
Homework 2

Problem 0. Shaunak’s conjecture: Let n ≥ 1. Prove that 5n|F5n . Hint: Use Binet’s formula.

Let γ = 1+
√
5

2
and γ̄ = 1−

√
5

2
. Then Fr = 1√

5
(γr − γ̄r). So you’ll want to use the binomial

expansion. Note that it follows from Proposition 3.2 (which you will use repeatedly in the
homework below) that 5n|Fk5n for any positive integer k.

Remark. In the homework below, we will find three new ways of creating Fibonacci pseudo-
primes that require primality testing but do not require factoring. These have the advantage
of not requiring factoring, but have the disadvantage that these examples are much less dense
than the examples from the method you’ve been working on.

Method 1 (not a homework problem): The smallest Fibonacci pseudoprime is 323 = 17 · 19.
If p and p+2 are both primes then they are called twin primes. Let’s generalize this example.
If p and p + 2 are both primes and p ≡ 2mod 5) then p(p + 2) is a Fibonacci pseudoprime.
Fun fact: It is conjectured that there are infinitely many twin primes, but no one has proven
it.

Problem 1.1. Prove the result in Method 1.

Problem 1.2. Write a program that searches through positive integers k that are 7(mod 10),
tests whether k and k+ 2 are each prime (or each passes a probabilistic primality test), and
then whether k(k + 2) is a base-2 pseudoprime.
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Method 2: The second smallest Fibonacci pseudoprime is 377 = F14. Let’s generalize this
example. Let p > 5 be prime. Then F2p is a Fibonacci pseudoprime. We will prove this
result using several homework problems below.

Problem 2.1. Prove the following: Let p > 5 be prime. Then F2p ≡ (5
p
)(mod p). Hints: Look

at the proofs of Theorems 1.4 and 1.9 for the value of γp−1 when p ≡ ±1(mod 5) and of γp

and γ̄p when p ≡ ±2(mod 5).

Problem 2.2. No need to write up a proof for this one. Just observe that it’s true. If
n ≡ ±1,±2(mod 10) then Fn ≡ ±1(mod 5). If n ≡ ±3,±4(mod 10) then Fn ≡ ±2(mod 5).
Hint: If a ≡ b(mod 40) then Fa ≡ Fb(mod 5). So it suffices to check the statement for
Fibonacci numbers with indices between 1 and 40.

Problem 2.3. Prove the following statements (yes - this is now easy): Let p > 5 be prime. If
p ≡ ±1(mod 5), then F2p ≡ ±1(mod 5). If p ≡ ±2(mod 5), then F2p ≡ ±2(mod 5).

Problem 2.4. Prove the following statement. Let p > 5 be prime. Then ( 5
F2p

) = (5
p
). Hints:

Note that Fr is even if and only if 3|r (you need not prove this statement). Also Proposition
1.15.

Problem 2.5. Prove the following statement. Let p > 5 be prime. Then F2p is a Fibonacci

pseudoprime. Hint: Prove that F2p ≡ ( 5
F2p

)(mod 2p).

Problem 2.6. Write a program that searches through odd positive integers k and tests if k
is prime (or passes a probabilistic primality test). If so, compute F2k. Then test is F2k is a
base-2 pseudoprime.
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Method 3: The fifth smallest Fibonacci pseudoprime is F19. We can generalize this example.
Let p > 5 be prime and Fp be composite. Then Fp is a Fibonacci pseudoprime. We will
prove this result using the homework problems below.

Problem 3.1. Prove the following statement. Let p > 5 be prime. Then Fp ≡ (5
p
)(mod p).

Hint: Use Binet’s formula and the hints for Problem 2.1.

Problem 3.2. Prove the following statement. Let p > 5 be prime. Let n = Fp. Then

n|Fn−(5/n). Hint: Use Problem 2.2.

Problem 3.3. Write a program that searches through odd positive integers k and tests if k
is prime (or passes a probabilistic primality test). If so, compute Fk and test if Fk is prime
(or passes a probabilistic primality test). If not, then test if Fk is a base-2 pseudoprime.


