Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

1185 lines (1005 sloc) 48.472 kb
""" Defines the Plot class.
"""
# Major library imports
import itertools
import warnings
from numpy import arange, array, ndarray, linspace
from types import FunctionType
# Enthought library imports
from traits.api import Delegate, Dict, Instance, Int, List, Property, Str
# Local, relative imports
from abstract_colormap import AbstractColormap
from abstract_data_source import AbstractDataSource
from abstract_plot_data import AbstractPlotData
from array_data_source import ArrayDataSource
from array_plot_data import ArrayPlotData
from base_xy_plot import BaseXYPlot
from barplot import BarPlot
from candle_plot import CandlePlot
from colormapped_scatterplot import ColormappedScatterPlot
from contour_line_plot import ContourLinePlot
from contour_poly_plot import ContourPolyPlot
from cmap_image_plot import CMapImagePlot
from data_range_1d import DataRange1D
from data_view import DataView
from default_colormaps import Spectral
from grid_data_source import GridDataSource
from grid_mapper import GridMapper
from image_data import ImageData
from image_plot import ImagePlot
from legend import Legend
from lineplot import LinePlot
from linear_mapper import LinearMapper
from log_mapper import LogMapper
from plot_label import PlotLabel
from polygon_plot import PolygonPlot
from scatterplot import ScatterPlot
from filled_line_plot import FilledLinePlot
from quiverplot import QuiverPlot
#-----------------------------------------------------------------------------
# The Plot class
#-----------------------------------------------------------------------------
class Plot(DataView):
""" Represents a correlated set of data, renderers, and axes in a single
screen region.
A Plot can reference an arbitrary amount of data and can have an
unlimited number of renderers on it, but it has a single X-axis and a
single Y-axis for all of its associated data. Therefore, there is a single
range in X and Y, although there can be many different data series. A Plot
also has a single set of grids and a single background layer for all of its
renderers. It cannot be split horizontally or vertically; to do so,
create a VPlotContainer or HPlotContainer and put the Plots inside those.
Plots can be overlaid as well; be sure to set the **bgcolor** of the
overlaying plots to "none" or "transparent".
A Plot consists of composable sub-plots. Each of these is created
or destroyed using the plot() or delplot() methods. Every time that
new data is used to drive these sub-plots, it is added to the Plot's
list of data and data sources. Data sources are reused whenever
possible; in order to have the same actual array drive two de-coupled
data sources, create those data sources before handing them to the Plot.
"""
#------------------------------------------------------------------------
# Data-related traits
#------------------------------------------------------------------------
# The PlotData instance that drives this plot.
data = Instance(AbstractPlotData)
# Mapping of data names from self.data to their respective datasources.
datasources = Dict(Str, Instance(AbstractDataSource))
#------------------------------------------------------------------------
# General plotting traits
#------------------------------------------------------------------------
# Mapping of plot names to *lists* of plot renderers.
plots = Dict(Str, List)
# The default index to use when adding new subplots.
default_index = Instance(AbstractDataSource)
# Optional mapper for the color axis. Not instantiated until first use;
# destroyed if no color plots are on the plot.
color_mapper = Instance(AbstractColormap)
# List of colors to cycle through when auto-coloring is requested. Picked
# and ordered to be red-green color-blind friendly, though should not
# be an issue for blue-yellow.
auto_colors = List(["green", "lightgreen", "blue", "lightblue", "red",
"pink", "darkgray", "silver"])
# index into auto_colors list
_auto_color_idx = Int(-1)
_auto_edge_color_idx = Int(-1)
_auto_face_color_idx = Int(-1)
# Mapping of renderer type string to renderer class
# This can be overriden to customize what renderer type the Plot
# will instantiate for its various plotting methods.
renderer_map = Dict(dict(line = LinePlot,
bar = BarPlot,
scatter = ScatterPlot,
polygon = PolygonPlot,
filled_line = FilledLinePlot,
cmap_scatter = ColormappedScatterPlot,
img_plot = ImagePlot,
cmap_img_plot = CMapImagePlot,
contour_line_plot = ContourLinePlot,
contour_poly_plot = ContourPolyPlot,
candle = CandlePlot,
quiver = QuiverPlot,))
#------------------------------------------------------------------------
# Annotations and decorations
#------------------------------------------------------------------------
# The title of the plot.
title = Property()
# The font to use for the title.
title_font = Property()
# Convenience attribute for title.overlay_position; can be "top",
# "bottom", "left", or "right".
title_position = Property()
# Use delegates to expose the other PlotLabel attributes of the plot title
title_text = Delegate("_title", prefix="text", modify=True)
title_color = Delegate("_title", prefix="color", modify=True)
title_angle = Delegate("_title", prefix="angle", modify=True)
# The PlotLabel object that contains the title.
_title = Instance(PlotLabel)
# The legend on the plot.
legend = Instance(Legend)
# Convenience attribute for legend.align; can be "ur", "ul", "ll", "lr".
legend_alignment = Property
#------------------------------------------------------------------------
# Public methods
#------------------------------------------------------------------------
def __init__(self, data=None, **kwtraits):
if 'origin' in kwtraits:
self.default_origin = kwtraits.pop('origin')
if "title" in kwtraits:
title = kwtraits.pop("title")
else:
title = None
super(Plot, self).__init__(**kwtraits)
if data is not None:
if isinstance(data, AbstractPlotData):
self.data = data
elif type(data) in (ndarray, tuple, list):
self.data = ArrayPlotData(data)
else:
raise ValueError, "Don't know how to create PlotData for data" \
"of type " + str(type(data))
if not self._title:
self._title = PlotLabel(font="swiss 16", visible=False,
overlay_position="top", component=self)
if title is not None:
self.title = title
if not self.legend:
self.legend = Legend(visible=False, align="ur", error_icon="blank",
padding=10, component=self)
# ensure that we only get displayed once by new_window()
self._plot_ui_info = None
return
def add_xy_plot(self, index_name, value_name, renderer_factory, name=None,
origin=None, **kwds):
""" Add a BaseXYPlot renderer subclass to this Plot.
Parameters
----------
index_name : str
The name of the index datasource.
value_name : str
The name of the value datasource.
renderer_factory : callable
The callable that creates the renderer.
name : string (optional)
The name of the plot. If None, then a default one is created
(usually "plotNNN").
origin : string (optional)
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
**kwds :
Additional keywords to pass to the factory.
"""
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
index = self._get_or_create_datasource(index_name)
self.index_range.add(index)
value = self._get_or_create_datasource(value_name)
self.value_range.add(value)
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range)
else:
imap = LogMapper(range=self.index_range)
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range)
else:
vmap = LogMapper(range=self.value_range)
renderer = renderer_factory(
index = index,
value = value,
index_mapper = imap,
value_mapper = vmap,
orientation = self.orientation,
origin = origin,
**kwds
)
self.add(renderer)
self.plots[name] = [renderer]
self.invalidate_and_redraw()
return self.plots[name]
def plot(self, data, type="line", name=None, index_scale="linear",
value_scale="linear", origin=None, **styles):
""" Adds a new sub-plot using the given data and plot style.
Parameters
----------
data : string, tuple(string), list(string)
The data to be plotted. The type of plot and the number of
arguments determines how the arguments are interpreted:
one item: (line/scatter)
The data is treated as the value and self.default_index is
used as the index. If **default_index** does not exist, one is
created from arange(len(*data*))
two or more items: (line/scatter)
Interpreted as (index, value1, value2, ...). Each index,value
pair forms a new plot of the type specified.
two items: (cmap_scatter)
Interpreted as (value, color_values). Uses **default_index**.
three or more items: (cmap_scatter)
Interpreted as (index, val1, color_val1, val2, color_val2, ...)
type : comma-delimited string of "line", "scatter", "cmap_scatter"
The types of plots to add.
name : string
The name of the plot. If None, then a default one is created
(usually "plotNNN").
index_scale : string
The type of scale to use for the index axis. If not "linear", then
a log scale is used.
value_scale : string
The type of scale to use for the value axis. If not "linear", then
a log scale is used.
origin : string
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
styles : series of keyword arguments
attributes and values that apply to one or more of the
plot types requested, e.g.,'line_color' or 'line_width'.
Examples
--------
::
plot("my_data", type="line", name="myplot", color=lightblue)
plot(("x-data", "y-data"), type="scatter")
plot(("x", "y1", "y2", "y3"))
Returns
-------
[renderers] -> list of renderers created in response to this call to plot()
"""
if len(data) == 0:
return
if isinstance(data, basestring):
data = (data,)
self.index_scale = index_scale
self.value_scale = value_scale
# TODO: support lists of plot types
plot_type = type
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
if plot_type in ("line", "scatter", "polygon", "bar", "filled_line"):
# Tie data to the index range
if len(data) == 1:
if self.default_index is None:
# Create the default index based on the length of the first
# data series
value = self._get_or_create_datasource(data[0])
self.default_index = ArrayDataSource(arange(len(value.get_data())),
sort_order="none")
self.index_range.add(self.default_index)
index = self.default_index
else:
index = self._get_or_create_datasource(data[0])
if self.default_index is None:
self.default_index = index
self.index_range.add(index)
data = data[1:]
# Tie data to the value_range and create the renderer for each data
new_plots = []
simple_plot_types = ("line", "scatter")
for value_name in data:
value = self._get_or_create_datasource(value_name)
self.value_range.add(value)
if plot_type in simple_plot_types:
cls = self.renderer_map[plot_type]
# handle auto-coloring request
if styles.get("color") == "auto":
self._auto_color_idx = \
(self._auto_color_idx + 1) % len(self.auto_colors)
styles["color"] = self.auto_colors[self._auto_color_idx]
elif plot_type in ("polygon", "filled_line"):
cls = self.renderer_map[plot_type]
# handle auto-coloring request
if styles.get("edge_color") == "auto":
self._auto_edge_color_idx = \
(self._auto_edge_color_idx + 1) % len(self.auto_colors)
styles["edge_color"] = self.auto_colors[self._auto_edge_color_idx]
if styles.get("face_color") == "auto":
self._auto_face_color_idx = \
(self._auto_face_color_idx + 1) % len(self.auto_colors)
styles["face_color"] = self.auto_colors[self._auto_face_color_idx]
elif plot_type == 'bar':
cls = self.renderer_map[plot_type]
# handle auto-coloring request
if styles.get("color") == "auto":
self._auto_color_idx = \
(self._auto_color_idx + 1) % len(self.auto_colors)
styles["fill_color"] = self.auto_colors[self._auto_color_idx]
else:
raise ValueError("Unhandled plot type: " + plot_type)
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
plot = cls(index=index,
value=value,
index_mapper=imap,
value_mapper=vmap,
orientation=self.orientation,
origin = origin,
**styles)
self.add(plot)
new_plots.append(plot)
if plot_type == 'bar':
# For bar plots, compute the ranges from the data to make the
# plot look clean.
def custom_index_func(data_low, data_high, margin, tight_bounds):
""" Compute custom bounds of the plot along index (in
data space).
"""
bar_width = styles.get('bar_width', cls().bar_width)
plot_low = data_low - bar_width
plot_high = data_high + bar_width
return plot_low, plot_high
if self.index_range.bounds_func is None:
self.index_range.bounds_func = custom_index_func
def custom_value_func(data_low, data_high, margin, tight_bounds):
""" Compute custom bounds of the plot along value (in
data space).
"""
plot_low = data_low - (data_high-data_low)*0.1
plot_high = data_high + (data_high-data_low)*0.1
return plot_low, plot_high
if self.value_range.bounds_func is None:
self.value_range.bounds_func = custom_value_func
self.index_range.tight_bounds = False
self.value_range.tight_bounds = False
self.index_range.refresh()
self.value_range.refresh()
self.plots[name] = new_plots
elif plot_type == "cmap_scatter":
if len(data) != 3:
raise ValueError("Colormapped scatter plots require (index, value, color) data")
else:
index = self._get_or_create_datasource(data[0])
if self.default_index is None:
self.default_index = index
self.index_range.add(index)
value = self._get_or_create_datasource(data[1])
self.value_range.add(value)
color = self._get_or_create_datasource(data[2])
if not styles.has_key("color_mapper"):
raise ValueError("Scalar 2D data requires a color_mapper.")
colormap = styles.pop("color_mapper", None)
if self.color_mapper is not None and self.color_mapper.range is not None:
color_range = self.color_mapper.range
else:
color_range = DataRange1D()
if isinstance(colormap, AbstractColormap):
self.color_mapper = colormap
if colormap.range is None:
color_range.add(color)
colormap.range = color_range
elif callable(colormap):
color_range.add(color)
self.color_mapper = colormap(color_range)
else:
raise ValueError("Unexpected colormap %r in plot()." % colormap)
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
cls = self.renderer_map["cmap_scatter"]
plot = cls(index=index,
index_mapper=imap,
value=value,
value_mapper=vmap,
color_data=color,
color_mapper=self.color_mapper,
orientation=self.orientation,
origin=origin,
**styles)
self.add(plot)
self.plots[name] = [plot]
else:
raise ValueError("Unknown plot type: " + plot_type)
return self.plots[name]
def img_plot(self, data, name=None, colormap=None,
xbounds=None, ybounds=None, origin=None, hide_grids=True, **styles):
""" Adds image plots to this Plot object.
If *data* has shape (N, M, 3) or (N, M, 4), then it is treated as RGB or
RGBA (respectively) and *colormap* is ignored.
If *data* is an array of floating-point data, then a colormap can
be provided via the *colormap* argument, or the default of 'Spectral'
will be used.
*Data* should be in row-major order, so that xbounds corresponds to
*data*'s second axis, and ybounds corresponds to the first axis.
Parameters
----------
data : string
The name of the data array in self.plot_data
name : string
The name of the plot; if omitted, then a name is generated.
xbounds, ybounds : string, tuple, or ndarray
Bounds where this image resides. Bound may be: a) names of
data in the plot data; b) tuples of (low, high) in data space,
c) 1D arrays of values representing the pixel boundaries (must
be 1 element larger than underlying data), or
d) 2D arrays as obtained from a meshgrid operation
origin : string
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
hide_grids : bool, default True
Whether or not to automatically hide the grid lines on the plot
styles : series of keyword arguments
Attributes and values that apply to one or more of the
plot types requested, e.g.,'line_color' or 'line_width'.
"""
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
value = self._get_or_create_datasource(data)
array_data = value.get_data()
if len(array_data.shape) == 3:
if array_data.shape[2] not in (3,4):
raise ValueError("Image plots require color depth of 3 or 4.")
cls = self.renderer_map["img_plot"]
kwargs = dict(**styles)
else:
if colormap is None:
if self.color_mapper is None:
colormap = Spectral(DataRange1D(value))
else:
colormap = self.color_mapper
elif isinstance(colormap, AbstractColormap):
if colormap.range is None:
colormap.range = DataRange1D(value)
else:
colormap = colormap(DataRange1D(value))
self.color_mapper = colormap
cls = self.renderer_map["cmap_img_plot"]
kwargs = dict(value_mapper=colormap, **styles)
return self._create_2d_plot(cls, name, origin, xbounds, ybounds, value,
hide_grids, **kwargs)
def contour_plot(self, data, type="line", name=None, poly_cmap=None,
xbounds=None, ybounds=None, origin=None, hide_grids=True, **styles):
""" Adds contour plots to this Plot object.
Parameters
----------
data : string
The name of the data array in self.plot_data, which must be
floating point data.
type : comma-delimited string of "line", "poly"
The type of contour plot to add. If the value is "poly"
and no colormap is provided via the *poly_cmap* argument, then
a default colormap of 'Spectral' is used.
name : string
The name of the plot; if omitted, then a name is generated.
poly_cmap : string
The name of the color-map function to call (in
chaco.default_colormaps) or an AbstractColormap instance
to use for contour poly plots (ignored for contour line plots)
xbounds, ybounds : string, tuple, or ndarray
Bounds where this image resides. Bound may be: a) names of
data in the plot data; b) tuples of (low, high) in data space,
c) 1D arrays of values representing the pixel boundaries (must
be 1 element larger than underlying data), or
d) 2D arrays as obtained from a meshgrid operation
origin : string
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
hide_grids : bool, default True
Whether or not to automatically hide the grid lines on the plot
styles : series of keyword arguments
Attributes and values that apply to one or more of the
plot types requested, e.g.,'line_color' or 'line_width'.
"""
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
value = self._get_or_create_datasource(data)
if value.value_depth != 1:
raise ValueError("Contour plots require 2D scalar field")
if type == "line":
cls = self.renderer_map["contour_line_plot"]
kwargs = dict(**styles)
# if colors is given as a factory func, use it to make a
# concrete colormapper. Better way to do this?
if "colors" in kwargs:
cmap = kwargs["colors"]
if isinstance(cmap, FunctionType):
kwargs["colors"] = cmap(DataRange1D(value))
elif getattr(cmap, 'range', 'dummy') is None:
cmap.range = DataRange1D(value)
elif type == "poly":
if poly_cmap is None:
poly_cmap = Spectral(DataRange1D(value))
elif isinstance(poly_cmap, FunctionType):
poly_cmap = poly_cmap(DataRange1D(value))
elif getattr(poly_cmap, 'range', 'dummy') is None:
poly_cmap.range = DataRange1D(value)
cls = self.renderer_map["contour_poly_plot"]
kwargs = dict(color_mapper=poly_cmap, **styles)
else:
raise ValueError("Unhandled contour plot type: " + type)
return self._create_2d_plot(cls, name, origin, xbounds, ybounds, value,
hide_grids, **kwargs)
def _process_2d_bounds(self, bounds, array_data, axis):
"""Transform an arbitrary bounds definition into a linspace.
Process all the ways the user could have defined the x- or y-bounds
of a 2d plot and return a linspace between the lower and upper
range of the bounds.
Parameters
----------
bounds : any
User bounds definition
array_data : 2D array
The 2D plot data
axis : int
The axis along which the bounds are to be set
"""
num_ticks = array_data.shape[axis] + 1
if bounds is None:
return arange(num_ticks)
if type(bounds) is tuple:
# create a linspace with the bounds limits
return linspace(bounds[0], bounds[1], num_ticks)
if type(bounds) is ndarray and len(bounds.shape) == 1:
# bounds is 1D, but of the wrong size
if len(bounds) != num_ticks:
msg = ("1D bounds of an image plot needs to have 1 more "
"element than its corresponding data shape, because "
"they represent the locations of pixel boundaries.")
raise ValueError(msg)
else:
return linspace(bounds[0], bounds[-1], num_ticks)
if type(bounds) is ndarray and len(bounds.shape) == 2:
# bounds is 2D, assumed to be a meshgrid
# This is triggered when doing something like
# >>> xbounds, ybounds = meshgrid(...)
# >>> z = f(xbounds, ybounds)
if bounds.shape != array_data.shape:
msg = ("2D bounds of an image plot needs to have the same "
"shape as the underlying data, because "
"they are assumed to be generated from meshgrids.")
raise ValueError(msg)
else:
if axis == 0: bounds = bounds[:,0]
else: bounds = bounds[0,:]
interval = bounds[1] - bounds[0]
return linspace(bounds[0], bounds[-1]+interval, num_ticks)
raise ValueError("bounds must be None, a tuple, an array, "
"or a PlotData name")
def _create_2d_plot(self, cls, name, origin, xbounds, ybounds, value_ds,
hide_grids, **kwargs):
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
array_data = value_ds.get_data()
# process bounds to get linspaces
if isinstance(xbounds, basestring):
xbounds = self._get_or_create_datasource(xbounds).get_data()
xs = self._process_2d_bounds(xbounds, array_data, 1)
if isinstance(ybounds, basestring):
ybounds = self._get_or_create_datasource(ybounds).get_data()
ys = self._process_2d_bounds(ybounds, array_data, 0)
# Create the index and add its datasources to the appropriate ranges
index = GridDataSource(xs, ys, sort_order=('ascending', 'ascending'))
self.range2d.add(index)
mapper = GridMapper(range=self.range2d,
stretch_data_x=self.x_mapper.stretch_data,
stretch_data_y=self.y_mapper.stretch_data)
plot = cls(index=index,
value=value_ds,
index_mapper=mapper,
orientation=self.orientation,
origin=origin,
**kwargs)
if hide_grids:
self.x_grid.visible = False
self.y_grid.visible = False
self.add(plot)
self.plots[name] = [plot]
return self.plots[name]
def candle_plot(self, data, name=None, value_scale="linear", origin=None,
**styles):
""" Adds a new sub-plot using the given data and plot style.
Parameters
----------
data : list(string), tuple(string)
The names of the data to be plotted in the ArrayDataSource. The
number of arguments determines how they are interpreted:
(index, bar_min, bar_max)
filled or outline-only bar extending from **bar_min** to
**bar_max**
(index, bar_min, center, bar_max)
above, plus a center line of a different color at **center**
(index, min, bar_min, bar_max, max)
bar extending from **bar_min** to **bar_max**, with thin
bars at **min** and **max** connected to the bar by a long
stem
(index, min, bar_min, center, bar_max, max)
like above, plus a center line of a different color and
configurable thickness at **center**
name : string
The name of the plot. If None, then a default one is created.
value_scale : string
The type of scale to use for the value axis. If not "linear",
then a log scale is used.
Styles
------
These are all optional keyword arguments.
bar_color : string, 3- or 4-tuple
The fill color of the bar; defaults to "auto".
bar_line_color : string, 3- or 4-tuple
The color of the rectangular box forming the bar.
stem_color : string, 3- or 4-tuple (default = bar_line_color)
The color of the stems reaching from the bar to the min and
max values.
center_color : string, 3- or 4-tuple (default = bar_line_color)
The color of the line drawn across the bar at the center values.
line_width : int (default = 1)
The thickness, in pixels, of the outline around the bar.
stem_width : int (default = line_width)
The thickness, in pixels, of the stem lines
center_width : int (default = line_width)
The width, in pixels, of the line drawn across the bar at the
center values.
end_cap : bool (default = True)
Whether or not to draw bars at the min and max extents of the
error bar.
Returns
-------
[renderers] -> list of renderers created in response to this call.
"""
if len(data) == 0:
return
self.value_scale = value_scale
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
# Create the datasources
if len(data) == 3:
index, bar_min, bar_max = map(self._get_or_create_datasource, data)
self.value_range.add(bar_min, bar_max)
center = None
min = None
max = None
elif len(data) == 4:
index, bar_min, center, bar_max = map(self._get_or_create_datasource, data)
self.value_range.add(bar_min, center, bar_max)
min = None
max = None
elif len(data) == 5:
index, min, bar_min, bar_max, max = \
map(self._get_or_create_datasource, data)
self.value_range.add(min, bar_min, bar_max, max)
center = None
elif len(data) == 6:
index, min, bar_min, center, bar_max, max = \
map(self._get_or_create_datasource, data)
self.value_range.add(min, bar_min, center, bar_max, max)
self.index_range.add(index)
if styles.get("bar_color") == "auto" or styles.get("color") == "auto":
self._auto_color_idx = \
(self._auto_color_idx + 1) % len(self.auto_colors)
styles["color"] = self.auto_colors[self._auto_color_idx]
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
cls = self.renderer_map["candle"]
plot = cls(index = index,
min_values = min,
bar_min = bar_min,
center_values = center,
bar_max = bar_max,
max_values = max,
index_mapper = imap,
value_mapper = vmap,
orientation = self.orientation,
origin = self.origin,
**styles)
self.add(plot)
self.plots[name] = [plot]
return [plot]
def quiverplot(self, data, name=None, origin=None,
**styles):
""" Adds a new sub-plot using the given data and plot style.
Parameters
----------
data : list(string), tuple(string)
The names of the data to be plotted in the ArrayDataSource. There
is only one combination accepted by this function:
(index, value, vectors)
index and value together determine the start coordinates of
each vector. The vectors are an Nx2
name : string
The name of the plot. If None, then a default one is created.
origin : string
Which corner the origin of this plot should occupy:
"bottom left", "top left", "bottom right", "top right"
Styles
------
These are all optional keyword arguments.
line_color : string (default = "black")
The color of the arrows
line_width : float (default = 1.0)
The thickness, in pixels, of the arrows.
arrow_size : int (default = 5)
The length, in pixels, of the arrowhead
Returns
-------
[renderers] -> list of renderers created in response to this call.
"""
if name is None:
name = self._make_new_plot_name()
if origin is None:
origin = self.default_origin
index, value, vectors = map(self._get_or_create_datasource, data)
self.index_range.add(index)
self.value_range.add(value)
imap = LinearMapper(range=self.index_range,
stretch_data=self.index_mapper.stretch_data)
vmap = LinearMapper(range=self.value_range,
stretch_data=self.value_mapper.stretch_data)
cls = self.renderer_map["quiver"]
plot = cls(index = index,
value = value,
vectors = vectors,
index_mapper = imap,
value_mapper = vmap,
name = name,
origin = origin,
**styles
)
self.add(plot)
self.plots[name] = [plot]
return [plot]
def delplot(self, *names):
""" Removes the named sub-plots. """
# This process involves removing the plots, then checking the index range
# and value range for leftover datasources, and removing those if necessary.
# Remove all the renderers from us (container) and create a set of the
# datasources that we might have to remove from the ranges
deleted_sources = set()
for renderer in itertools.chain(*[self.plots.pop(name) for name in names]):
self.remove(renderer)
deleted_sources.add(renderer.index)
deleted_sources.add(renderer.value)
# Cull the candidate list of sources to remove by checking the other plots
sources_in_use = set()
for p in itertools.chain(*self.plots.values()):
sources_in_use.add(p.index)
sources_in_use.add(p.value)
unused_sources = deleted_sources - sources_in_use - set([None])
# Remove the unused sources from all ranges
for source in unused_sources:
if source.index_dimension == "scalar":
# Try both index and range, it doesn't hurt
self.index_range.remove(source)
self.value_range.remove(source)
elif source.index_dimension == "image":
self.range2d.remove(source)
else:
warnings.warn("Couldn't remove datasource from datarange.")
return
def hideplot(self, *names):
""" Convenience function to sets the named plots to be invisible. Their
renderers are not removed, and they are still in the list of plots.
"""
for renderer in itertools.chain(*[self.plots[name] for name in names]):
renderer.visible = False
return
def showplot(self, *names):
""" Convenience function to sets the named plots to be visible.
"""
for renderer in itertools.chain(*[self.plots[name] for name in names]):
renderer.visible = True
return
def new_window(self, configure=False):
"""Convenience function that creates a window containing the Plot
Don't call this if the plot is already displayed in a window.
"""
from chaco.ui.plot_window import PlotWindow
if self._plot_ui_info is None:
if configure:
self._plot_ui_info = PlotWindow(plot=self).configure_traits()
else:
self._plot_ui_info = PlotWindow(plot=self).edit_traits()
return self._plot_ui_info
#------------------------------------------------------------------------
# Private methods
#------------------------------------------------------------------------
def _make_new_plot_name(self):
""" Returns a string that is not already used as a plot title.
"""
n = len(self.plots)
plot_template = "plot%d"
while 1:
name = plot_template % n
if name not in self.plots:
break
else:
n += 1
return name
def _get_or_create_datasource(self, name):
""" Returns the data source associated with the given name, or creates
it if it doesn't exist.
"""
if name not in self.datasources:
data = self.data.get_data(name)
if type(data) in (list, tuple):
data = array(data)
if isinstance(data, ndarray):
if len(data.shape) == 1:
ds = ArrayDataSource(data, sort_order="none")
elif len(data.shape) == 2:
ds = ImageData(data=data, value_depth=1)
elif len(data.shape) == 3 and data.shape[2] in (3,4):
ds = ImageData(data=data, value_depth=int(data.shape[2]))
else:
raise ValueError("Unhandled array shape in creating new "
"plot: %s" % str(data.shape))
elif isinstance(data, AbstractDataSource):
ds = data
else:
raise ValueError("Couldn't create datasource for data of "
"type %s" % type(data))
self.datasources[name] = ds
return self.datasources[name]
#------------------------------------------------------------------------
# Event handlers
#------------------------------------------------------------------------
def _color_mapper_changed(self):
for plist in self.plots.values():
for plot in plist:
plot.color_mapper = self.color_mapper
self.invalidate_draw()
def _data_changed(self, old, new):
if old:
old.on_trait_change(self._data_update_handler, "data_changed",
remove=True)
if new:
new.on_trait_change(self._data_update_handler, "data_changed")
def _data_update_handler(self, name, event):
# event should be a dict with keys "added", "removed", and "changed",
# per the comments in AbstractPlotData.
if "removed" in event:
for name in event["removed"]:
del self.datasources[name]
if "added" in event:
for name in event["added"]:
self._get_or_create_datasource(name)
if "changed" in event:
for name in event["changed"]:
if name in self.datasources:
source = self.datasources[name]
source.set_data(self.data.get_data(name))
def _plots_items_changed(self, event):
if self.legend:
self.legend.plots = self.plots
def _index_scale_changed(self, old, new):
if old is None: return
if new == old: return
if not self.range2d: return
if self.index_scale == "linear":
imap = LinearMapper(range=self.index_range,
screen_bounds=self.index_mapper.screen_bounds,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=self.index_range,
screen_bounds=self.index_mapper.screen_bounds,
stretch_data=self.index_mapper.stretch_data)
self.index_mapper = imap
for key in self.plots:
for plot in self.plots[key]:
if not isinstance(plot, BaseXYPlot):
raise ValueError("log scale only supported on XY plots")
if self.index_scale == "linear":
imap = LinearMapper(range=plot.index_range,
screen_bounds=plot.index_mapper.screen_bounds,
stretch_data=self.index_mapper.stretch_data)
else:
imap = LogMapper(range=plot.index_range,
screen_bounds=plot.index_mapper.screen_bounds,
stretch_data=self.index_mapper.stretch_data)
plot.index_mapper = imap
def _value_scale_changed(self, old, new):
if old is None: return
if new == old: return
if not self.range2d: return
if self.value_scale == "linear":
vmap = LinearMapper(range=self.value_range,
screen_bounds=self.value_mapper.screen_bounds,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=self.value_range,
screen_bounds=self.value_mapper.screen_bounds,
stretch_data=self.value_mapper.stretch_data)
self.value_mapper = vmap
for key in self.plots:
for plot in self.plots[key]:
if not isinstance(plot, BaseXYPlot):
raise ValueError("log scale only supported on XY plots")
if self.value_scale == "linear":
vmap = LinearMapper(range=plot.value_range,
screen_bounds=plot.value_mapper.screen_bounds,
stretch_data=self.value_mapper.stretch_data)
else:
vmap = LogMapper(range=plot.value_range,
screen_bounds=plot.value_mapper.screen_bounds,
stretch_data=self.value_mapper.stretch_data)
plot.value_mapper = vmap
def __title_changed(self, old, new):
self._overlay_change_helper(old, new)
def _legend_changed(self, old, new):
self._overlay_change_helper(old, new)
if new:
new.plots = self.plots
def _handle_range_changed(self, name, old, new):
""" Overrides the DataView default behavior.
Primarily changes how the list of renderers is looked up.
"""
mapper = getattr(self, name+"_mapper")
if mapper.range == old:
mapper.range = new
if old is not None:
for datasource in old.sources[:]:
old.remove(datasource)
if new is not None:
new.add(datasource)
range_name = name + "_range"
for renderer in itertools.chain(*self.plots.values()):
if hasattr(renderer, range_name):
setattr(renderer, range_name, new)
#------------------------------------------------------------------------
# Property getters and setters
#------------------------------------------------------------------------
def _set_legend_alignment(self, align):
if self.legend:
self.legend.align = align
def _get_legend_alignment(self):
if self.legend:
return self.legend.align
else:
return None
def _set_title(self, text):
self._title.text = text
if text.strip() != "":
self._title.visible = True
else:
self._title.visible = False
def _get_title(self):
return self._title.text
def _set_title_position(self, pos):
if self._title is not None:
self._title.overlay_position = pos
def _get_title_position(self):
if self._title is not None:
return self._title.overlay_position
else:
return None
def _set_title_font(self, font):
old_font = self._title.font
self._title.font = font
self.trait_property_changed("title_font", old_font, font)
def _get_title_font(self):
return self._title.font
Jump to Line
Something went wrong with that request. Please try again.