




Abstract

This thesis presents a further development of Neuroevolution of Augment-
ing topologies(NEAT)[21]. The author augments NEAT by parallelizing the
fitness evaluation of the phenotypes enabling the method to be utilized on
highly complex fitness evaluations by running it on a cluster. This augmented
version of NEAT is then applied to the inherently complex problem of the
Go board game, by using the Gnugo (See www.gnu.org/software/gnugo/.)
software package as a fitness evaluator. The performance increase also en-
ables the author to follow up on the predictions of Kenneth Stanley’s previous
discussions that co-evolution will help evolve a more general Go player, rather
than the predicted evolved behaviour of specializing in beating Gnugo.
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Chapter 1

Introduction

This paper will try to outline a new approach to the problem of Go, and the

challenge Go poses to current AI methods and game solving approaches. To

understand this challenge and the inherent complexity of this board game

one needs a overview of the rules and the complex game patterns that follow.

1.1 GO

The ancient board game originating in ancient China1 named Go is a two

player strategic board game. It is usually played on a 19x19 rectangular grid,

with black stones for the first player and white stones for the second player.

Go also differs from many other strategic board games in that it is excep-

tionally hard to make a computer excel in the game. This is mainly because

of the combination of a large default board(19x19 compared to 8x8 in chess),

and the simple rules(only one type of piece), together make an alpha-beta

search as applied in modern chess engines intractable.

1.1.1 Rules of Go

The object of the game is to capture territory with your stones. You place

the stones on the intersections, and the stone has liberties, one for each

1First written mention of it is 548 BC, but thought to be 4000 year old.
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unoccupied intersection directly2 adjacent to the stone. These liberties can be

removed by the opposing player placing stones at the adjacent intersections.

If a stone looses all its liberties, as seen in figure 1.1 it is captured. A stone

Figure 1.1: This figure shows a captured white stone

can also can also connect to other stones of the same color if it placed in a

intersection directly adjacent, the stones now form a group and they share

their liberties. Such that a two stone group with all their liberties free in

the middle of a board will have six liberties as opposed to the maximum of

four liberties of a single stone. Grouping makes it harder to capture your

stones and territory formed by these stones. Regardless, most groups can be

captured if the opposing player just plays his stones well enough but there are

groups of stones that can’t be captured. In addition, a stone is not allowed

to be placed in a intersection with no liberties, except when that move would

remove the last liberty of the group surrounding the intersection3.

Ko is another important rule which states that one cannot play a move

that would recreate the exact same board state that the last move the same

player did resulted in. Ko situations are central to the problem of parallel

tactics in a go game, and thus central to one of the biggest problem facing

computer go. An example of this rule can be seen in figure 1.4.

A game can also have a handicap if the two players are not at the same

level of play, the handicap is a predetermined number of stones placed out

by the weaker player.

The game ends when both players pass. This usually happens when both

players see no other moves they can make that will increase their score.

2Diagonally adjacent intersections does not constrain liberties as they are not directly
connected to the mentioned intersection by a line.

3one such example can be seen in figure 1.2.
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Figure 1.2: This figure shows one eye group that will get captured if white places
piece in center.

Figure 1.3: This figure shows two eye group that will survive if someone puts a
piece in one of the eyes, which makes that move illegal.

The game can also be won by resignation if one of the players resign when

evaluating the current board as lost. When the game is over the number of

captured opponent stones and the number of enclosing empty intersections

enclosed by the players stones are counted. If the game is even and no

handicap is used, a pre-decided amount of points called “Komi” is added to

the score of the white player. This value is variable to the board size, and is

supposed to balance back the fact that black has an advantage by starting.

1.1.2 Example Game

To give a short example of how the game is played, four snapshots of board

are given, one of the pregame and one of the mid game and a final board from

the final board. This game is played on a 9x9 board to ease the understanding
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(a) Ko pattern start

5

4
3

(b) Ko result.

Figure 1.4: This figure exemplifies the Ko rule and the reasons for having it. In
(a) black captures (2) the white piece (1). In (b) white has to move at another
position (3) to change the board state to capture the black stone set in the second
move in (a). If white didn’t move to (3) before, move (4) would be illegal per the
Ko rule.

of the game tactics(they grow more complex as the board size increases). In

the preliminary moves seen in figure 1.5 the two players try each other out

and aim to “mark their territories”. As seen in the figure the black player

maneuvers to take the lower right corner. White responds by surrounding

his position, and seems to end up with a less firm grip on a larger territory.

Figure 1.5: This figure shows the early moves of the example game(source
britgo.org).

In figure 1.6, the white player moves in on the weakly defended upper right

quadrant of the board by placing move number 40. Move 40 strengthens the

two white pieces by making it impossible for black to “cut” the structure by

placing a black piece at the same spot. Black responds by intercepting in
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move 41 and 43, and strengthens his wall with move 45.

Figure 1.6: This figure shows the moves of mid-game during the example
game(source britgo.org).

At this point the game is almost over, with a few points to win or lose.

Figure 1.7 shows the final board. At this point every neutral position that can

be filled gets filled, and the players connected any unconnected group. The

pieces are then rearranged so that is easier to count the territories, usually

so that you have a set of rectangles to count as seen in figure 1.8.

Figure 1.7: This figure shows the end state of the example game, here you can
observe that white has lost the large group it had inside the black territory. Even
though the group is lost white ends up having more territory. This is a good
example of how material losses is but a temporary consideration(source britgo.org).
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Figure 1.8: This figure shows the board ready for territory counting(source
britgo.org).

1.2 Previous Work

There has been done previous work in the direction of using biologically

inspired methods to attack the problem of playing go with computers. This

section will give a short introduction to some of the earlier approaches which

have similar characteristics, namely that it employs artificial neural networks

and evolution for searching the solution space.

1.2.1 SANE

SANE is a system developed by Risto Mikkulainen, which he later applied

to the problem of GO[18]. SANE was matched up against Wally, a simple go

engine, generally regarded as weaker than GNU Go. SANE did beat wally

quite fast on small boards. Although it only took SANE 260 generations to

beat wally at 9x9, it took 5 days in CPU time. This result originates from

1998, Moore’s law suggests that Mikkulainen had 29 less computing power

the current computers4, but since 1998 the GO engines has grown stronger,

and way more power hungry. And there is little detail as to how good the

wally engine was in relation to humans, so it is hard to say what SANE could

have done with todays computing power.

4Per date, 1st of May 2007
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1.2.2 NEAT

Kenneth O. Stanley has developed the NEAT[21] system for evolving neural

networks, both weights and topology. In chapter seven of the dissertation[21]

outlying this system, he describes how he uses NEAT to play go. He achieves

pretty good results on 5x5 and 7x7 size boards, and suggests for further work

that co-evolution may give the ANNs(Artificial Neural Networks) a more

general sense of the play, which may improve their game even further. This

neuro-evolutionary system will be described in more detail in section 2.3.5

and in depth in chapter 4.

1.3 Motivation

As Go stands as one of the final board games to be conquered by artificial

intelligence or computer science, it is a tempting target to aim for, but it

must be approached incrementally. So far computers have shown promise

in small board sizes up to 9x9. The motivation for this thesis is to test

whether increasing evolutionary parameter’s as population size and number

of generations, will show results when attacking bigger boards than 7x7.

Finally the biggest motivation is to try out the effect of co-evolution on the

play style of the neural networks.

1.4 Working Hypothesis

Hypothesis I:Neural networks evolved in NEAT against GNU Go, and with

co-evolution to play GO, will achieve a higher level of generality, and will

adapt more general playing patterns than a network evolved against GNU Go

alone.
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1.5 Overview of Thesis

This thesis is divided into 7 chapters, in chapter 1 I start by introducing the

problem of computer go and the previous work towards solving this. Chapter

2 describes the background to my approach, the main methods underlying

the NEAT method and the contributions made by this thesis. In chapter 3

the thesis gives more insight to the complex problem of computer go. The

main efforts to confirm the working hypothesis of the thesis is described in

chapter 4. The results of the experiments derived from chapter 4 is presented

in chapter 5, with analysis and discussion in chapter 6 and 7 respectively.

10



Chapter 2

Background

This chapter will further introduce the concepts and methods used in this

thesis, and give a broader foundation on which to understand the methods

later introduced.

2.1 Artificial Neural Networks

Artificial Neural Networks(ANNs) are an AI abstraction capable of simplis-

tically mimicking the neural structures in our brain. The networks consists

of nodes and the connection between them. The nodes operate by reading all

their inputs from their incoming connections, enumerating the inputs, and

inputting this sum into the activation function of the node. The node then

sends the output of the activation function to all its outgoing connections.

The connections between the nodes simply propagate the value from one

node to the other, but it also multiplies the propagating value with a weight,

given as:

ni = σ

(∑
i

wij ∗ xi

)
, xi ∈ X

For node ni , the activation function σ and the set X of nodes with

connections leading into ni.

Changing one of more of these weights can change the output of a net-

work. This is the main source of learning in many ANN systems, mainly
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feed-forward networks with the back-propagation gradient descent learning

rule. Feed-forward networks generally employ a static network topology.

Other ANN learning systems also change the topology of the network during

learning, but this also opens up a seemingly unlimited number of new search

parameters, making the search harder. This problem will be addressed in

chapter 4. The activation function as most often a variation of a sigmoid

function, as it mimics the activation firing pattern seen in neurons. Input

nodes, nodes taking its inputs directly from sensors or data, typically use a

straight transfer function:

f(input) = input

This helps it not to deteriorate the signal before it enters the network. A

much more widely used activation function, namely the sigmoidal activation

can be described as:

sgm(input) =
1

1 + e(k∗input)

Where k is a constant deciding how steep the sigmoidal curve is. A typical

curve can be shown below in figure 2.1.

Figure 2.1: This figure shows a sigmoidal transfer-function with k = −4.9, X-axis
represents the input to the node, and the Y-axis represents the output of the node.

2.2 Genetic Algorithms

Genetic algorithms[17, 11, 13, 12] provide a functional analogy to Darwinian

evolution, albeit usually evolution against a set specific target. As nature

12



Figure 2.2: This figure shows a typical feed-forward network.

Figure 2.3: This figure shows a network with a recurrent link from the output
node to the middle input node.

restricts a genome from procreating if it less fit than the others in its gener-

ation, an evolutionary algorithm will restrict bad genotypes if they are unfit

in the eyes of the given fitness function. The development from genotype to

phenotype, which can be tested by the fitness function, can be as small as

taking the numbers from a numeric genome to do one calculation and return

the inverse of the error offset, to using interpretation rules to rewrite the

genome thousands of times over time to finally be interpreted by the fitness

function. One big advantage with genetic algorithms is that they require very

little domain knowledge of the task at hand, although one would need domain

knowledge to understand the semantics of the genetic operators mentioned

below, this is not the case for many genetic encodings.

Genetic encoding is an important aspect of an genetic algorithm as it

represents the syntax of the genetic algorithm and thus effectively also the
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boundaries of what the genetic algorithm can express through it. You can

also discriminate the genetic encodings on how much development there is

between the genotype and the phenotype, in the case of a long developmental

process it can be hard to judge the expressability of the genetic encoding by

the syntax itself but one has to take into account the semantics in relation

to the syntax that the developmental process represents.

Mutation is the genetic operator that changes the genotypes through

generations, in analogy with nature, the algorithms employ mutations. These

mutations are locally dependent on the structure of the genotype. The struc-

ture of the genotype is highly dependent on the task to be solved, e.g a fitting

genotype to solve the traveling sales person problem could simply be a ordered

list of the cities, whereas a genotype to solve XOR could be a evolutionary

programming tree or a list of genomes describing the weights in a fixed topol-

ogy feed forward artificial neural network. As the structure depends on the

task, so does the implementation of the mutations, in the case of neural net-

works it could be to shift one of more of the genomes describing the weights

in the network by a randomly picked value. In the case of the traveling sales

person problem it could simply be to switch two of the cities in the list. The

number of parameters available to the evolutionary algorithm to mutate is in

addition to the structure itself also dependent on the mutations themselves

as they can make the genome bigger or smaller, thus respectively increasing

or decreasing the search space the genetic algorithm searches. An example

of this could be a genetic algorithm evolving a neural network that gradually

added structure to the network, thus increasing the number of weights that

the weight mutation could mutate. In that way mutation can in some cases

be thought of as a semantic operator that changes its own syntax.

Crossover is the functional analogy to nature’s meiosis. Not every ge-

netic algorithm employs crossover, although most do, as it strengthens the

biological analogy to Darwinian evolution, however it could be argued that a

simple genetic clone with mutation could represent asexual procreation which

still is supported by evolution in nature. Crossover is usually implemented

in relation to the theories in biology, but often with some functional twists

to pair the crossover with the semantics of the task. One usual way to im-
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plement it is to take two parent genomes, align them horizontally and pick

a single point along the genomes, then cut them in half and chose the “first”

part from the first parent and the “second” from the second parent. One

variation to this it to do the same thing only with N cut points, a popular

sub-variation of this is when N equals the number of genes in the genomes;

you simply choose each gene randomly from the parent’s genomes. There

are also other variations such as averaging the gene values between the par-

ents. Crossover is a genetic operator which again is highly dependent on the

genetic encoding being used, and both the syntax and the semantic of the

genetic encoding should be considered when implementing. An example of

this would be the highly problematic area of using crossover on two genomes

representing two neural networks with two different topologies. If you don’t

consider the semantics of this operation you will most likely end up with a

dysfunctional neural network as a end product, thus to make your crossover

operator work in a less destructive manner in this case, you need to consider

the semantic aspects of the operation.

Co-evolution is the version of a genetic algorithm where the fitness of

the phenotypes are not only dependent on a deterministic fitness evaluator,

but each other. There are several versions of co-evolution but the most known

would be the direct co-evolution, where phenotypes are matched up against

each other to compete for fitness in an almost tournament like style. Another

version evolves two or more populations which use each other to solve tasks

together in a symbiotic fashion. An example of th latter will be presented in

section 2.3.4.

2.3 Evolving Artificial Neural Networks

Artificial neural networks have been popular targets for genetic algorithms,

quite naturally as it does combine two good natural analogies which both have

shown good results. It is also an enticing approach to Artificial Intelligence as

it appears as a natural analogy to the same processes that resulted in human

intelligence. This approach does however also harbour some roadblocks on

our path to AI.
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ANNs can mainly be evolved in two ways. The first is to evolve the

weights of a fixed topology network, giving you a fitness landscape in a fixed

amount of dimensions. This has the drawback that you would have to guess

which topology would fit the task at hand before starting evolution, thus

removing the advantage of not involving domain knowledge in the genetic

algorithm. In return, fixed topology evolution is much faster, but could in

essence be replaced by back-propagation in most cases.

The second way to evolve ANNs to evolving the topology in addition

to the weights expands the fitness landscape exponentially, as mentioned

above in section 2.2, it also lets you attack problems with yet unknown solu-

tions. The problem with evolving the topology is applying a useful and non-

restrictive heuristic to the evolution of topology to optimize the tractability

of the method.

Next the paper will try to introduce some of the concepts and ideas in

neuroevolution through examples of previous systems.

2.3.1 Montana and Davis

Montana and Davis was one of the first to apply genetic algorithms to

ANNs[3]. Their task was a supervised pattern matching task, their sys-

tem had to classify sonar data. The topology of the networks used was the

same across the population and fixed before runs. The genome of this sys-

tem consisted of a list of real numbers, representing the weights of this feed

forward ANN. The evolutionary operators applied consisted of one mutation

operator and one crossover operator. The mutational operator simply shifted

the real numbers by small increments in negative or positive direction. The

crossover operator operated on a set of atomic units within the genome, each

unit consisted of the weights of all the incoming links to one node. In this

way the crossover operator had a bigger chance of being constructors and the

chances of it having a destructive influence on the offspring decreases.

At the time their system performed beyond standard back-propagation.

The system was outperformed by newer optimized versions of back-propagation.

They concluded that their system did perform well in supervised situations
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but had its niche in unsupervised learning situations.

2.3.2 Kitano

As an early contributor to the neuro-evolution field Kitano[14] was one of the

first to try a indirect encoding of the genome representing the network. In the

previous year there had been introduced several systems that evolved neural

networks with genetic algorithms, but using direct encoding[20, 9]. Kitano

recognized and demonstrated the scalability problems associated with the

direct approach when you want to represent bigger networks.

Kitano suggested a new approach to genetic encoding, this new method

uses grammar to create rules that produce a connectivity matrix for the

networks. He applies a modified version of the L-system[16, 15], which he

augments to be context free and deterministic for experimental reasons. A

rule is defined by the left hand symbol and its corresponding matrix e.g graph

generation rules used for generation of the 2-2-1 XOR network[14]:

S →

[
A B

C D

]
A→

[
c p

a c

]
B →

[
a a

a e

]
C →

[
a a

a a

]
D →

[
a a

a d

]

a→

[
0 0

0 0

]
b→

[
0 0

0 1

]
c→

[
1 0

0 0

]
e→

[
0 1

0 1

]
p→

[
1 1

1 1

]

This would then be used on the initial state S generating the following:

[
A B

C D

]
→


c p a a

a c a e

a a a a

a a a b

→



1 0 1 1 0 0 0 0

0 1 1 1 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
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This final matrix can then be translated to a network. The chromosome

or genotype in this system consists of a variable and a constant part. The

constant part contains the starting rule symbol and the left hand symbol

between “a” and “p” and the corresponding binary pattern for the right hand

side. This system is then tested on the 4x4 and 8x8 encoder/decoder problem

with population sizes 10-100. The results clearly showed faster GA conver-

gence and better ANN performance than direct encoding. The results also

showed that the indirect approach was less sensitive to network size.

There is however several assumptions and shortcomings in the article

mentioned. One assumption is that ANNs with more regular patterns are

better, as this regularity is derived from the method. The article also only

did tests on one type of problem and using a extremely small population over

a small number of generations.

2.3.3 SANE

SANE(Symbiotic, Adaptive Neuro-Evolution)[7] is Neuro-Evolution algorithm

that evolves neurons. The genome of the neuron consists of a series of con-

nection definitions. A connection definition is defined by a 8-bit label and a

16-bit weight. The labels define to which output neuron the connection is,

or the input neuron which the connections comes from. To achieve a more

compact encoding the author used a modulo encoding of the labels. Thus

the interpretation of a label is defined in the following way: For a label D,

if D > 127 the connection made to output node N = D mod O where O is

the total number of output nodes. If D ≤ 127, connection made to the input

node N = D mod I where I is the total number of input nodes.

A generational epoch of the SANE system is defined in the following way:

1. Pick a random subset of size ς and combined to form a neural network.

2. Evaluate the network against the task at hand.

3. Assign the score of the network to the neurons that participated.
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Figure 2.4: This figure shows a SANE genome, and the network generated from
the genome. Based on a figure from [7]

4. Repeat previous steps sufficient1 times

5. Average the fitness of the neurons by dividing their fitness by the num-

ber of networks they have participated in.

6. Perform crossover on the neurons based on the fitness assign the pre-

vious step.

SANE performs reasonably well, and is compared favourably to the earlier

systems among others GENITOR[5, 4]. However this implementation of

SANE also suffers from the fact that it can’t represent recurrent connections.

SANE is also outperformed later by NEAT[21] and it’s own successor ESP.

In a later revision of SANE the author augments the method by intro-

ducing a separate population of ANN blueprints. The ANN blueprints is a

1A parameter, depends on the task at hand.
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structure containing pointers to the neurons in the neuron population. The

blueprints using the neurons describes a functioning network, which is eval-

uated, thus the neurons can contribute to different blueprints. The perfor-

mance of the blueprints affects the neurons fitness in the same way that the

randomly constructed networks in the original way did. In the augmented

version the performance is also assigned to the blueprints, which is mutated

and recombined in a similar way to the neurons. This effectively gives a

symbiotic co-evolution between the blueprints and the neurons.

2.3.4 ESP

ESP(Enforced Sub-Populations)[8] is a modification of SANE. As in SANE

the population consists of neurons and not full networks, and the networks

is built from choosing from there neurons. However ESP uses a separate

population of neurons for each of the P positions in the network that can be

evolved. In ESP a neuron can only be recombined with a member of its own

sub-population. This allows for specialization within each sub-population

for each of the positions in the network. This had a tendency to happen[8]

in SANE, only it was indirect and the sub-population had to self-organize

within the larger population. These sub-populations avoids the many cases of

redundancy often observed with SANE, as one neuron needs only specialize

in one “role” and not all the possible roles. This also makes the evaluation of

the neurons more consistent, since the neurons, regardless of sub-population

is bound to end up collaborating with neurons that also specializes in the

position they are in. This could also happen in SANE, but in the cases

they did happen, it was mere coincidence. This also enables ESP to support

recurrent connections, which is regarded as one of ESP’s main contributions.

SANE could not support neurons with recurrent connections as these neurons

were highly dependent on the neurons around it that it connected to, and in

SANE this was to inconsistent for reliable performance.

ESP outperforms it’s predecessor SANE and performs on par2 with NEAT

in several tests. ESP and SANE both suffers from the fact that the systems

2The difference between NEAT and ESP is insignificant p<0.001.[21]
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are fixed topology and depends on a expert setting up the topology in advance

of the evolution.

2.3.5 NEAT

Neuro Evolution of augmenting topologies(NEAT)[21], developed by Kenneth

O. Stanley is one of the more successful methods for evolving weights and

topology. NEAT starts out with a minimal structure with one of two starting

points;

• A given genome seed which spawns evolution(all offspring it mutated

off of this genome)

• A spawn, where you specify the number of input, output and hidden

nodes and the ratio of which there should be generated connections

between them, these connections will have random weights. This will

then spawn a diverse starting population.

With NEAT starting out at a minimal structure and slowly expanding

will bias the system towards smaller solutions which makes the system more

tractable. NEAT also speciates its networks, so that similar networks share

fitness. NEAT also penalizes species collectively if it has not gotten a better

result in a given amount of generations. Both these features helps NEAT

progress to bigger structures, as newly added structure often tends to lower

the fitness the fitness will be shared in the species it evolved from. If the

structural mutation made the network create its own species, it will have a

small grace period for tuning the weight(s) of the new structure, as NEAT

penalizes old species.

2.4 Computer Go Systems

This section aims to provide a short overview of other important Go systems

and their impact and methods.
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2.4.1 GNU Go

GNU Go3 is the standard among free and open source Go playing computer

programs. Version 1.1 was first posted to comp.sources.games on March 13th

1989. The current stable version 3.6 was released 17th of march 2004, and

the development branch, version 3.7 is enjoying development. Both of the

two newest releases is used in several front-ends and several bots can be seen

playing on Go playing networks such as KGS. GNU Go is built upon several

methods of analyzing the board and groups of stones symbolically. GNU Go

is also used in a shell program that implements global search in GNU Go

called “Slug Go”4 which is run a cluster of Apple X-serve computers.

2.4.2 The Many Faces of Go

The many faces of go is a program developed by David Fotland 5. It employs

many of the same methods analyzing the board used in GNU Go. It is the

2002 and 1998“World Computer Go Champion”, and ten time US“Computer

Go Champion”. It has many features often missing from other Go programs,

such as Joseki dictionary6. It also contains a large base of Fuseki7 moves.

2.4.3 Mogo

MoGo[23] uses version of Monte Carlo simulation to calculate the utility of

each possible move from a given position, it is fast and highly parametrized

as to how deep it should search, in addition it uses several heuristics to

augment the search on bigger boards(19x19). It has however been showed

to be weak against certain strategies, but is currently regarded as one of the

most promising approaches to playing computer GO on bigger boards than

9x9. It is widely regarded as a top level go program at 9x9 and 13x13.

3See http://www.gnu.org/software/GNUGo/
4See http://sluggo.dforge.cse.ucsc.edu/
5See http://www.smart-games.com/manyfaces.html
6Joseki means a sequence of moves which results in a fair outcome for both black and

white player.
7Go opening moves.
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Chapter 3

Problem

The problem of making a computer play Go is one composed of several impor-

tant sub-problems; the large search space, the way local go tactics interact

in a larger go strategy and a more technical question of how you make a

computer scale well against an increased board size. This chapter will try to

describe these problems and introduce them for the next chapter in which

the methods for attacking them will be detailed.

3.1 Tractability

Go is one of the bigger board games around, both in shear board size and in

the number of moves made in a game. There are many reasons for this game

being complex:

• The board is large, usually a board with 19x19 lines, 361 intersections

and legal positions.

• The number of legal moves is on average 220 and rarely goes below 50,

compared to chess where the average is 37

• The pieces don’t disappear in the way that pieces can be killed of in

most other strategic games like chess. The game grows more complex

as new pieces appear with every move made.
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• Material gain, e.g. a player having more officers in chess, does not mean

a sure victory, but rather a short term lead.

• The degree of pattern matching in the game, and the ability of humans

to excel in this is a big factor in making it easier for humans to play

the game. In turn this is a disadvantage for most computer methods

which seldom excel in pattern matching involving such complex pat-

terns involved in a go game.

The game is normally very long with around 200 moves in a average game.

This is a game that require patience for humans. The simplistic rules, and

the fact that the game only has two types of pieces yours and your opponents,

gives the game an almost unmatched branching factor when considering the

moves as a game tree . This branching factor combined with the previously

mentioned dimensions of the game, creates a unimaginable number of possible

games. A common comparison points out that the number of possible games

in Go is greater than our current estimates of number of particles in the

known universe. This fact suggests that a brute force attack using a tree

search would be impossible in the foreseeable future given that Moore’s law

still holds. So other methods needs to be addressed, heavy pruning of a game

tree with domain knowledge based heuristics. It is however quite clear that

humans, without having every possible game or move searched, manage to

play the game at a reasonable level. Thus the idea of applying biologically

inspired methods, more specific neuroevolution, is appealing to researchers

trying to build a method for playing go.

3.2 Simultaneous Tactics

Another prominent feature of go is the presence of several small battles going

on in parallel on the board, often in the early and middle stages of the game.

This is hardly a problem for a Go player, but for a computer trying to

concentrate on analysing one battle while keeping the other close in memory,

may serve to be quite a challenge. This is necessary, as your choices in the

current battle may very well affect the other battle, and thus the current
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battle cant be analyzed by itself. The Ko rule described in section 1.1 is a

good example of this, as one battle played on one part of the board while

having a Ko situation on some other part of the board may very well mean the

life or death of a group depending on how the Ko situation will be resolved.

3.3 Scaling With Board Size

There is also a question as to how make the computer best handle an increase

of board size. As we can hardly claim that a human being see a whole 19 x

19 board at one glance, but more likely we sense some central focal point and

a more diffused view of the peripheral parts of the board outside the focal

point. To compensate for our less than perfect vision we move our eyes to

scan over the board.

Many of the current go-playing systems using ANNs faces a problem re-

lating this scaling property. ANNs usually receive their input from the whole

board, and train on a certain board size. Increasing the board size in that

case means one of two things. The first being that the ANN can’t see the

whole board as the input area is smaller than the actual board. This would

result in the ANN taking decisions based in incomplete information. And

even worse the ANN could possibly not place pieces on the whole board,

somewhat depending on the implementation. The other outcome of increas-

ing the board size would be to increase the number of inputs to the network.

In turn this would also result in the network being retrained as the weights of

the smaller network would make little or no sense on a bigger network. This

would mean effectively more than doubling the time of training(as a larger

input base usually means more weights to train).

3.4 General Player

One aim of computer go is to make general player, which cannot easily be

fooled by exotic strategies, or strategies simply designed to the computer

program in question. This happened to early chess playing engines where top-
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players learned to play “anti-computer” chess. Developers of chess engines in

turn responded by incorporating“anti-anti-computer”chess, which countered

the erratic moves of the anti-computer tactics.

This is also a problem facing AI methods that need supervised training,

as they often develop systems that train against current go-engines. This

makes the supervised methods specialize in beating the go-engine it trains

against. This in turn seldom pays off in the long run as you would like to

develop a method for playing go not only against the training engine but also

other engines or even human opponents.
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Chapter 4

Method

This chapter will try to detail the methods underlying the system developed

to explore the questions outlined in chapter 3.

4.1 NEAT

As previously explained in section 1.2.2 and 2.3.5, NEAT is a neuroevolu-

tion method that takes advantage of a genetic marker it marks the structural

mutations with. I chose to use this method as it has shown good perfor-

mance against standard benchmarks, it has also been tried applied against

Go before.

4.1.1 NEAT Genotype

One of the goals behind NEAT was to develop a system that could ease the

complex process of applying crossover on two genomes that represented two

ANNs with different topologies while still retaining common denominator of

the functionality retained in the networks. The solution used was to mark

the topological mutations with a genetic marker, so that each mutation had

its own marker, but if the same mutation happened twice, it would get the

marker of the previous mutation. In this way one could easily discern between

newer mutations and older, and align the genes for crossover. Figure 4.1

shows a example genome and the markers of the connection genes.
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Genotype

In 1
Out 4
Weight 0.7
Enabled
Innovation 1

In 2
Out 4
Weight -0.5
Disabled
Innovation 2

In 3
Out 4
Weight 0.5
Enabled
Innovation 3

In 2
Out 5
Weight 0.2
Enabled
Innovation 4

In 5
Out 4
Weight 0.4
Enabled
Innovation 5

In 1
Out 5
Weight 0.6
Enabled
Innovation 6

In 4
Out 5
Weight 0.6
Enabled
Innovation 11

Connect Genes

Node Genes
Node 1
Input

Node 2
Input

Node 3
Input

Node 4
Output

Node 5
Hidden

1 2 3

5

4

Phenotype

Figure 4.1: This figure depicts a NEAT genotype containing the node list and the
genes representing the connections between them. The node genes are depicted
for readability, but in essence they could be derived from the connection genes.
Based on a figure from [21].

Mutation

There is five mutation methods in NEAT these are used based on a random

draw given the ratios for each of the methods1. The three most central

are adding a link between two unconnected nodes, adding a new node and

mutating weights. The first two are illustrated in figure 4.2, as they are the

most central to the contributions made by NEAT.

Adding new links is done by locating two nodes that are previously un-

connected, and give this new link a new genetic marker(incremented from the

previously highest marker number). This new connection is given a random

1See appendix A.1 for details about how the ratios are set
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weight by the formula:

nw = randsign() ∗ randdouble() ∗R

Where R is the maximum negative or positive range.

Adding new nodes(illustrated in figure 4.3 and 4.2) is compromised of

two sub-tasks, finding a suitable connection, and then splitting that connec-

tion in two and inserting the new node in place. As to finding a suitable

connection to split up, the current implementation implements a heuristic

where given that the genome is less than 15 genes it favours to split up older

links over newer ones, so to avoid a “chaining” effect. In this implementation

I chose to add a slight augmentation to the original implementation in that

you can chose to keep the old link you are splitting up, so as to minimize the

impact the mutation has on the phenotypes performance.
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Figure 4.2: This figure depicts a NEAT genotype and the results when one mutates
it by adding a connection and a node respectively. Based on a figure from [21].
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Figure 4.3: This figure depicts a NEAT genotype and the results when one mutates
it by adding a node and keeping the link. Based in a figure from [21].

Crossover

Crossover(illustrated in figure 4.4) is one of the most central contributions

of NEAT to neuroevolution. It uses the genetic markers to align the genes

after the markers, enabling the crossover algorithm to identify disjoint or

excess genes. The genes with matching genetic markers are lined up and

crossed over by one of two methods; either random choice, or the weights are

averaged over the two genes. The ratio of which it chooses to average and

when it doesn’t is given at run-time2. When it comes to excess and disjoint

genes the crossover algorithm takes into account the fitness of the two parents

taking part in the crossover, so the offspring only receives disjoint or excess

genes if those genes comes from parent p1 who’s fitness is higher than parent

p2. If in this case parent p1 has higher fitness than parent p2, then any excess

or disjoint genes from p2 is sure to be absent in the offspring.

4.1.2 Speciation

Outlined earlier in section 2.3.5 NEAT uses speciation to preserve new in-

novations in structure, so that it can be fine tuned to achieve a good fitness.

NEAT groups genotypes in species based on a genetic distance:

The genotypes within the species share their fitness, in that way speciation

2See appendix A.1
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Algorithm 1 Speciation algorithm

1: procedure addGenotype(g) . Add genotype g to a species
2: while
3: stry ← getNexSpecies(S) do
4: goriginal ← getOriginalMember(S) . This

could also be getBestMember, depending on where you want the species
to drift against.

5: if C(g, goriginal) < Ct then
6: S ← addToSpecies(stry, g)
7: end if
8: end while
9: if noSpecies(g) then . No species was genetically close enough for

this genotype.
10: S ← addToSpecies(snew, g)
11: S ← addSpecies(S, snew)
12: end if
13: end procedure
14: procedure speciatePopulation(P ) . speciate population P
15: gfirst ← randomMember(P )
16: S ← addToSpecies(sfirst, gfirst)
17: S ← addSpecies(S, sfirst)
18: while
19: g ← getNextGenotype(P ) do addGenotype(g)
20: end while. Make the first species out of a randomly picked genome
21: end procedure
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Figure 4.4: This figure depicts two NEAT genotypes and their networks, and then
how they are aligned for crossover, and finally the resulting genotype. Based on a
figure from [21].

protects innovation within the species. This can also be described in this way:

faug(gi) =
f(gi)∑n

j 6=i sh(C(gi, gj))

Where G is the set of genotypes, gi, gj ∈ G, n = |G| and

sh(Cv) =

{
1, Cv < Ct

0, Cv ≥ Ct
(4.1)

This is achieved by calculating the genetic distance C(gi, gj) between any

two genomes and then comparing that to a threshold value Ct. C(gi, gj) is
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defined by the following formula[21]:

C(gi, gj) =
c1 ∗ E(gi, gj)

N
+
c2 ∗D(gi, gj)

N
+ c3 ∗W (gi, gj) (4.2)

Where given genotypes gi and gj, E(gi, gj) is the number of excess genes,

D(gi, gj) is the number of disjoint genes and W (gi, gj) is the average weight

difference between the two genes. c1, c2 and c3 are coefficients to guide the

speciation to signify disjoint genes, excess genes or average weight difference

respectively when calculating the genetic distance between two genomes.

After the fitness is assigned to every phenotype the number of offspring

allotted to each species is assigned as follows. Let P be the set of every

phenotype in the population, N be the set of every species and n = |N |,
F a(Ni) be the average fitness of species Ni,

F tot =
n∑
j

F a(Nj)

n
,Nj ∈ N (4.3)

The number of allotted offspring for species Nk can then be defined as

A(Nk) =
F a(Nk)

F tot

∗ |P | (4.4)

4.1.3 Genetic Selection

During the generational epoch the phenotypes are evaluated and given a

fitness, that fitness is later adjusted according to its species as shown in

equation (4.2). The initial description of NEAT does not specify how to allot

offspring within the species, the original implementation uses[21] truncation

selection[2]. In this paper we chose to implement SUS(stochastic universal

sampling) [1] with a pluggable selection mechanism. This method tries to

minimize the difference between the expected and the actual value of offspring

allotted to the phenotype. This difference can be significant in standard

roulette wheel methods if an unlikely spin on the “wheel” occurs. To use an

analogy from [17]: Given a task of allotting N offspring, instead of spinning

a roulette wheel N times with 1 pointer, you spin the wheel 1 time with N
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Figure 4.5: This figure depicts a speciation. Here you can see at generation 0 the
number of species is 1. In generation 4(A) you can see the advent of a new species.
This species grows and can be seen more clearly in generation 5(in green). The
same species can be seen almost extinct in generation 8(B) however. The number
of species also converge towards the set target number of species, which in this
case is 20.

equally spaced pointers. SUS can be described in the following way [17]:

Where i is the index of phenotype Pi in the set of phenotypes in the

population P , ExpV al(i, t) is the expected value of offspring to be allotted

34



Algorithm 2 SUS algorithm

r ← rand {A random float between 0 and 1}
sum← 0
for i = 0 to N do

begin
for sum+ = ExpV al(i, t) to r do

begin
S ← Select(i)
r ← r + 1
end

i← i+ 1
end

to phenotype i at time t. Now you can implement ExpV al(i, t) for every

selection method you prefer. An example would be sigma scaling, where the

expected value of the phenotype depends on both the average fitness of the

population and the standard deviation of the population:

ExpV al(i, t) =

{
1 + f(i)−f(t)

2σ(t)
if σ(t) 6= 0

1.0 if σ(t) = 0

Where f(i) is the fitness of individual i, f(t) is the average fitness of the

population at time t and σ(t) is the the standard deviation of fitness values

in the population at time t.

In the case of NEAT this could be translated to the following:

ExpV al(p,Ni) =

{
1 + f(p)−Fa(Ni)

2σ(Ni)
if σ(Ni) 6= 0

1.0 if σ(Ni) = 0

Where t is omitted since ExpV al() is used every generational epoch in the

NEAT implementation, p ∈ P, p ∈ Ni given set of phenotypes in population

P , the set of species N , and σ(Ni) which is the standard deviation of fitness

within species Ni.
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4.1.4 Complexification

NEAT will gradually add on structural mutations as the generations progress,

but will only keep the ones that proves to be beneficial within a few gener-

ations3. This means that NEAT will start out with small networks and

incrementally, depending on the task the network is solving, grow larger net-

work to fit the task4. In a more detailed sense this means that the algorithm

searching through the fitness space of all possible genomes increases the num-

ber of search parameters and in effect the number of dimensions in the fitness

search space as it goes along, unless it hits a acceptable performance in the

current search space.

4.2 Roving Eye

A problem with using neural networks to play computer Go is how to scale

the network to the input size, as the Go board often vary in size, from

5x5(unusually small, for training only) to 19x19(the standard match board).

Varying the network input size will in most5 cases degrade the performance

of a neuro-evolutionary system, as it has trained for a different size network

and has no knowledge of how to assign weights to the new connections.

A roving eye doesn’t need to have the whole board as input, as it can

move around on the “input surface”. Thus gets different inputs depending on

the position it is in. Accordingly the roving eye also has a way of changing

it’s position by outputting certain values or firing on a specific output node.

The way the eye moves is often of great importance to the results as it

relates to how many concepts the network has to represent internally. With

the example of go(see figure 4.6), if the eye can turn around to change its

orientation(from looking north to looking west6), it can see two shapes as the

same shape even though their orientation seems superficially different. The

roving eye can then represent this shape internally in a single representation

3This depends on the parameter drop-off age, see Appendix A.1
4See section 5.1 for an example of this.
5See [22, 10, 6] for an example of a system which in some respects solves this problem.
6It is essentially a matrix operation on the input matrix.
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in contrast to the worst case scenario of representing four different shapes.

Whether this is a good thing is however domain dependent as this is a good

thing in go as the function of these shapes are largely disconnected from the

orientation of the shapes. In other domains it may be more useful for a roving

eye to be able to differentiate more clearly between two similar shapes with

different orientations in the input.

R

Shape A

Shape B

Figure 4.6: This figure depicts an example where a roving eye would have an
advantage of being able to turn around to change its orientation. This figure
shows two go shapes, shape A and shape B. When the roving eye, depicted by R,
can turn around, representing the two as is easier for a ANN.

In this case the roving eye sees a 3x3 matrix of the board at a time, the

roving eye also has a long range input, which is a count of how many white

and how many black stones is present in the section of the board beyond the

currently viewed section. The long range inputs are given for each of the

four relative orientations. Thus the roving eye has a general idea of what

is beyond its scope of view to the left, right, front and back of its current

position. It is given two nodes for each orientation, one is given the count

of black stones the other the count for white stones. This can be useful

information for deciding where to move the eye next. It also receives as two

inputs the absolute position it has on the board, so it knows where on the

board it is. As useful domain knowledge the ANN also gets a boolean input

of 0 or 1 to let it know if it is legal to place a stone at the current center of its
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Figure 4.7: This figure depicts the typical input of a roving eye. Based on a figure
from [21]. The white circles depict the direct inputs to the roving eye for each of
the NxN intersections(in this case 3x3), while the circles marked with a L depicts
the long range inputs.

view. To let the network discriminate between white and black stones easier

each of the 9 intersections are assigned two input nodes One is activated if

the intersection is occupied by a white piece, the other if the stone is black,

neither is activated if the intersection is unoccupied.

The input for the roving eye is also transcribed when the eye is playing

as the white player. In this way the roving eye doesn’t get confused by an

entirely different set of inputs(the opposing player’s pieces are black instead

of white as the roving eye was trained on). So the opposing players pieces

will always look like “white stones” to the roving eye.

As described in [21] and depicted in figure 4.7 the roving eye has five

output nodes. Each node is marked as active if it has an output above 0.5.

The five nodes represent “go forward”, “turn left”, “turn right”, “put piece”

and “pass” respectively. If none of the outputs are above 0.5 the roving eye

stands still in a “pause” and receives the same input again. If more than one

node is above 0.5 it is interpreted in the following matter:

• If more than one movement node is active, the eye turns and moves

forward at the same time. If both turning nodes are active the eye
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Input from eye Input from eye long range

absolute position
legal move

Figure 4.8: This figure depicts the typical starting network of a roving eye. Where
the circles in the inner 3x3 represents a typical 3x3 roving eye input area, while
the outer four circles labeled L is the long range sensors. Based on a figure from
[21].

turns left.

• If none of the first three nodes(the movement nodes) are active, the

first active node in the list from node three to node five are chosen.

The network is then given N(in this case N = 100) time steps to move around

or sit still doing nothing for each move it has. If the network doesn’t put

a piece during its move it is interpreted as a pass. As a starting point the

roving eye always starts out in the center of the board for each move. This

helps the eye to build a single representation of its orientation on the board.
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4.3 GNU Go

In this paper GNU Go was used as a go playing engine which NEAT trained

against. In the experiments in this paper NEAT ran for M generations

and trained against GNU Go for N generations to train. In the case where

M −N > 0 NEAT progressed into running co-evolution between the pheno-

types but kept playing against GNU Go at a given ratio to keep the domain

knowledge from getting lost. In every type of evolution the GNU Go engine

was used as a fitness evaluator7.

GNU Go was directly linked into the evaluator part of the system, to

provide more speed than the alternative GTP8 connection.

4.3.1 Fitness Function

GNU Go also provided the author with a opportunity to do a more fine

grained fitness evaluation of the network than a simple win/loss ratio, as it

has a function for estimating the score that returns a estimate for the white

player. This means when white plays well it returns a positive score, and if

black is in the lead the function will return a negative score. The function

returns an estimate of the Go score for the white player. This essentially

means it tries to estimate how many captures white will do during play in

addition to how much territory the white player will end up with. This is

of course a really hard thing to estimate, especially early in games on big

boards. In this case however, the boards will be below mid-size and thus

poses a lesser challenge to evaluate early in the game. The score estimates

will return values in the range of ±(boardsize2 + komi)9 which is hardly a

good range to use as fitness scoring for a genetic algorithm. The following

function was used for fitness, given the estimatescore from GNU Go:

eboard(p) =

{
(−estimatescore+ Smax)/(2 ∗ Smax), isblack(p)

(estimatescore+ Smax)/(2 ∗ Smax), iswhite(p)
7The co-evolution games between roving eyes the boards where evaluated by GNU Go,

in contrast to a pure win/loose ratio.
8See See http://senseis.xmp.net/?GTP.
9Where komi is the handicap point mentioned in section 1.1.1.

40

http://senseis.xmp.net/?GTP


Where Smax = S2 + K, S = boardsize and K = komi. The final fitness

function that assigns a network fitness after a game is modeled after the

original paper[19] from Stanley, it takes into consideration all the moves

leading up to the final board, and weights them up in relation to the final

board as will rewards networks that play the whole game through and makes

good moves early. This is thought to encourage the networks to adapt to

the game rules better before using the more usual win/loss ratio used in

many other evolutionary approaches to board games and in co-evolution.

The fitness function for single player evaluation is defined as followed:

Fgame(p) =
(2 ∗

∑n
i ei(p)) + efinalboard(p)

(2 ∗ n) + 1
(4.6)

Where n is the number of moves in the game. Later as a test to see whether

the previous fitness function awarded the networks too much for moves played

by GNU Go, the following fitness function was constructed:

NFgame(p) = Fgame(p) + (Mgame(p) ∗ 0.1) (4.7)

Where Fgame is given in equation (4.6) and Mgame(p) is the number of stones

put by the network.

The fitness function described in equation (4.7) awards the networks for

the number of stones it puts on the board, which is usually a good thing in

a go game.

4.4 Co-evolution

To implement co-evolution the “Hall of Fame” method was chosen. This

method of co-evolution keeps a list of duplicates of the top ranked phenotypes

from each generation. Every phenotype then needs to be evaluated against

each one of these. In this implementation the list length is variable but set

to 12 in the experiments presented in this paper. GNU Go is represented

in the list by a given fraction of the slots. This is done to not lose any of

the go playing ability learned earlier in the evolution, and to ensure that no
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phenotype gets away “easy” and only plays against low-ranked phenotypes.

4.5 Cluster Architecture

To simplify the implementation of the parallel architecture the author chose

to employ a parallel architecture made for clusters using pvm or mpi. This

architecture was developed at NTNU(Norwegian University of Science and

Technology) by Boye A. Hoverstad. The architecture enables a master clus-

ter node to send a batch of genomes out to the slaves nodes. The system

distributes them out to the evaluation slaves which later returns the fitness.

In the case of co-evolution the master also sends a list of genomes which

the evaluation slaves evaluates the genome against. To use more available

cpu time the master also evaluates a given percentage of what the evaluation

slaves does. This is given at run-time10.

10A typical value would be 97%.
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MASTER

M1.Send out N genomes
M2.Evaluate M genomes
M4.Read N fitness values
M5.Perform genetic algorithm

SLAVE 1
S1.Read N genomes
S2.Evaluate N genomes
S3.Send fitness values

SLAVE 2

......

SLAVE N

Distributor

M1.

S1.S3.

M1.

Figure 4.9: This figure depicts the distributed architecture.
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Chapter 5

Results

In this chapter the results of the experiment will be presented. The general

functional performance of the system will be evaluated through a standard

XOR solving problem. The run-time performance of the cluster system will

be demonstrated through a series of runs on different sized subsets of a clus-

ter. Following the performance results the results of the evolution against

GNU Go will be shown. The paper will present results from evolving against

GNU Go in two categories. The first is results from evolving on a 5x5 board.

This will involve standard evolving against GNU Go where GNU Go is the

fitness evaluator from start to end. This includes experiments for each of

the two fitness functions described in equation (4.6) and (4.7). The results

presented from playing on the 5x5 board also include more generational runs,

as well as runs using co-evolution. The second category is where the games

are played on a 7x7 board. This category will include runs where the evo-

lution starts from scratch(again with experiments for each of the two fitness

functions). The category will also include results from experiments where

evolutions seeded1 with the champions from runs on 5x5 boards and runs

using co-evolution on 5x5 boards.

1In the cases where the evolution is seeded with a genome, the evolution does not start
with a generic starting point, but with mutations of the seeding genome.
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5.1 Performance Evaluation

This section aims to establish that the implementation of the NEAT algo-

rithm is operating within acceptable performance criteria. This includes both

functional and run-time performance. It is important to establish this in ad-

vance, as it forms the foundation of the later runs targeting harder problems.

5.1.1 Functional Performance

To evaluate the functional performance of the implementation the XOR prob-

lem was chosen as a benchmark. XOR(Exclusive OR) is a binary operator

that returns true if and only if the two inputs are unequal. This requires the

two inputs to be joined at a hidden node in the ANN as the classifications

are not linearly separable given the two inputs.

This is a widely used benchmark for ANN implementations as it is not

a linearly separable function, thus the ANN requires a hidden node to rep-

resent the function. This requires the neuro evolutionary algorithm to add

a hidden node and search for the correct weights for the two new2 connec-

tions added. Solving this task shows that the implementation can grow the

topology required to solve the task.

Simulation Setup

In this simulation the networks are given the four possible combinations of

true or false(represented as 0 and 1) as inputs. The fitness assigned to the

networks is a sum of the four euclidean distances between the output of the

network and the target values.

Simulation Results

In order to evaluate the complexifying capabilities of this NEAT implementa-

tion3 the number of hidden nodes and number of connections in the solution

2In the case of NEAT where the algorithm splits up a connection to add a new node,
see section 4.1.1

3see section 4.1.4
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found in a run was recorded. Over 100 runs, average the implementation

used 27 generations to solve XOR, and the solutions had 9.5 connections and

2.2 hidden nodes. The implementation found the minimal structure in 23

out of 100 runs.

(a) Starting genome (b) Minimal XOR

Figure 5.1: In this figure, the green nodes are input nodes with a linear transfer-
function(in this case f(x) = x), the red node is a bias node that always outputs 1
to the node it is connected to and the yellow node is regular node with a sigmoid
transfer-function. (a) Shows the starting point, or seed, of the evolution. (b)
Shows the minimal solution for XOR.

Figure 5.1.1 shows the starting genome and minimal solution for the XOR

problem.

5.1.2 Run-time Performance

This experiment is performed to see how well the evaluation of genomes

against GNU Go scales as the number of evaluation slaves is increased.

Experiment Setup

This experiment used evaluation against GNU Go with 1000 genomes and

was run with 5, 10 and 15 cluster nodes as evaluation slaves. The time is

measured from start of evaluation until the last genome is received from the

slaves.
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Experiment Results

Evaluating 1000 genomes took 325 seconds on 5 nodes, 164 seconds on 10

nodes and 80 seconds on 20 nodes. Thus respectively 0.325, 0.164 and .080

seconds per genome.

5.2 5x5 Board

A natural staring point for experiments is the smallest board used in go. This

serves as a learning board for beginners, and is often used in computer go as

it provides a easy start. Here we use it to demonstrate is demonstrated that

NEAT learns to play against GNU Go at a reasonable level.

5.2.1 Experimental Setup

In this experiment the run-time parameters used are the same as those pre-

sented in [21]. Population size used is 400. The roving eye is set to the

standard 3x3 size and has 100 time steps for each move. For more detailed

parameters see A.1.2.

5.2.2 Experimental Result

The results of the experiments performed on the 5x5 board are shown in

figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7. All graphs show the fitness of the popu-

lation champion at the given generation. The results will be more thoroughly

commented and analysed in chapter 6.
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Figure 5.2: This figure shows the fitness of NEAT evolving against GNU Go over
500 generations with a population of 400 with fitness function given in equation
(4.6).
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Figure 5.3: Here is a game played against GNU Go in mid-evolution, at generation
150. The network starts out well but spreads out too much with move 3. It
responds well with moves 7 and 5, but it stops short as it has not learned to play
the game to its end. This was evolved using the fitness function given in equation
(4.6).

5.3 7x7 Board

In these experiments the board size was 7x7, a considerably harder problem

for a roving eye to solve than the smaller 5x5 board. Containing almost twice

as many intersections and thus many more possible board states, this is a

bigger challenge for both classical and neuroevolutionary approaches.
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Figure 5.4: This figure shows the fitness of NEAT evolving against GNU Go over
700 generations with a population of 400 with fitness function given in equation
(4.6).
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Figure 5.5: Here is a game played against GNU Go by the resulting champion
of a ended evolution. The ANN starts to build a line with move 1 and 3, but is
interrupted with white’s move 2 and 4. This was evolved using fitness function
given in equation (4.6).

5.3.1 Experimental Setup

In this experiment the run-time parameters used are the same as used in

the 5x5 board experiments. Population size used is 400 and the number of

generations is set to 500. The roving eye is set to the standard 3x3 size and
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Figure 5.6: This figure shows the fitness of NEAT evolving against GNU Go over
500 generations with a population of 400 with the alternative the fitness function
given in equation (4.7). In this fitness function the roving eye is awarded for every
stone it puts on the board.
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Figure 5.7: This figure shows a game played against GNU Go in mid-evolution,
at generation500. This was evolved using the alternative fitness function given in
equation (4.7). The network evolved here performs better than the game shown
as a result of evolution with fitness function given in equation (4.6). The move
marked A represents both move 1 and move number 13.

has 100 time steps for each move.

5.3.2 Experimental Result

The results of the experiments performed on the 7x7 board are shown in

figures 5.9, 5.10, 5.11, 5.12 and 5.13. All graphs show the fitness of the pop-
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Figure 5.8: This graph shows an evolution where co-evolution was started at gen-
eration 500 and continued until generation 1000.

ulation champ at the given generation. The results will be more thoroughly

commented and analysed in chapter 6.
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Figure 5.9: In this graph the evolution was started from scratch on a 7x7 board
space. This was evolved using the fitness function given in equation (4.6). The
game played by the resulting champion can be seen in figure 5.10.
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Figure 5.10: In this figure the evolution was started from scratch on a 7x7 board.
This was evolved using fitness function given in equation (4.6).
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Figure 5.11: This figure shows a game from a champion evolved on a 7x7 board
seeded with a 5x5 champion as seen in the 5x5 board simulation reported in figure
5.5.
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Figure 5.12: This graph shows an evolution on a 7x7 board using the alternative
fitness function given in equation (4.7). The game played by the champion of
generation 500 can be seen in figure 5.13.
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Figure 5.13: This figure shows a game of the champion evolved using the alterna-
tive fitness function given in equation (4.7). The roving eye plays well but seems
to stop playing after move 11. It later plays move 18 to little effect on the outcome
of the game.
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Chapter 6

Analysis of Results

In this section I will present comments and analysis related to the results

presented in the previous chapter.

6.1 Performance

The results as seen in section 5.1 clearly show that the functional perfor-

mance of the implementation is on par with the original NEAT implementa-

tion. Thus given the same parameters and equal evaluation results(a genome

should receive the very similar fitness in this method as in the original im-

plementation) the evolution against GNU Go will yield similar results.

6.2 Parallel Architecture

In section 5.1.2 the parallel architecture shows to be pretty scalable as the

evaluation time of 1000 genomes halves from 5 nodes to 10 nodes. This

result is of course highly dependent on the percentage of computational re-

sources required on evaluation of the genome in the evolutionary process.

An evaluation of a short data-set classification will spend almost as much

time on applying genetic operators such as recombination and mutation, as

on evaluation itself. This will reduce the advantage of applying a cluster of

computers as a computational resource, as the slaves do not contribute to the
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genetic operations in this implementation. This could however be considered

for future augmentations of the implementation, as attacking more complex

problems will require more computational resources dedicated to the genetic

operators when the genomes grow bigger in an effort to represent the problem

better.

6.3 5x5 Board

The networks seem to reach a fitness of 0.53, which suggests that the algo-

rithm finds a partial solution. However unlike the results presented in [21]

it does not find a solution that beats GNU Go. This result can be related

to many things, mainly that the implementation used a different selection

method[2] which may have proven to be a better choice for this domain.

Sigma scaling, seen in equation (4.4), which is used in this experiment, may

have proven to be less effective. The same difference in selection method

can also have offset the choice of parameters for the NEAT algorithm and in

effect decrease the performance of the algorithm.

As seen in figure 5.6,5.7,5.12 and5.13 the fitness function detailed in equa-

tion (4.7) shows better results. This could be because the original fitness

function (4.6) will award a little fitness for every move made by GNU Go.

This is because even though the roving eye is at a disadvantage in the board

being evaluated the GNU Go evaluation algorithm returns a small reward for

the early moves made by the roving eye. This is again amplified by the fact

that the early and mid game moves are weighted up to encourage stronger

play earlier in the game.

6.4 7x7 Board

The roving eye’s performance is as expected lower on the bigger 7x7 board

than the 5x5 board as seen in the game played 5.10. The reason it is harder

for a roving eye to play well in this evolution is mainly because of the bigger

board, which requires more moves for a success-full strategy.
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The fitness stays somewhat the same since the fitness is highly dependent

on the number of moves made. Given the fitness functions detailed by equa-

tion (4.6) and (4.7), a bad move that creates a lot of moves by GNU Go in

response is better than a good move that only create a few moves by GNU

Go in response. So even though the same moves was better on a 5x5 board

it still gets a good fitness function at this 7x7 board.

One can also note how the roving eye kept trying the same strategy on

a 7x7 board that it used in the 5x5 strategy as seen in figure 5.5 when a

champion from the 5x5 evolution was used as a seed. This suggests that the

inherent strategy that was represented in the roving eye champion network

is applicable across board sizes. This also confirms the findings made in [19].

6.5 Co-evolution

As presented in section 4.4 the algorithm applies hall of fame co-evolution to

enable a steady co-evolution. It also keeps playing the phenotypes against

the GNU Go engine in order to keep the phenotype from “forgetting” the

go rules. Several evolutions where run with co-evolution, an example of this

can be seen in figure 5.8. Using champions from 5x5 experiments applying

co-evolution such as the one shown in figure 5.8 as seeds in experiments on

7x7 boards did not result in any improvements in comparison to the other

methods1 used in 7x7 experiments. The fitness also clearly oscillates as the

generation champion is paired up with different phenotype opponents. The

mean of the population does however seem to be on the rise from the point

in the evolution the co-evolution starts. It is hard to explain the almost

paradoxical results of a rising mean in co-evolution that still does not give

any improvements in strategy over normal evolution. It could simply stem

from the fact that to few experiments were done on co-evolution to see the

results due to lack of time to fine tune the co-evolutionary parameters.

1Such as seeding with a normal 5x5 champion, or normal evolution.
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Chapter 7

Discussion

This chapter will present the findings from the experiments in the perspective

of the motivation and working hypothesis presented in sections 1.3 and 1.4.

The results presented in chapter 5 and in [21, 19] show that the roving

eye has an advantage over more traditional techniques applied when using

ANNs to play go. There is still a long way to go in terms of performance as

my implementation only nearly beats GNU Go. The experiments also only

ranges up to 7x7 which is far below the standard board size of 19. As stated

in the motivation in section 1.3 the goal was 9x9 but given the results in 7x7

the author chose to try to tune the parameters on the smaller board sizes.

Still at 5x5 both this paper and earlier attempts[19] only show the game-

play of a weak amateur or beginner. The roving eye technique only seems

to amend some of the problems associated with making computers play go

at a higher level. There seems to be significant requirements connected to

the structure of the network of the roving eye to enable a roving eye to

represent the patterns associated with playing go. Just making the roving

eye represent the sequence of playing a series of moves seems to pose a serious

challenge to neuro-evolutionary systems. This could be caused by the need

for the network to represent how to move across the board in addition to the

domain knowledge needed to play the game itself.

During the experiments the author observed symmetrical features in the

patterns of the way the eye chooses to put its stones when playing games
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with more than 2-3 moves made from the roving eye. This illustrated in

snapshots taken from evolutions in figure 7.1.

4

1

3

2

(a) First symmetrical example

4

1

32

5

78

9

(b) Second symmetrical example

Figure 7.1: These two games depicted in this figure both show strong symmetrical
properties as to the series of moves made by the roving eye. In figure both figures
(a) and (b) the symmetry seems to be around the central vertical axis from top to
bottom. Both patterns are highly symmetrical with the one exception of move 9
in figure (b).

This could be caused by the fact that it requires less structure in the

network of the roving eye to represent a symmetrical series of moves rather

than a unsymmetrical which would require a more specific type of information

to be stored in the roving eye.

The roving eye did show that it could represent a strategy and continue to

use that on a bigger board, as shown in figures 5.5 and 5.10. This confirms the

findings in [19] that the roving eye can apply strategies learned on smaller

board on a bigger board. This confirms that the strategies evolved on a

smaller board can be used by a roving eye on a bigger board. This is highly

useful when trying to incrementally learn to play a highly complex game

which may be impossible to learn in a evolution starting straight on a 19x19

board.

However the implementation did not reach the same level of play as earlier

systems [19], even though some of the games played clearly shows(e.g figure

5.7) something very close to a winning strategy.

There are many possible explanations of the differences between the re-

sults presented in this paper and those presented in [19]. The roving eye’s
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requirement of representing movement and analysis of the inputs to the net

following new moves on a board does put a rigid requirement on the neurevo-

lutionary algorithm to grow the correct structure. The speciation parameters

may require adjustments to allow for the newly grown topological structures

to be tuned to a greater degree1.

The roving eye needs to be able to represent a non-symmetrical sequence

of movements across the board associated with the placements of at least 8

stones. This is a minimum for a winning strategy against GNU Go on a 5x5

board, as seen in figure 7.2 where the black player ends up with more area

of territory at the end of the game.

All these reasons adds up to the fact that the experiments presented in

this paper are highly sensitive to the neuroevolutionary parameters used in

NEAT2. And the small differences in implementation and selection algorithm,

may require additional tuning to the parameters.

1
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4
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7

89

10
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12

Figure 7.2: This figure show a simple winning strategy against GNU Go when
playing with no handicap and a komi of 0.5.

For this kind of sequence to be represented in a ANN, even without any

noise3 or randomness involved in the input, the ANN would need to have

several recurrent structures. This represents a major challenge for a neu-

roevolutionary algorithm to develop.

1To allow for the weights of the new connections to be adjusted for higher fitness.
2As presented in section 4.1 and A.1
3Resulting from the responses by GNU go on the board.
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Although not impossible it may prove highly difficult to grow an ANN

big enough to represent the patterns necessary to play go at a high level on

even 9x9 or 13x13 boards. Even though an ANN in theory can represent the

patterns involved, it may very well be way beyond the scope of anything yet

grown with neuroevolutionary algorithms4.

A genetic algorithm can be seen as a search through the fitness landscape.

In comparison other more traditional approaches to computer go often uses

search methods, as described in section 2.4.3. So while traditional approaches

searches during the game, a approach employing a neuroevolutionary algo-

rithm will in most cases search before any real game is played, for example a

computer go tournament. With that in mind the a priori search does not suf-

fer from the same time constraints that a real-time search algorithm would be

constrained by. The evolutionary search is however often more demanding,

as in the case of NEAT where the complexifying feature gradually adds new

dimensions to the fitness search space by adding new connections and nodes.

It would be interesting to compare the two searches in terms of efficiency in

relation to the results found. At this time the neuroevolutionary search is

the underdog often running for days to create a network that plays below

the level of many other real-time search methods. Although this last fact is

made up by the fact that it is much faster run-time.

7.1 Evaluation of Working Hypothesis

To reiterate the working hypothesis:

Hypothesis I:Neural networks evolved in NEAT against GNU Go, and

with co-evolution to play GO, will achieve a higher level of generality, and

will adapt more general playing patterns than a network evolved against GNU

Go alone.

Hypothesis I can not be said to have been confirmed nor weakened by

the experiments in this paper. The impact of the co-evolution can be seen to

4See [10] for an example of one of the biggest ANN grown by a neuroevolutionary
algorithm yet.
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be negligible on the roving eye’s performance on bigger board in comparison

to a roving eye that was simply evolved on a smaller board and seeded into

the evolution of the bigger board. The author however feels that investiga-

tions into other co-evolutionary methods such as pareto co-evolution may be

well founded. This is because some signs, such as rising mean fitness in co-

evolution population, may indicate that tuning of evolutionary parameters

can result in better results in the co-evolutionary experiments. An additional

reason for the the result may be the fact that the roving eyes only evolved

a single strategy for playing go, and playing two of these against each other

may act as destructive interference. One suggestion to counteract this would

be to somehow ensure that there was more than one working strategy of

playing go against GNU Go before proceeding to co-evolution.

7.2 Future Work

The goal of making computers play go is a very large and ambitious goal.

Within the neuroevolutionary approaches to this problem, this paper only

scratches the surface. The paper shows that a roving eye scales well from one

board size to another, while still retaining the patterns learned in the smaller

board sizes. Even though co-evolution did not show any direct impact on the

level of play when progressing from a smaller board to a bigger board, the co-

evolutionary method implemented in this paper is rather crude and outdated

by many standards. Further work could include a implementation of pareto

optimal co-evolution. Another option, that could work in combination with

the previous suggestion could be to measure the roving eye’s performance in

co-evolution by a pure win/loss ratio. This would reduce the dependence on

the estimation metrics of GNU Go when progressing into co-evolution. This

metric is inherently flawed, as the GNU Go engine builds on it evaluate the

possible moves, and the engine is empirically proven to be on level of a weak

amateur.

Further experiments with different fitness functions in the “learning pe-

riod” of the roving eyes also seems to be well founded as seen in the small

adjustments made to the original fitness function in equation (4.7). Even
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though this may seem as domain knowledge based heuristic, it may very well

be required for neuroevolutionary methods to reach a higher level of play. It

may also prove to be even more domain knowledge in the fitness function to

guide the evolution. This is in many cases unavoidable for a genetic algo-

rithm, as current computer experiments within genetic algorithms needs to

specialize as it does not have the benefit of time, in comparison to nature in

the evolution of humans as go-players. A way to do this could be to utilise

the metrics already found in the GNU Go code and split them up in the met-

rics found most useful. These can then be used in a weighted fashion during

evolution, changing emphasis later in evolution as the roving eyes learn the

playing concepts emphasised earlier in the evolution. It could also be bene-

ficial to use an even easier opponent than GNU Go earlier in evolution, such

as a player that only uses a simple strategy of placing stones adjacent to the

opponent.
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Appendix A

Appendix

A.1 Parameters

These parameters are largely derived from the parameters given in [21] and

the names used in the settings file are also derived from the actual release of

the code from the same dissertation, in this case NEAT v1.1, available from

Dr. Kenneth Stanley‘s web page. Some of the parameters may change in

future releases (see section A.2).

The actual parameter word used in the settings file is typefaced in italic.

Each of the settings uses a real number as its value, unless its a boolean

setting, in which case it is marked as such and the values 0 and 1 apply.

• Disjoint genes coefficient

disjoint coeff

This parameter lets you decide how much disjoint genes is considered

when calculating the genetic distance between two genomes.

• Excessive genes coefficient

excess coeff

This parameter lets you decide how much excessive genes is considered

when calculating the genetic distance between two genomes.

• Mutational difference coefficient

mutdiff coeff
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This parameter lets you decide how much the mutational difference,

that is the difference in weights, (for each of the aligned genes) is con-

sidered when calculating the genetic distance between two genomes.

• Weight mutation rate

weightmutation rate

The rate of genes(weights) in the genome which should be mutated,

given that the genome already is selected for weight mutation.

• Severe mutation rate

severe mutation prob

A rate for each genome, which greatly increases weight mutation rate,

this is fixed to 0.5 in the original version of NEAT, which means that

half of the time a genome is mutated, it is a severe mutation.

• Compatibility threshold

compat threshold

This threshold lets you decide how genetically close two genomes need

to be given the formulae in (4.1) 1

• Drop off age

dropoff age

When the number of generations in which the species has not improved

increases beyond this number, the overlap is used as a “agedebt”, to

adjust the fitness of the species down.

• Age significance

age significance

This is a coefficient to the fitness of each phenotype in a species who’s

age is above 10.

• Survival threshold

survival thresh

1This parameter should be considered as a starting point if you also specify species tar-
get, in which case the evolutionary algorithm gradually shifts this value in either direction
to try to achieve the right number of species.
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This is the percentage of phenotypes to survive within a species, if set

to 0.2, the top 20% phenotypes will survive and possibly be selected to

have offspring.

• Species target

species target

This tells the evolutionary algorithm to adjust the compatibility thresh-

old so that the number of species will converge to this target number.

As this algorithm just increases and decreases the threshold by 0.3,

the number of species will oscillate around the target, but the average

number of species with regards to generations will be quite close to this

target number.

• Species target size

species target size

This does the same as species target, in a more consistent way to the

experimenter, as the size of the species is what affect the other processes

dependent on the species. This parameter is only used if the above

parameter “Species target” is not set.

• Mutate only probability

mutate only prob

This is the probability that the offspring is a straight clone rather than

a result of a crossover.

• Mutate weights probability

mutate link weights prob

This is the probability that the weights of the offspring will be mutated.

• Mutate toggle enable probability

mutate toggle enable prob

This is the probability that one mutates the genome via picking a gene

and toggling whether its enabled or not.

• Mutate gene re-enable probability

mutate gene reenable prob
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This is the probability that one of the disabled genes of the offspring

will be re-enabled.

• Mutate add node probability

mutate add node prob

The probability that the mutation picks a link, splits it and ads a new

node in between.2

• Mutate add link probability

mutate add link prob

The probability that the mutation adds a link between two nodes that

doesn’t have a link3.

• Interspecies mating rate

interspecies mate rate

The rate of which a crossover operation is between two phenotypes from

different species.

• Mate multipoint probability

mate multipoint prob

The probability that a crossover should be a multipoint crossover, de-

ciding for each gene which parent it should be from.

• Mate multipoint average probability

mate multipoint avg prob

The probability that a crossover should be like a mulitpoint crossover

only that the gene’s(or link weights) are averaged between the two

parents(unless the gene in question is disjoint or excess).

• Mate singlepoint probability

mate singlepoint prob

The probability that the crossover chooses one point in the genes to

use for crossover point

2See keeplink option, as this alters the effect of this parameter.
3See newlink tries as this alters the behaviour of this algorithm.
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• Mate only probability

mate only prob

The probability that the resulting phenotype from a crossover is not

mutated.

• Newlink tries

newlink tries

This number determines how many times the algorithm for adding a

link should try to find two nodes that doesn’t have a link between them,

this is necessary as there could be the case that this isn’t any two nodes

without a link between them.

• Spawn recurrence probability

spawn recur prob

The probability that during the random spawning of the initial gener-

ation, a given recurrent link will be created.

• Cold gaussian weight mutate(boolean)

coldgaussian weight mutate

This parameter turns on or off cold gaussian weight mutation4.

• Recurrent connection probability

recurrent conn prob

This is the probability that the link will be added if the link in question

a recurrent link.

• Weight mutation power

mutate link weights power

This sets the maximum weight mutation.

• Number of innovations

number of innovations

This number sets how many innovations the NEAT algorithm should

remember.

4Cold gaussian implies that the mutation doesn’t use the original weight as a starting
point, see the code for more detail
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• Keep link while adding node(boolean)

keeplink

If set, this parameter will change the algorithm for adding nodes so

that it keeps the original link enabled after creating the two new links

and adding the node in between.

A.1.1 Fixed Parameters

Some of the parameters were fixed across experiments as they wasn’t affected

by the difference in task domain.

A.1.2 Experiment Parameters

This subsection will list important parameters that differ between the XOR

and the GO experiment

Setting GO XOR

mutational diff coefficient 0.4 2.0

compatibility threshold 2.0 8.0

drop off age 15 130

species target size N/A5 20

Add node probability 0.08 0.005

Add link probability 0.12 0.1

Inter-species mating probability 0.001 0.015

Recurrence Enabled Disabled

Weight mutation power 2.5 1.5

A.2 Source code

The source code containing the implementation is released under the GPLv2(see

http://www.fsf.org/licensing/licenses/info/GPLv2.html) license from

the Free software foundation. This source-code can be found at the following

location: http://neatzsche.generation.no. The source-code may change

5No species target set, the compatibility threshold is used.
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in the future, but the results in this paper are based on the releases tagged

as 1.0 and 1.1(for fitness equation (4.6) and (4.7) respectively).
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