The effectiveness of population-wide screening in reducing SARS-CoV-2 infection prevalence in Slovakia
This repository contains the data and code for our manuscript:
Pavelka S, Van-Zandvoort K, Abbott S, Sherratt K, Majdan M, CMMID COVID-19 working group, Jarčuška P, Krajčí M, Flasche S*, Funk S* (*: equal contribution), The effectiveness of population-wide screening in reducing SARS-CoV-2 infection prevalence in Slovakia. Available at https://cmmid.github.io/topics/covid19/Slovakia.html.
How to download or install
You can download the compendium as a zip from from this URL: https://github.com/sbfnk/covid19.slovakia.mass.testing/archive/master.zip.
Or you can install this compendium as an R package,
covid19.slovakia.mass.testing
, from GitHub with:
# install.packages("devtools")
remotes::install_github("sbfnk/covid19.slovakia.mass.testing")
Included data sets
The repository contains three data sets:
The testing data set ms.tst
can be loaded with
data(ms.tst)
Incidence of cases confirmed by PCR per county PCR.inc
can be accessed
with
data(PCR.inc)
The Rt.county
data set contains the estimated median reproduction
number in each county on 22 October 2020.
data(Rt.county)
This data set can be re-created using the The EpiNow2 R package by running (noting that it can take a long time to run depending on the hardware available).
source(here::here("data-raw", "scripts", "rt.r"))
source(here::here("data-raw", "scripts", "convert_data.r"))
The EpiNow2 R package that is used
to estimate the reproduction numbers uses generation times and delay
distributions saved in data-raw/data
. They can be re-generated by
running.
source(here::here("data-raw", "scripts", "rt-distributions.r"))
The Google mobility data set for Slovakia mob.slo
visualised in
Supplementary Figure S4 can be accessed with
data(mob.slo)
Figures and tables
To regenerate Table 1, run
county_table(here::here("figures", "table1.pdf"))
To regenerate Fig. 1, run
p <- pcr_incidence()
ggsave(here::here("figures", "fig1.pdf"), p, width = 7, height = 3)
To regenerate Fig. 2, run
rr <- risk_ratios()
ggsave(here::here("figures", "fig2a.pdf"), rr$figures$a,
width = 7.5, height = 7, device = cairo_pdf)
ggsave(here::here("figures", "fig2b.pdf"), rr$figures$b,
width = 7, height = 4, device = cairo_pdf)
ggsave(here::here("figures", "fig2c.pdf"), rr$figures$c,
width = 7, height = 4, device = cairo_pdf)
rr$tables
To generate Table S1 and estimate the adjusted prevalence ratio, run
r <- regression("tableS1.pdf")
To regenerate Fig. S1 and estimate minimum specificity, run
spec <- estimate_min_specificity()
ggsave(here::here("figures", "figS1.png"), spec$figure,
width = 3, height = 4, dpi = 600)
spec$estimate
#> [1] 0.9984521
To regenerate Fig. S4, run
p <- mobility()
ggsave(here::here("figures", "figS4.png"), p, width = 10, height = 6.5,
dpi = 600)
To regenerate Fig. S6, run
p <- bed_occupancy()
ggsave(here::here("figures", "figS6.png"), p, width = 4, height = 3,
dpi = 600)
To regenerate Fig. S7, run
p <- prevalence()
ggsave(here::here("figures", "figS7.png"), p, width = 6, height = 10,
dpi = 600)