ − β̂1X̄.

It is convenient that under our Gaussian additive error model that themaximum likelihood estimates
of β0 and β1 are the least squares estimates.

Interpreting regression coefficients, the intercept

Watch this video before beginning⁵²

Our model allows us to attach statistical interpretations to our parameters. Let’s start with the
intercept; β0 represents the expected value of the response when the predictor is 0. We can show
this as:

E[Y |X = 0] = β0 + β1 × 0 = β0.

Note, the intercept isn’t always of interest. For example, when X = 0 is impossible or far outside
of the range of data. Take as a specific instance, when X is blood pressure, no one is interested in
studying blood pressure’s impact on anything for values near 0.

There is a way to make your intercept more interpretable. Consider that:

Yi = β0 + β1Xi + ϵi = β0 + aβ1 + β1(Xi − a) + ϵi = β̃0 + β1(Xi − a) + ϵi.

Therefore, shifting your X values by value a changes the intercept, but not the slope. Often a is set
to X̄, so that the intercept is interpreted as the expected response at the average X value.

Interpreting regression coefficients, the slope

Now that we understand how to interpret the intercept, let’s try interpreting the slope. Our slope, β1,
is the expected change in response for a 1 unit change in the predictor. We can show that as follows:

E[Y | X = x+ 1]− E[Y | X = x] = β0 + β1(x+ 1)− (β0 + β1x) = β1

Notice that the interpretation of β1 is tied to the units of the X variable. Let’s consider the impact of
changing the units.

Yi = β0 + β1Xi + ϵi = β0 +
β1

a
(Xia) + ϵi = β0 + β̃1(Xia) + ϵi

⁵²https://www.youtube.com/watch?v=71dDzKPYEdU&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=11

https://www.youtube.com/watch?v=71dDzKPYEdU&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=11
https://www.youtube.com/watch?v=71dDzKPYEdU&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=11
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Therefore, multiplication of X by a factor a results in dividing the coefficient by a factor of a.

As an example, suppose that X is height in meters (m) and Y is weight in kilograms (kg). Then β1 is
kg/m. Converting X to centimeters implies multiplying X by 100 cm/m. To get β1 in the right units
if we had fit the model in meters, we have to divide by 100 cm/m. Or, we can write out the notation
as:

Xm× 100cm

m
= (100X)cm and β1

kg

m
× 1m

100cm
=

(
β1

100

)
kg

cm

Using regression for prediction

Watch this video before beginning⁵³

Regression is quite useful for prediction. If we would like to guess the outcome at a particular value
of the predictor, say X, the regression model guesses:

β̂0 + β̂1X

In other words, just find the Y value on the line with the corresponding X value. Regression,
especially linear regression, often doesn’t produce the best prediction algorithms. However, it
produces parsimonious and interpretable models along with the predictions. Also, as we’ll see later
we’ll be able to get easily described estimates of uncertainty associated with our predictions.

Example

Let’s analyze the diamond data set from the UsingR package. The data is diamond prices (in Singapore
dollars) and diamond weight in carats. Carats are a standard measure of diamond mass, 0.2 grams.
To get the data use library(UsingR); data(diamond)

First let’s plot the data. Here’s the code I used

⁵³https://www.youtube.com/watch?v=5isJA7T5_VE&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=12

https://www.youtube.com/watch?v=5isJA7T5_VE&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=12
https://www.youtube.com/watch?v=5isJA7T5_VE&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=12
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library(UsingR)

data(diamond)

library(ggplot2)

g = ggplot(diamond, aes(x = carat, y = price))

g = g + xlab("Mass (carats)")

g = g + ylab("Price (SIN $)")

g = g + geom_point(size = 7, colour = "black", alpha=0.5)

g = g + geom_point(size = 5, colour = "blue", alpha=0.2)

g = g + geom_smooth(method = "lm", colour = "black")

g

and here’s the plot.

Plot of the diamond data with mass by carats

First, let’s fit the linear regression model. This is done with the lm function in R (lm stands for linear
model). The syntax is lm(Y ∼ X) where Y is the response and X is the predictor.
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> fit <- lm(price ~ carat, data = diamond)

> coef(fit)

(Intercept) carat

-259.6 3721.0

The function coef grabs the fitted coefficients and conveniently names them for you. Therefore,
we estimate an expected 3721.02 (SIN) dollar increase in price for every carat increase in mass of
diamond. The intercept -259.63 is the expected price of a 0 carat diamond.

We’re not interested in 0 carat diamonds (it’s hard to get a good price for them ;-). Let’s fit the model
with a more interpretable intercept by centering our X variable.

> fit2 <- lm(price ~ I(carat - mean(carat)), data = diamond)

coef(fit2)

(Intercept) I(carat - mean(carat))

500.1 3721.0

Thus the new intercept, 500.1, is the expected price for the average sized diamond of the data (0.2042
carats). Notice the estimated slope didn’t change at all.

Now let’s try changing the scale. This is useful since a one carat increase in a diamond is pretty big.
What about changing units to 1/10th of a carat? We can just do this by just dividing the coefficient
by 10, no need to refit the model.

Thus, we expect a 372.102 (SIN) dollar change in price for every 1/10th of a carat increase in mass
of diamond.

Let’s show via R that this is the same as rescaling our X variable and refitting. To go from 1 carat to
1/10 of a carat units, we need to multiply our data by 10.

> fit3 <- lm(price ~ I(carat * 10), data = diamond)

> coef(fit3)

(Intercept) I(carat * 10)

-259.6 372.1

Now, let’s predict the price of a diamond. This should be as easy as just evaluating the fitted line at
the price we want to

> newx <- c(0.16, 0.27, 0.34)

> coef(fit)[1] + coef(fit)[2] * newx

[1] 335.7 745.1 1005.5

Therefore, we predict the price to be 335.7, 745.1 and 1005.5 for a 0.16, 0.26 and 0.34 carat diamond.
Of course, our prediction models will get more elaborate and R has a generic function, predict, to
put our X values into the model for us. The data has to go into the model as a data frame with the
same named X variables.
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> predict(fit, newdata = data.frame(carat = newx))

1 2 3

335.7 745.1 1005.5

Let’s visualize our prediction. In the following plot, the predicted values at the observed Xs are the
red points on the fitted line. The new X values are the at vertical lines, which are connected to the
predicted values via the connected horizontal lines.

Illustrating prediction with regression.

Exercises

1. Fit a linear regression model to the father.son dataset with the father as the predictor and the
son as the outcome. Give a p-value for the slope coefficient and perform the relevant hypothesis
test. Watch a video solution.⁵⁴

⁵⁴https://www.youtube.com/watch?v=LxA2x2VvPWo&index=19&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0

https://www.youtube.com/watch?v=LxA2x2VvPWo&index=19&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=LxA2x2VvPWo&index=19&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
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2. Refer to question 1. Interpret both parameters. Recenter for the intercept if necessary. Watch a
video solution.⁵⁵

3. Refer to question 1. Predict the son’s height if the father’s height is 80 inches. Would you
recommend this prediction? Why or why not? Watch a video solution.⁵⁶

4. Load the mtcars dataset. Fit a linear regression with miles per gallon as the outcome and
horsepower as the predictor. Interpret your coefficients, recenter for the intercept if necessary.
Watch a video solution.⁵⁷

5. Refer to question 4. Overlay the fit onto a scatterplot. Watch a video solution.⁵⁸
6. Refer to question 4. Test the hypothesis of no linear relationship between horsepower and miles

per gallon. Watch a video solution.⁵⁹
7. Refer to question 4. Predict the miles per gallon for a horsepower of 111. Watch a video

solution.⁶⁰

⁵⁵https://www.youtube.com/watch?v=YtXTK9ztE00&index=20&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁵⁶https://www.youtube.com/watch?v=kB95XqatMho&index=21&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁵⁷https://www.youtube.com/watch?v=4yc5ACmtYMw&index=22&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁵⁸https://www.youtube.com/watch?v=mhskQnUIVO4&index=23&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁵⁹https://www.youtube.com/watch?v=zjP82piLr1E&index=24&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁶⁰https://www.youtube.com/watch?v=UxSrHtY_klY&index=25&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0

https://www.youtube.com/watch?v=YtXTK9ztE00&index=20&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=YtXTK9ztE00&index=20&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=kB95XqatMho&index=21&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=4yc5ACmtYMw&index=22&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=mhskQnUIVO4&index=23&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=zjP82piLr1E&index=24&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=UxSrHtY_klY&index=25&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=UxSrHtY_klY&index=25&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=YtXTK9ztE00&index=20&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=kB95XqatMho&index=21&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=4yc5ACmtYMw&index=22&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=mhskQnUIVO4&index=23&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=zjP82piLr1E&index=24&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=UxSrHtY_klY&index=25&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0


Residuals
Watch this video before beginning⁶¹

Residual variation

Residuals represent variation left unexplained by our model. We emphasize the difference between
residuals and errors. The errors are the unobservable true deviations from the known coefficients,
while residuals are the observable deviations from the estimated coefficients. In a sense, the residuals
are estimates of the errors.

Consider again the diamond data set from UsingR. Recall that the data is diamond prices (Singapore
dollars) and diamond weight in carats (standard measure of diamond mass, 0.2g). To get the data
use library(UsingR); data(diamond). Recall that the data and our linear regression fit looked like
the following:

⁶¹https://www.youtube.com/watch?v=5vu-rW_FI0E&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=13

https://www.youtube.com/watch?v=5vu-rW_FI0E&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=13
https://www.youtube.com/watch?v=5vu-rW_FI0E&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=13
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Diamond data plotted along with best fitting regression line.

Recall our linear model was

Yi = β0 + β1Xi + ϵi

where we are assuming that ϵi ∼ N(0, σ2). Our observed outcome is Yi with associated predictor
value, Xi. Let’s label the predicted outcome for index i as Ŷi. Recall that we obtain our predictions
by plugging our observed Xi into the linear regression equation:

Ŷi = β̂0 + β̂1Xi

The residual is defined as the difference the between the observed and predicted outcome

ei = Yi − Ŷi.

The residuals are exactly the vertical distance between the observed data point and the associated
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point on the regression line. Positive residuals have associated Y values above the fitted line and
negative residuals have values below.

Picture of the residuals for the diamond data. Residuals are the signed length of the red lines.

Least squares minimizes the sum of the squared residuals,
∑n

i=1 e
2
i . Note that the ei are observable,

while the errors, ϵi are not. The residuals can be thought of as estimates of the errors.

Properties of the residuals

Let’s consider some properties of the residuals. First, under our model, their expected value is 0,
E[ei] = 0. If an intercept is included,

∑n
i=1 ei = 0. Note this tells us that the residuals are not

independent. If we know n−1 of them, we know the nth. In fact, we will only have n−p free residuals,
where p is the number of coefficients in our regression model, so p = 2 for linear regression with an
intercept and slope. If a regressor variable, Xi, is included in the model then

∑n
i=1 eiXi = 0.

What do we use residuals for? Most importantly, residuals are useful for investigating poor model
fit. Residual plots highlight poor model fit.
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Another use for residuals is to create covariate adjusted variables. Specifically, residuals can be
thought of as the outcome (Y) with the linear association of the predictor (X) removed. So, for
example, if you wanted to create a weight variable with the linear effect of height removed, you
would fit a linear regression with weight as the outcome and height as the predictor and take the
residuals. (Note this only works if the relationship is linear.)

Finally, we should note the different sorts of variation one encounters in regression. There’s the
total variability in our response, usually called total variation. One then differentiates residual
variation (variation after removing the predictor) from systematic variation (variation explained
by the regression model). These two kinds of variation add up to the total variation, which we’ll see
later.

Example

Watch this video before beginning⁶²

The code below shows how to obtain the residuals.

> data(diamond)

> y <- diamond$price; x <- diamond$carat; n <- length(y)

> fit <- lm(y ~ x)

## The easiest way to get the residuals

> e <- resid(fit)

## Obtain the residuals manually, get the predicted Ys first

> yhat <- predict(fit)

## The residuals are y - yhat. Let's check by comparing this

## with R's build in resid function

> max(abs(e -(y - yhat)))

[1] 9.486e-13

## Let's do it again hard coding the calculation of Yhat

max(abs(e - (y - coef(fit)[1] - coef(fit)[2] * x)))

[1] 9.486e-13

Residuals versus X

A useful plot is the residuals versus the X values. This allows us to zoom in on instances of poor
model fit. Whenever we look at a residual plot, we are searching for systematic patterns of any sort.
Here’s the plot for diamond data.

⁶²https://www.youtube.com/watch?v=DSsSwKJ9frg&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=14

https://www.youtube.com/watch?v=DSsSwKJ9frg&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=14
https://www.youtube.com/watch?v=DSsSwKJ9frg&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=14
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Plot of the mass (horizontal) versus residuals (vertical)

Let’s go through some contrived examples to highlight. Here’s a plot of nonlinear data where we’ve
fit a line.
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Plot of simulated non-linear data.

Here’s what happens when you focus in on the residuals.
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Plot of residuals versus X

Another common feature where our model fails is when the variance around the regression line
is not constant. Remember our errors are assumed to be Gaussian with a constant error. Here’s an
example where heteroskedasticity is not at all apparent in the scatterplot.
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Scatterplot demonstrating heteroskedasticity.

Now look at the consequences of focusing in on the residuals.
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Residuals versus X.

If we look at the residual plot for the diamond data, things don’t look so bad.
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Residuals versus X.

Estimating residual variation

Watch this before beginning⁶³

We’ve talked at length about how to estimate β0 and β1. However, there’s another parameter in our
model, σ. Recall that our model is Yi = β0 + β1Xi + ϵi, where ϵi ∼ N(0, σ2).

It seems natural to use our residual variation to estimate population error variation. In fact, the
maximum likelihood estimate of σ2 is 1

n

∑n
i=1 e

2
i , the average squared residual. Since the residuals

have a zero mean (if an intercept is included), this is close to the the calculating the variance of the
residuals. However, to obtain unbiasedness, most people use

σ̂2 =
1

n− 2

n∑
i=1

e2i .

The n − 2 instead of n is so that E[σ̂2] = σ2. This is exactly analogous to dividing by n − 1 in the
ordinary variance calculation. In fact, the ordinary variance (using var in R on a vector) is exactly

⁶³https://www.youtube.com/watch?v=ZE3a4OZFWPA&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=15

https://www.youtube.com/watch?v=ZE3a4OZFWPA&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=15
https://www.youtube.com/watch?v=ZE3a4OZFWPA&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=15
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the same as the residual variance estimate from a model that has an intercept and no slope. The
n− 2 instead of n− 1 when we include a slope can be thought of as losing a degree of freedom from
having to estimate an extra parameter (the slope).

Most of this is typically opaque to the user, since we just grab the correct residual variance output
from lm. But, to solidify the concepts, let’s go through the diamond example to make sure that we
can hard code the estimates on our own. (And from then on we’ll just use lm.)

Diamond example

Finding residual variance estimates.

> y <- diamond$price; x <- diamond$carat; n <- length(y)

> fit <- lm(y ~ x)

## the estimate from lm

> summary(fit)$sigma

[1] 31.84

## directly calculating from the residuals

> sqrt(sum(resid(fit)^2) / (n - 2))

[1] 31.84

Summarizing variation

A way to think about regression is in the decomposition of variability of our response. The total
variability in our response is the variability around an intercept. This is also the variance estimate
from a model with only an intercept:

Total variability =

n∑
i=1

(Yi − Ȳ )2

The regression variability is the variability that is explained by adding the predictor. Mathematically,
this is:

Regression variability =
∑n

i=1(Ŷi − Ȳ )2.

The residual variability is what’s leftover around the regression line

Residual variability =

n∑
i=1

(Yi − Ŷi)
2

It’s a nice fact that the error and regression variability add up to the total variability:
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n∑
i=1

(Yi − Ȳ )2 =

n∑
i=1

(Yi − Ŷi)
2 +

n∑
i=1

(Ŷi − Ȳ )2

Thus, we can think of regression as explaining away variability. The fact that all of the quantities
are positive and that they add up this way allows us to define the proportion of the total variability
explained by the model.

Consider our diamond example again. The plot below shows the variation explained by amodel with
an intercept only (representing total variation) and then the mass is included as a linear predictor.
Notice how much the variation decreases when including the diamond mass.

Here’s the code:

e = c(resid(lm(price ~ 1, data = diamond)),

resid(lm(price ~ carat, data = diamond)))

fit = factor(c(rep("Itc", nrow(diamond)),

rep("Itc, slope", nrow(diamond))))

g = ggplot(data.frame(e = e, fit = fit), aes(y = e, x = fit, fill = fit))

g = g + geom_dotplot(binaxis = "y", size = 2, stackdir = "center", binwidth = 20)

g = g + xlab("Fitting approach")

g = g + ylab("Residual price")

g
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Residuals for intercept only and linear regression for the diamond example.

R squared

R squared is the percentage of the total variability that is explained by the linear relationship with
the predictor

R2 =

∑n
i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

Here are some summary notes about R squared.

• R2 is the percentage of variation explained by the regression model.
•

0 ≤ R2 ≤ 1

• R2 is the sample correlation squared
• R2 can be a misleading summary of model fit.

– Deleting data can inflate it.
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– (For later.) Adding terms to a regression model always increases R2.

Anscombe’s residuals (named after their inventor) are a famous example of how R squared doesn’t
tell the whole story about model fit. In this example, four data sets have equivalent R squared values
and beta values, but dramatically different model fits. The result is to suggest that reducing data to
a single number, be it R squared, a test statistic or a P-value, often masks important aspects of the
data. The code is quite simple: data(anscombe);example(anscombe).

Plot of Anscombe’s data set.

Exercises

1. Fit a linear regression model to the father.son dataset with the father as the predictor and the
son as the outcome. Plot the father’s height (horizontal axis) versus the residuals (vertical axis).
Watch a video solution.⁶⁴

⁶⁴https://www.youtube.com/watch?v=WnFuqlS3vvc&index=26&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0

https://www.youtube.com/watch?v=WnFuqlS3vvc&index=26&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=WnFuqlS3vvc&index=26&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
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2. Refer to question 1. Directly estimate the residual variance and compare this estimate to the
output of lm. Watch a video solution.⁶⁵

3. Refer to question 1. Give the R squared for this model. Watch a video solution.⁶⁶
4. Load the mtcars dataset. Fit a linear regression with miles per gallon as the outcome and

horsepower as the predictor. Plot horsepower versus the residuals. Watch a video solution.⁶⁷
5. Refer to question 4. Directly estimate the residual variance and compare this estimate to the

output of lm. Watch a video solution.⁶⁸
6. Refer to question 4. Give the R squared for this model. Watch a video solution.⁶⁹

⁶⁵https://www.youtube.com/watch?v=M5scUi6JTCI&index=27&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁶⁶https://www.youtube.com/watch?v=A3IqBqjbVjo&index=28&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁶⁷https://www.youtube.com/watch?v=g0YPXDpQ15s&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=29
⁶⁸https://www.youtube.com/watch?v=R_RPGz4UpO4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=30
⁶⁹https://www.youtube.com/watch?v=eavifxTZgfQ&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=31

https://www.youtube.com/watch?v=M5scUi6JTCI&index=27&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=A3IqBqjbVjo&index=28&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=g0YPXDpQ15s&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=29
https://www.youtube.com/watch?v=R_RPGz4UpO4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=30
https://www.youtube.com/watch?v=eavifxTZgfQ&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=31
https://www.youtube.com/watch?v=M5scUi6JTCI&index=27&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=A3IqBqjbVjo&index=28&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=g0YPXDpQ15s&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=29
https://www.youtube.com/watch?v=R_RPGz4UpO4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=30
https://www.youtube.com/watch?v=eavifxTZgfQ&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=31


Regression inference
Watch this before beginning.⁷⁰

In this chapter, we’ll consider statistical inference for regression models.

Reminder of the model

Consider our regression model:

Yi = β0 + β1Xi + ϵi

where ϵ ∼ N(0, σ2). Let’s consider some ways for doing inference for our regression parameters.
For this development, we assume that the true model is known. We also assume that you’ve seen
confidence intervals and hypothesis tests before. If not, consider taking the Statistical Inference
course and reading the accompanying book before approaching this material.

Remember our estimates:

β̂0 = Ȳ − β̂1X̄

and

β̂1 = Cor(Y,X)
Sd(Y )

Sd(X)
.

Review

Let’s review some important components of statistical inference. Consider statistics like the
following:

θ̂ − θ

σ̂θ̂

where θ̂ is an estimate of interest, θ is the estimand of interest and σ̂θ̂ is the standard error of θ̂. We
see that in many cases such statistics often have the following properties:

⁷⁰https://www.youtube.com/watch?v=vSdws014e4k&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=16

https://www.youtube.com/watch?v=vSdws014e4k&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=16
https://www.youtube.com/watch?v=vSdws014e4k&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=16


Regression inference 51

1. They are normally distributed and have a finite sample Student’s T distribution under
normality assumptions.

2. They can be used to test H0 : θ = θ0 versus Ha : θ >,<, ̸= θ0.
3. They can be used to create a confidence interval for θ via θ̂ ± Q1−α/2σ̂θ̂ where Q1−α/2 is the

relevant quantile from either a normal or T distribution.

In the case of regression with iid Gaussian sampling assumptions on the errors, our inferences will
follow very similarly to what you saw in your inference class.

We won’t cover asymptotics for regression analysis, but suffice it to say that under assumptions on
the ways in which the X values are collected, the iid sampling model and mean model, the normal
results hold to create intervals and confidence intervals

Results for the regression parameters

First, we need standard errors for our regression parameters. These are given by:

σ2
β̂1

= V ar(β̂1) = σ2/

n∑
i=1

(Xi − X̄)2

and

σ2
β̂0

= V ar(β̂0) =

(
1

n
+

X̄2∑n
i=1(Xi − X̄)2

)
σ2

In practice, σ2 is replaced by its residual variance estimate covered in the last chapter.

Given how often this came up in inference, it’s probably not surprising that under iid Gaussian
errors

β̂j − βj

σ̂β̂j

follows a t distribution with n-2 degrees of freedom and a normal distribution for large n. This can
be used to create confidence intervals and perform hypothesis tests.

Example diamond data set

Watch this before beginning⁷¹

Let’s go through a didactic example using our diamond pricing data. First, let’s define our outcome,
predictor and estimate all of the parameters. (Note, again we’re hard coding these results, but lm
will give it to us automatically).

⁷¹https://www.youtube.com/watch?v=V4Y7MHbn3lw&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=17

https://www.youtube.com/watch?v=V4Y7MHbn3lw&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=17
https://www.youtube.com/watch?v=V4Y7MHbn3lw&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=17


Regression inference 52

library(UsingR); data(diamond)

y <- diamond$price; x <- diamond$carat; n <- length(y)

beta1 <- cor(y, x) * sd(y) / sd(x)

beta0 <- mean(y) - beta1 * mean(x)

e <- y - beta0 - beta1 * x

sigma <- sqrt(sum(e^2) / (n-2))

ssx <- sum((x - mean(x))^2)

Now let’s calculate the standard errors for our regression coefficients and the t statistic. The natural
null hypotheses are H0 : βj = 0. So our t statistics are just the estimates divided by their standard
errors.

seBeta0 <- (1 / n + mean(x) ^ 2 / ssx) ^ .5 * sigma

seBeta1 <- sigma / sqrt(ssx)

tBeta0 <- beta0 / seBeta0

tBeta1 <- beta1 / seBeta1

Now let’s consider getting P-values. Recall that P-values are the probability of getting a statistic as
or larger than was actually obtained, where the probability is calculated under the null hypothesis.
Below I also do some formatting to get it to look like the output from lm.

> pBeta0 <- 2 * pt(abs(tBeta0), df = n - 2, lower.tail = FALSE)

> pBeta1 <- 2 * pt(abs(tBeta1), df = n - 2, lower.tail = FALSE)

> coefTable <- rbind(c(beta0, seBeta0, tBeta0, pBeta0), c(beta1, seBeta1, tBeta1, pB\

eta1))

> colnames(coefTable) <- c("Estimate", "Std. Error", "t value", "P(>|t|)")

> rownames(coefTable) <- c("(Intercept)", "x")

> coefTable

Estimate Std. Error t value P(>|t|)

(Intercept) -259.6 17.32 -14.99 2.523e-19

x 3721.0 81.79 45.50 6.751e-40

The first column is the actual estimates. The second is the standard errors, the third is the t value
(the first divided by the second) and the final is the t probability of getting an unsigned statistic that
large under the null hypothesis (the P-value for the two sided test). Of course, we don’t actually go
through this exercise every time; lm does it for us.
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> fit <- lm(y ~ x);

> summary(fit)$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) -259.6 17.32 -14.99 2.523e-19

x 3721.0 81.79 45.50 6.751e-40

Remember, we reject if our P-value is less than our desired type I error rate. In both cases the test is
for whether or not the parameter is zero. This is almost always of interest for the slope, but frequently
a zero intercept isn’t of interest so that P-value is often disregarded.

For the slope, a value of zero represents no linear relationship between the predictor and response.
So, the P-value is for performing a test of whether any (linear) relationship exist or not.

Getting a confidence interval

Recall from your inference class, a fair number of confidence intervals take the form of an estimate
plus or minus a t quantile times a standard error. Let’s use that formula to create confidence intervals
for our regression parameters. Let’s first do the intercept.

> sumCoef <- summary(fit)$coefficients

> sumCoef[1,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[1, 2]

[1] -294.5 -224.8

Now let’s do the slope:

> (sumCoef[2,1] + c(-1, 1) * qt(.975, df = fit$df) * sumCoef[2, 2]) / 10

[1] 355.6 388.6

So, wewould interpret this as: “with 95% confidence, we estimate that a 0.1 carat increase in diamond
size results in a 355.6 to 388.6 increase in price in (Singapore) dollars”.

Prediction of outcomes

Watch this before beginning⁷²

Finally, let’s consider prediction again. Consider the problem of predicting Y at a value of X. In our
example, this is predicting the price of a diamond given the carat.

We’ve already covered that the estimate for prediction at point x0 is:

β̂0 + β̂1x0

⁷²https://www.youtube.com/watch?v=aMirqYW6VrY&index=18&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://www.youtube.com/watch?v=aMirqYW6VrY&index=18&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.youtube.com/watch?v=aMirqYW6VrY&index=18&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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A standard error is needed to create a prediction interval. This is important, since predictions by
themselves don’t convey anything about how accurate we would expect the prediction to be. Take
our diamond example. Because the model fits so well, we would be surprised if we tried to sell a
diamond and the offers were well off our model prediction (since it seems to fit quite well).

There’s a subtle, but important, distinction between intervals for the regression line at point x0 and
the prediction of what a y would be at point x0. What differs is the standard error:

For the line at x0 the standard error is,

σ̂

√
1

n
+

(x0 − X̄)2∑n
i=1(Xi − X̄)2

For the prediction interval at x0 the standard error is

σ̂

√
1 +

1

n
+

(x0 − X̄)2∑n
i=1(Xi − X̄)2

Notice that the prediction interval standard error is a little larger than the error for a line. Think of
it this way. If we want to predict a Y value at a particular X value, and we knew the actual true slope
and intercept, there would still be error. However, if we only wanted to predict the value at the line
at that X value, there would be no variance, since we already know the line.

Thus, the variation for the line only considers how hard it is to estimate the regression line at that
X value. The prediction interval includes that variation, as well as the extra variation unexplained
by the relationship between Y and X. So, it has to be a little wider.

For the diamond example, here’s both the mean value and prediction interval. (code and plot).
Notice that to get the various intervals, one has to use one of the options interval="confidence" or
interval="prediction" in the prediction function.

library(ggplot2)

newx = data.frame(x = seq(min(x), max(x), length = 100))

p1 = data.frame(predict(fit, newdata= newx,interval = ("confidence")))

p2 = data.frame(predict(fit, newdata = newx,interval = ("prediction")))

p1$interval = "confidence"

p2$interval = "prediction"

p1$x = newx$x

p2$x = newx$x

dat = rbind(p1, p2)

names(dat)[1] = "y"

g = ggplot(dat, aes(x = x, y = y))

g = g + geom_ribbon(aes(ymin = lwr, ymax = upr, fill = interval), alpha = 0.2)

g = g + geom_line()
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g = g + geom_point(data = data.frame(x = x, y=y), aes(x = x, y = y), size = 4)

g

Image of prediction and mean value interval.

Summary notes

• Both intervals have varying widths.
– Least width at the mean of the Xs.

• We are quite confident in the regression line, so that interval is very narrow.
– If we knew β0 and β1 this interval would have zero width.

• The prediction interval must incorporate the variability in the data around the line.
– Even if we knew β0 and β1 this interval would still have width. *



Regression inference 56

Exercises

1. Test whether the slope coefficient for the father.son data is different from zero (father as
predictor, son as outcome). Watch a video solution.⁷³

2. Refer to question 1. Form a confidence interval for the slope coefficient. Watch a video
solution⁷⁴

3. Refer to question 1. Form a confidence interval for the intercept (center the fathers’ heights
first to get an intercept that is easier to interpret). Watch a video solution.⁷⁵

4. Refer to question 1. Form a mean value interval for the expected son’s height at the average
father’s height. Watch a video solution.⁷⁶

5. Refer to question 1. Form a prediction interval for the son’s height at the average father’s height.
Watch a video solution.⁷⁷

6. Load the mtcars dataset. Fit a linear regression with miles per gallon as the outcome
and horsepower as the predictor. Test whether or not the horsepower power coefficient is
statistically different from zero. Interpret your test.

7. Refer to question 6. Form a confidence interval for the slope coefficient.
8. Refer to question 6. Form a confidence interval for the intercept (center the HP variable first).
9. Refer to question 6. Form a mean value interval for the expected MPG for the average HP.
10. Refer to question 6. Form a prediction interval for the expected MPG for the average HP.
11. Refer to question 6. Create a plot that has the fitted regression line plus curves at the expected

value and prediction intervals.

⁷³https://www.youtube.com/watch?v=6hkBsUAQU7E&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=32
⁷⁴https://www.youtube.com/watch?v=eExHWvQImEE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=33
⁷⁵https://www.youtube.com/watch?v=GeDmfhm2bhc&index=34&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁷⁶https://www.youtube.com/watch?v=dLV_Jopsbl4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=35
⁷⁷https://www.youtube.com/watch?v=-rx-71QsUnY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=36

https://www.youtube.com/watch?v=6hkBsUAQU7E&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=32
https://www.youtube.com/watch?v=eExHWvQImEE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=33
https://www.youtube.com/watch?v=eExHWvQImEE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=33
https://www.youtube.com/watch?v=GeDmfhm2bhc&index=34&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=dLV_Jopsbl4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=35
https://www.youtube.com/watch?v=-rx-71QsUnY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=36
https://www.youtube.com/watch?v=6hkBsUAQU7E&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=32
https://www.youtube.com/watch?v=eExHWvQImEE&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=33
https://www.youtube.com/watch?v=GeDmfhm2bhc&index=34&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=dLV_Jopsbl4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=35
https://www.youtube.com/watch?v=-rx-71QsUnY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=36


Multivariable regression analysis
Watch this before beginning.⁷⁸

In this chapter we extend linear regression so that our models can contain more variables. A natural
first approach is to assume additive effects, basically extending our linear model to a plane or
hyperplane. This technique represents one of the most widely used and successful methods in
statistics.

Multivariable regression analyses: adjustment

If I were to present evidence of a relationship between breath mint usage (mints per day, X) and
pulmonary function (measured in FEV), you would be skeptical. Likely, you would say, ‘smokers
tend to use more breath mints than non smokers, smoking is related to a loss in pulmonary function.
That’s probably the culprit.’ If askedwhat would convince you, youwould likely say, ‘If non-smoking
breathmint users had lower lung function than non-smoking non-breathmint users and, similarly, if
smoking breath mint users had lower lung function than smoking non-breath mint users, I’d be more
inclined to believe you’. In other words, to even consider my results, I would have to demonstrate
that they hold while holding smoking status fixed.

This is one of the main uses of multivariate regression, to consider a relationship between a predictor
and response, while accounting for other variables.

Multivariable regression analyses: prediction

An insurance company is interested in how last year’s claims can predict a person’s time in the
hospital this year. They want to use an enormous amount of data contained in claims to predict a
single number. Simple linear regression is not equipped to handle more than one predictor. How
can one generalize SLR to incorporate lots of regressors for the purpose of prediction? What are the
consequences of adding lots of regressors? Surely there must be consequences to throwing variables
in that aren’t related to Y? Surely there must also be consequences to omitting variables that are?

The linear model

The general linear model extends simple linear regression (SLR) by adding terms linearly into the
model.

⁷⁸https://www.youtube.com/watch?v=qsXtdSNbg5E&index=19&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://www.youtube.com/watch?v=qsXtdSNbg5E&index=19&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.youtube.com/watch?v=qsXtdSNbg5E&index=19&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Yi = β1X1i + β2X2i + . . .+ βpXpi + ϵi =

p∑
k=1

Xkiβk + ϵi

HereX1i = 1 typically, so that an intercept is included. Least squares (and hencemaximum likelihood
estimates under iid Gaussianity of the errors) minimizes:

n∑
i=1

(
Yi −

p∑
k=1

Xkiβk

)2

Note, the linearity referred to in these models is linearity in the coefficients. Thus

Yi = β1X
2
1i + β2X

2
2i + . . .+ βpX

2
pi + ϵi

is still a linear model. We’ve just squared the elements of the predictor variables.

Estimation

Watch this before beginning⁷⁹

Recall, the LS estimate for regression through the origin is,

E[Yi] = X1iβ1, was
∑

XiYi/
∑

X2
i .

Let’s consider two regressors, E[Yi] = X1iβ1 +X2iβ2 = µi. Least squares tries to minimize:

n∑
i=1

(Yi −X1iβ1 −X2iβ2)
2

We describe fitting with two regressors using residuals, since it will help us to understand how
multivariable regression adjusts an effect for another variable. The result is that the estimate for β1

is:

β̂1 =

∑n
i=1 ei,Y |X2

ei,X1|X2∑n
i=1 e

2
i,X1|X2

,

where, ei,Y |X2
is the residual having fit Y on X2 and ei,X1|X2

is the residual having fit X1 on X2. That
is, the regression estimate for β1 is the regression through the origin estimate having regressed X2

out of both the response and the predictor. Similarly, the regression estimate for β2 is the regression
through the origin estimate having regressed X1 out of both the response and the predictor.

More generally, multivariate regression estimates are exactly those having removed the linear
relationship of the other variables from both the regressor and response. This demonstrates the
sense in which multivariate regression variables adjust for the effect of the other variables.

⁷⁹https://www.youtube.com/watch?v=BbsDGRLhluA&index=20&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://www.youtube.com/watch?v=BbsDGRLhluA&index=20&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://www.youtube.com/watch?v=BbsDGRLhluA&index=20&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Example with two variables, simple linear regression

We already have one of the most important examples of two variables down, linear regression. The
linear regression model is:

Yi = β1X1i + β2X2i

where X2i = 1 is an intercept term. Let’s double check our rule, since we already know what the
least squares estimates are in this case.

Notice the fitted coefficient ofX2i on Yi is Ȳ , themean of the Ys. Then the residuals are ei,Y |X2
= Yi−Ȳ .

Similarly, the fitted coefficient of X2i on X1i is X̄1. Then, the residuals are ei,X1|X2
= X1i − X̄1.

Thus let’s work out the estimate for β1:

β̂1 =

∑n
i=1 ei,Y |X2

ei,X1|X2∑n
i=1 e

2
i,X1|X2

=

∑n
i=1(Xi − X̄)(Yi − Ȳ )∑n

i=1(Xi − X̄)2
= Cor(X,Y )

Sd(Y )

Sd(X)

This agrees with the estimate that we came up with before.

The general case

In the general case with p regressors, least squares solutions have to minimize:

n∑
i=1

(Yi −X1iβ1 − . . .−Xpiβp)
2

The least squares estimate for the coefficient of a multivariate regression model is exactly regression
through the origin with the linear relationships with the other regressors removed from both
the regressor and outcome by taking residuals. In this sense, multivariate regression “adjusts” a
coefficient for the linear impact of the other variables.

Of course, we don’t fit multivariate regression models in this way ever in practice, we rely on
software like lm. In fact, the programs that fit multivariate regression don’t do it this way either.
However, thinking in the terms of residuals is the most conceptually useful way to think about what
multivariate regression is accomplishing.

Simulation demonstrations

Watch this video demonstration.⁸⁰

Let’s do some simulation exercises to convince ourselves how multivariable regression works.
⁸⁰https://www.youtube.com/watch?v=XJJxyJ6PC6I&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=21

https://www.youtube.com/watch?v=XJJxyJ6PC6I&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=21
https://www.youtube.com/watch?v=XJJxyJ6PC6I&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=21
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Linear model with three variables

> n = 100; x = rnorm(n); x2 = rnorm(n); x3 = rnorm(n)

## Generate the data

> y = 1 + x + x2 + x3 + rnorm(n, sd = .1)

## Get the residuals having removed X2 and X3 from X1 and Y

> ey = resid(lm(y ~ x2 + x3))

> ex = resid(lm(x ~ x2 + x3))

## Fit regression through the origin with the residuals

> sum(ey * ex) / sum(ex ^ 2)

[1] 1.009

## Double check with lm

> coef(lm(ey ~ ex - 1))

ex

1.009

## Fit the full linear model to show that it agrees

coef(lm(y ~ x + x2 + x3))

(Intercept) x x2 x3

1.0202 1.0090 0.9787 1.0064

You can see that the estimate, 1.009, is obtained by the recipe we outlined; and it agrees with the
function lm produces for us.

Interpretation of the coefficients

Let’s go through the interpretation of the coefficients. Consider the predicted mean for a given set
of values of the regressors:

E[Y |X1 = x1, . . . , Xp = xp] =

p∑
k=1

xkβk.

Now consider incrementing X1 (and only X1) by 1.

E[Y |X1 = x1 + 1, . . . , Xp = xp] = (x1 + 1)β1 +

p∑
k=2

xkβk

Now let’s subtract these two equations:

E[Y |X1 = x1 + 1, . . . , Xp = xp]− E[Y |X1 = x1, . . . , Xp = xp] = (x1 + 1)β1 +

p∑
k=2

xkβk −
p∑

k=1

xkβk = β1
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Thus, the interpretation of a multivariate regression coefficient is the expected change in the
response per unit change in the regressor, holding all of the other regressors fixed. The latter part of
the phrase is important, by holding the other regressors constant, we are investigating an adjusted
effect, just like we described in the smoking and breath mint usage example at the beginning of the
chapter.

In the next chapter, we’ll do examples and go over context-specific interpretations.

Fitted values, residuals and residual variation

All of our simple linear regression quantities can be extended to linear models. Here we list them
out in one place. Our statistical model is:

Yi =

p∑
k=1

Xkiβk + ϵi

where ϵi ∼ N(0, σ2). Our fitted responses are:

Ŷi =

p∑
k=1

Xkiβ̂k.

We can define our residuals exactly as in linear regression:

ei = Yi − Ŷi

Our variance estimate is.

σ̂2 =
1

n− p

n∑
i=1

e2i

To get predicted responses at new values, x1, . . . , xp, simply plug them into the linear model∑p
k=1 xkβ̂k.

Coefficients have standard errors, we can label them as σ̂β̂k
, and

β̂k − βk

σ̂β̂k

follows a t distribution with n− p degrees of freedom. Predicted responses have standard errors and
we can calculate predicted and expected response intervals.
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Summary notes on linear models

• Linearmodels are the singlemost important applied statistical andmachine learning technique,
by far.

• Some amazing things that you can accomplish with linear models
– Decompose a signal into its harmonics.
– Flexibly fit complicated functions.
– Fit factor variables as predictors.
– Uncover complex multivariate relationships with the response.
– Build accurate prediction models.

Exercises

1. Load the dataset Seatbelts as part of the datasets package via data(Seatbelts). Use
as.data.frame to convert the object to a dataframe. Fit a linear model of driver deaths with
kms and PetrolPrice as predictors. Interpret your results. Watch a video Solution⁸¹

2. Predict the number of driver deaths at the average kms and petrol levels. Watch a video
solution.⁸²

3. Take the residual for DriversKilled having regressed out kms and an intercept Watch a video
solution.⁸³ and the residual for PetrolPrice having regressed out kms and an intercept. Fit
a regression through the origin of the two residuals and show that it is the same as your
coefficient obtained in question 1.

4. Take the residual for DriversKilled having regressed out PetrolPrice and an intercept. Take
the residual for kms having regressed out PetrolPrice and an intercept. Fit a regression through
the origin of the two residuals and show that it is the same as your coefficient obtained in
question 1.

⁸¹https://www.youtube.com/watch?v=xcJKPyiuSMo&index=37&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁸²https://www.youtube.com/watch?v=2PO8djtbDU8&index=38&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁸³https://www.youtube.com/watch?v=9NS9ue8Tzm4&index=39&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0

https://www.youtube.com/watch?v=xcJKPyiuSMo&index=37&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=2PO8djtbDU8&index=38&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=2PO8djtbDU8&index=38&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=9NS9ue8Tzm4&index=39&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=9NS9ue8Tzm4&index=39&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=xcJKPyiuSMo&index=37&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=2PO8djtbDU8&index=38&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=9NS9ue8Tzm4&index=39&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0


Multivariable examples and tricks
Watch this video before beginning.⁸⁴

In this chapter we cover a few examples of multivariate regression in order to get a hands on sense
of the basics.

Data set for discussion

We’ll start with the Swiss dataset that is part of the datasets package. This can be loaded in R with:

> require(datasets); data(swiss); ?swiss

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking
provinces of Switzerland at about 1888.

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

[,1] Fertility a common standardized fertility measure

[,2] Agriculture percent of males involved in agriculture as occupation

[,3] Examination percent draftees receiving highest on army examination

[,4] Education percent education beyond primary school for draftees

[,5] Catholic percent catholic (as opposed to protestant)

[,6] Infant.Mortality live births who live less than 1 year

All variables but Fertility give percentages of the population.

⁸⁴https://youtu.be/z8--IymvW4s?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://youtu.be/z8--IymvW4s?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/z8--IymvW4s?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Plot of the Swiss data set

Let’s see the result of calling lm on this data set.

> summary(lm(Fertility ~ . , data = swiss))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.9152 10.70604 6.250 1.906e-07

Agriculture -0.1721 0.07030 -2.448 1.873e-02

Examination -0.2580 0.25388 -1.016 3.155e-01

Education -0.8709 0.18303 -4.758 2.431e-05

Catholic 0.1041 0.03526 2.953 5.190e-03

Infant.Mortality 1.0770 0.38172 2.822 7.336e-03

Agriculture is expressed in percentages (0 - 100), representing the percentage of the male population
involved in agriculture.
The regression slope estimate for this variable is -0.1721. We interpret this coefficient as follows:

Our model estimates an expected 0.17 decrease in standardized fertility for every 1% increase in
percentage of males involved in agriculture, holding the remaining variables constant.

Note that the the t-test for H0 : βAgri = 0 versus Ha : βAgri ̸= 0 is significant since 0.0187 is less that
typical benchmarks (0.05, for example). Note that, by default, R is reporting the P-value for the two
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sided test. If you want the one sided test, calculate it directly using the T-statistic and the degrees
of freedom. (You can figure it out from the two sided P-value, but it’s easy to get tripped up with
signs.)

Interestingly, the unadjusted estimate is

summary(lm(Fertility ~ Agriculture, data = swiss))$coefficients

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.3044 4.25126 14.185 3.216e-18

Agriculture 0.1942 0.07671 2.532 1.492e-02

Notice that the sign of the slope estimate reversed! This is an example of so-called “Simpson’s
Paradox”. This purported paradox (which is actually not a paradox at all) simply points out that
unadjusted and adjusted effects can be the reverse of each other. Or in other words, the apparent
relationship between X and Ymay change if we account for Z. Let’s explore multivariate adjustment
and sign reversals with simulation.

Simulation study

Below we simulate 100 random variables with a linear relationship between X1, X2 and Y. Notably,
we generate X1 as a linear function of X2. In this simulation, X1 has a negative adjusted effect on
Y while X2 has a positive adjusted effect (adjusted referring to the effect including both variables).
However, X1 is related to X2. Notice our unadjusted effect of X1 is of the opposite sign (and way
off), while the adjusted one is about right. What’s happening? Our unadjusted model is picking up
the effect X2 as it’s represented in X1. Play around with the generating coefficients to see how you
can make the estimated relationships very different than the generating ones. More than anything,
this illustrates that multivariate modeling is hard stuff.

> n = 100; x2 <- 1 : n; x1 = .01 * x2 + runif(n, -.1, .1); y = -x1 + x2 + rnorm(n, s\

d = .01)

> summary(lm(y ~ x1))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.454 1.079 1.348 1.807e-01

x1 96.793 1.862 51.985 3.707e-73

>summary(lm(y ~ x1 + x2))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.001933 0.0017709 1.092 2.777e-01

x1 -1.020506 0.0163560 -62.393 4.211e-80

x2 1.000133 0.0001643 6085.554 1.544e-272

To confirm what’s going on, let’s look at some plots. In the left panel, we plot Y versus X1. Notice
the positive relationship. However, if we look at X2 (the color) notice that it clearly goes up with Y
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as well. If we adjust both the X1 and Y variable by taking the residual after having regressed X2, we
get the actual correct relationship between X1 and Y.

Plot of the simulated data

Back to this data set

In our data set, the sign reverses itself with the inclusion of Examination and Education. However,
the percent of males in the province working in agriculture is negatively related to educational
attainment (correlation of -0.6395) and Education and Examination (correlation of 0.6984) are
obviously measuring similar things.

So, given now that we know including correlated variables with our variable of interest into our
regression relationship can drastically change things we have to ask: “Is the positive marginal an
artifact for not having accounted for, say, Education level? (Education does have a stronger effect, by
the way.)” At the minimum, anyone claiming that provinces that are more agricultural have higher
fertility rates would immediately be open to criticism that the real effect is due to Education levels.

You might think then, why don’t I just always include all variables that I have into my regression
model to avoid incorrectly adjusted effects? Of course, it’s not this easy and there’s negative
consequences to including variables unnecessarily. We’ll talk more about model building and the
process of choosing which variables to include or not in the next chapter.

What if we include a completely unnecessary variable?

Next chapter we’ll discuss working with a collection of correlated predictors. But you might wonder,
what happens if you include a predictor that’s completely unnecessary. Let’s try some computer
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experiments with our fertility data. In the code below, z adds no new linear information, since it’s a
linear combination of variables already included. R just drops terms that are linear combination of
other terms.

> z <- swiss$Agriculture + swiss$Education

lm(Fertility ~ . + z, data = swiss)\

> Call:

lm(formula = Fertility ~ . + z, data = swiss)

Coefficients:

(Intercept) Agriculture Examination Education Cath\

olic

66.915 -0.172 -0.258 -0.871 0\

.104

Infant.Mortality z

1.077 NA

This is a fundamental point of multivariate regression: regression models fit the linear space of the
regressors. Therefore, any linear reorganization of the regressors will result in an equivalent fit, with
different covariates of course. However, the percentage of the variance explained in the response will
be constant. It is only through adding variables that are not perfectly explained by the existing ones
that one can explain more variation in the response. So, for example, models with covariates i) X
and Z, ii) X+Z and X-Z and iii) 2X and 4Z will all explain the same amount of variation in Y. A third
variable, W say, will only explain more variation in Y if it’s not perfectly explained by X and Z. R
lets you know when you’ve done this by putting redundant variables as having NA coefficients.

Dummy variables are smart

Watch this before beginning.⁸⁵

It is interesting to note that models with factor variables as predictors are simply special cases of
regression models. As an example, consider the linear model:

Yi = β0 +Xi1β1 + ϵi

where each Xi1 is binary so that it is a 1 if measurement i is in a group and 0 otherwise. As an
example, consider a variable as treated versus not in a clinical trial. Or, in a more data science
context, consider an A/B test comparing two ad campaigns where Y is the click through rate.

Refer back to our model. For people in the group, E[Yi] = β0 + β1, and for people not in the group,
E[Yi] = β0. The least squares fits work out to be β̂0 + β̂1 as the mean for those in the group and β̂0 as

⁸⁵https://youtu.be/fUwkLY-EDRE?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://youtu.be/fUwkLY-EDRE?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/fUwkLY-EDRE?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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the mean for those not in the group. The variable β1 is interpreted as the increase or decrease in the
mean comparing those in the group to those not. The T-test for that coefficient is exactly the two
group T test with a common variance.

Finally, note including a binary variable that is 1 for those not in the group would be redundant,
it would create three parameters to describe two means. Moreover, we know from the last section
that including redundant variables will result in R just setting one of them to NA. We know that
the intercept column is a column of ones, the group variable is one for those in the group while a
variable for those not in the group would just be the subtraction of these two. Thus, it’s linearly
redundant and unnecessary.

More than two levels

Consider a multilevel factor level. For didactic reasons, let’s say a three level factor. As an example
consider a variable for US political party affiliation: Republican, Democrat, Independent/other. Let’s
use the model:

Yi = β0 +Xi1β1 +Xi2β2 + ϵi.

Here the variable Xi1 is 1 for Republicans and 0 otherwise, the variable Xi2 is 1 for Democrats and
0 otherwise. As before, we don’t need an Xi3 for Independent/Other, since it would be redundant.

So now consider the implications of more model. If person i is Republican then E[Yi] = β0 + β1.
On the other hand, If person i is Democrat then E[Yi] = β0 + β2. Finally, if i is Independent/Other
E[Yi] = β0.

So, we can interpret our coefficients as follows. β1 compares the mean for Republicans to that of
Independents/Others. β2 compares the mean for Democrats to that of Independents/Others. β1 − β2

compares the mean for Republicans to that of Democrats. Notice the coefficients are all comparisons
to the category that we left out, Independents/Others. If one category is an obvious reference
category, chose that one to leave out. In R, if our variable is a factor variable, it will create the
dummy variables for us and pick one of the levels to be the reference level. Let’s go through an
example to see.

Insect Sprays

Let’s consider a model with factors. Consider the InsectSprays dataset in R. The data models
the number of dead insects from different pesticides. Since it’s not clear from the documentation,
let’s assume (probably accurately) that these were annoying bad insects, like fleas, mosquitoes or
cockroaches, and not good ones like butterflies or ladybugs. After getting over that mental hurdle,
let’s plot the data.
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require(datasets);data(InsectSprays); require(stats); require(ggplot2)

g = ggplot(data = InsectSprays, aes(y = count, x = spray, fill = spray))

g = g + geom_violin(colour = "black", size = 2)

g = g + xlab("Type of spray") + ylab("Insect count")

g

Here’s the plot. There are probably better ways to model this data, but let’s use a linear model just
to illustrate factor variables.

Insect spray dataset

First, let’s set Spray A as the reference (the default, since it has the lowest alphanumeric factor level).
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> summary(lm(count ~ spray, data = InsectSprays))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5000 1.132 12.8074 1.471e-19

sprayB 0.8333 1.601 0.5205 6.045e-01

sprayC -12.4167 1.601 -7.7550 7.267e-11

sprayD -9.5833 1.601 -5.9854 9.817e-08

sprayE -11.0000 1.601 -6.8702 2.754e-09

sprayF 2.1667 1.601 1.3532 1.806e-01

Therefore, 0.8333 is the estimated mean comparing Spray B to Spray A (as B - A), -12.4167 compares
Spray C to Spray A (as C - A) and so on. The inferential statistics: standard errors, t value and P-value
all correspond to those comparisons. The intercept, 14.5, is the mean for Spray A. So, its inferential
statistics are testing whether or not the mean for Spray A is zero. As is often the case, this test isn’t
terribly informative and often yields extremely small statistics (since we know the spray kills some
bugs). The estimated mean for Spray B is its effect plus the intercept (14.5 + 0.8333); the estimated
mean for Spray C is 14.5 - 12.4167 (its effect plus the intercept) and so on for the rest of the factor
levels.

Let’s hard code the factor levels so we can directly see what’s going on. Remember, we simply leave
out the dummy variable for the reference level.

> summary(lm(count ~

I(1 * (spray == 'B')) + I(1 * (spray == 'C')) +

I(1 * (spray == 'D')) + I(1 * (spray == 'E')) +

I(1 * (spray == 'F'))

, data = InsectSprays))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5000 1.132 12.8074 1.471e-19

I(1 * (spray == "B")) 0.8333 1.601 0.5205 6.045e-01

I(1 * (spray == "C")) -12.4167 1.601 -7.7550 7.267e-11

I(1 * (spray == "D")) -9.5833 1.601 -5.9854 9.817e-08

I(1 * (spray == "E")) -11.0000 1.601 -6.8702 2.754e-09

I(1 * (spray == "F")) 2.1667 1.601 1.3532 1.806e-01

Of course, it’s identical. You might further ask yourself, what would happen if I included a dummy
variable for Spray A?Would the world implode? No, it just realizes that one of the dummy variables
is redundant and drops it.
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> summary(lm(count ~

I(1 * (spray == 'B')) + I(1 * (spray == 'C')) +

I(1 * (spray == 'D')) + I(1 * (spray == 'E')) +

I(1 * (spray == 'F')) + I(1 * (spray == 'A')), data = InsectSprays))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5000 1.132 12.8074 1.471e-19

I(1 * (spray == "B")) 0.8333 1.601 0.5205 6.045e-01

I(1 * (spray == "C")) -12.4167 1.601 -7.7550 7.267e-11

I(1 * (spray == "D")) -9.5833 1.601 -5.9854 9.817e-08

I(1 * (spray == "E")) -11.0000 1.601 -6.8702 2.754e-09

I(1 * (spray == "F")) 2.1667 1.601 1.3532 1.806e-01

However, if we drop the intercept, then the Spray A term is no longer redundant. Then each
coefficient is the mean for that Spray.

> summary(lm(count ~ spray - 1, data = InsectSprays))$coef

Estimate Std. Error t value Pr(>|t|)

sprayA 14.500 1.132 12.807 1.471e-19

sprayB 15.333 1.132 13.543 1.002e-20

sprayC 2.083 1.132 1.840 7.024e-02

sprayD 4.917 1.132 4.343 4.953e-05

sprayE 3.500 1.132 3.091 2.917e-03

sprayF 16.667 1.132 14.721 1.573e-22

So, for example, 14.5 is the mean for Spray A (as we already knew), 15.33 is the mean for Spray B (14.5
+ 0.8333 from our previous model formulation), 2.083 is the mean for Spray C (14.5 - 12.4167 from
our previous model formulation) and so on. This is a nice trick if you want your model formulated
in the terms of the group means, rather than the group comparisons relative to the reference group.

Also, if there are no other covariates, the estimated coefficients for this model are exactly the
empirical means of the groups. We can use dplyr to check this really easily and grab the mean
for each group.
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> library(dplyr)

> summarise(group_by(InsectSprays, spray), mn = mean(count))

Source: local data frame [6 x 2]

spray mn

1 A 14.500

2 B 15.333

3 C 2.083

4 D 4.917

5 E 3.500

6 F 16.667

Often your lowest alphanumeric level isn’t the level that you’re most interested in as a reference
group. There’s an easy fix for that with factor variables; use the relevel function. Here we give a
simple example. We created a variable spray2 that has Spray C as the reference level.

> spray2 <- relevel(InsectSprays$spray, "C")

> summary(lm(count ~ spray2, data = InsectSprays))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.083 1.132 1.8401 7.024e-02

spray2A 12.417 1.601 7.7550 7.267e-11

spray2B 13.250 1.601 8.2755 8.510e-12

spray2D 2.833 1.601 1.7696 8.141e-02

spray2E 1.417 1.601 0.8848 3.795e-01

spray2F 14.583 1.601 9.1083 2.794e-13

Now the intercept is the mean for Spray C and all of the coefficients are interpreted with respect to
Spray C. So, 12.417 is the comparison between Spray A and Spray C (as A - C) and so on.

Summary of dummy variables

If you haven’t seen this before, it might seem rather strange. However, it’s essential to understand
how dummy variables are treated, as otherwise huge interpretation errors can be made. Here we
give a brief bullet summary of dummy variables to help solidify this information.

• If we treat a variable as a factor, R includes an intercept and omits the alphabetically first level
of the factor.
– The intercept is the estimated mean for the reference level.
– The intercept t-test tests for whether or not the mean for the reference level is 0.
– All other t-tests are for comparisons of the other levels versus the reference level.
– Other group means are obtained the intercept plus their coefficient.
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• If we omit an intercept, then it includes terms for all levels of the factor.
– Group means are now the coefficients.
– Tests are tests of whether the groups are different than zero.

• If we want comparisons between two levels, neither of which is the reference level, we could
refit the model with one of them as the reference level.

Other thoughts on this data

We don’t suggest that this is in anyway a thorough analysis of this data. For example, the data are
counts which are bounded from below by 0. This clearly violates the assumption of normality of
the errors. Also there are counts near zero, so both the actual assumption and the intent of this
assumption are violated. Furthermore, the variance does not appear to be constant (look back at
the violin plots). Perhaps taking logs of the counts would help. But, since there are 0 counts, maybe
log(Count + 1). Also, we’ll cover Poisson GLMs for fitting count data.

Further analysis of the swiss dataset

Watch this video before beginning.⁸⁶

Then watch this video.⁸⁷

Let’s create some dummy variables in the swiss dataset to illustrate them in a more multivariable
context. Just to remind ourselves of the dataset, here’s the first few rows.

> library(datasets); data(swiss)

> head(swiss)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Courtelary 80.2 17.0 15 12 9.96 22.2

Delemont 83.1 45.1 6 9 84.84 22.2

Franches-Mnt 92.5 39.7 5 5 93.40 20.2

Moutier 85.8 36.5 12 7 33.77 20.3

Neuveville 76.9 43.5 17 15 5.16 20.6

Porrentruy 76.1 35.3 9 7 90.57 26.6

Let’s create a binary variable out of the variable Catholic to illustrate dummy variables in
multivariable models. However, it should be noted that this isn’t patently absurd, since the variable
is highly bimodal anyway. Let’s just split at majority Catholic or not:

⁸⁶https://youtu.be/Xjjbv42KCaM?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
⁸⁷https://youtu.be/HB4owlrqvDE?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://youtu.be/Xjjbv42KCaM?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/HB4owlrqvDE?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/Xjjbv42KCaM?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/HB4owlrqvDE?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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> library(dplyr)

> swiss = mutate(swiss, CatholicBin = 1 * (Catholic > 50))

Since we’re interested in Agriculture as a variable and Fertility as an outcome, let’s plot those two
color coded by the binary Catholic variable:

g = ggplot(swiss, aes(x = Agriculture, y = Fertility, colour = factor(CatholicBin)))

g = g + geom_point(size = 6, colour = "black") + geom_point(size = 4)

g = g + xlab("% in Agriculture") + ylab("Fertility")

g

Plot of the Swiss dataset color coded by majority catholic.

Our model is:

Yi = β0 +Xi1β1 +Xi2β2 + ϵi

where Yi is Fertility, Xi1 is ‘Agriculture and Xi2 is CatholicBin. Let’s first fit the model with Xi2

removed.
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> summary(lm(Fertility ~ Agriculture, data = swiss))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.3044 4.25126 14.185 3.216e-18

Agriculture 0.1942 0.07671 2.532 1.492e-02

This model just assumes one line through the data (linear regression). Now let’s add our second
variable. Notice that the model is

Yi = β0 +Xi1β1 + ϵi

when Xi2 = 0 and

Yi = (β0 + β2) +Xi1β1 + ϵi

when Xi2 = 1. Thus, the coefficient in front of the binary variable is the change in the intercept
between non-Catholic and Catholic majority provinces. In other words, this model fits parallel lines
for the two levels of the factor variable. If the factor variable had 4 levels, it would fit 4 parallel lines,
where the coefficients for the factors are the change in the intercepts to the reference level.

## Parallel lines

summary(lm(Fertility ~ Agriculture + factor(CatholicBin), data = swiss))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 60.8322 4.1059 14.816 1.032e-18

Agriculture 0.1242 0.0811 1.531 1.329e-01

factor(CatholicBin)1 7.8843 3.7484 2.103 4.118e-02

Thus, 7.8843 is the estimated change in the intercept in the expected relationship betweenAgriculture
and Fertility going from a non-Catholic majority province to a Catholic majority.

Often, however, we want both a different intercept and slope. This is easily obtained with an
interaction term

Yi = β0 +Xi1β1 +Xi2β2 +Xi1Xi2β3 + ϵi.

Now consider with Xi2 = 0, the model reduces to:

Yi = β0 +Xi1β1 + ϵi.

When Xi2 = 1 the model is
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Yi = (β0 + β2) +Xi1(β1 + β3) + ϵi.

Thus, the coefficient in front of the main effect Xi2, labeled β2 in our model, is the change in the
intercept, while the coefficient in front of interaction term Xi2Xi1, labeled β3 in our model, is the
change in the slope. Let’s try it:

> summary(lm(Fertility ~ Agriculture * factor(CatholicBin), data = swiss))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.04993 4.78916 12.9563 1.919e-16

Agriculture 0.09612 0.09881 0.9727 3.361e-01

factor(CatholicBin)1 2.85770 10.62644 0.2689 7.893e-01

Agriculture:factor(CatholicBin)1 0.08914 0.17611 0.5061 6.153e-01

Thus, 2.8577 is the estimated change in the intercept of the linear relationship between Agriculture
and Fertility going from non-Catholic majority to Catholic majority to Catholic majority provinces.
The interaction term, 0.08914, is the estimate change in the slope. The estimated intercept in non-
Catholic provinces is 62.04993 while the estimated intercept in Catholic provinces is 62.04993 +
2.85770. The estimated slope in non-Catholic majority provinces is 0.09612 while it is 0.09612 +
0.08914 for Catholic majority provinces. If the factor has more than two levels, all of the main effects
are change in the intercepts from the reference level while all of the interaction terms are changes
in slope (again compared to the reference level).

Homework exercise, plot both lines on the data to see the fit!

Exercises

1. Do exercise 1 of the previous chapter if you have not already. Load the dataset Seatbelts as
part of the datasets package via data(Seatbelts). Use as.data.frame to convert the object
to a dataframe. Fit a linear model of driver deaths with kms and PetrolPrice as predictors.
Interpret your results.

2. Repeat question 1 for the outcome being the log of the count of driver deaths. Interpret your
coefficients. Watch a video solution.⁸⁸

3. Refer to question 1. Add the dummy variable law and interpret the results. Repeat this question
with a factor variable that you create called lawFactor that takes the levels No and Yes. Change
the reference level from No to Yes. Watch a video solution.⁸⁹

4. Discretize the PetrolPrice variable into four factor levels. Fit the linear model with this factor
to see how R treats multiple level factor variables. Watch a video solution.⁹⁰

5. Perform the plot requested at the end of the last chapter.

⁸⁸https://www.youtube.com/watch?v=GfIjC4rM08A&index=40&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁸⁹https://www.youtube.com/watch?v=ikKQv98i-EQ&index=41&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
⁹⁰https://www.youtube.com/watch?v=4FB8O-Vt1I0&index=42&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0

https://www.youtube.com/watch?v=GfIjC4rM08A&index=40&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=ikKQv98i-EQ&index=41&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=4FB8O-Vt1I0&index=42&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=GfIjC4rM08A&index=40&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=ikKQv98i-EQ&index=41&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=4FB8O-Vt1I0&index=42&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0


Adjustment
Watch this video before beginning.⁹¹

Adjustment, is the idea of putting regressors into a linear model to investigate the role of a third
variable on the relationship between another two. Since it is often the case that a third variable can
distort, or confound, the relationship between two others.

As an example, consider looking at lung cancer rates and breath mint usage. For the sake of
completeness, imagine if you were looking at forced expiratory volume (a measure of lung function)
and breath mint usage. If you found a statistically significant regression relationship, it wouldn’t be
wise to rush off to the newspapers with the headline “Breath mint usage causes shortness of breath!”,
for a variety of reasons. First off, even if the association is sound, you don’t know that it’s causal. But,
more importantly in this case, the likely culprit is smoking habits. Smoking rates are likely related
to both breath mint usage rates and lung function. How would you defend your finding against the
accusation that it’s just variability in smoking habits?

If your finding held up among non-smokers and smokers analyzed separately, then you might have
something. In other words, people wouldn’t even begin to believe this finding unless it held up while
holding smoking status constant. That is the idea of adding a regression variable into a model as
adjustment. The coefficient of interest is interpreted as the effect of the predictor on the response,
holding the adjustment variable constant.

In this chapter, we’ll use simulation to investigate how adding a regressor into a model addresses
the idea of adjustment.

Experiment 1

Let’s first generate some data. Consider the model

Yi = β0 + β1X + τT + ϵi

We’re interested in the relationship between our binary treatment, T , and Y . However, we’re
concerned that the relationship may depend on the continuous variable, X.

Let’s simulate some data.

⁹¹https://youtu.be/SFPM9IuP2m8

https://youtu.be/SFPM9IuP2m8
https://youtu.be/SFPM9IuP2m8
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n <- 100; t <- rep(c(0, 1), c(n/2, n/2)); x <- c(runif(n/2), runif(n/2));

beta0 <- 0; beta1 <- 2; tau <- 1; sigma <- .2

y <- beta0 + x * beta1 + t * tau + rnorm(n, sd = sigma)

Let’s plot the data. Below I give the code for the first plot; the rest of the code for plots throughout
this chapter is omitted. (However, you can see the course git repository for the rest of the code.)

Simulation 1

plot(x, y, type = "n", frame = FALSE)

abline(lm(y ~ x), lwd = 2)

abline(h = mean(y[1 : (n/2)]), lwd = 3)

abline(h = mean(y[(n/2 + 1) : n]), lwd = 3)

fit <- lm(y ~ x + t)

abline(coef(fit)[1], coef(fit)[2], lwd = 3)

abline(coef(fit)[1] + coef(fit)[3], coef(fit)[2], lwd = 3)

points(x[1 : (n/2)], y[1 : (n/2)], pch = 21, col = "black", bg = "lightblue", cex = \

2)

points(x[(n/2 + 1) : n], y[(n/2 + 1) : n], pch = 21, col = "black", bg = "salmon", c\

ex = 2)
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Experiment 1.

Looking at this plot, notice that the X variable is unrelated to treatment/group status (color). In
addition, the X variable is clearly linearly related to Y, but the intercept of this relationship depends
on group status. The treatment variable is also related to Y; especially look at the horizontal lines
which connect the group means to the Y axis. The third line is the what you would get if you just
fit X and ignored group. Furthermore, notice that the relationship between group status and Y is
constant depending on X. In other words, both the apparent relationship and our estimated model
have parallel lines. (Remember, our model, by not including an interaction term, did not allow for
estimated non-parallel lines.)

Finally, notice that the estimated relationship between the group variable and the outcome doesn’t
change much, regardless of whether X is accounted for or not. You can see this by comparing the
distance between the horizontal lines and the distance between the intercepts of the fitted lines.
The horizontal lines are the group averages (disregarding X). That the relationship doesn’t change
much is ultimately a statement about balance. The nuisance variable (X) is well balanced between
levels of the group variable. So, whether you account for X or not, you get about the same answer.
Moreover, we have lots of data at every level of X to make a direct comparison of the group on Y.
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One way to try to achieve such balance with high probability is to randomize the group variable.
This is especially useful, of course, when one doesn’t get to observe the nuisance covariate. Though
be careful that as the number of unobserved covariates

Now let’s consider less ideal settings.

Experiment 2

Experiment 2.

In this experiment, the X variable is highly related to group status. That is, if you know the X variable,
you could very easily predict which group they belonged to. If we disregard X, there’s an apparent
strong relationship between the group variable and Y. However, if we account for X, there’s basically
none. In this case, the apparent effect of group on Y is entirely explained by X. Our regression model
would likely have a strong significant effect if group was included by itself and this effect would
vanish if X was included.

Further notice, there are no data to directly compare the groups at any particular value of X. (There’s
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no vertical overlap between the blue and red points.) Thus the adjusted effect is entirely based on the
model, specifically the assumption of linearity. Try to draw curves on this plot assuming non-linear
relationships outside of their cloud of points for the blue and red groups. You quickly will conclude
that many relationships are possible that would differ from this model’s conclusions. Worse still,
you have no data to check the assumptions. Of course, R will churn forward without any complaints
fitting this model and reporting no significant difference between the groups.

It’s worth noting at this point, that our experiments just show how the data can arrive at different
effects when X is included or not. In a real application, it may be the case that X should be included
and maybe that it shouldn’t be.

For example, consider an example that I was working on a few years ago. Imagine if group was
whether or not the subject was taking blood pressure medication and X was systolic blood pressure
(ostensibly, the two variable giving the same information). It may not make sense to adjust for blood
pressure when looking at blood pressure medication on the outcome.

On the other hand consider another setting I ran into. A colleague was studying chemical brain
measurements of patients with a severe mental disorder versus controls post mortem. However,
the time since death was highly related to the time the brain was stored since death, perhaps due
to the differential patient sources of the two groups. The time since death was strongly related to
the outcome we were studying. In this case, it is very hard to study the groups as they were so
contaminated by this nuisance covariate.

Thus we arrive at the conclusion that whether or not to include a covariate is a complex process
relying on both the statistics and a careful investigation into the subject matter being studied.
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Experiment 3

Experiment 3.

In this experiment, we simulated data where the marginal (ignoring X) and conditional (using X)
associations differ. First note that if X is ignored, one would estimate a higher marginal mean for
Y of the red group over the blue group. However, if we look at the intercept in the fitted model,
the blue group has a higher intercept. In other words, if you were to fit this linear model as lm(Y
∼ Group) you would get one answer and lm(Y ∼ Group + X) would give you the exact opposite
answer, and in both cases the group effect would be highly statistically significant!

Also in this settings, there isn’t a lot of overlap between the groups for any given X. That means there
isn’t a lot of direct evidence to compare the groups without relying heavily on the model. In other
words, group status is related to X quite strongly (though not as strongly as in the previous example).
The adjusted relationship suggest that the blue group is larger than the red group. However, the
reversal of the effect comes as bigger X means more likely red and bigger X means higher Y.

Let’s concoct an example around a way this data could have occurred. Suppose that you’re
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comparing two ad campaigns (labeled blue and red). Y is the sales from the ad (suppose you can
measure this) and X is time of day that the ad is shown. Ads shown later on in the day do better than
ads shown earlier. However, the blue ad campaign tended to get run in the morning while the red
one tended to get run in the evening. So, ignoring time of day leads to the erroneous conclusion that
the the red ad did better. Again randomization of the ads to time slots would likely have eliminated
this problem.

Experiment 4

Experiment 4

Now that you’ve gotten the hang of it. You can see how marginal and conditional associations
can differ. Experiment 4 is a case where the marginal association is minimal yet the conditional
association is large. In this case, by adding X to the model, the group effect became more statistically
significant.
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Experiment 5

Adjustment 5.

Let’s look at a weird one. In this case, the best fitting model has both a group main effect and
interaction with X. The main point here is that there is no meaningful group effect, the effect of
group depends on what level of X you’re at. At a small value of X, the red group is here and at a
large value of X, the blue group is higher; at intermediate values, they’re the same. Thus, it makes
no sense to talk about a group effect in this example; group and X are intrinsically linked in their
impact on Y.

As an example, imagine if Y is health outcome, X is time and group is two medications. One makes
you much better right away then much worse as time goes on and the other doesn’t do much at the
start but steadily improves symptoms over time. Of course, most examples seen in practice aren’t
that extreme. Still even with a slight departure in constant slopes, the meaning of a main group
effect goes away.
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Some final thoughts

Nothing we’ve discussed is intrinsic to having a discrete group and continuous X. One, the other,
both or neither could be discrete. What this reinforces is that modeling multivariable relationships
is hard. You should continue to play around with simulations to see how the inclusion or exclusion
of another variable can change apparent relationships.

We should also caution that our discussion only dealt with associations. Establishing causal or truly
mechanistic relationships requires quite a bit more thinking.

Exercises

1. Load the dataset Seatbelts as part of the datasets package via data(Seatbelts). Use
as.data.frame to convert the object to a dataframe. Fit a linear model of driver deaths with
kms and PetrolPrice as predictors. Interpret your results.

2. Compare the kms coefficient with and without the inclusion of the PetrolPrice variable in the
model. Watch a video solution.⁹²

3. Compare the PetrolPrice coefficient with and without the inclusion of the kms variable in the
model.

⁹²https://www.youtube.com/watch?v=LTTsm8FfgeI&index=43&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0

https://www.youtube.com/watch?v=LTTsm8FfgeI&index=43&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0
https://www.youtube.com/watch?v=LTTsm8FfgeI&index=43&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0


Residuals, variation, diagnostics
Watch this video before beginning⁹³

Residuals

Recall from Chapter 6 that the vertical distances between the observed data points and the fitted
regression line are called residuals. We can generalize this idea to the vertical distances between the
observed data and the fitted surface in multivariable settings.

To be specific, recall our linear model, which was specified as Yi =
∑p

k=1 Xkiβj + ϵi. Throughout this
lecture, we’ll also assume that ϵi

iid∼ N(0, σ2), even though this assumption isn’t necessary for the
definition of the residuals.

We define the residuals as:

ei = Yi − Ŷi = Yi −
p∑

k=1

Xkiβ̂j .

This definition is identical (Yi − Ŷi) to our definition in the linear regression case. The residuals are
the vertical distances between the observed data points and the fitted regression surface. Just like in
linear regression, our estimate of residual variation is basically the average of the squared residuals.
Specifically, σ̂2 =

∑n
i=1 e2i
n−p . Just like the before, we divide by n− p rather than n so that the estimate is

unbiased, E[σ̂2] = σ2.

Obtaining and plotting residuals in R is particularly easy. The function residwill return the residuals
of a model fit with lm. Some useful plots, including a residual plot, can be performed with the plot
function on the output of a lm fit. Consider the swiss dataset from previous chapters.

data(swiss); par(mfrow = c(2, 2))

fit <- lm(Fertility ~ . , data = swiss); plot(fit)

⁹³http://youtu.be/VohfwSJuG4k

http://youtu.be/VohfwSJuG4k
http://youtu.be/VohfwSJuG4k
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The result of the method plot on the swiss dataset.

Consider the upper left hand plot of the residuals (ei) versus the fitted values (Ŷi). Often, a horizontal
reference line at 0 is drawn since (whenever an intercept is included) the residuals must sum to 0
and so will lie above and below the zero. Just like in our previous residual plots, one should look for
any systematic patterns or large outlying observations.

Note that this is one of many residual plots that one may be interested in performing. For example,
one might want to look at plots of residuals by individual predictors or, as is done by plot, versus
leverage (defined later in this chapter).

Influential, high leverage and outlying points

As previously mentioned, it is a good idea to check our data for outliers. We may want to refer
back to these points to see if we can ascertain how they became outliers, such as a misrecording. In
addition, we may want to fit the models with and without those points included in order to ascertain
their influence on the model fit and inferential goals.
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Outliers can results for a variety of reasons. They can be real, but inconvenient, data. They could
arise from spurious processes like processing or recording errors. They can have varying degrees of
influence on ourmodel. Thus, calling a point an outlier is vague andwe need amore precise language
to discuss points that fall outside of our cloud of data. The plot below is useful for understanding
different sorts of outliers.

Plot of simulated data with four different kinds of highlighted orange points.

The lower left hand point is not an outlier having neither leverage nor influence on our fitted model.
The upper left hand point is an outlier in the Y direction, but not in the X. It will have little impact
on our fitted model, since there’s lots of X points nearby to counteract its effect. This point is said to
have low leverage and influence. The upper right hand point is outside of the range of X values and
Y values, but conforms nicely to the regression relationship. This point has little effect on the fitted
model. It has high leverage, but chooses not to exert it, and thus has low influence. The lower right
hand point is outside of the range of X values, but not the Y values. However, it does not conform to
the relationship of the remainder of the points at all. This outlier has high leverage and influence.

From this discussion you can maybe guess at the formal definition of two important terms: leverage
and influence. Leverage discusses how outside of the norm a point’s X values are from the cloud of



Residuals, variation, diagnostics 89

other X values. A point with high leverage has the opportunity to dramatically impact the regression
model. Whether or not it does so depends on how closely it conforms to the fit.

The other concept, influence, is a measure of how much impact a point has on the regression fit.
The most direct way to measure influence is fit the model with the point included and excluded.

Residuals, Leverage and Influence measures

Watch this video before beginning.⁹⁴

Now that we understand the three concepts of residuals, leverage and influence, we present a laundry
list of probes. Do ?influence.measures to see the full suite of influence measures in stats.

First consider residuals. We already know if fit is the output of lm (as in fit = lm(y ∼ x1 +

x2)), then resid(fit) returns the ordinary residuals. A problem, though, is that these are defined as
Yi − Ŷi and thus have the units of the outcome. This isn’t great for comparing residual values across
different analyses with different experiments. So, some efforts to standardize residuals have been
made. Two of the most common are:

• rstandard - residuals divided by their standard deviations
• rstudent - residuals divided by their standard deviations, where the ith data point was deleted
in the calculation of the standard deviation for the residual to follow a t distribution

Both of these endeavor to create T-like (as in Student’s T distribution) statistics so that one can
threshold residuals using T cutoffs. This is why these sorts of residuals are called studentized. The
rstudent residuals are exactly T distributed while the rstandard is not. The rstandard residuals are
sometimes called internally standardized while the rstudent are called externally. The distinction
between the residuals is mostly for establishing probability based cutoffs. Instead, we recommend
looking at the residuals as a collective and using the cutoffs loosely. Under this way of thinking,
the distinctions over which of these two kinds of standardization are used is more academic than
practical.

A common use for residuals is to diagnose normality of the errors. This is often done by plotting the
residual quantiles versus normal quantiles. This is called a residual QQ plot. Your residuals should
fall roughly on a line if plotted in a normal QQ plot. There is of course noise and a perfect fit would
not be expected even if the model held.

Leverage is largely measured by one quantity, so called hat diagonals, which can be obtained in
R by the function hatvalues. The hat values are necessarily between 0 and 1 with larger values
indicating greater (potential for) leverage.

After leverage, there are quite a few ways to probe for influence. These are:

• dffits - change in the predicted response when the ith point is deleted in fitting the model.

⁹⁴http://youtu.be/b6iqeHs_iro

http://youtu.be/b6iqeHs_iro
http://youtu.be/b6iqeHs_iro
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• dfbetas - change in individual coefficients when the ith point is deleted in fitting the model.
• cooks.distance - overall change in the coefficients when the ith point is deleted.

In other words, the dffits check for influence in the fitted values, dfbetas check for influence in the
coefficients individually and cooks.distance checks for influence in the coefficients as a collective.

Finally, there’s a residualmeasure that’s also an influencemeasure. Particularly, consider resid(fit)
/ (1 - hatvalues(fit)) where fit is the linear model fit. This is the so-called PRESS residuals.
These are the residual error from leave one out cross validation. That is, the difference in the response
and the predicted response at data point i, where it was not included in the model fitting.

How do I use all of these things?

First of all, be wary of simplistic rules for diagnostic plots and measures. The use of these tools
is context specific. It’s better to understand what they are trying to accomplish and use them
judiciously. Not all diagnostics measures have meaningful absolute scales. You can look at them
relative to the values across the data. Even for the ones with known exact distributions to establish
cutoffs, those distributions (like the externally studentized residual) have degrees of freedom that
depend on the sample size, so a single threshold can’t be used across all settings.

A better way to think about these tool is as diagnostics, like a physician diagnosing a health issue.
These tools probe your data in different ways to diagnose different problems. Some examples
include:

• Patterns in your residual plots generally indicate some poor aspect of model fit.
• Heteroskedasticity (non constant variance).
• Missing model terms.
• Temporal patterns (plot residuals versus collection order).
• Residual QQ plots investigate normality of the errors.
• Leverage measures (hat values) can be useful for diagnosing data entry errors and points that
have a high potential for influence.

• Influence measures get to the bottom line, ‘how does deleting or including this point impact a
particular aspect of the model’.

Let’s do some experiments to see how these measure hold up.



Residuals, variation, diagnostics 91

Image for first simulation.

Simulation examples

Case 1

In what follows, we’re going to try several simulation settings and see the values of some on the
residuals, influence measures and leverage. In our first case, we simulate 100 points. The 101st point,
c(10, 10), has created a strong regression relationship where there shouldn’t be one. Note we
prepend this point at the beginning of the Y and X vectors.

n <- 100; x <- c(10, rnorm(n)); y <- c(10, c(rnorm(n)))

plot(x, y, frame = FALSE, cex = 2, pch = 21, bg = "lightblue", col = "black")

abline(lm(y ~ x))

<div class=”rimage center”><img src=”fig/unnamed-chunk-3.png” title=”plot of chunk unnamed-
chunk-3” alt=”plot of chunk unnamed-chunk-3” class=”plot” /></div>
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First, let’s look at the dfbetas. Note the dfbetas are 101 by 2 dimensional, since there’s a dfbeta for
both the intercept and the slope. Let’s just output the first 10 for the slope.

> fit <- lm(y ~ x)

> round(dfbetas(fit)[1 : 10, 2], 3)

1 2 3 4 5 6 7 8 9 10

6.007 -0.019 -0.007 0.014 -0.002 -0.083 -0.034 -0.045 -0.112 -0.008

Clearly the first point has a much, much larger dfbeta for the slope than the other points. That is,
the slope changes dramatically from when we include this point to not including it. Try it out with
Cook’s distance and the dffits. Let’s look at leverage.

round(hatvalues(fit)[1 : 10], 3)

1 2 3 4 5 6 7 8 9 10

0.445 0.010 0.011 0.011 0.030 0.017 0.012 0.033 0.021 0.010

Again, this point has a much higher leverage value than that of the other points. By having a large
leverage value and dfbeta, we’re seeing that this point has a high potential for influence, and decided
to exert it.

Case 2

Consider a second case where the point lies on a natural line defined by the data, but is well outside
of the cloud of X values. Since the code is so similar, I don’t show it. But, as always, it can be found
in the github repo for the courses.
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Second simulation example.

Now let’s consider the dfbetas and the leverage for the first 10 observations.

> round(dfbetas(fit2)[1 : 10, 2], 3)

1 2 3 4 5 6 7 8 9 10

-0.072 -0.041 -0.007 0.012 0.008 -0.187 0.017 0.100 -0.059 0.035

> round(hatvalues(fit2)[1 : 10], 3)

1 2 3 4 5 6 7 8 9 10

0.164 0.011 0.014 0.012 0.010 0.030 0.017 0.017 0.013 0.021

As we would expect, the dfbeta value for the first point is well with the range of the other points.
The leverage is much larger than the others. In this case, the point has high leverage, but chooses
not to exert it as influence.

Play around with more simulation examples to get a feeling for what these measures do. This will
help more than anything in understanding their value.
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Example described by Stefanski

Watch this video before beginning.⁹⁵

We end with a really fun example from Stefanski in TAS 2007 volume 61⁹⁶. This paper illustrates
how a residual plot can unveil hidden treasures that would be nearly impossible to detect with other
kinds of plots. He has several examples on his website and we go through one. First, let’s read in the
data and do a scatterplot matrix.

dat <- read.table('http://www4.stat.ncsu.edu/~stefanski/NSF_Supported/Hidden_Images/\

orly_owl_files/orly_owl_Lin_4p_5_flat.txt', header = FALSE)

pairs(dat)

Scatterplot matrix from the Stefanski data.

It looks like a big mess of nothing. We can fit a model and get that all of the variables are highly
significant

⁹⁵http://youtu.be/oMW7jGEdZ48
⁹⁶http://amstat.tandfonline.com/doi/abs/10.1198/000313007X190079

http://youtu.be/oMW7jGEdZ48
http://amstat.tandfonline.com/doi/abs/10.1198/000313007X190079
http://youtu.be/oMW7jGEdZ48
http://amstat.tandfonline.com/doi/abs/10.1198/000313007X190079
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> summary(lm(V1 ~ . -1, data = dat))$coef

Estimate Std. Error t value Pr(>|t|)

V2 0.9856 0.12798 7.701 1.989e-14

V3 0.9715 0.12664 7.671 2.500e-14

V4 0.8606 0.11958 7.197 8.301e-13

V5 0.9267 0.08328 11.127 4.778e-28

Can we call it a day? Let’s check a residual plot.

fit <- lm(V1 ~ . - 1, data = dat); plot(predict(fit), resid(fit), pch = '.')

Residuals versus fitted values from the Stefanski data.

There appears to be a pattern. The moral of the story here is that residual plots can really hone in
on systematic patterns in the data that are completely non-apparent from other plots.
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Back to the Swiss data

Plot of the influence, leverage and residuals from the swiss dataset

Exercises

1. Load the dataset Seatbelts as part of the datasets package via data(Seatbelts). Use
as.data.frame to convert the object to a dataframe. Fit a linear model of driver deaths with
kms, PetrolPrice and law as predictors.

2. Refer to question 1. Directly estimate the residual variation via the function resid. Compare
with R’s residual variance estimate. Watch a video solution.⁹⁷

3. Refer to question 1. Perform an analysis of diagnostic measures including, dffits, dfbetas,
influence and hat diagonals. Watch a video solution.⁹⁸

⁹⁷https://www.youtube.com/watch?v=T8nPIeH1rwU&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=44
⁹⁸https://www.youtube.com/watch?v=XEqlmqFTVOI&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=45

https://www.youtube.com/watch?v=T8nPIeH1rwU&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=44
https://www.youtube.com/watch?v=XEqlmqFTVOI&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=45
https://www.youtube.com/watch?v=T8nPIeH1rwU&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=44
https://www.youtube.com/watch?v=XEqlmqFTVOI&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=45
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Multiple variables and model
selection
Watch this video before beginning.⁹⁹

This chapter represents a challenging question: “How do we choose what to variables to include in
a regression model?”. Sadly, no single easy answer exists and the most reasonable answer would be
“It depends.”. These concepts bleed into ideas of machine learning, which is largely focused on high
dimensional variable selection and weighting. In this chapter we cover some of the basics and, most
importantly, the consequences of over- and under-fitting a model.

Multivariable regression

In our Coursera Data Science Specialization, we have an entire class on prediction and machine
learning. So, in this class, our focus will be on modeling. That is, our primary concern is winding up
with an interpretable model, with interpretable coefficients. This is a very different process than if
we only care about prediction or machine learning. Prediction has a different set of criteria, needs
for interpretability and standards for generalizability. In modeling, our interest lies in parsimonious,
interpretable representations of the data that enhance our understanding of the phenomena under
study.

Like nearly all aspects of statistics, good modeling decisions are context dependent. Consider a good
model for prediction, versus one for studying mechanisms, versus one for trying to establish causal
effects. There are, however, some principles to help you guide your way.

Parsimony is a core concept in model selection. The idea of parsimony is to keep your models as
simple as possible (but no simpler). This builds on the idea of Occam’s razor¹⁰⁰, in that all else being
equal simpler explanations are better than complex ones. Simpler models are easier to interpret and
are less finicky. Complex models often have issues with fitting and, especially, overfitting. (To see a
counterargument, consider Andrew Gelman’s blog.¹⁰¹.)

Another principle that I find useful for looking at statistical models is to consider them as lenses
through which to look at your data. (I attribute this quote to the great statistician Scott Zeger.) Under
this philosophy, what’s the right model - whatever one connects the data to a true, parsimonious
statement about what you’re studying. Unwin and authors have formalized these ideas more into
something they call exploratory model analysis¹⁰² I like this, as it turns our focus away from trying

⁹⁹https://youtu.be/zfhNo8uNBho?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
¹⁰⁰https://en.wikipedia.org/wiki/Occam’s_razor
¹⁰¹http://andrewgelman.com/2004/12/10/against_parsimo/
¹⁰²http://www.sciencedirect.com/science/article/pii/S016794730200292X

https://youtu.be/zfhNo8uNBho?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://en.wikipedia.org/wiki/Occam's_razor
http://andrewgelman.com/2004/12/10/against_parsimo/
http://andrewgelman.com/2004/12/10/against_parsimo/
http://www.sciencedirect.com/science/article/pii/S016794730200292X
https://youtu.be/zfhNo8uNBho?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://en.wikipedia.org/wiki/Occam's_razor
http://andrewgelman.com/2004/12/10/against_parsimo/
http://www.sciencedirect.com/science/article/pii/S016794730200292X
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to get a single, best, true model and instead focuses on utilizing models as ways to probe data. This
is useful, since all models are wrong in some fashion.
Keep this in mind as we focus on variable inclusion and exclusion in this chapter.

The Rumsfeldian triplet

Before we begin, I’d like to give a quote from Donald Rumsfeld, the controversial Secretary of
Defense of the US during the start of the Afghanistan and second Iraq wars. He gave this quote
regarding weapons of mass destruction (read more about it here¹⁰³):

“There are known knowns. These are things we know that we know. There are known unknowns.
That is to say, there are things that we know we don’t know. But there are also unknown unknowns.
There are things we don’t know we don’t know.” - Donald Rumsfeld

This quote, widely derided for its intended purpose, is quite insightful in the unintended context
of regression model selection. Specifically, in our context “Known Knowns” are regressors that we
know we should check for inclusion in the model. The “Known Unknowns” are regressors that we
would like to include in the model, but don’t have. The “Unknown Unknowns” are regressors that
we don’t even know about that we should have included in the model.

In this chapter, we’ll talk about KnownKnowns; variables that are potentially of interest in ourmodel
that we have. Known Unknowns and Unknown Unknowns (especially) are more challenging to deal
with. A central method for dealing with Unknown Unknowns is randomization. If you’d like to
compare a treatment to a control, or perform anA/B test of two advertising strategies, randomization
will help insure that your treatment is balanced across levels of the Unknown Unknowns with high
probability. (Of course, being unobserved, you can never know whether or not the randomization
was effective.)

For Known Unknowns, those variables we wish we had collected but did not, there are several
strategies. For example, a proxy variable might be of use. As an example, we had some brain
volumetric measurements via MRIs and really wished we had done the processing to get intra-
cranial volume (head size). The need for this variable was because we didn’t want to compare brain
volumetric measurements and conclude that bigger people with bigger heads have more brain mass.
This would be a useless conclusion. For example, killer whales have bigger brains than dolphins,
but that doesn’t tell you much about killer whales or dolphins. More interesting would be if killer
whales who were exposed to toxic chemicals had lower brain volume relative to their intra-cranial
volume than whales who weren’t. In our case, (we were studying humans), we used height, gender
and other anthropomorphic measurements to get a good guess of intra-cranial volume.

For the rest of the lecture, let’s discuss the known knowns and what their unnecessary inclusion and
exclusion implies in our analysis.

¹⁰³https://en.wikipedia.org/wiki/There_are_known_knowns

https://en.wikipedia.org/wiki/There_are_known_knowns
https://en.wikipedia.org/wiki/There_are_known_knowns
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General rules

Here we state a couple of general rules regarding model selection for our known knowns.

• Omitting variables results in bias in the coefficients of interest - unless the regressors are
uncorrelated with the omitted ones.

I want to reiterate this point: if the omitted variable is uncorrelated with the included variables, its
omission has no impact on estimation. It might explain some residual variation, thus it could have
an impact on inference. As previously mentioned, this lack of impact of uncorrelated variables is
why we randomize treatments; randomization attempts to disassociate our treatment indicator with
variables that we don’t have to put in themodel. Formal theories of inference can be designed around
the use of randomization. However, in a practical sense, if there’s too many unobserved confounding
variables, even randomization won’t help you, since with high probability one will stay correlated
with the treatment.

In most cases we won’t have randomization. So, to avoid bias, why don’t we throw everything into
the regression model? The following rule prevents us from doing that:

• Including variables that we shouldn’t have increases standard errors of the regression variables.

Actually, including any new variables increases the actual (not estimated) standard errors of other
regressors. So we don’t want to idly throw variables into the model. In addition the model must tend
toward perfect fit as the number of non-redundant regressors approaches the sample size. Our R2

increases monotonically as more regressors are included, even unrelated white noise.

R squared goes up as you put regressors in the model

Let’s try a simulation. In this simulation, no regression relationship exists. We simulate data and p

regressors as random normals. The plot is of the R2.

n <- 100

plot(c(1, n), 0 : 1, type = "n", frame = FALSE, xlab = "p", ylab = "R^2")

y <- rnorm(n); x <- NULL; r <- NULL

for (i in 1 : n){

x <- cbind(x, rnorm(n))

r <- c(r, summary(lm(y ~ x))$r.squared)

}

lines(1 : n, r, lwd = 3)

abline(h = 1)
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Plot of R2 by n as more regressors are included. No actual regression

Notice that the R2 goes up, monotonically, as the number of regressors is increased. This reminds
us of a couple of things. First, irrelevant variables explain residual variation by chance. And, when
evaluating fit, we have to take into account the number of regressors included. The adjusted R2 is
better for these purposes than R2 since it accounts for the number of variables included in the model.
In R, you can get the adjusted R2 very easily by grabbing summary(fitted_model)$adj.r.squared

instead of summary(fitted_model)$r.squared.

Simulation demonstrating variance inflation

Watch this video before beginning.¹⁰⁴

Now let’s use simulation to demonstrate variation inflation. In this case, we’re going to simulate
three regressors, x1, x2 and x3.We then repeatedly generate data from amodel, where y only depends
on x1. We fit three models, y ∼ x1, y ∼ x1 + x2, and y ∼ x1 + x2 + x3. We do this over and over
again and look at the standard deviation of the x1 coefficient.

¹⁰⁴https://youtu.be/sP5JJlOCNNo?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://youtu.be/sP5JJlOCNNo?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/sP5JJlOCNNo?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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> n <- 100; nosim <- 1000

> x1 <- rnorm(n); x2 <- rnorm(n); x3 <- rnorm(n);

> betas <- sapply(1 : nosim, function(i){

y <- x1 + rnorm(n, sd = .3)

c(coef(lm(y ~ x1))[2],

coef(lm(y ~ x1 + x2))[2],

coef(lm(y ~ x1 + x2 + x3))[2])

})

> round(apply(betas, 1, sd), 5)

x1 x1 x1

0.02839 0.02872 0.02884

Notice that the standard error for the x1 coefficient goes up as more regressors are included (left to
right in our vector output). It’s important to note that these are the actual standard errors (obtained
by repeatedly simulating the data). These aren’t obtainable in a single dataset since we only get one
realization. The estimated standard errors, the ones we have access to in a data analysis, may not
go up as you include more regressors.

Now let’s see if we canmake the variance inflation worse. In this case, I’ve made x2 and x3 correlated
with x1.

> n <- 100; nosim <- 1000

> x1 <- rnorm(n); x2 <- x1/sqrt(2) + rnorm(n) /sqrt(2)

> x3 <- x1 * 0.95 + rnorm(n) * sqrt(1 - 0.95^2);

> betas <- sapply(1 : nosim, function(i){

y <- x1 + rnorm(n, sd = .3)

c(coef(lm(y ~ x1))[2],

coef(lm(y ~ x1 + x2))[2],

coef(lm(y ~ x1 + x2 + x3))[2])

})

> round(apply(betas, 1, sd), 5)

x1 x1 x1

0.03131 0.04270 0.09653

Notice that the variance inflation goes up quite a bit more. This is an issue with including variables
that are highly correlated with the ones that we are interested in. In the first simulation, the
regressors were simulated independently, and the variance inflation wasn’t bad. In the second, they
were correlated and it was much worse.

Summary of variance inflation

• Notice variance inflation was much worse when we included a variable that was highly related
to x1.
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• We don’t know σ, the residual variance, so we can’t know the actual variance inflation amount.
• However, σ drops out of the ratio of the standard errors. Thus, if one sequentially adds variables,
one can check the variance (or sd) inflation for including each one.

• When the other regressors are actually orthogonal (correlation 0) to the regressor of interest,
then there is no variance inflation.

• The variance inflation factor (VIF) is the increase in the variance for the ith regressor compared
to the ideal setting where it is orthogonal to the other regressors.
– The square root of the VIF is the increase in the sd instead of variance.

• Remember, variance inflation is only part of the picture. We want to include certain variables,
even if they dramatically inflate our variance.

Let’s revisit our previous simulation to show how one can estimate the relative increase in variance.
Let’s simulate a single dataset, and I’ll show how to get the relative increase in variance for including
x2 and x3. All you need to do is take the ratio of the variances for that coefficient. If you don’t exactly
understand the code, don’t worry. The idea is that we can obtain these from an observed data set.

> y <- x1 + rnorm(n, sd = .3)

> a <- summary(lm(y ~ x1))$cov.unscaled[2,2]

> c(summary(lm(y ~ x1 + x2))$cov.unscaled[2,2],

summary(lm(y~ x1 + x2 + x3))$cov.unscaled[2,2]) / a

[1] 1.895 9.948

Now let’s check it by referring to our previous simulation and see what the relative variance for x1
is when including the x2 and x2 plus x3 models.

> temp <- apply(betas, 1, var); temp[2 : 3] / temp[1]

x1 x1

1.860 9.506

Notice that it’s the same (about). In other words, from a single observed dataset we can perfectly
estimate the relative variance inflation caused by adding a regressor.

Swiss data revisited
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> data(swiss);

> fit1 <- lm(Fertility ~ Agriculture, data = swiss)

> a <- summary(fit1)$cov.unscaled[2,2]

>fit2 <- update(fit1, Fertility ~ Agriculture + Examination)

> fit3 <- update(fit1, Fertility ~ Agriculture + Examination + Education)

> c(summary(fit2)$cov.unscaled[2,2],

summary(fit3)$cov.unscaled[2,2]) / a

[1] 1.892 2.089

Thus inclusion of Examination increases the variance of the Agriculture effect by 89.2%while further
adding Examination and Education causes a 108.9% increase. Again, the observed standard errors
won’t follow these percentages. These are the increases if we actually knew σ2.

Let’s look at the variance inflation factors. These measure how much variance inflation the variable
causes relative to the setting where it was orthogonal to the other regressors. This is nice because
it has a well contained interpretation within a single model fit. Also, one doesn’t have to do all of
the model refitting we did above to explore variance inflation. So, in general, the VIFs are the most
convenient entity to work with.

> library(car)

> fit <- lm(Fertility ~ . , data = swiss)

> vif(fit)

Agriculture Examination Education Catholic Infant.Mortality

2.284 3.675 2.775 1.937 1.108

> sqrt(vif(fit)) #If you prefer sd inflation

Agriculture Examination Education Catholic Infant.Mortality

1.511 1.917 1.666 1.392 1.052

Impact of over- and under-fitting on residual variance
estimation

Watch this video before beginning.¹⁰⁵

Assuming that the model is linear with additive iid errors, we can mathematically describe the
impact of omitting necessary variables or including unnecessary ones. These two rules follow:

• If we underfit the model, that is omit necessary covariates, the variance estimate is biased.
• If we correctly, or overfit, the model, including all necessary covariates and possibly some
unnecessary ones, the variance estimate is unbiased. However, the variance of the variance is
larger if we include unnecessary variables.

¹⁰⁵https://www.youtube.com/watch?v=Mg6WUKkRiS8&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=32

https://www.youtube.com/watch?v=Mg6WUKkRiS8&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=32
https://www.youtube.com/watch?v=Mg6WUKkRiS8&list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC&index=32
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These make sense. If we’ve omitted important variables, we’re attributing residual variation that is
really systematic variation explainable by those omitted covariates. Therefore, we would expect a
variance estimate that is systematically off (biased). We would also expect absence of bias when we
throw the kitchen sink at the model and include everything (necessary and unnecessary). However,
then our variance estimate is unstable (the variance of the variance estimate is larger).

Covariate model selection

Ideally, you include only the necessary variables in a regression model. However, it’s impossible to
know in practice which ones are necessary and which ones are not. Thus we have to discuss variable
selection a little bit. Automated covariate selection is a difficult topic. It depends heavily on how
rich of a covariate space one wants to explore. The space of models explodes quickly as you add
interactions and polynomial terms.

In the Data Science Specialization prediction class, we’ll cover many modern methods for traversing
large model spaces for the purposes of prediction. In addition, principal components or factor
analytic models on covariates are often useful for reducing complex covariate spaces.

It should also be noted that careful design can often eliminate the need for complexmodel searches at
the analyses stage. For example, randomized designs, randomized block designs, crossover designs,
clinical trials, A/B testing are all examples of designswhere randomization, balance and stratification
are used to create data sets that have more direct analyses. However, control over the design is often
limited in data science.

I’ll give my favorite approach for model selection when I’m trying to get a parsimonious explanatory
model. (I would use a different strategy for prediction.) Given a coefficient that I’m interested in, I
like to use covariate adjustment and multiple models to probe that effect to evaluate it for robustness
and to see what other covariates knock it out or amplify it. In other words, if I have an effect, or
absence of an effect, that I’d like to report, I try to first come up with criticisms of that effect and
then use models to try to answer those criticisms.

As an example, if I had a significant effect of lead exposure on brain size I would think about the
following criticism.Were the high exposure people smaller than the low exposure people. To address
this, I would consider adding head size (intra-cranial volume). If the lead exposed were more obese
than the non-exposed, I would put a model with body mass index (BMI) included. This isn’t a
terribly systematic approach, but it tends to teach you a lot about the the data as you get your hands
dirty. Most importantly, it makes you think hard about the questions your asking and what are the
potential criticisms to your results. Heading those criticisms off at the pass early on is a good idea.

How to do nested model testing in R

One particular model selection technique is so useful I’ll cover it since it likely wouldn’t be covered
in a machine learning or prediction class. If the models of interest are nested and without lots of
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parameters differentiating them, it’s fairly uncontroversial to use nested likelihood ratio tests for
model selection. Consider the following example:

> fit1 <- lm(Fertility ~ Agriculture, data = swiss)

> fit3 <- update(fit1, Fertility ~ Agriculture + Examination + Education)

> fit5 <- update(fit1, Fertility ~ Agriculture + Examination + Education + Catholic \

+ Infant.Mortality)

> anova(fit1, fit3, fit5)

Analysis of Variance Table

Model 1: Fertility ~ Agriculture

Model 2: Fertility ~ Agriculture + Examination + Education

Model 3: Fertility ~ Agriculture + Examination + Education + Catholic +

Infant.Mortality

Res.Df RSS Df Sum of Sq F Pr(>F)

1 45 6283

2 43 3181 2 3102 30.2 8.6e-09 ***

3 41 2105 2 1076 10.5 0.00021 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notice how the three models I’m interested in are nested. That is, Model 3 contains all of the Model
2 variables which contains all of the Model 1 variables. The P-values are for a test of whether all
of the new variables are all zero or not (i.e. whether or not they’re necessary). So this model would
conclude that all of the added Model 3 terms are necessary over Model 2 and all of the Model 2 terms
are necessary over Model 1. So, unless there were some other compelling reasons, we’d pick Model
3. Again, you don’t want to blindly follow a model selection procedure, but when the models are
naturally nested, this is a reasonable approach.

Exercises

1. Load the dataset Seatbelts as part of the datasets package via data(Seatbelts). Use
as.data.frame to convert the object to a dataframe. Fit a linear model of driver deaths with
kms, PetrolPrice and law as predictors.

2. Perform a model selection exercise to arrive at a final model. Watch a video solution.¹⁰⁶

LocalWords: knowns regressors volumetric MRIs intra

¹⁰⁶https://www.youtube.com/watch?v=ffu80TAq2zY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=46

https://www.youtube.com/watch?v=ffu80TAq2zY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=46
https://www.youtube.com/watch?v=ffu80TAq2zY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=46


Generalized Linear Models
Watch this video before beginning.¹⁰⁷

Generalized linear models (GLMs) were a great advance in statistical modeling. The original
manuscript with the GLM framework was from Nelder and Wedderburn in 1972¹⁰⁸. in the Journal
of the Royal Statistical Society. The McCullagh and Nelder book¹⁰⁹ is the famous standard treatise
on the subject.

Recall linear models. Linear models are the most useful applied statistical technique. However, they
are not without their limitations. Additive response models don’t make much sense if the response
is discrete, or strictly positive. Additive error models often don’t make sense, for example, if the
outcome has to be positive. Transformations, such as taking a cube root of a count outcome, are
often hard to interpret.

In addition, there’s value in modeling the data on the scale that it was collected. Particularly
interpretable transformations, natural logarithms in specific, aren’t applicable for negative or zero
values.

The generalized linear model is a family of models that includes linear models. By extending the
family, it handles many of the issues with linear models, but at the expense of some complexity and
loss of some of the mathematical tidiness. A GLM involves three components:

• An exponential family model for the response.
• A systematic component via a linear predictor.
• A link function that connects the means of the response to the linear predictor.

The threemost famous cases of GLMs are: linearmodels, binomial and binary regression and Poisson
regression. We’ll go through the GLM model specification and likelihood for all three. For linear
models, we’ve developed them throughout the book. The next two chapters will be devoted to
binomial and Poisson regression. We’ll only focus on the most popular and useful link functions.

Example, linear models

Let’s go through an example. Assume that our response is {$$}Y_i \sim N(\mu_i, \sigma^2){/$$}. The
Gaussian distribution is an exponential family distribution. Define the linear predictor to be

ηi =
∑p

k=1 Xkiβk.

¹⁰⁷https://youtu.be/xEwM1nzQckY
¹⁰⁸http://www.jstor.org/stable/2344614
¹⁰⁹McCullagh, Peter, and John A. Nelder. Generalized linear models. Vol. 37. CRC press, 1989.

https://youtu.be/xEwM1nzQckY
http://www.jstor.org/stable/2344614
https://youtu.be/xEwM1nzQckY
http://www.jstor.org/stable/2344614
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The link function as g so that g(µ) = η. For linear models g(µ) = µ so that µi = ηi. This yields the
same likelihood model as our additive error Gaussian linear model

Yi =

p∑
k=1

Xkiβk + ϵi

where ϵi
iid∼ N(0, σ2). So, we’ve specified our model as a GLM above and with a more traditional

linear model specification below. Let’s try an example where the GLM is more necessary.

Example, logistic regression

Assume that our outcome is a 0, 1 variable. Let’s model Yi ∼ Bernoulli(µi) so that E[Yi] = µi where
0 ≤ µi ≤ 1.

• Linear predictor: ηi =
∑p

k=1 Xkiβk

• Link function g(µ) = η = log
(

µ
1−µ

)
In this case, g is the (natural) log odds, referred to as the logit. Note then we can invert the logit
function as:

µi =
exp(ηi)

1 + exp(ηi)
and 1− µi =

1

1 + exp(ηi)

Some people like to call this the expit function. The logit is useful as it converts probabilities which
lie in [0,1] into the whole real line, a more natural space for the linear part of the model to live.
Notice further, we’re not transforming the outcome (Y). Instead, we’re modeling our Y as if it were
a collection of coin flips and applying the transformation to the probability of a head.

To get the estimates we maximize the likelihood. We can write out the likelihood as:

n∏
i=1

µyi

i (1− µi)
1−yi = exp

(
n∑

i=1

yiηi

)
n∏

i=1

(1 + ηi)
−1

Example, Poisson regression

Let’s consider a problem with count data. Assume that :

• Yi ∼ Poisson(µi) so that E[Yi] = µi where 0 ≤ µi.
• Linear predictor ηi =

∑p
k=1 Xkiβk.

• Link function g(µ) = η = log(µ)
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Recall that ex is the inverse of log(x) so that we have:

µi = eηi

Thus, the likelihood is:

n∏
i=1

(yi!)
−1µyi

i e−µi ∝ exp

(
n∑

i=1

yiηi −
n∑

i=1

µi

)

How estimates are obtained

For GLMs, estimates have to be obtained numerically through an iterative algorithm. The algorithms
are very well behaved, so convergence is usually not a problem unless you have a lot of data on a
boundary, such as a lot of 0 counts in binomial or Poisson data. The standard errors are obtained
also numerically, and are usually based on large sample theory. The exact equation that gets solved
is the so-called normal equations

0 =

n∑
i=1

(Yi − µi)

V ar(Yi)
Wi

The variance differs by the model. The Wi are derivative terms that we won’t deal with.

• For the linear model V ar(Yi) = σ2 (is constant).
• For Bernoulli case V ar(Yi) = µi(1− µi)

• For the Poisson case V ar(Yi) = µi.

In the latter two cases, it is often relevant to have a more flexible variance model, even if it doesn’t
correspond to an actual likelihood. We might make the following changes:

0 =

n∑
i=1

(Yi − µi)

ϕµi(1− µi)
Wi and 0 =

n∑
i=1

(Yi − µi)

ϕµi
Wi

These are called ‘quasi-likelihood’ normal equations. R offers these as an option in the glm function
as the quasipoisson and quasibinomial options. These offer more flexible variance options than
straight Poisson and binomial models.

Odds and ends

At this point, let’s do some bookkeeping before we work through examples.
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• The normal equations have to be solved iteratively, resulting in β̂k and, if included, ϕ̂.
• Predicted linear predictor responses can be obtained as η̂ =

∑p
k=1 Xkβ̂k

• Predicted mean responses as µ̂ = g−1(η̂)

• Coefficients are interpreted as

g(E[Y |Xk = xk + 1, X∼k = x∼k])− g(E[Y |Xk = xk, X∼k = x∼k]) = βk

or the change in the link function of the expected response per unit change in Xk holding other
regressors constant.

• Variations on Newon/Raphson’s algorithm are used to do it.
• Asymptotics are used for inference usually (but not always).
• Many of the ideas from linear models can be brought over to GLMs.

Exercises

1. True or false, generalized linear models transform the observed outcome. (Discuss.) Watch a
video solution.¹¹⁰

2. True or false, the interpretation of the coefficients in a GLM are on the scale of the link function.
(Discuss.) Watch a video solution.¹¹¹

3. True or false, the generalized linear model assumes an exponential family for the outcome.
(Discuss.) Watch a video solution.¹¹²

4. True or false, GLM estimates are obtained by maximizing the likelihood. (Discuss.) Watch a
video solution.¹¹³

5. True or false, someGLMdistributions impose restrictions on the relationship between themean
and the variance. (Discuss.) Watch a video solution.¹¹⁴

¹¹⁰https://www.youtube.com/watch?v=gsfMdAmHxgA&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=47
¹¹¹https://www.youtube.com/watch?v=ewAUYoJYG_0&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=48
¹¹²https://www.youtube.com/watch?v=CkZ9wOm0Uvs&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=49
¹¹³https://www.youtube.com/watch?v=LckCGsK8oqY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=50
¹¹⁴https://www.youtube.com/watch?v=oRUJv6ur_cY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=51

https://www.youtube.com/watch?v=gsfMdAmHxgA&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=47
https://www.youtube.com/watch?v=gsfMdAmHxgA&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=47
https://www.youtube.com/watch?v=ewAUYoJYG_0&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=48
https://www.youtube.com/watch?v=CkZ9wOm0Uvs&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=49
https://www.youtube.com/watch?v=LckCGsK8oqY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=50
https://www.youtube.com/watch?v=LckCGsK8oqY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=50
https://www.youtube.com/watch?v=oRUJv6ur_cY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=51
https://www.youtube.com/watch?v=gsfMdAmHxgA&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=47
https://www.youtube.com/watch?v=ewAUYoJYG_0&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=48
https://www.youtube.com/watch?v=CkZ9wOm0Uvs&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=49
https://www.youtube.com/watch?v=LckCGsK8oqY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=50
https://www.youtube.com/watch?v=oRUJv6ur_cY&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=51


Binary GLMs
Watch this video before beginning.¹¹⁵

Binary GLMs come from trying to model outcomes that can take only two values. Some examples
include: survival or not at the end of a study, winning versus losing of a team and success versus
failure of a treatment or product. Often these outcomes are called Bernoulli outcomes, from the
Bernoulli distribution named after the famous probabilist and mathematician.

If we happen to have several exchangeable binary outcomes for the same level of covariate values,
then that is binomial data and we can aggregate the 0’s and 1’s into the count of 1’s. As an example,
imagine if we sprayed insect pests with 4 different pesticides and counted whether they died or not.
Then for each spray, we could summarize the data with the count of dead and total number that
were sprayed and treat the data as binomial rather than Bernoulli.

Example Baltimore Ravens win/loss

The Baltimore Ravens are an American Football team in the US’s National Football League.¹¹⁶ The
data contains the wins and losses of the Ravens by the number of points that they scored. (In
American football, the goal is to score more points than your opponent.) It should be clear that
there would be a positive relationship between the number of points scored and the probability of
winning that particular game.

Let’s load the data and use head to look at the first few rows.

> download.file("https://dl.dropboxusercontent.com/u/7710864/data/ravensData.rda"

, destfile="./data/ravensData.rda",method="curl")

> load("./data/ravensData.rda")

> head(ravensData)

ravenWinNum ravenWin ravenScore opponentScore

1 1 W 24 9

2 1 W 38 35

3 1 W 28 13

4 1 W 34 31

5 1 W 44 13

6 0 L 23 24

¹¹⁵https://youtu.be/CteWtkdXQ-Y?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
¹¹⁶I got this data set from Jeff Leek.

https://youtu.be/CteWtkdXQ-Y?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/CteWtkdXQ-Y?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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A linear regression model would look something like this:

Yi = β0 + β1Xi + ei

Where Yi is a binary indicator of whether or not the Ravens won game i(1 for a win, 0 for a loss). Xi

is the number of points that they scored for that game. and ϵi is the residual error term.

Under this model then β0 is the expected value of Yi given a 0 point game. For a 0/1 variable, the
expected value is the probability, so the intercept is the probability that the Ravens win with 0 points
scored. Then β1 is the increase in probability of a win for each additional point.

At this point in the book, I hope that fitting and interpreting this model would be second nature.

> lmRavens <- lm(ravensData$ravenWinNum ~ ravensData$ravenScore)

> summary(lmRavens)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.2850 0.256643 1.111 0.28135

ravensData$ravenScore 0.0159 0.009059 1.755 0.09625

There are numerous problems with this model. First, if the Ravens score more than 63 points in a
game, we estimate a 0.0159 * 63, which is greater than 1, increase in the probability of them winning.
This is an impossibility, since a probability can’t be greater than 1. Sixty three is an unusual, but not
impossible, score in American football, but the principle applies broadly: modeling binary data with
linear models results in models that fail the basic assumption of the data.

Perhaps less galling, but still an annoying aspect of the model, is that if the error is assumed to be
Gaussian, then our model allows Yi to be anything from minus infinity to plus infinity, when we
know our data can be only be 0 or 1. If we assume that our errors are discrete to force this, we assume
a very strange distribution on the errors.

There also aren’t any transformations to make things better. Any one to one transformation of our
outcome is still just going to have two values, thus the same set of problems.

The key insight was to transform the probability of a 1 (win in our example) rather than the data
itself. Which transformation is most useful? It turns out that it involves the log of the odds, called
the logit.

Odds

You’ve heard of odds before, most likely from discussions of gambling. First note, odds are a fraction
greater than 0 but unbounded. The odds are not a percentage or proportion. So, when someone
says “The odds are fifty percent”, they are mistaking probability and odds. They likely mean “The
probability is fifty percent.”, or equivalently “The odds are one.”, or “The odds are one to one”, or
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“The odds are fifty [divided by] fifty.” The latter three odds statements are all the same since: 1, 1 /
1 and 50 / 50 are all the same number.

If p is a probability, the odds are defined as o = p/(1 − p). Note that we can go backwards as p =

o/(1 + o). Thus, if someone says the odds are 1 to 1, they’re saying that the odds are 1 and thus
p = 1/(1 + 1) = 0.5. Conversely, if someone says that the probability that something occurs is 50%,
then they mean that p = 0.5 so that the odds are o = p/(1− p) = 0.5/(1− 0.5) = 1.

The odds are famously derived using a standard fair game setting. Imagine that you are playing a
game where you flip a coin with success probability p with the following rules:

• If it comes up heads, you win X dollars.
• If it comes up tails, you lose Y .

What should we set X and Y for the game to be fair? Fair means the expected earnings for either
player is 0. That is:

E[earnings] = Xp− Y (1− p) = 0

This implies Y
X = p

1−p = o. Consider setting X = 1, then Y = o. Thus, the odds can be interpreted
as “How much should you be willing to pay for a p probability of winning a dollar?” If p > 0.5 you
have to pay more if you lose than you get if you win. If p < 0.5 you have to pay less if you lose than
you get if you win.

So, imagine that I go to a horse race and the odds that a horse loses are 50 to 1. They usually specify
in terms of losing at horse tracks, so this would be said to be 50 to 1 “against” where the against is
implied and not stated on the boards. The odds of the horse winning are then 1/50. Thus, for a fair
bet if I were to bet on the horse winning, they should pay me 50 dollars if he wins and should pay
1 dollar if he loses. (Or any agreed upon multiple, such as 100 dollars if he wins and 2 dollars if he
loses.) The implied probability that the horse loses is 50/(1 + 50).

It’s an interesting side note that the house sets the odds (hence the implied probability) only by
the bets coming in. They take a small fee for every bet win or lose (the rake). So, by setting the
odds dynamically as the bets roll in, they can guarantee that they make money (risk free) via the
rake. Thus the phrase “the house always wins” applies literally. Even more interesting is that by
the wisdom of the crowd, the final probabilities tend to match the percentage of times that event
happens. That is, house declared 50 to 1 horses tend to win about 1 out of 51 times and lose 50 out
of 51 times, even though that 50 to 1 was set by a random collection of mostly uninformed bettors.
This is why even your sports junkie friend with seemingly endless up to date sports knowledge
can’t make a killing betting on sports; the crowd is just too smart as a group even though most of
the individuals know much less.

Finally, and then I’ll get back on track, many of the machine learning algorithms work on this
principle of the wisdom of crowds: many small dumb models can make really good models. This is
often called ensemble learning, where a lot of independent weak classifiers are combined to make
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a strong one. Random forests and boosting come to mind as examples. In the Coursera Practical
Machine Learning class, we cover ensemble learning algorithms.

Getting back to the issues at hand, recall that probabilities are between 0 and 1. Odds are between
0 and infinity. So, it makes sense to model the log of the odds (the logit), since it goes from minus
infinity to plus infinity. The log of the odds is called the logit:

g = logit(p) = log(p/(1− p))

We can go backwards from the logit to the probability with the so-called expit (inverse logit):

expit(g) = eg/(1 + eg) = 1/(1 + e−g) = p.

Modeling the odds

Let’s come up with notation for modeling the odds. Recall that Yi was our outcome, a 0 or 1 indicator
of whether or not the Raven’s won game i.

Let

pi = P(Yi = 1 | Xi = xi, β0, β1)

be the probability of a win for number of points xi. Then the odds that they win is pi/(1 − pi) and
the log odds is log pi/(1− pi) = logit(pi).

Logistic regression puts the model on the log of the odds (logit) scale. In other words,

logit(pi) = β0 + β1xi

Or, equivalently, we could just say

P (Yi = 1 | Xi = xi, β0, β1) = pi =
exp(β0 + β1xi)

1 + exp(β0 + β1xi)

Interpreting Logistic Regression

Recall our model is:

logit{P (Yi = 1 | Xi = xi)} = β0 + β1xi

Let’s write this as:
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log{O(Yi = 1 | Xi = xi)} = β0 + β1xi

where O(Yi = 1 |Xi = xi) refers to the odds. Interpreting β0 is straightforward, it’s the log of the odds
of the Ravens winning for a 0 point game. Just like in regular regression, for this to have meaning,
a 0 X value has to have meaning. In this case, there’s a structural consideration that’s being ignored
in that the Ravens can’t win if they score 0 points (they can only tie or lose). This is an unfortunate
assumption of our model.

For interpreting the β1 coefficient, consider the following:

log{O(Yi = 1 | Xi = xi + 1)} − log{O(Yi = 1 | Xi = xi)} = log
{
O(Yi = 1 | Xi = xi + 1)

O(Yi = 1 | Xi = xi)

}
= β1

So that β1 is the log of the relative increase in the odds of the Ravens winning for a one point increase
in score. The ratio of two odds is called, not surprisingly, the odds ratio. So β1 is the log odds ratio
of the Ravens winning associated with a one point increase in score.

We can get rid of the log by exponentiating and then get that exp(β1) is the odds ratio associated
with a one point increase in score. It’s a nifty fact that you can often perform this exponentiation
in your head, since for numbers close to zero, exponentiation is about 1 + that number. So, if you
have a logistic regression slope coefficient of 0.01, you know that e to that coefficient is about 1.01.
So you know that the coefficient estimates a 1% increase in the odds of a success for every 1 unit
increase in the regressor.

Visualizing fitting logistic regression curves

Watch this video before beginning.¹¹⁷

Let’s visualize what the logistic regression model is
fitting. Consider setting β0 to 0 and varying β1 for X being a regressor equally spaced between -10
and 10. Notice that the logistic curves vary in their curvature.

¹¹⁷https://youtu.be/-g3wtUAW1rU?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://youtu.be/-g3wtUAW1rU?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/-g3wtUAW1rU?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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x = seq(-10, 10, length = 1000)

beta0 = 0; beta1s = seq(.25, 1.5, by = .1)

plot(c(-10, 10), c(0, 1), type = "n", xlab = "X", ylab = "Probability", frame = FALS\

E)

sapply(beta1s, function(beta1) {

y = 1 / (1 + exp( -1 * ( beta0 + beta1 * x ) ))

lines(x, y, type = "l", lwd = 3)

}

)

Plot of logistic curves for varying slope coefficients.

Try making the slope negative and see what happens. (It flips the curve from increasing to
decreasing.) Now let’s hold β1 fixed and vary β0.
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x = seq(-10, 10, length = 1000)

beta0s = seq(-2, 2, by = .5); beta1 = 1

plot(c(-10, 10), c(0, 1), type = "n", xlab = "X", ylab = "Probability", frame = FALS\

E)

sapply(beta0s, function(beta0) {

y = 1 / (1 + exp( -1 * ( beta0 + beta1 * x ) ))

lines(x, y, type = "l", lwd = 3)

}

)

Plot of logistic curves for varying intercepts.

Notice that varying the intercept shifts the curve back and forth. Let’s superimpose some data with
the fitted curve.
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x = seq(-10, 10, length = 1000)

beta0 = 0; beta1 = 1

p = 1 / (1 + exp(-1 * (beta0 + beta1 * x)))

y = rbinom(prob = p, size = 1, n = length(p))

plot(x, y, frame = FALSE, xlab = "x", ylab = "y")

lines(lowess(x, y), type = "l", col = "blue", lwd = 3)

fit = glm(y ~ x, family = binomial)

lines(x, predict(fit, type = "response"), lwd = 3, col = "red")

Image of simulated binary data, fitted model (red) and lowess smooth (blue).

The plot above shows the simulated binary data (black points), the fitted logistic curve (red) and a
lowess smoother through the data (blue). The lowess smoother shows a non-parametric estimate of
the probability of a success at each x value. Think of it as a moving proportion. Logistic regression
gets to move around the intercept and slope of the logistic curve to fit the data well. Here the fit says
that the probability of a 1 for low values of x is very small, the probability of a 1 for high values of
x is high and it is intermediate at the points in the middle.
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Ravens logistic regression

Watch this video before beginning.¹¹⁸

Now let’s run our binary regression model on the Ravens data.

> logRegRavens = glm(ravensData$ravenWinNum ~ ravensData$ravenScore,family="binomial\

")

> summary(logRegRavens)

Call:

glm(formula = ravensData$ravenWinNum ~ ravensData$ravenScore,

family = "binomial")

Deviance Residuals:

Min 1Q Median 3Q Max

-1.758 -1.100 0.530 0.806 1.495

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.6800 1.5541 -1.08 0.28

ravensData$ravenScore 0.1066 0.0667 1.60 0.11

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 24.435 on 19 degrees of freedom

Residual deviance: 20.895 on 18 degrees of freedom

AIC: 24.89

Number of Fisher Scoring iterations: 5

## plotting the fit

> plot(ravensData$ravenScore,logRegRavens$fitted,pch=19,col="blue",xlab="Score",ylab\

="Prob Ravens Win")

¹¹⁸https://youtu.be/lZCCj-IxYOA?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://youtu.be/lZCCj-IxYOA?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/lZCCj-IxYOA?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Fitted model for the Ravens data.

In this case, the data only covers some of the logistic curve, so that the full “S” of the curve isn’t
visible. To interpret our coefficients, let’s exponentiate them.

> exp(logRegRavens$coeff)

(Intercept) ravensData$ravenScore

0.1864 1.1125

> exp(confint(logRegRavens))

2.5 % 97.5 %

(Intercept) 0.005675 3.106

ravensData$ravenScore 0.996230 1.303

The first line of code shows that the exponentiated slope coefficient is 1.11. Thus, we estimate a 11%
increase in the odds of winning per 1 point increase in score. However, the data are variable and
the confident interval goes from 0.99 to 1.303. Since this interval contains 1 (or contains 0 on the log
scale), it’s not statistically significant. (It’s pretty close, though.)

If we had included another variable in our model, say home versus away game indicator, then our
slope is interpreted holding the value of the covariate held fixed. Just like in multivariable regression.

We can also compare nested models using ANOVA and, by and large, our general model discussion
carries over to this setting as well.
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Some summarizing comments

Odds aren’t probabilities. In binary GLMs, we model the log of the odds (logit) and our slope
parameters are interpreted as log odds ratios. Odds ratios of 1 or log odds ratios of 0 are interpreted
as no effect of the regressor on the outcome.

Exercises

1. Load the dataset Seatbelts as part of the datasets package via data(Seatbelts). Use
as.data.frame to convert the object to a dataframe. Create a new outcome variable for whether
or not greater than 119 drivers were killed that month. Fit a logistic regression GLM with this
variable as the outcome and kms, PetrolPrice and law as predictors. Interpret your parameters.
Watch a video solution.¹¹⁹

2. Fit a binomial model with DriversKilled as the outcome and drivers as the total count with
kms , PetrolPrice and law as predictors, interpret your results. Watch a video solution.¹²⁰

3. Refer to Question 1. Use the anova function to compare models with just law, law and
PetrolPrice and all three predictors. Watch a video solution.¹²¹

¹¹⁹https://www.youtube.com/watch?v=CXWZqzKdkp4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=52
¹²⁰https://www.youtube.com/watch?v=M2KLD_ZFgdo&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=53
¹²¹https://www.youtube.com/watch?v=npHpBLqkhLg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=54

https://www.youtube.com/watch?v=CXWZqzKdkp4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=52
https://www.youtube.com/watch?v=M2KLD_ZFgdo&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=53
https://www.youtube.com/watch?v=npHpBLqkhLg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=54
https://www.youtube.com/watch?v=CXWZqzKdkp4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=52
https://www.youtube.com/watch?v=M2KLD_ZFgdo&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=53
https://www.youtube.com/watch?v=npHpBLqkhLg&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=54


Count data
Watch this video before beginning.¹²²

Acknowledgment to Jeff Leek for much of the code and organization of this chapter.

Many data take the form of unbounded count data. For example, consider the number of calls to a
call center or the number of flu cases in an area or the number of hits to a web site.

In some of these cases the counts are clearly bounded. However, modeling the counts as unbounded
is often done when the upper limit is not known or is very large relative to the number of events.

If the upper bound is known, the techniques we’re discussing can be used to model the proportion
or rate. The starting point for most count analysis is the the Poisson distribution.

Poisson distribution

The Poisson distribution is the goto distribution for modeling counts and rates. We’ll define a rate
as a count per unit of time. For example your heart rate is often expressed in beats per minute. So,
we might look at web hits per day, or disease cases per exposure time (incidence rates). Also, though
not exactly a rate, we can treat proportions as if rates when n is large and the success probability is
small.

We would write that a random variable is Poisson, X ∼ Poisson(tλ), if its density function is:

P (X = x) =
(tλ)xe−tλ

x!

where x = 0, 1, . . .. The mean of the Poisson is E[X] = tλ, thus E[X/t] = λ. The variance of the Poisson
is V ar(X) = tλ. The Poisson tends to a normal as tλ gets large and approximates a binomial with
large n and small p where we would think of tλ as np.

Here are some plots of the Poisson density to illustrate how it closely approximates a normal.

par(mfrow = c(1, 3))

plot(0 : 10, dpois(0 : 10, lambda = 2), type = "h", frame = FALSE)

plot(0 : 20, dpois(0 : 20, lambda = 10), type = "h", frame = FALSE)

plot(0 : 200, dpois(0 : 200, lambda = 100), type = "h", frame = FALSE)

¹²²https://youtu.be/YtotMuVmOUM?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://youtu.be/YtotMuVmOUM?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/YtotMuVmOUM?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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Poisson densities as the mean increases.

Poisson distribution

Let’s analyze some data using the Poisson distribution. Consider the daily counts to Jeff Leek’s web
site: http://biostat.jhsph.edu/∼jleek/¹²³

We’re interested in the number of hits per day. Since the unit of time is always one day, set t = 1

and then the Poisson mean is interpreted as web hits per day. If we set t = 24 then our Poisson rate
would be interpreted as web hits per hour.

Let’s load the data:

> download.file("https://dl.dropboxusercontent.com/u/7710864/data/gaData.rda",destfi\

le="./data/gaData.rda",method="curl")

> load("./data/gaData.rda")

> gaData$julian = julian(gaData$date)

> head(gaData)

date visits simplystats julian

1 2011-01-01 0 0 14975

2 2011-01-02 0 0 14976

3 2011-01-03 0 0 14977

4 2011-01-04 0 0 14978

5 2011-01-05 0 0 14979

6 2011-01-06 0 0 14980

¹²³http://biostat.jhsph.edu/~jleek/

http://biostat.jhsph.edu/~jleek/
http://biostat.jhsph.edu/~jleek/
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> plot(gaData$julian,gaData$visits,pch=19,col="darkgrey",xlab="Julian",ylab="Visits")

Plot of the count of web hits by day.

Linear regression

We could try to fit the data with linear regression. This is an often reasonable thing to do. Specifically,
we would start with the model

Yi = β0 + beta1xi + ϵi

where Yi is the number of web hits on day i and xi is the day (expressed as a Julian date, the number
of days since January 1st, 1970).

This model isn’t anywhere near as objectionable as when applied in the binary case. Two sticking
points remain. First, the response is a count and thus is non-negative, while our model doesn’t
acknowledge that. Secondly, the errors are typically assumed Gaussian, which is not an accurate
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approximation for small counts. As the counts get larger, straight application of linear or multivari-
able regression models becomes more compelling.

1 > plot(gaData$julian,gaData$visits,pch=19,col="darkgrey",xlab="Julian",ylab="Visits")

2 > lm1 = lm(gaData$visits ~ gaData$julian)

3 > abline(lm1,col="red",lwd=3)

Plot of the data plus the fitted line.

The non-negativity could be handled by a (natural) log transformation of the outcome. The log has
a special interpretation with respect to regression, so we cover it here. First, there is the issue of zero
counts (which can’t be logged). Often a +1 is added to all data before taking the log, a reasonable
solution but one that harms the nice interpretation properties of the log. Secondly, a square root or
cube root transformation is often applied (which works just fine on zeros). While correcting nicely
for skewness, this approach creates the issue of losing the nice interpretation of logs. Thus for the
time being, let’s assume no zero counts in the discussion.

Consider now the model:

log(Yi) = β0 + β1xi + ϵi

The quantity eE[log(Y )] estimates the geometric mean of Y . When you take the natural log of outcomes
and fit a regression model, your exponentiated coefficients estimate things about geometric means.
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Thus eβ0 is the geometric mean of hits on day 0, while eβ1 is the relative increase or decrease in hits
going from one day to the next.

Let’s try this briefly with Jeff’s data.

> round(exp(coef(lm(I(log(gaData$visits + 1)) ~ gaData$julian))), 5)

(Intercept) gaData$julian

0.000 1.002

Thus our model estimates a 0.2% increase in geometric mean daily web hits each day. What’s
nice about the geometric mean is it’s a multiplicative quantity. In this case it make sense to think
multiplicatively, as we would very naturally think in the terms of percent increases or decreases in
the daily rate of web traffic.

Poisson regression

Watch this video before beginning.¹²⁴

Poisson regression is similar to logging the outcome. However, instead we log the model mean
exactly as in the binary chapter where we logged the modeled odds. This takes care of the problem
of zero counts elegantly.

Consider a model where we assume that Yi ∼ Poisson(µi). and

log(E[Yi | Xi = xi]) = log(µi) = β0 + β1xi

Note that we’re not logging the outcome, we’re logging the assumed mean in the model.

We interpret our coefficients as follows. eβ0 is the expected mean of the outcome when xi = 0. Using
the relationship:

E[Yi | Xi = xi + 1]

E[Yi | Xi = xi]
= eβ1 ,

eβ1 is the expected relative increase in the outcome for a unit change in the regressor. If there’s
more than one regressor in the model, then the coefficients are interpreted in the terms of the other
regressors being held fixed.

Let’s try it in R for Jeff’s data:

¹²⁴https://youtu.be/hg51LjG1xIc?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC

https://youtu.be/hg51LjG1xIc?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
https://youtu.be/hg51LjG1xIc?list=PLpl-gQkQivXjqHAJd2t-J_One_fYE55tC
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> plot(gaData$julian,gaData$visits,pch=19,col="darkgrey",xlab="Julian",ylab="Visits")

> glm1 = glm(gaData$visits ~ gaData$julian,family="poisson")

> abline(lm1,col="red",lwd=3); lines(gaData$julian,glm1$fitted,col="blue",lwd=3)

Data with fitted Poisson regression line.

Mean-variance relationship

The Poisson model suggest a specific relationship between the mean and the variance. Specifically,
if Yi ∼ Poisson(µi), then E[Yi] = Var(Yi). We can often check whether or not this relationship
apparently holds. For example, we can plot the fitted values (estimates E[Yi]) by generalized version
of residuals for Poisson models.

> plot(glm1$fitted,glm1$residuals,pch=19,col="grey",ylab="Residuals",xlab="Fitted")
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Plot of the fitted means versus the residuals.

There are several methods for dealing with data that, while being counts, do not follow the mean
variance relationship assumed by the Poisson model. Perhaps the easiest is to assume a so-called
quasi-Poisson model. This is from the idea of quasi-likelihood. Here, the model is extended to
have the variance be a constant (non-fixed) multiple of the mean. A very related approach are
so-called negative binomial models. These models typically assume a more general mean/variance
relationship.

Other approaches directly model the mean/variance relationship or rely on asymptotics to be robust
to the assumption. We omit a full discussion of general of methods for addressing complex mean
variance relationships and simply show a quasi-Poisson fit for the data of this chapter.
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> glm2 = glm(visits ~ julian,family="quasipoisson", data = gaData)

#

# Confidence interval expressed as a percentage

> 100 * (exp(confint(glm2)) - 1)[2,]

Waiting for profiling to be done...

2.5 % 97.5 %

julian 0.2072924 0.2520376

#

# As compared to the standard Poisson interval

> 100 * (exp(confint(glm1)) - 1)[2,]

Waiting for profiling to be done...

2.5 % 97.5 %

julian 0.2192443 0.2399335

In this case the distinction between the intervals is minimal. Again, we reiterate that this only
pursues one direction of model departure.

Rates

We fit rates or proportions in Poisson models by including the temporal or sample size component
as a (natural) log offset in the model specification. Recall that Yi was the number of web hits. LetWi

be the number of hits directed to the site from the Simply Statistics BLOG site.

Consider the model where

Wi ∼ Poisson(µi)

so that

log(µi) = β0 + β1xi + log(Yi)

This is a model for the proportion in the sense that µi is the expected count and our model is:

log(µi/Yi) = β0 + β1xi

In this case we were interested in a proportion. If our interest was in rates, counts over a time period,
such as incident rate (cases per time at risk), the time variable would be included as the offset.
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1 glm3 = glm(simplystats ~ julian(gaData$date),offset=log(visits+1),

2 family="poisson",data=gaData)

3 plot(julian(gaData$date),glm3$fitted,col="blue",pch=19,xlab="Date",ylab="Fitted Coun\

4 ts")

5 points(julian(gaData$date),glm1$fitted,col="red",pch=19)

Plot of the fitted rates.

Exercises

1. Load the dataset Seatbelts as part of the datasets package via data(Seatbelts). Use
as.data.frame to convert the object to a dataframe. Fit a Poisson regression GLM with
UKDriversKilled as the outcome and kms, PetrolPrice and law as predictors. Interpret your
results. Watch a video solution.¹²⁵

2. Refer to question 1. Fit a linear model with the log of drivers killed as the outcome. Interpret
your results. Watch a video solution.¹²⁶

3. Refer to question 1. Fit your Poisson log-linear model with drivers as a log offset (to consider
the proportion of drivers killed of those killed or seriously injured.) Watch a video solution.¹²⁷

¹²⁵https://www.youtube.com/watch?v=TXO-SHOV_j4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=55
¹²⁶https://www.youtube.com/watch?v=7RyaIhmpM48&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=56
¹²⁷https://www.youtube.com/watch?v=HylRM_XrUe0&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=57

https://www.youtube.com/watch?v=TXO-SHOV_j4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=55
https://www.youtube.com/watch?v=7RyaIhmpM48&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=56
https://www.youtube.com/watch?v=HylRM_XrUe0&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=57
https://www.youtube.com/watch?v=TXO-SHOV_j4&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=55
https://www.youtube.com/watch?v=7RyaIhmpM48&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=56
https://www.youtube.com/watch?v=HylRM_XrUe0&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=57
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4. Refer to Question 1. Use the anova function to compare models with just law, law and
PetrolPrice and all three predictors. Watch a video solution.¹²⁸

¹²⁸https://www.youtube.com/watch?v=ewfjP1i8gPs&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=58

https://www.youtube.com/watch?v=ewfjP1i8gPs&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=58
https://www.youtube.com/watch?v=ewfjP1i8gPs&list=PLpl-gQkQivXji7JK1OP1qS7zalwUBPrX0&index=58


Bonus material
Watch this video before beginning.¹²⁹.

This chapter is a bit of anmishmash of interesting things that one can accomplish with linear models.

How to fit functions using linear models

Up to this point, we’ve only considered fitting lines, planes and polynomials for linear models.
Consider a model Yi = f(Xi) + ϵ. How can we fit such a model using linear models (often called
scatterplot smoothing)?

We’re going to cover a basic technique called regression splines. Consider the model

Yi = β0 + β1Xi +

d∑
k=1

(xi − ξk)+γk + ϵi

where (a)+ = a if a > 0 and 0 otherwise and ξ1 ≤ ... ≤ ξd are known knot points. Prove to yourself
that the mean function:

\beta_0 + \beta_1 X_i + \sum{k=1}^d (x_i - \xi_k)+ \gamma_k {/$$} is continuous at the knot points.
That is, we could draw this function without lifting up the pen.

Let’s try a simulated example. The function is a sine curve with noise. We have twenty knot points.

## simulate the data

n <- 500; x <- seq(0, 4 * pi, length = n); y <- sin(x) + rnorm(n, sd = .3)

## the break points of the spline fit

knots <- seq(0, 8 * pi, length = 20);

## building the regression spline terms

splineTerms <- sapply(knots, function(knot) (x > knot) * (x - knot))

## adding an intercept and the linear term

xMat <- cbind(1, x, splineTerms)

## fit the model, notice the intercept is in xMat so we have -1

yhat <- predict(lm(y ~ xMat - 1))

## perform the plot

plot(x, y, frame = FALSE, pch = 21, bg = "lightblue", cex = 2)

lines(x, yhat, col = "red", lwd = 2)

¹²⁹https://youtu.be/DRKg33tmoAE

https://youtu.be/DRKg33tmoAE
https://youtu.be/DRKg33tmoAE


Bonus material 133

The plot discovers the sine curve fairly well. However, it has abrupt break points. This is because our
fitted function is continuous at the knot points, but is not differentiable. We can get it to have one
continuous derivative at those points, by adding squared terms. Adding cubic terms would make it
twice continuously differentiable (so even a little smoother looking). Here’s our squared regression
spline model:

Yi = β0 + β1Xi + β2X
2
i +

d∑
k=1

(xi − ξk)
2
+γk + ϵi

splineTerms <- sapply(knots, function(knot) (x > knot) * (x - knot)^2)

xMat <- cbind(1, x, x^2, splineTerms)

yhat <- predict(lm(y ~ xMat - 1))

plot(x, y, frame = FALSE, pch = 21, bg = "lightblue", cex = 2)

lines(x, yhat, col = "red", lwd = 2)

Plot of the fit after adding the squared terms.

Notice how much smoother the fitted (red) curve is now.
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Notes

The collection of regressors is called a basis. People have spent a lot of time thinking about bases
for this kind of problem. So, consider this treatment is just a teaser. Further note that a single knot
point term can fit hockey stick like processes, as long as you know exactly where the knot point is.

These bases can be used in GLMs as well. Thus, this gives us an easy method for fitting non-linear
functions in the linear predictor. An issue with these approaches in either linear or generarlized
linear models is the large number of parameters introduced. Most solutions require some method of
“regularization”. In this process the effective dimension is reduced by adding a term that penalizes
large coefficients.

Harmonics using linear models

Finally, we’d like to end with another basis, perhaps the most famous one. Consider give a musical
chord played continuously, could we use linear models to discover the notes? In the following
simulation I consider the piano keys from middle C for a full octave¹³⁰.
We’re going to generate our chords as sine curves of the specified frequencies. Then we’ll fit a linear
model with all of the sine curves and look at which coefficients seem large. Those would make up
our chord. I got the note frequencies here¹³¹.

1 ## Chord finder, playing the white keys on a piano from octave c4 - c5

2 ## Note frequencies in the order of C4, D4, E4, F4, G4, A4, B4, C5

3 notes4 <- c(261.63, 293.66, 329.63, 349.23, 392.00, 440.00, 493.88, 523.25)

4 ## The time variable (how long the chord is played and how frequently it is digitall\

5 y sampled)

6 t <- seq(0, 2, by = .001); n <- length(t)

7 ## The notes for a C Major Chord

8 c4 <- sin(2 * pi * notes4[1] * t); e4 <- sin(2 * pi * notes4[3] * t);

9 g4 <- sin(2 * pi * notes4[5] * t)

10 ## Create the chord by adding the three together

11 chord <- c4 + e4 + g4 + rnorm(n, 0, 0.3)

12 ## Create a basis that has all of the notes

13 x <- sapply(notes4, function(freq) sin(2 * pi * freq * t))

14 ## Fit the model

15 fit <- lm(chord ~ x - 1)

¹³⁰https://en.wikipedia.org/wiki/Octave
¹³¹http://www.phy.mtu.edu/~suits/notefreqs.html

https://en.wikipedia.org/wiki/Octave
http://www.phy.mtu.edu/~suits/notefreqs.html
https://en.wikipedia.org/wiki/Octave
http://www.phy.mtu.edu/~suits/notefreqs.html
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Plot of the fitted coefficients.

It is interesting to note that whatwe’re accomplishing is highly related to the famousDiscrete Fourier
Transform. This is an automatic what to fit all sine and cosine terms available to a set of data. And,
the Fast (Discrete) Fourier Transform (FFT) does it about as fast as possible (faster than fitting the
linear model). Here, I give some code to show taking the FFT and plotting the coefficients. Notice it
lodes on the three notes comprising the chords.

##(How you would really do it)

a <- fft(chord); plot(Re(a)^2, type = "l")
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Fit of the FFT to the data

Thanks!

Thanks for your time and attention in reading this book. I hope that you’ve learned some of the
basics of linear models and have internalized that these are some incredibly powerful tools. As a
next direction, you might consider more coverage of generalized linear models, or looking at the
specific cases for correlated data. Thanks again!

Brian
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