
AAAAAAAAAAAAAAAAA
Bitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper'sBitmapper's
CompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanion

epilysepilysepilysepilysepilysepilysepilysepilysepilysepilysepilysepilysepilysepilysepilysepilysepilys 20212021202120212021202120212021202120212021202120212021202120212021

ananananananananananananananananan introductionintroductionintroductionintroductionintroductionintroductionintroductionintroductionintroductionintroductionintroductionintroductionintroductionintroductionintroductionintroductionintroduction
tototototototototototototototototo basicbasicbasicbasicbasicbasicbasicbasicbasicbasicbasicbasicbasicbasicbasicbasicbasic bitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmapbitmap
mathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematicsmathematics

andandandandandandandandandandandandandandandandand algorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithmsalgorithms
withwithwithwithwithwithwithwithwithwithwithwithwithwithwithwithwith codecodecodecodecodecodecodecodecodecodecodecodecodecodecodecodecode

samplessamplessamplessamplessamplessamplessamplessamplessamplessamplessamplessamplessamplessamplessamplessamplessamples ininininininininininininininininin RustRustRustRustRustRustRustRustRustRustRustRustRustRustRustRustRust

.

Table Of Contents 4 toc

Introduction 9 intro

Points And Lines 19 lines

Shapes 44 shapes

Curves 68 curves

Manos Pitsidianakis (epilys)
https://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyzhttps://nessuent.xyz
https://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilyshttps://github.com/epilys
epilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyzepilys@nessuent.xyz

All non-screenshot figures were generated by hand in Inkscape unless otherwise
stated.

The skull in the cover is a transformed bitmap of the skull in the 1533 oil paint-
ing by Hans Holbein the Younger, The AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe AmbassadorsThe Ambassadors, which features a floating
distorted skull rendered in anamorphic perspective.

A Bitmapper’s Companion, 2021
Special Topics▶ Computer Graphics▶ Programming
006.6’6–dc20

Copyright © 2021 by Emmanouil Pitsidianakis

This work is licensed under the Creative Commons Attribution-NonCommercial-
ShareAlike 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter toCreativeCom-
mons, PO Box 1866, Mountain View, CA 94042, USA.

The source code for this work is available under the GNU GENERAL PUBLIC
LICENSE version 3 or later. You can view it, study it, modify it for your purposes
as long as you respect the license if you choose to distribute your modifications.

The source code is available here

https://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companionhttps://github.com/epilys/bitmappers-companion

https://nessuent.xyz
https://github.com/epilys
epilys@nessuent.xyz
https://en.wikipedia.org/wiki/The_Ambassadors_(Holbein)
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://github.com/epilys/bitmappers-companion

toc

Contents

I Introduction 10
1 Data representation 11

2 Displaying pixels to your screen 13

3 Bits to byte pixels 15

4 Loading graphics files in Rust 16

5 Including xbm files in Rust 17

II Points And Lines 20
6 Distance between two points 21

7 Moving a point to a distance at an angle 22

8 Equations of a line 23

8.1 Line through a point 𝑃 = (𝑥𝑝, 𝑦𝑝) and a slope 𝑚 23

8.2 Line through two points 24

9 Drawing a line 26

10 Distance from a point to a line 27

10.1 Using the implicit equation form 27

10.2 Using an 𝐿 defined by two points 𝑃1, 𝑃2 27

10.3 Using an 𝐿 defined by a point 𝑃𝑙 and angle
̂𝜃 28

11 Perpendicular lines 29

11.1 Find perpendicular to line that passes through given point 29

11.2 Find point in line that belongs to the perpendicular of given point 29

12 Angle between two lines 30

13 Intersection of two lines 32

14 Line equidistant from two points 34

15 Reflection of point on line 36

5

toc

15.1 Find perpendicular to line segment 𝐴𝐵 that passes through its
middle (perpendicular bisector of 𝐴𝐵) 38

16 Angle sectioning 39

16.1 Bisection 39

16.2 Trisection 39

17 Drawing a line segment from its two endpoints 40

18 Drawing line segments with width 42

19 Intersection of two line segments 44

19.1 Fast intersection of two line segments 44

III Shapes 45
20 Circles and Ellipses 47

20.1 Equations of a circle and an ellipse 47

20.2 Constructions of Circles and Ellipses 47

20.2.1 Construction with given center and radius/radiii. 48

20.2.2 Circle from three given points 49

20.2.3 Circle inscribed in given polygon (e.g. a triangle) as list of
vertices 50

20.2.4 Circumscribed circle of given regular polygon (e.g. a tri-
angle) as list of vertices 50

20.2.5 Circle that passes through given point Α and point Β on
line 𝐿 50

20.2.6 Tangent line of given circle 50

20.2.7 Tangent line of given circle that passes through point 𝑃 51

20.2.8 Tangent line common to two given circles 51

20.3 Bounding circle 52

21 Rectangles and parallelograms 57

21.1 Squares 57

21.1.1 From a center point 57

21.1.2 From a corner point 58

21.2 Rectangles 58

6

toc

22 Triangles 59

22.1 Making a triangle from a point and given angles 59

23 Squircle 60

24 Polygons with rounded edges 63

25 Union, intersection and difference of polygons 64

26 Centroid of polygon 65

27 Polygon clipping 66

28 Triangle filling 67

29 Flood filling 68

IV Curves 69
30 Seamlessly joining lines and curves 70

30.1 Centre of arc which blends with two given line segments at right
angles 70

30.2 Centre of arc which blends given line with given circle 70

30.3 Centre of arc which blends two given circles 71

30.4 Join segments with round corners 71

31 Parametric elliptical arcs 76

32 B-spline 78

33 Bézier curves 79

33.1 Quadratic Bézier curves 79

33.1.1 Drawing the quadratic 80

33.2 Cubic Bézier curves 84

33.3 Weighted Béziers 84

34 Archimedean spiral 85

V Vectors, matrices and transformations 87
35 Rotation of a bitmap 88

35.1 Fast 2D Rotation 92

36 90° Rotation of a bitmap by parallel recursive subdivision 93

7

toc

37 Magnification/Scaling 94

37.1 Smoothing enlarged bitmaps 95

37.2 Stretching lines of bitmaps 95

38 Mirroring 96

39 Shearing 97

39.1 The relationship between shearing factor and angle 99

40 Anamorphic transformations 100

41 Projections 101

VI Patterns 102
42 The 17 Wallpaper groups 103

43 Tilings and Tessellations 104

43.1 Truchet Tiling 105

43.2 Pythagorean Tiling 107

43.3 Hexagon tiling 109

44 Space-filling Curves 110

44.1 Hilbert curve 111

44.2 Sierpiński curve 113

44.3 Peano curve 113

44.4 Z-order curve 114

44.5 Flowsnake curve 117

45 Flow fields 119

VII Interaction 121
46 Infinite panning and zooming 123

47 Nearest neighbours 124

48 Point in polygon 125

8

toc

VIII Colors 126
49 Mixing colors 128

50 Bilinear interpolation 129

51 Barycentric coordinate blending 130

IX Addendum 131
52 Faster drawing a line segment from its two endpoints using symmetry 132

53 Composing monochrome bitmaps with separate alpha channel data 133

54 Orthogonal connection of two points 134

55 Faster line clipping 135

56 Dithering 136

56.1 Floyd-Steinberg 137

56.2 Atkinson dithering 139

57 Marching squares 141

Bibliography 143

Index 145

9

intro

Part I

Introduction

10

intro

Chapter 1
Data representation

The data structures we’re going to use is Point and Image. Image represents a
bitmap, although we will use full RGB colors for our points therefore the size of
a pixel in memory will be u8 instead of 1 bit.

Wewill work on the cartesian grid representing the framebuffer that will show
us the pixels. The origin of this grid (i.e. the center) is at (0, 0).

(0,0)

We will represent points as pairs of signed integers. When actually drawing
them though, negative values and values outside the window’s geometry will be
ignored (clipped). src/lib.rs:

This code file is a PDF
attachment

pub type Point = (i64, i64);
pub type Line = (i64, i64, i64);
pub const fn from_u8_rgb(r: u8, g: u8, b: u8) -> u32 {

let (r, g, b) = (r as u32, g as u32, b as u32);
(r << 16) | (g << 8) | b

}
pub const AZURE_BLUE: u32 = from_u8_rgb(0, 127, 255);
pub const RED: u32 = from_u8_rgb(157, 37, 10);
pub const WHITE: u32 = from_u8_rgb(255, 255, 255);

11

intro

pub const BLACK: u32 = 0;
pub struct Image {

pub bytes: Vec<u32>,
pub width: usize,
pub height: usize,
pub x_offset: usize,
pub y_offset: usize,

}
impl Image {

pub fn new(width: usize, height: usize, x_offset: usize, y_offset: usize) -> Self;
pub fn magick_open(path: &str, x_offset: usize, y_offset: usize) -> Result<Self,
Box<dyn Error>>;↪
pub fn from_xbm(path: &str, x_offset: usize, y_offset: usize) -> Result<Self, Box<dyn
Error>>;↪
pub fn draw(&self, buffer: &mut Vec<u32>, fg: u32, bg: Option<u32>, window_width:
usize);↪
pub fn draw_outline(&mut self);
pub fn clear(&mut self);
pub fn plot(&mut self, x: i64, y: i64);
pub fn get(&mut self, x: i64, y: i64) -> u32;
pub fn plot_ellipse(

&mut self,
(xm, ym): (i64, i64),
(a, b): (i64, i64),
quadrants: [bool; 4],
_wd: f64,

);
pub fn plot_line_width(&mut self, point_a: Point, point_b: Point, wd: f64);
pub fn flood_fill(&mut self, mut x: i64, y: i64);

}

An RGB color with coordinates (𝑟, 𝑔, 𝑏) where 𝑟, 𝑔, 𝑏 ∶ u8 values is repre-
sented as a u32 number with the red component shifted 16 bits to to the left, the
green component 8 bits, and the final 8 bits are the blue component. It’s essen-
tially laying the 𝑟, 𝑔, 𝑏 values sequentially and forming a 32 bit value out of three
8 bit values.

Our Image::plot(x,y) function sets the (𝑥, 𝑦) pixel to black. To do that we
set the element y * width + x of the Image's buffer to the black color as RGB.

12

intro

Chapter 2

Displaying pixels to your screen

A way to display an Image is to use the minifb crate which allows you to create
a window and draw pixels directly on it. Here’s how you could set it up: src/bin/introduction.rs:

This code file is a PDF
attachment

use bitmappers_companion::*;
use minifb::{Key, Window, WindowOptions};
const WINDOW_WIDTH: usize = 400;
const WINDOW_HEIGHT: usize = 400;
fn main() {

let mut buffer: Vec<u32> = vec![WHITE; WINDOW_WIDTH * WINDOW_HEIGHT];
let mut window = Window::new(

"Test - ESC to exit",
WINDOW_WIDTH,
WINDOW_HEIGHT,
WindowOptions {

title: true,
//borderless: true,
//resize: false,
//transparency: true,
..WindowOptions::default()

},
)
.unwrap();
// Limit to max ~60 fps update rate
window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
let mut image = Image::new(50, 50, 150, 150);
image.draw_outline();
image.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
while window.is_open()

&& !window.is_key_down(Key::Escape)
&& !window.is_key_down(Key::Q) {

window
.update_with_buffer(&buffer, WINDOW_WIDTH, WINDOW_HEIGHT)
.unwrap();

let millis = std::time::Duration::from_millis(100);
std::thread::sleep(millis);

}
}

Running this will show you something like this:

13

intro

Bydrawing each individual pixelwith theImage::plot andImage::plot_color
functions, we can draw any possible RGB picture of the buffer size. In this book’s
chapters, we will usually calculate pixels by using discrete calculations of each
pixels as integers, or by using rational values (with 64 bit floating point represen-
tation) and then calculating their integer values with the floor function. This
can also be done by casting an f64 type to i64 with as:

let val: f64 = 5.5;
let val: i64 = val as i64;
assert_eq!(5i64, val);

14

intro

Chapter 3
Bits to byte pixels

If weworkedwith 1 bit images (black andwhite) it could be amore space-efficient
representation to store the pixels as bits: 8 pixels in 1 byte. For this bookwe accept
that our images can have RGB colors. The xbm format stores pixels like that, and
we might wish to convert them to our representation.

Let’s define a way to convert bit information to a byte vector:

pub fn bits_to_bytes(bits: &[u8], width: usize) -> Vec<u32> {
let mut ret = Vec::with_capacity(bits.len() * 8);
let mut current_row_count = 0;
for byte in bits {

for n in 0..8 {
if byte.rotate_right(n) & 0x01 > 0 {

ret.push(BLACK);
} else {

ret.push(WHITE);
}
current_row_count += 1;
if current_row_count == width {

current_row_count = 0;
break;

}
}

}ret
}

15

intro

Chapter 4
Loading graphics files in Rust

The book’s library includes a method to load xbm files on runtime (see Includ-
ing xbm files in Rust for including them in your binary at compile time). If your
system has ImageMagick installed and the commands identify and magick
are in your PATH environment variable, you can use the Image::magick_open
method:

impl Image {...
pub fn magick_open(path: &str, x_offset: usize, y_offset: usize) -> Result<Self,
Box<dyn Error>>;↪ ...

}

It simply converts the image file you pass to it to raw bytes using the invocation
magick convert path RGB:- which prints raw RGB content to stdout.

If you have another way to load pictures such as your own code or a picture
format library crate, all you have to do is convert the pixel information to an
Image whose definition we repeat here:
pub struct Image {

pub bytes: Vec<u32>,
pub width: usize,
pub height: usize,
pub x_offset: usize,
pub y_offset: usize,

}

16

intro

Chapter 5

Including xbm files in Rust

The end of this chapter includes a short Rust program to automatically convert xbm
files to equivalent Rust code.

xbm files are C source code files that contain the pixel information for an image
asmacro definitions for the dimensions and a staticchar array for the pixels, with
each bit column representing a pixel. If the width dimension doesn’t have 8 as a
factor, the remaining bit columns are left blank/ignored.

They used to be a popular way to share user avatars in the old internet and
are also good material for us to work with, since they are small and numerous.
The following is such an image:

Then, we can convert the xbm file from C to Rust with the following transfor-
mations:

#define news_width 48
#define news_height 48
static char news_bits[] = {

to

const NEWS_WIDTH: usize = 48;
const NEWS_HEIGHT: usize = 48;
const NEWS_BITS: &[u8] = &[

And replace the closing } with].
We can then include the new file in our source code:

include!("news.xbm.rs");

load the image:

17

intro

let mut image = Image::new(NEWS_WIDTH, NEWS_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(NEWS_BITS, NEWS_WIDTH);

and finally run it:

The following short program uses the regex crate to match on these simple
rules and print the equivalent code in stdout. You can use it like so:

cargo run --bin xbmtors -- file.xbm > file.xbm.rs

src/bin/xbmtors.rs:

This code file is a PDF
attachment

use regex;
use regex::Regex;
use std::fs::File;
use std::io::prelude::*;
fn main() {

let args = std::env::args().skip(1).collect::<Vec<String>>();
if args.len() != 1 {

println!("one argument expected, the xbm file path to convert.");
return;

}
let mut file = match File::open(&args[0]) {

Err(err) => panic!("couldn't open {}: {}", args[0], err),
Ok(file) => file,

};
let mut s = String::new();
if let Err(err) = file.read_to_string(&mut s) {

panic!("couldn't read {}: {}", args[0], err);
}
let re = Regex::new(

r"(?imx)
^\s*\x23\s*define\s+(?P<i>.+?)_width\s+(?P<w>\d\d*)$
\s*
^\s*\x23\s*define\s+.+?_height\s+(?P<h>\d\d*)$
\s*
^\s*static(\s+unsigned){0,1}\s+char\s+.+?_bits..\s*=\s*\{(?P[^}]+)\};

",
)
.unwrap();

18

intro

let caps = re
.captures(&s)
.expect("Could not convert file, regex doesn't match :(");

let ident = caps.name("i").unwrap().as_str().to_uppercase();
let out = re.replace_all(&s, format!("const {i}_WIDTH: usize = $w;\nconst {i}_HEIGHT:
usize = $h;\nconst {i}_BITS: &[u8] = &[$b];", i = &ident));↪
println!("{}", out.trim());

}

19

lines

Part II

Points And Lines

20

lines

Chapter 6
Distance between two points

K

L

r

Given two points, 𝐾 and 𝐿, an elementary application of Pythagoras’ Theorem
gives the distance between them as

𝑟 = √(𝑥𝐿 − 𝑥𝐾)2 + (𝑦𝐿 − 𝑦𝐾)2 (6.1)

which is simply coded:

pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {
let (x_k, y_k) = p_k;
let (x_l, y_l) = p_l;
let xlk = x_l - x_k;
let ylk = y_l - y_k;
f64::sqrt((xlk*xlk + ylk*ylk) as f64)

}

21

lines

Chapter 7
Moving a point to a distance at an
angle

Moving a point 𝑃 = (𝑥, 𝑦) at distance 𝑑 at an angle of 𝑟 radians is solved with
simple trigonometry:

𝑃′ = (𝑥 + 𝑑 × cos 𝑟, 𝑦 + 𝑑 × sin 𝑟)

Why? The problem is equivalent to calculating the point of a circle with 𝑃 as
the center, 𝑑 the radius at angle 𝑟 and as we will later* see this is how the points
of a circle are calculated.

pub fn move_point(p: Point, d: f64, r: f64) -> Point {
let (x, y) = p;
(x + (d * f64::cos(r)).round() as i64, y + (d * f64::sin(r)).round() as i64)

}

*Equations of a circle and an ellipse page 47

22

lines

Chapter 8

Equations of a line

There are several ways to describe a linemathematically. We’ll list the convenient
ones for drawing pixels.

The equation that describes every possible line on a two dimensional grid
is the implicit form 𝑎𝑥 + 𝑏𝑦 = 𝑐, (𝑎, 𝑏) ≠ (0, 0). We can generate equivalent
equations by adding the equation to itself, i.e. 𝑎𝑥 + 𝑏𝑦 = 𝑐 ≡ 2𝑎𝑥 + 2𝑏𝑦 = 2𝑐 ≡
𝑎′𝑥+𝑏′𝑦 = 𝑐′, 𝑎′ = 2𝑎, 𝑏′ = 2𝑏, 𝑐′ = 2𝑐 asmany times aswewant. To ”minimize”
the constants 𝑎, 𝑏, 𝑐we want to satisfy the relationship 𝑎2 + 𝑏2 = 1, and thus can
convert the equivalent equations into one representative equation by multiplying
the two sides with 1

√𝑎2+𝑏2
; this is called the normalized equation.

The slope intercept form describes any line that intercepts the 𝑦 axis at 𝑏 ∈ ℝ
with a specific slope 𝑎:

𝑦 = 𝑎𝑥 + 𝑏

The parametric form…

8.1 Line through a point 𝑃 = (𝑥𝑝, 𝑦𝑝) and a slope𝑚

𝑦 − 𝑦𝑝 = 𝑚(𝑥 − 𝑥𝑝)

23

lines

8.2 Line through two points

L

M

N

It seems sufficient, given the coordinates of two points𝑀, 𝑁 , to calculate 𝑎, 𝑏 and
𝑐 to form a line equation:

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

If the two points are not the same, they necessarily form such a line. To get
there, we start from expressing the line as parametric over 𝑡: at 𝑡 = 0 it’s at point
𝑀 and at 𝑡 = 1 it’s at point 𝑁:

𝑐 = 𝑐𝑀 + (𝑐𝑁 − 𝑐𝑀)𝑡, 𝑡 ∈ 𝑅, 𝑐 ∈ {𝑥, 𝑦}
𝑐 = 𝑐𝑀, 𝑡 ∈ 𝑅, 𝑐 ∈ {𝑥, 𝑦}

Substituting 𝑡 in one of the equations we get:

(𝑦𝑀 − 𝑦𝑁)𝑥 + (𝑥𝑁 − 𝑥𝑀)𝑦 + (𝑥𝑀𝑦𝑁 − 𝑥𝑁𝑦𝑀) = 0

Which is what we were after. We should finish by normalising what we found
with 1

√𝑎2+𝑏2
, but our coordinates are integers and have no decimal or floating

point accuracy.

24

lines

fn find_line(point_a: Point, point_b: Point) -> (i64, i64, i64) {
let (xa, ya) = point_a;
let (xb, yb) = point_b;
let a = yb - ya;
let b = xa - xb;
let c = xb * ya - xa * yb;
(a, b, c)

}

25

lines

Chapter 9
Drawing a line

fn plot_line(image: &mut Image, (a, b, c): (i64, i64, i64)) {
let x = if a != 0 { -1 * (c) / a } else { 0 };
let mut prev_point = (x, 0);
for y in 0..(WINDOW_HEIGHT as i64) {

// ax+by+c =0 =>
// x=(-c-by)/a
let x = if a != 0 { -1 * (c + b * y) / a } else { 0 };
let new_point = (x, y);
image.plot_line_width(prev_point, new_point, 1.0);
prev_point = new_point;

}
}

26

lines

Chapter 10

Distance from a point to a line

P

L

P1

P2

10.1 Using the implicit equation form

Let’s find the distance from a given point 𝑃 and a given line 𝐿. Let 𝑑 be the
distance between them. Bring 𝐿 to the implicit form 𝑎𝑥 + 𝑏𝑦 = 𝑐.

𝑑 =
|𝑎𝑥𝑝 + 𝑏𝑦𝑝 + 𝑐|

√𝑎2 + 𝑏2

10.2 Using an 𝐿 defined by two points 𝑃1, 𝑃2

With 𝑃 = (𝑥0, 𝑦0), 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2).

𝑑 = |(𝑥2 − 𝑥1)(𝑦1 − 𝑦0) − (𝑥1 − 𝑥0)(𝑦2 − 𝑦1)|
√((𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

27

lines

10.3 Using an 𝐿 defined by a point 𝑃𝑙 and angle
̂𝜃

𝑑 = ∣cos (̂𝜃)(𝑃𝑙𝑦 − 𝑦𝑝) − sin (̂𝜃)(𝑃𝑙𝑥 − 𝑃𝑥)∣

The code
This function uses the implicit form.This code is included in

the distributed library
file in the Data

representation chapter.
type Line = (i64, i64, i64);
pub fn distance_line_to_point((x, y): Point, (a, b, c): Line) -> f64 {

let d = f64::sqrt((a * a + b * b) as f64);
if d == 0.0 {

0.
} else {

(a * x + b * y + c) as f64 / d
}

}

28

lines

Chapter 11
Perpendicular lines

11.1 Find perpendicular to line that passes through
given point

Now, we wish to find the equation of the line that passes through 𝑃 and is per-
pendicular to 𝐿. Let’s call it 𝐿⊥. 𝐿 in implicit form is 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0. The
perpendicular will be:

𝐿⊥ ∶ 𝑏𝑥 − 𝑎𝑦 + (𝑎𝑃𝑦 − 𝑏𝑃𝑥) = 0

The code
This code is included in
the distributed library
file in the Data
representation chapter.

type Line = (i64, i64, i64);
fn perpendicular((a, b, c): Line, p: Point) -> Line {

(b, -1 * a, a * p.1 - b * p.0)
}

11.2 Find point in line that belongs to the perpen-
dicular of given point

The code
This code is included in
the distributed library
file in the Data
representation chapter.

fn point_perpendicular((a, b, c): Line, p: Point) -> Point {
let d = (a * a + b * b) as f64;
if d == 0. {

return (0, 0);
}
let cp = a * p.1 - b * p.0;
(

((-a * c - b * cp) as f64 / d) as i64,
((a * cp - b * c) as f64 / d) as i64,

)
}

29

lines

Chapter 12

Angle between two lines

By angle we mean the angle formed by the two directions of the lines; and direc-
tion vectors start from the origin (in the figure, they are the red arrows). So if we
want any of the other three angles, we already know them from basic geometry
as shown in the figure above.

If you prefer using the implicit equation, bring the two lines 𝐿1 and 𝐿2 to that
form (𝑎1𝑥 + 𝑏1𝑦 + 𝑐 = 0 and 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 0) and you can directly find ̂𝜃
with the formula:

̂𝜃 = arccos
𝑎1𝑎2 + 𝑏1𝑏2

√(𝑎2
1 + 𝑏2

1) (𝑎2
2 + 𝑏2

2)
For the following parametric equations of 𝐿1, 𝐿2:

𝐿1 = ({𝑥 = 𝑥1 + 𝑓1𝑡}, {𝑦 = 𝑦1 + 𝑔1𝑡})
𝐿2 = ({𝑥 = 𝑥2 + 𝑓2𝑠}, {𝑦 = 𝑦2 + 𝑔2𝑠})

the formula is:

30

lines

̂𝜃 = arccos
𝑓1𝑓2 + 𝑔1𝑔2

√(𝑓 2
1 + 𝑔2

1) (𝑓 2
2 + 𝑔2

2)

The code:

src/bin/anglebetweenlines.rs:

This code file is a PDF
attachment

fn find_angle((a1, b1, c1): (i64, i64, i64), (a2, b2, c2): (i64, i64, i64)) -> f64 {
let nom = (a1 * a2 + b1 * b2) as f64;
let denom = ((a1 * a1 + b1 * b1) * (a2 * a2 + b2 * b2)) as f64;
f64::acos(nom / f64::sqrt(denom))

}

The src/bin/anglebetweenlines.rs example has two interactive lines and
computes their angle with 64bit floating point accuracy.

31

lines

Chapter 13
Intersection of two lines

If the lines 𝐿1, 𝐿2 are in implicit form (𝑎1𝑥+𝑏1𝑦+𝑐 = 0 and 𝑎2𝑥+𝑏2𝑦+𝑐2 = 0),
the result comes after checking if the lines are parallel (in which case there’s no
single point of intersection):

𝑎1𝑏2 − 𝑎2𝑏1 ≠ 0

If they are not parallel, 𝑃 is:

𝑃 = (𝑏1𝑐2 − 𝑏2𝑐1
𝑎1𝑏2 − 𝑎2𝑏1

, 𝑎2𝑐1 − 𝑎1𝑐2
𝑎1𝑏2 − 𝑎2𝑏1

)

The code:

src/bin/lineintersection.rs:

This code file is a PDF
attachment

fn find_intersection((a1, b1, c1): (i64, i64, i64), (a2, b2, c2): (i64, i64, i64)) ->
Option<Point> {↪
let denom = a1 * b2 - a2 * b1;
if denom == 0 {

return None;
}

32

lines

Some(((b1 * c2 - b2 * c1) / denom, (a2 * c1 - a1 * c2) / denom))
}

The src/bin/lineintersection.rs example has two interactive lines and
computes their point of intersection.

33

lines

Chapter 14

Line equidistant from two points

Let’s name this line 𝐿. From previous chapter* we know how to get the line 𝐿
that’s created by the two points𝑀 and 𝑁:

𝐿 ∶ (𝑦𝑀 − 𝑦𝑁)𝑥 + (𝑥𝑁 − 𝑥𝑀)𝑦 + (𝑥𝑀𝑦𝑁 − 𝑥𝑁𝑦𝑀) = 0

We need the perpendicular line over the midpoint of 𝐿.† The midpoint also sat-
isfies 𝐿’s equation. The midpoint’s coordinates are intuitively:

𝑃𝑚𝑖𝑑 = (𝑥𝑀 + 𝑥𝑁
2 , 𝑦𝑀 + 𝑦𝑁

2)

The perpendicular’s 𝐿⊥ equation is

𝐿𝐸𝑄 = 𝐿⊥ ∶ 𝑦𝑥 − 𝑎𝑦 + (𝑎𝑃𝑚𝑖𝑑𝑦 − 𝑏𝑃𝑚𝑖𝑑𝑥) = 0

The code:
src/bin/equidistant.rs:

This code file is a PDF
attachment

fn find_equidistant(point_a: Point, point_b: Point) -> (i64, i64, i64) {
let (xa, ya) = point_a;
let (xb, yb) = point_b;
let midpoint = ((xa + xb) / 2, (ya + yb) / 2);
let al = ya - yb;
let bl = xb - xa;
// If we had subpixel accuracy, we could do:
//assert_eq!(al*midpoint.0+bl*midpoint.1, -cl);

*See Line through two points, page 24
†See Perpendicular lines, page 29

34

lines

let a = bl;
let b = -1 * al;
let c = (al * midpoint.1) - (bl * midpoint.0);
(a, b, c)

}

The src/bin/equidistant.rs example has two interactive points and
computes their 𝐿𝐸𝑄.

35

lines

Chapter 15

Reflection of point on line

P

P'

L: ax+
by+c=0

Pm

Line 𝑃𝑃′ will be perpendicular to 𝐿 ∶ 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, meaning they will satisfy
the equation 𝐿⊥ ∶ 𝑏𝑥 − 𝑎𝑦 + (𝑎𝑃𝑦 − 𝑏𝑃𝑥) = 0.* Wewill find the middlepoint 𝑃𝑚·
𝐿 and 𝐿⊥ intercept at 𝑃𝑚, so substituting 𝐿⊥’s 𝑦 to 𝐿 gives:

𝑎x+ 𝑏 (
𝑏x+ (𝑎𝑃𝑦 − 𝑏𝑃𝑥)

𝑎) + 𝑐 = 0

⟹ 𝑎x+ 𝑏2

𝑎 x+ 𝑏𝑃𝑦 − 𝑏2

𝑎 𝑃𝑥 + 𝑐 = 0

⟹ (𝑎 + 𝑏2

𝑎)x = 𝑏2

𝑎 𝑃𝑥 − 𝑐 − 𝑏𝑃𝑦

⟹ x = ⎛⎜⎜
⎝

𝑏2
𝑎 𝑃𝑥 − 𝑐 − 𝑏𝑃𝑦

𝑎 + 𝑏2
𝑎

⎞⎟⎟
⎠

𝑃𝑚𝑦 is foundby substituting𝑃𝑚𝑥 to𝐿. Now, knowing length of 𝑃𝑃𝑚 = length of 𝑃𝑚𝑃′,
we can find 𝑃′𝑥 and 𝑃′𝑦:

*See Perpendicular lines, page 29

36

lines

𝑃𝑚𝑥 − 𝑃𝑥 = 𝑃′𝑥 − 𝑃𝑚𝑥

𝑃𝑚𝑦 − 𝑃𝑦 = 𝑃′𝑦 − 𝑃𝑚𝑦

⟹ 𝑃′𝑥 = 2𝑃𝑚𝑥 − 𝑃𝑥
𝑃′𝑦 = 2𝑃𝑚𝑦 − 𝑃𝑦

The code
src/bin/mirror.rs:

This code file is a PDF
attachment

fn find_mirror(point: Point, l: Line) -> Point {
let (x, y) = point;
let (a, b, c) = l;
let (a, b, c) = (a as f64, b as f64, c as f64);
let b2a = (b * b) / a;
let mx = (b2a * x as f64 - c - b * y as f64) / (a + b2a);
let my = (-a * mx - c) / b;
let (mx, my) = (mx as i64, my as i64);
(2 * mx - x, 2 * my - y)

}

The src/bin/mirror.rs example lets you drag a point and draws its
reflection across a line.

37

lines

15.1 Findperpendicular to line segment𝐴𝐵 that passes
through its middle (perpendicular bisector of
𝐴𝐵)

Find midpoint𝑚𝐴𝐵 of 𝐴𝐵:

𝑚𝐴𝐵 = (𝑥𝑎 + 𝑥𝑏
2 , 𝑦𝑎 + 𝑦 + 𝑏

2)

Slope of 𝐴𝐵 is𝑚𝑙 = 𝑦𝑏−𝑦𝑎
𝑥𝑏−𝑥𝑎

Slope of perpendicular will be𝑚𝑝 × 𝑚𝑙 ⟹ 𝑚𝑝 = −1
𝑚𝑙

Perpendicular satisfies line equation 𝑦 = 𝑚𝑥+𝑐 and passes through midpoint
𝑚𝐴𝐵: 𝑐 = 𝑦𝐴𝐵 − 𝑚𝑝 × 𝑥𝐴𝐵.

fn perp_bisector((x_a, y_a): Point, (x_b, y_b): Point) -> (i64, i64, i64) {
let m_a = if x_b != y_b { (y_a - y_b) as f64 } else { -1.0 };
let m_b = (x_b - x_a) as f64;
let (x_m, y_m) = ((x_b + x_a) as f64 / 2.0, (y_b + y_a) as f64 / 2.0);
// slope form y=mx+b
// m_og = (y_m - y_n / x_m - x_n)
// m_og * m = -1 => m = (x_n - x_m) / (y_m - y_n) = m_b / m_a
//
// y = mx+b => y_m = m*x_m + b => b = y_m - m * x_m
//
// slope form y=mx+b -> implicit form αx+βy=γ
// y = m*x + y_m - m* x_m
(

m_b as i64,
-m_a as i64,
(((y_m * m_a) - (m_b * x_m)) as i64),

)
}

38

lines

Chapter 16
Angle sectioning

16.1 Bisection
Add angle bisectioning

16.2 Trisection
Add angle trisectioning

If the title startled you, be assured it’s not a joke. It’s totally possible to trisect
an angle… with a ruler. The adage that angle trisection is impossible refers to
using only a compass and unmarked straightedge.

39

lines

Chapter 17
Drawing a line segment from its two
endpoints

For any line segment with any slope, pixels must be matched with the infinite
amount of points contained in the segment. As shown in the following figure,
a segment touches some pixels; we could fill them using an algorithm and get a
bitmap of the line segment.

K

L

The algorithmpresented herewas first derived byBresenham.[bresenham1996]In
the Image implementation, it is used in the plot_line_widthmethod.
pub fn plot_line_width(&mut self, (x1, y1): (i64, i64), (x2, y2): (i64, i64)) {

/* Bresenham's line algorithm */
let mut d;
let mut x: i64;
let mut y: i64;
let ax: i64;
let ay: i64;
let sx: i64;
let sy: i64;
let dx: i64;
let dy: i64;
dx = x2 - x1;
ax = (dx * 2).abs();
sx = if dx > 0 { 1 } else { -1 };
dy = y2 - y1;
ay = (dy * 2).abs();
sy = if dy > 0 { 1 } else { -1 };
x = x1;
y = y1;
let b = dx / dy;
let a = 1;
let double_d = (_wd * f64::sqrt((a * a + b * b) as f64)) as i64;
let delta = double_d / 2;
if ax > ay {

d = ay - ax / 2;

40

lines

loop {
self.plot(x, y);
if x == x2 {return;
}
if d >= 0 {y = y + sy;

d = d - ax;
}x = x + sx;
d = d + ay;

}
} else {

d = ax - ay / 2;
let delta = double_d / 3;
loop {

self.plot(x, y);
if y == y2 {

return;
}
if d >= 0 {x = x + sx;

d = d - ay;
}y = y + sy;
d = d + ax;

}
}

}

Add some explanation behind the algorithm in Drawing a line segment from its two endpoints

41

lines

Chapter 18

Drawing line segments with width

pub fn plot_line_width(&mut self, (x1, y1): (i64, i64), (x2, y2): (i64, i64), _wd: f64) {
/* Bresenham's line algorithm */
let mut d;
let mut x: i64;
let mut y: i64;
let ax: i64;
let ay: i64;
let sx: i64;
let sy: i64;
let dx: i64;
let dy: i64;
dx = x2 - x1;
ax = (dx * 2).abs();
sx = if dx > 0 { 1 } else { -1 };
dy = y2 - y1;
ay = (dy * 2).abs();
sy = if dy > 0 { 1 } else { -1 };
x = x1;
y = y1;
let b = dx / dy;
let a = 1;
let double_d = (_wd * f64::sqrt((a * a + b * b) as f64)) as i64;
let delta = double_d / 2;
if ax > ay {

d = ay - ax / 2;
loop {

self.plot(x, y);
{

let total = |_x| _x - (y * dx) / dy + (y1 * dx) / dy - x1;
let mut _x = x;
loop {

let t = total(_x);
if t < -1 * delta || t > delta {

break;
}
_x += 1;
self.plot(_x, y);

}
let mut _x = x;
loop {

let t = total(_x);
if t < -1 * delta || t > delta {

break;
}
_x -= 1;
self.plot(_x, y);

}
}
if x == x2 {return;
}
if d >= 0 {y = y + sy;

d = d - ax;
}x = x + sx;
d = d + ay;

}
} else {

d = ax - ay / 2;
let delta = double_d / 3;
loop {

42

lines

self.plot(x, y);
{

let total = |_x| _x - (y * dx) / dy + (y1 * dx) / dy - x1;
let mut _x = x;
loop {

let t = total(_x);
if t < -1 * delta || t > delta {

break;
}
_x += 1;
self.plot(_x, y);

}
let mut _x = x;
loop {

let t = total(_x);
if t < -1 * delta || t > delta {

break;
}
_x -= 1;
self.plot(_x, y);

}
}
if y == y2 {

return;
}
if d >= 0 {x = x + sx;

d = d - ay;
}y = y + sy;
d = d + ax;

}
}

}

43

lines

Chapter 19
Intersection of two line segments

Let points 1 = (𝑥1, 𝑦1), 2 = (𝑥2, 𝑦2), 3 = (𝑥3, 𝑦3) and 4 = (𝑥4, 𝑦4) and 1,2, 3,4
two line segments they form. We wish to find their intersection:

First, get the equation of line 𝐿12 and line 𝐿34 from chapter Equations of a
line.

Substitute points 3 and 4 in equation 𝐿12 to compute 𝑟3 = 𝐿12(3) and 𝑟4 =
𝐿12(4) respectively.

If 𝑟3 ≠ 0, 𝑟4 ≠ 0 and 𝑠𝑔𝑛(𝑟3) == 𝑠𝑖𝑔𝑛(𝑟4) the line segments don’t intersect,
so stop.

In 𝐿34 substitute point 1 to compute 𝑟1, and do the same for point 2.

If 𝑟1 ≠ 0, 𝑟2 ≠ 0 and 𝑠𝑔𝑛(𝑟1) == 𝑠𝑖𝑔𝑛(𝑟2) the line segments don’t intersect,
so stop.

At this point, 𝐿12 and 𝐿34 either intersect or are equivalent. Find their inter-
section point. (See Intersection of two lines page 32)

19.1 Fast intersection of two line segments

44

shapes

Part III

Shapes

45

shapes

In concave shapes you cannot draw a line segment connecting any two of its
points without going outside the shape. In convex shapes you can.

46

shapes

Chapter 20
Circles and Ellipses

Parts of a circle. Figures reproduced from K. Morling - GEOMETRIC and ENGINEERING DRAWING, second edition,

1974

20.1 Equations of a circle and an ellipse
Add Equations of a circle and an ellipse

20.2 Constructions of Circles and Ellipses

47

shapes

20.2.1 Construction with given center and radius/radiii.

We present a very easy algorithm that can draw an ellipse with inputs center
𝑥𝑐, 𝑦𝑐 and radii 𝑎, 𝑏. An advantage of this algorithm is that at every step you are
computing a point in all four quadrants due to symmetry, so, if you wish you can
only draw specific quadrants and skip others.

To draw a circle with centre 𝑃 = (𝑥, 𝑦) and radius 𝑟, you will need to call this
algorithm with 𝑥𝑐 = 𝑥, 𝑦𝑐 = 𝑦 and radii 𝑎 = 𝑟, 𝑏 = 𝑟.

This code is included in
the distributed library

file in the Data
representation chapter.

fn plot_circle(center: Point, r: i64) {
plot_ellipse(center, (r, r), [true, true, true, true])

}
fn plot_ellipse(

(xm, ym): (i64, i64),
(a, b): (i64, i64),
quadrants: [bool; 4],

) {
let mut x = -a;
let mut y = 0;
let mut e2 = b;
let mut dx = (1 + 2 * x) * e2 * e2;
let mut dy = x * x;
let mut err = dx + dy;
loop {

if quadrants[0] {
plot(xm - x, ym + y); /* I. Quadrant */

}
if quadrants[1] {

plot(xm + x, ym + y); /* II. Quadrant */
}
if quadrants[2] {

plot(xm + x, ym - y); /* III. Quadrant */
}
if quadrants[3] {

plot(xm - x, ym - y); /* IV. Quadrant */
}
e2 = 2 * err;
if e2 >= dx {

x += 1;
dx += 2 * b * b;
err += dx;
//err += dx += 2*(long)b*b; } /* x step */

}
if e2 <= dy {

y += 1;
dy += 2 * a * a;
err += dy;
//err += dy += 2*(long)a*a; } /* y step */

}
if x > 0 {

break;
}

}
while y < b {

/* to early stop for flat ellipses with a=1, */
y += 1;
plot(xm, ym + y); /* -> finish tip of ellipse */
plot(xm, ym - y);

}
}

48

shapes

20.2.2 Circle from three given points

The naïve way: Calculate the lines defined by the line segments created by taking
a point and one of each of the rest. The order and pairings don’t matter. The
intersection point of their perpendiculars that pass through the middle of those
line segments is the circle’s center.

Find perpendicular bisector of line segment: See Find perpendicular to line seg-
ment 𝐴𝐵 that passes through its middle (perpendicular bisector of 𝐴𝐵) page 38
Find intersection point of lines: See Intersection of two lines page 32

src/bin/circle3points.rs:

This code file is a PDF
attachment

The code:

let mut p_a = (35, 35);
let mut p_b = (128, 250);
let mut p_c = (179, 220);
let mut image = Image::new(WINDOW_WIDTH, WINDOW_WIDTH, 0, 0);
image.plot_circle(p_a, 3, 0.);
image.plot_circle(p_b, 3, 0.);
image.plot_circle(p_c, 3, 0.);
let perp1 = perp_bisector(p_a, p_b);
let perp2 = perp_bisector(p_b, p_c);
let centre = find_intersection(perp1, perp2);
let radius = distance_between_two_points(centre, p_a);
image.plot_line_width(p_a, p_b, 2.5);
image.plot_line_width(p_b, p_c, 2.5);
image.plot_line_width(p_c, p_a, 2.5);
image.plot_circle(centre, radius as i64, 2.0);
image.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);

49

shapes

20.2.3 Circle inscribed in given polygon (e.g. a triangle) as
list of vertices

Bisect any two angles and take the intersection point of the bisecting lines. This
point, called the incentre is the centre of the circle and the distance of the centre
from the line defined by any side is the radius.

20.2.4 Circumscribed circle of given regular polygon (e.g. a
triangle) as list of vertices

Just like with three points, take the perpendicular lines through the middle point
of any of two sides. Their intersection point, called the circumcentre is the center
of the circumscribed circle. The radius is the distance of the centre from any
vertice.

20.2.5 Circle that passes through given point Α and point Β
on line 𝐿

Add Circle that passes through given pointΑ and pointΒ on line𝐿

20.2.6 Tangent line of given circle

Add Tangent line of given circle

50

shapes

20.2.7 Tangent line of given circle that passes through point
𝑃

Add Tangent line of given circle that passes through point𝑃

20.2.8 Tangent line common to two given circles

Add Tangent line common to two given circles

51

shapes

20.3 Bounding circle

src/bin/boundingcircle.rs:

This code file is a PDF
attachment

A bounding circle is a circle that includes all the points in a given set. Usually
we’re interested in one of the smallest ones possible.

We can use the following methodology to find the bounding circle: start from
two points and the circle theymake up, and for each of the rest of the points check
if the circle includes them. If not, make a bounding circle that includes every point
up to the current one. To do this, we need some primitive operations.

We will need a way to construct a circle out of two points:

52

shapes

let p1 = points[0];
let p2 = points[1];
//The circle is determined by two points, P and Q. The center of the circle

is↪
//at (P + Q)/2.0 and the radius is |(P – Q)/2.0|
let d_2 = (
(((p1.0 + p2.0) / 2), (p1.1 + p2.1) / 2),
(distance_between_two_points(p1, p2) / 2.0),
);

And a way to make a circle out of three points:

fn min_circle_w_3_points(q1: Point, q2: Point, q3: Point) -> Circle {
let (ax, ay) = (q1.0 as f64, q1.1 as f64);
let (bx, by) = (q2.0 as f64, q2.1 as f64);
let (cx, cy) = (q3.0 as f64, q3.1 as f64);
let mut d = 2. * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by));
if d == 0.0 {

d = std::cmp::max(
std::cmp::max(

distance_between_two_points(q1, q2) as i64,
distance_between_two_points(q2, q3) as i64,

),
distance_between_two_points(q1, q3) as i64,

) as f64
/ 2.;

}
let ux = ((ax * ax + ay * ay) * (by - cy)

+ (bx * bx + by * by) * (cy - ay)
+ (cx * cx + cy * cy) * (ay - by))
/ d;

let uy = ((ax * ax + ay * ay) * (cx - bx)
+ (bx * bx + by * by) * (ax - cx)
+ (cx * cx + cy * cy) * (bx - ax))
/ d;

let mut center = (ux as i64, uy as i64);
if center.0 < 0 {

center.0 = 0;
}
if center.1 < 0 {

center.1 = 0;
}
let d = distance_between_two_points(center, q1);
(center, d)

}

The algorithm:

53

shapes

use bitmappers_companion::*;
use minifb::{Key, Window, WindowOptions};
use rand::seq::SliceRandom;
use rand::thread_rng;
use std::f64::consts::{FRAC_PI_2, PI};
include!("../me.xbm.rs");
const WINDOW_WIDTH: usize = 400;
const WINDOW_HEIGHT: usize = 400;
pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {

let (x_k, y_k) = p_k;
let (x_l, y_l) = p_l;
let xlk = x_l - x_k;
let ylk = y_l - y_k;
f64::sqrt((xlk * xlk + ylk * ylk) as f64)

}
fn image_to_points(image: &Image) -> Vec<Point> {

let mut ret = Vec::with_capacity(image.bytes.len());
for y in 0..(image.height as i64) {

for x in 0..(image.width as i64) {
if image.get(x, y) == Some(BLACK) {

ret.push((x, y));
}

}
}ret

}
type Circle = (Point, f64);
fn bc(image: &Image) -> Circle {

let mut points = image_to_points(image);
points.shuffle(&mut thread_rng());
min_circle(&points)

}
fn min_circle(points: &[Point]) -> Circle {

let mut points = points.to_vec();
points.shuffle(&mut thread_rng());
let p1 = points[0];
let p2 = points[1];
//The circle is determined by two points, P and Q. The center of the
circle is↪
//at (P + Q)/2.0 and the radius is |(P – Q)/2.0|
let d_2 = (

(((p1.0 + p2.0) / 2), (p1.1 + p2.1) / 2),
(distance_between_two_points(p1, p2) / 2.0),

);
let mut d_prev = d_2;
for i in 2..points.len() {

let p_i = points[i];
if distance_between_two_points(p_i, d_prev.0) <= (d_prev.1) {

// then d_i = d_(i-1)
} else {

let new = min_circle_w_point(&points[..i], p_i);
if distance_between_two_points(p_i, new.0) <= (new.1) {

d_prev = new;
}

}
}
d_prev

}
fn min_circle_w_point(points: &[Point], q: Point) -> Circle {

let mut points = points.to_vec();
points.shuffle(&mut thread_rng());
let p1 = points[0];
//The circle is determined by two points, P_1 and Q. The center of the
circle is↪
//at (P_1 + Q)/2.0 and the radius is |(P_1 – Q)/2.0|
let d_1 = (

(((p1.0 + q.0) / 2), (p1.1 + q.1) / 2),

54

shapes

(distance_between_two_points(p1, q) / 2.0),
);
let mut d_prev = d_1;
for j in 1..points.len() {

let p_j = points[j];
if distance_between_two_points(p_j, d_prev.0) <= (d_prev.1) {

//d_prev = d_prev;
} else {

let new = min_circle_w_points(&points[..j], p_j, q);
if distance_between_two_points(p_j, new.0) <= (new.1) {

d_prev = new;
}

}
}
d_prev

}
fn min_circle_w_points(points: &[Point], q1: Point, q2: Point) -> Circle {

let mut points = points.to_vec();
let d_0 = (

(((q1.0 + q2.0) / 2), (q1.1 + q2.1) / 2),
(distance_between_two_points(q1, q2) / 2.0),

);
let mut d_prev = d_0;
for k in 0..points.len() {

let p_k = points[k];
if distance_between_two_points(p_k, d_prev.0) <= (d_prev.1) {
} else {

let new = min_circle_w_3_points(q1, q2, p_k);
if distance_between_two_points(p_k, new.0) <= (new.1) {

d_prev = new;
}

}
}
d_prev

}
fn min_circle_w_3_points(q1: Point, q2: Point, q3: Point) -> Circle {

let (ax, ay) = (q1.0 as f64, q1.1 as f64);
let (bx, by) = (q2.0 as f64, q2.1 as f64);
let (cx, cy) = (q3.0 as f64, q3.1 as f64);
let mut d = 2. * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by));
if d == 0.0 {

d = std::cmp::max(
std::cmp::max(

distance_between_two_points(q1, q2) as i64,
distance_between_two_points(q2, q3) as i64,

),
distance_between_two_points(q1, q3) as i64,

) as f64
/ 2.;

}
let ux = ((ax * ax + ay * ay) * (by - cy)

+ (bx * bx + by * by) * (cy - ay)
+ (cx * cx + cy * cy) * (ay - by))
/ d;

let uy = ((ax * ax + ay * ay) * (cx - bx)
+ (bx * bx + by * by) * (ax - cx)
+ (cx * cx + cy * cy) * (bx - ax))
/ d;

let mut center = (ux as i64, uy as i64);
if center.0 < 0 {

center.0 = 0;
}
if center.1 < 0 {

center.1 = 0;
}
let d = distance_between_two_points(center, q1);
(center, d)

}
fn main() {

55

shapes

let mut buffer: Vec<u32> = vec![WHITE; WINDOW_WIDTH * WINDOW_HEIGHT];
let mut window = Window::new(

"Test - ESC to exit",
WINDOW_WIDTH,
WINDOW_HEIGHT,
WindowOptions {

title: true,
//borderless: true,
resize: true,
//transparency: true,
..WindowOptions::default()

},
)
.unwrap();
// Limit to max ~60 fps update rate
window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
let mut full = Image::new(WINDOW_WIDTH, WINDOW_HEIGHT, 0, 0);
let mut image = Image::new(ME_WIDTH, ME_HEIGHT, 45, 45);
image.bytes = bits_to_bytes(ME_BITS, ME_WIDTH);
let (center, r) = bc(&image);
image.draw_outline();
full.plot_circle((center.0 + 45, center.1 + 45), r as i64, 0.);
while window.is_open() && !window.is_key_down(Key::Escape) &&
!window.is_key_down(Key::Q) {↪

image.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
full.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
window

.update_with_buffer(&buffer, WINDOW_WIDTH, WINDOW_HEIGHT)

.unwrap();
let millis = std::time::Duration::from_millis(100);
std::thread::sleep(millis);

}
}

56

shapes

Chapter 21
Rectangles and parallelograms

21.1 Squares

21.1.1 From a center point

Square from given center point 𝑃𝑐𝑒𝑛𝑡𝑒𝑟 and radius 𝑟

fn plot_square(image: &mut Image, center: Point, r: i64, wd: f64) {
let (cx, cy) = center;
let a = (cx - r, cy - r);
let b = (cx + r, cy - r);
let c = (cx + r, cy + r);
let d = (cx - r, cy + r);
image.plot_line_width(a, b, wd);
image.plot_line_width(b, c, wd);
image.plot_line_width(c, d, wd);

57

shapes

image.plot_line_width(d, a, wd);
}

21.1.2 From a corner point

fn calc_center_point(p: Point, top: bool, right: bool, r: i64) -> Point {
let (x, y) = p;
match (top, right) {

// Top right
(true, true) => (x - r, y + r),
// Top left
(true, false) => (x + r, y + r),
// Bottom right
(false, true) => (x - r, y - r),
// Bottom left
(false, false) => (x + r, y - r),

}
}
let r = 50;
let center_p = calc_center_point((155, 215), false, false, r);
//image.plot_circle(center_p, 3, 1.0);
plot_square(&mut image, center_p, r, 1.0);

21.2 Rectangles

58

shapes

Chapter 22
Triangles

22.1 Making a triangle from a point and given an-
gles

Add Making a triangle from a point and given angles

59

shapes

Chapter 23
Squircle

src/bin/squircle.rs:

This code file is a PDF
attachment

A squircle is a compromise between a square and a circle. It is purported to be
more pleasing to the eye because the rounding corner is smoother than that of a
circle arc (like the result of Join segments with round corners, page 71).

A way to describe a squircle is as a superellipse, meaning a generalization of

the ellipse equation 𝑥2
𝑎2 + 𝑦2

𝑏2 = 1 by making the exponent parametric:

|𝑥 − 𝑎|𝑛 + ∣𝑦 − 𝑏∣𝑛 = 1

The squircle as a superellipse is usually defined for 𝑛 = 4.

The code

pub fn plot_squircle(
image: &mut Image,
(xm, ym): (i64, i64),
width: i64,
height: i64,
n: i32,
_wd: f64,

) {
let r = width / 2;
let w = width / 2;
let h = height / 2;
let mut prev_pos = (xm - w, xm - h);
for i in 0..(2 * r + 1) {

let x: i64 = (i - r) + w;
let y: i64 = ((r as f64).powi(n) - (i as f64 - r as f64).abs().powi(n)).powf(1. /

n as f64)↪
as i64
+ h;

if i != 0 {
image.plot_line_width(prev_pos, (xm - x as i64, ym - y), _wd);

}
prev_pos = (xm - x as i64, ym - y);

}
for i in (2 * r)..(4 * r + 1) {

60

shapes

let x: i64 = (3 * r - i) + w;
let y = -1

* (((r as f64).powi(n) - ((3 * r - i) as f64).abs().powi(n)).powf(1. / n as
f64))↪

as i64
+ h;

image.plot_line_width(prev_pos, (xm - x as i64, ym - y), _wd);
prev_pos = (xm - x as i64, ym - y);

}
}

Different values of 𝑛

Increasing𝑛 insrc/bin/squircle.rsmakes the hyperellipse corners approach
the square’s.

61

shapes

62

shapes

Chapter 24
Polygons with rounded edges

Add Polygons with rounded edges

63

shapes

Chapter 25
Union, intersectionanddifference of
polygons

Add Union, intersection and difference of polygons

64

shapes

Chapter 26
Centroid of polygon

Add Centroid of polygon

65

shapes

Chapter 27
Polygon clipping

Add Polygon clipping

66

shapes

Chapter 28
Triangle filling

Add Triangle filling explanation

This code is included in
the distributed library
file in the Data
representation chapter.

The book’s library methods include a fill_trianglemethod:
pub fn fill_triangle(&mut self, q1: Point, q2: Point, q3: Point) {

let make_equation =
|p1: Point, p2: Point, p3: Point, a: &mut i64, b: &mut i64, c: &mut i64| {

*a = p2.1 - p1.1;
*b = p1.0 - p2.0;
*c = p1.0 * p2.1 - p1.1 * p2.0;
if *a * p3.0 + *b * p3.1 + *c < 0 {

*a = -*a;
*b = -*b;*c = -*c;

}
};

let mut x_min = q1.0;
let mut y_min = q1.1;
let mut x_max = q1.0;
let mut y_max = q1.1;
let mut a = [0_i64; 3];
let mut b = [0_i64; 3];
let mut c = [0_i64; 3];
// find bounding box
for q in [q1, q2, q3] {

x_min = std::cmp::min(x_min, q.0);
x_max = std::cmp::max(x_max, q.0);
y_min = std::cmp::min(y_min, q.1);
y_max = std::cmp::max(y_max, q.1);

}
make_equation(q1, q2, q3, &mut a[0], &mut b[0], &mut c[0]);
make_equation(q1, q3, q2, &mut a[1], &mut b[1], &mut c[1]);
make_equation(q2, q3, q1, &mut a[2], &mut b[2], &mut c[2]);
let mut d0 = a[0] * x_min + b[0] * y_min + c[0];
let mut d1 = a[1] * x_min + b[1] * y_min + c[1];
let mut d2 = a[2] * x_min + b[2] * y_min + c[2];
for y in y_min..=y_max {

let mut f0 = d0;
let mut f1 = d1;
let mut f2 = d2;
d0 += b[0];
d1 += b[1];
d2 += b[2];
for x in x_min..=x_max {

if f0 >= 0 && f1 >= 0 && f2 >= 0 {
self.plot(x, y);

}
f0 += a[0];
f1 += a[1];
f2 += a[2];

}
}

}

67

shapes

Chapter 29
Flood filling

Add Flood filling

[Shani-1980]

68

curves

Part IV

Curves

69

curves

Chapter 30

Seamlessly joining lines and curves

Add Seamlessly joining lines and curves

30.1 Centre of arcwhichblendswith twogiven line
segments at right angles

Add Centre of arc which blends with two given line segments at right angles

30.2 Centre of arcwhichblends given linewith given
circle

Add Centre of arc which blends given line with given circle

70

curves

30.3 Centre of arc which blends two given circles

Add Centre of arc which blends two given circles

30.4 Join segments with round corners

[gragevol3-225]
Round corners are everywhere around
us. It is useful to know at least one
method of construction. This specific
method constructs a circle that has a
commonpointwith each given line seg-
ment, and calculates the arc that when
added to the line segments they are
smoothly joined. The excess length,
since those common points will be be-
fore the end of the line segments, must
be erased. Therefore, it’s best to begin

71

curves

with just the points of the two segments
before starting to draw anything.

Since the segments intercept, the
round corner will end up beneath the intersection. We wish to find a circle that
has a common point with each segment and the arc made up from those points
and the circle is the round corner we are after.

We are given 4 points,𝑃1, 𝑃2 and𝑃3, 𝑃4 thatmake up segments𝑆1 and𝑆2. Begin
by finding the midpoints𝑚1 and𝑚2 of segments 𝑆1 and 𝑆2. These will be:

𝑚1 = 𝑃1 + 𝑃2
2

𝑚2 = 𝑃3 + 𝑃4
2

Then, find the signed distances (i.e. don’t use the absolute value of distance) 𝑑1
of𝑚1 from 𝑆2 and 𝑑2 of𝑚2 from 𝑆1.

72

curves

Construct parallel lines 𝑙1 to 𝑆1 that is 𝑑1 pixels away. Repeat with 𝑙2 for 𝑆2 and
𝑑2.

Their intersection is the circle’s center, 𝑃𝑐.

The intersection of 𝑙1, 𝑙2 with the two segments are the points where we should
clip or extend the segments: 𝑞1 and 𝑞2.

The starting angle is found by calculating the angle of 𝑞1𝑃𝑐 with the 𝑥-axis with
the atan2math library procedure.

73

curves

The subtended angle* of the arc from the center 𝑃𝑐 is found by calculating the dot
product of 𝑞1𝑃𝑐 and 𝑞2𝑃𝑐:

src/bin/roundcorner.rs:

This code file is a PDF
attachment

The code:

*the subtended angle of an arc
⌢

𝐴𝐶 to a point𝑃 is the angle between𝑃𝐴 and𝑃𝐶:

74

curves

The src/bin/roundcorner.rs example has two interactive lines and
computes the joining fillet.

75

curves

Chapter 31
Parametric elliptical arcs

𝑃, 𝑄 and 𝐾 are the arc’s control points.

This algorithm* draws an elliptical arc starting from point𝑃 and ending at𝑄. The
control point 𝐾 mirrors the ellipse’s center 𝐽: drawing the quadrilateral 𝑃𝐾𝑄𝐽
would appear as a lozenge, or rhombus.

The parameter 𝑡 defines the step angle in radians and is limited to 0 < 𝑡 ≤ 1.
For each point calculation, the point is 𝑡 radians away from the previous one, so
to increase the amount of points calculated keep 𝑡 small.src/bin/parellarc.rs:

This code file is a PDF
attachment

fn parellarc(image: &mut Image, p: Point, q: Point, k: Point, t: f64) {
if t <= 0. || t > 1. {return;
}
let mut v = ((k.0 - q.0) as f64, (k.1 - q.1) as f64);
let mut u = ((k.0 - p.0) as f64, (k.1 - p.1) as f64);
let j = ((p.0 as f64 - v.0 + 0.5), (p.1 as f64 - v.1 + 0.5));

*Graphics Gems III page 164

76

curves

u = (
(u.0 * f64::sqrt(1. - t * t * 0.25) - v.0 * t * 0.5),
(u.1 * f64::sqrt(1. - t * t * 0.25) - v.1 * t * 0.5),

);
let n = (std::f64::consts::FRAC_PI_2 / t).floor() as u64;
let mut prev_pos = p;
for _ in 0..n {

let x = (v.0 + j.0).round() as i64;
let y = (v.1 + j.1).round() as i64;
let new_point = (x, y);
image.plot_line_width(prev_pos, new_point, 1.);
prev_pos = new_point;
u.0 -= v.0 * t;
v.0 += u.0 * t;
u.1 -= v.1 * t;
v.1 += u.1 * t;

}
}

Changing 𝑛 to 2𝜋
𝑡 draws the entire ellipse.

77

curves

Chapter 32
B-spline

Add B-spline

78

curves

Chapter 33

Bézier curves

Two cubic Bézier curves joined together as displayed in graphics software.

33.1 Quadratic Bézier curves

79

curves

33.1.1 Drawing the quadratic

To actually draw a curve, i.e. with points 𝑃1, 𝑃2, 𝑃3 we will use de Casteljau’s
algorithm. The gist behind the algorithm is that the length of the curve is visited
at specific percentages (e.g. 0%, 0.2%, 0.4%… 99.8%, 100%), meaning wewill have
that many steps, and for each such percentage 𝑡 we calculate a line starting at the
𝑡-nth point of 𝑃1𝑃2 and ending at the 𝑡-nth point of 𝑃2𝑃3. The 𝑡-eth point of that
line also belongs to the curve, so we plot it.

Computing curve points for values of 𝑡 ∈ [0, 1] with de Casteljau’s algorithm

Let’s draw the curve 𝑃1 = (25, 115), 𝑃2 = (225, 180), 𝑃3 = (250, 25)src/bin/bezier.rs:

This code file is a PDF
attachment

The result:

80

curves

The minifb library allows to track user input, so we detect user clicks and
the mouse’s position; thus we can interactively modify a curve with some modifi-
cations in the code:

81

curves

Interactively modifying a curve with the bezier.rs tool.

We can go one step further and insult type designers* and use the tool to make
a font glyph.src/bin/bezierglyph.rs:

This code file is a PDF
attachment

Of course, it requires effort to match the beginning and end of each curve that
makes up the glyph. That’s why font designing tools have point snapping to ensure
curve continuation. But for a quick font designer app prototype, it’s good enough.

*who use cubic Béziers or other fancier curves (splines)

82

curves

Left: A font glyph drawn with the interactive bezierglyph.rs tool. Right: the
same glyph exported to SVG.

83

curves

33.2 Cubic Bézier curves
Add Cubic Bézier curves

33.3 Weighted Béziers
Add Weighted Béziers

84

curves

Chapter 34
Archimedean spiral

Add Archimedean spiral

The code

src/bin/archimedeanspiral.rs:

This code file is a PDF
attachment

pub fn arch(image: &mut Image, center: Point) {
let a = 1.0_f64;
let b = 9.0_f64;
// max_angle = number of spirals * 2pi.
let max_angle = 5.0_f64 * 2.0_f64 * std::f64::consts::PI;
let mut theta = 0.0_f64;
let (dx, dy) = center;
let mut prev_point = center;
while theta < max_angle {

85

curves

theta = theta + 0.002_f64;
let r = a + b * theta;
let x = (r * theta.cos()) as i64 + dx;
let y = (r * theta.sin()) as i64 + dy;
image.plot_line_width(prev_point, (x, y), 1.0);
prev_point = (x, y);

}
}

86

trans-
forma-
tions

Part V

Vectors, matrices and
transformations

87

trans-
forma-
tions

Chapter 35

Rotation of a bitmap

𝑝′ = ⎡⎢
⎣
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

⎤⎥
⎦

⎡⎢
⎣

𝑥𝑝
𝑦𝑝

⎤⎥
⎦

𝑐 = cos 𝜃, 𝑠 = sin 𝜃, 𝑥𝑝′ = 𝑥𝑝𝑐 − 𝑦𝑝𝑠, 𝑦𝑝′ = 𝑥𝑝𝑠 + 𝑦𝑝𝑐.

Let’s load an xface. We will use bits_to_bytes (See Bits to byte pixels,
page 15).src/bin/rotation.rs:

This code file is a PDF
attachment

include!("dmr.rs");
const WINDOW_WIDTH: usize = 100;
const WINDOW_HEIGHT: usize = 100;
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);

This is the xface of dmr. Instead of displaying the bitmap, this time we will
rotate it 0.5 radians. Setup our image first:

let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.draw_outline();
let dmr = bits_to_bytes(DMR_BITS, DMR_WIDTH);

And then, loop for each byte in dmr’s face and apply the rotation transforma-
tion.

88

trans-
forma-
tions

let angle = 0.5;
let c = f64::cos(angle);
let s = f64::sin(angle);
for y in 0..DMR_HEIGHT {

for x in 0..DMR_WIDTH {
if dmr[y * DMR_WIDTH + x] == BLACK {

let x = x as f64;
let y = y as f64;
let xr = x * c - y * s;
let yr = x * s + y * c;
image.plot(xr as i64, yr as i64);

}
}

}

The result:

We didn’t mention in the beginning that the rotation has to be relative to a
point and the given transformation is relative to the origin, in this case the upper
left corner (0, 0). So dmr was rotated relative to the origin :

(0,0) (0,0)

�

(the distance to the origin (actually 0 pixels) has been exaggerated for the sake of
the example)

89

trans-
forma-
tions

Usually, we want to rotate something relative to itself. The right point to
choose is the centroid of the object.

If we have a list of 𝑛 points, the centroid is calculated as:

𝑥𝑐 = 1
𝑛

𝑛
∑
𝑖=0

𝑥𝑖

𝑦𝑐 = 1
𝑛

𝑛
∑
𝑖=0

𝑦𝑖

Since in this case we have a rectangle, the centroid has coordinates of half the
width and half the height.

By subtracting the centroid from each point before we apply the transforma-
tion and then adding it back after we get what we want:

Here’s it visually: First subtract the center point.

(0,0)

Then, rotate.

90

trans-
forma-
tions

(0,0)

�

xcrotated

And subtract back to the original position.

(0,0)

�

xc
+ centroid

In code:

let center_point = ((DMR_WIDTH/2) as i64, (DMR_HEIGHT/2) as i64);
for y in 0..DMR_HEIGHT {

for x in 0..DMR_WIDTH {
if dmr[y * DMR_WIDTH + x] == BLACK {

let x = (x as i64 -center_point.0) as f64;
let y = (y as i64 -center_point.1) as f64;
let xr = x * c - y * s;
let yr = x * s + y * c;
image.plot(xr as i64+center_point.0,

yr as i64 + center_point.1);
}

}
}

91

trans-
forma-
tions

The result:

35.1 Fast 2D Rotation
Add Fast 2D Rotation

92

trans-
forma-
tions

Chapter 36
90° Rotation of a bitmap by parallel
recursive subdivision

Add 90° Rotation of a bitmap by parallel recursive subdivision

93

trans-
forma-
tions

Chapter 37
Magnification/Scaling

Wewant to magnify a bitmapwithout any smoothing. We define an Image scaled
to the dimensions we want, and loop for every pixel in the scaled Image. Then,
for each pixel, calculate its source in the original bitmap: if the coordinates in the
scaled bitmap are (𝑥, 𝑦) then the source coordinates (𝑠𝑥, 𝑠𝑦) are:

𝑠𝑥 = 𝑥 ∗ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.𝑤𝑖𝑑𝑡ℎ
𝑠𝑐𝑎𝑙𝑒𝑑.𝑤𝑖𝑑𝑡ℎ

𝑠𝑦 = 𝑦 ∗ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.ℎ𝑒𝑖𝑔ℎ𝑡
𝑠𝑐𝑎𝑙𝑒𝑑.ℎ𝑒𝑖𝑔ℎ𝑡

So, if (𝑠𝑥, 𝑠𝑦) are painted, then (𝑥, 𝑦) must be painted as well.
src/bin/scale.rs:

This code file is a PDF
attachment

let mut original = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
original.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);
original.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
let mut scaled = Image::new(DMR_WIDTH * 5, DMR_HEIGHT * 5, 100, 100);
let mut sx: i64; //source
let mut sy: i64; //source
let mut dx: i64; //destination
let mut dy: i64 = 0; //destination

94

trans-
forma-
tions

let og_height = original.height as i64;
let og_width = original.width as i64;
let scaled_height = scaled.height as i64;
let scaled_width = scaled.width as i64;
while dy < scaled_height {

sy = (dy * og_height) / scaled_height;
dx = 0;
while dx < scaled_width {

sx = (dx * og_width) / scaled_width;
if original.get(sx, sy) == Some(BLACK) {

scaled.plot(dx, dy);
}
dx += 1;

}
dy += 1;

}
scaled.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);

37.1 Smoothing enlarged bitmaps
Add Smoothing enlarged bitmaps

37.2 Stretching lines of bitmaps
Add Stretching lines of bitmaps

95

trans-
forma-
tions

Chapter 38
Mirroring

Add screenshots and figure and code in Mirroring

Mirroring to an axis is the transformation of one coordinate to its equidistant
value across the axis:

To mirror a pixelacross the 𝑥 axis, simply multiply its coordinates with the
following matrix:

𝑀𝑥 = ⎡⎢
⎣

1 0
0 −1

⎤⎥
⎦

This results in the 𝑦 coordinate’s sign being flipped.
For 𝑦-mirroring, the transformation follows the same logic:

𝑀𝑦 = ⎡⎢
⎣

−1 0
0 1

⎤⎥
⎦

96

trans-
forma-
tions

Chapter 39

Shearing

src/bin/shearing.rs:

This code file is a PDF
attachment

Simple shearing is the transformation of one dimension by a distance propor-
tional to the other dimension, In 𝑥-shearing (or horizontal shearing) only the 𝑥
coordinate is affected, and likewise in 𝑦-shearing only 𝑦 as well.

With 𝑙 being equal to the desired tilt away from the 𝑦 axis, the transformation
is described by the following matrix:

𝑆𝑥 = ⎡⎢
⎣

1 𝑙
0 1

⎤⎥
⎦

Which is as simple as this function:

fn shear_x((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {
(x_p+(l*(y_p as f64)) as i64, y_p)

}

97

trans-
forma-
tions

For 𝑦-shearing, we have the following:

𝑆𝑦 = ⎡⎢
⎣

1 0
𝑙 1

⎤⎥
⎦

fn shear_y((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {
(x_p, (l*(x_p as f64)) as i64 + y_p)

}

A full example:

include!("../dmr.xbm.rs");
const WINDOW_WIDTH: usize = 200;
const WINDOW_HEIGHT: usize = 200;
fn shear_x((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {

(x_p+(l*(y_p as f64)) as i64, y_p)
}
fn shear_y((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {

(x_p, (l*(x_p as f64)) as i64 + y_p)
}
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);
image.draw_outline();

98

trans-
forma-
tions

let l = -0.5;
let mut sheared = Image::new(DMR_WIDTH*2, DMR_HEIGHT*2, 25, 25);
for x in 0..DMR_WIDTH {

for y in 0..DMR_HEIGHT {
if image.bytes[y * DMR_WIDTH + x] == BLACK {
let p = shear_x((x as i64 ,y as i64), l);
sheared.plot(p.0+(DMR_WIDTH/2) as i64, p.1+(DMR_HEIGHT/2) as i64);

}
}

}
sheared.draw_outline();

39.1 The relationship between shearing factor and
angle

Shearing is a delta movement in one dimension, thus the point before moving
and the point after form an angle with the 𝑥 axis. To move a point (𝑥, 0) by 30°
forward we will have the new point (𝑥 + 𝑓 , 0) where 𝑓 is the shear factor. These
two points and (𝑥, ℎ)where ℎ is the height of the bitmap form a triangle, thus the
following are true:

cot 𝜃 = ℎ
𝑓

Therefore to find your factor for any angle 𝜃 replace its cotangent in the fol-
lowing formula:

𝑓 = ℎ
cot 𝜃

For example to shear by −30° (meaning the bitmap will move to the right,
since rotations are always clockwise) we need cot(−30𝑑𝑒𝑔) = −√3 and 𝑓 = − ℎ

√3
.

99

trans-
forma-
tions

Chapter 40
Anamorphic transformations

Reproduce cover skull

100

trans-
forma-
tions

Chapter 41
Projections

Add Projections

101

patterns

Part VI

Patterns

102

patterns

Chapter 42
The 17 Wallpaper groups

Add The 17 Wallpaper groups

103

patterns

Chapter 43
Tilings and Tessellations

104

patterns

43.1 Truchet Tiling
Truchet tiling is a repetition of four specific tiles in any specific order. It can be
random or deterministic.

The four tiles

Random arrangement of truchet tiles using rand.

105

patterns

The code
src/bin/floyddither.rs:

This code file is a PDF
attachment

fn truchet(image: &mut Image, size: i64) {
let mut x = 0;
let mut y = 0;
#[repr(u8)]
enum Tile {

A = 0,
B,
C,
D,

}
let tiles = [Tile::A, Tile::B, Tile::C, Tile::D];
let width = image.width as i64;
let height = image.height as i64;
let mut rng = thread_rng();
while y < height {

while x < width {
let t = tiles.choose(&mut rng).unwrap();
let (a, b, c) = match t {

Tile::A => {
let a = (x, y + size);
let b = (x + size, y + size);
let c = (x + size, y);
(a, b, c)

}
Tile::B => {

let a = (x, y);
let b = (x, y + size);
let c = (x + size, y + size);
(a, b, c)

}
Tile::C => {

let a = (x, y);
let b = (x + size, y);
let c = (x, y + size);
(a, b, c)

}
Tile::D => {

let a = (x, y);
let b = (x + size, y);
let c = (x + size, y + size);
(a, b, c)

}
};
image.plot_line_width(a, b, 1.);
image.plot_line_width(b, c, 1.);
image.plot_line_width(c, a, 1.);
let c = ((a.0 + b.0 + c.0) / 3, (a.1 + b.1 + c.1) / 3);
image.flood_fill(c.0, c.1);
x += size;

}
x = 0;
y += size;

}
}

106

patterns

43.2 Pythagorean Tiling
Pythagorean tiling consists of two squares, one filled and one blank and is de-
scribed by the ratio of their sizes.

Pythagorean tiling using the golden ratio 𝜙 ≡ 1+√5
2

The code
src/bin/pythagorean.rs:

This code file is a PDF
attachment

fn pythagorean(image: &mut Image, size_a: i64, size_b: i64) {
let width = image.width as i64;
let height = image.height as i64;
let times = 4 * width / (size_a + size_b);
for i in -times..times {

let mut x = -width + i * (size_b - size_a);
let mut y = -height - i * (size_b + size_a);
while y < 2 * height && x < 2 * width {

// Draw the first smaller and filled rectangle
let a = (x, y);
let b = (x + size_a, y);
let c = (x + size_a, y + size_a);
let d = (x, y + size_a);
image.plot_line_width(a, b, 0.);
image.plot_line_width(b, c, 0.);
image.plot_line_width(c, d, 0.);
image.plot_line_width(d, a, 0.);
// Calculate the center point of the rectangle in order to start flood

filling from it↪
let (cx, cy) = ((a.0 + b.0 + c.0 + d.0) / 4, (a.1 + b.1 + c.1 + d.1) / 4);
image.flood_fill(cx, cy);
x += size_a;
// Draw the second bigger rectangle
let a = b;
let b = (a.0 + size_b, y);
let c = (a.0 + size_b, y + size_b);
let d = (a.0, y + size_b);
image.plot_line_width(a, b, 1.);
image.plot_line_width(b, c, 1.);
image.plot_line_width(c, d, 1.);

107

patterns

image.plot_line_width(d, a, 1.);
y += size_b;

}
}

}

The output of src/bin/pythagorean.rs

108

patterns

43.3 Hexagon tiling
Add Hexagon tiling

109

patterns

Chapter 44
Space-filling Curves

Add Space-filling Curves

110

patterns

44.1 Hilbert curve
Add Hilbert curve explanation

The first six iterations of the Hilbert curve by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000

src/bin/hilbert.rs:

This code file is a PDF
attachment

Here’s a simple algorithm for drawing a Hilbert curve.*

const HILBERT: &[&[usize]] = &[
&[22, 10, 16, 38],
&[10, 22, 24, 48],
&[44, 36, 30, 18],
&[36, 44, 42, 28],

];
fn curve(img: &mut Image, k: usize, order: i64, mut x: i64, mut y: i64) -> (i64, i64) {

const STEP_SIZE: i64 = 5;
let mut row: usize;
let mut direction: usize;
if order > 0 {

for j in 0..4 {
let step = HILBERT[k][j];
row = (step / 10) - 1;
let (xn, yn) = curve(img, row, order - 1, x, y);x = xn;y = yn;
direction = step % 10;
let prev = (x, y);
match direction {

8 => {
// null op

}
2 => {

//N
y -= STEP_SIZE;

}
1 => {

*Griffiths, J. G. (1985). Table-driven algorithms for generating space-filling curves. Computer-
Aided Design, 17(1), 37–41. doi:10.1016/0010-4485(85)90009-0

111

https://commons.wikimedia.org/wiki/File:Hilbert_curve.svg

patterns

// NE
y -= STEP_SIZE;
x += STEP_SIZE;

}
0 => {

//E
x += STEP_SIZE;

}
7 => {

//SE
x += STEP_SIZE;
y += STEP_SIZE;

}
6 => {

//S
y += STEP_SIZE;

}
5 => {

//SW
y += STEP_SIZE;
x -= STEP_SIZE;

}
4 => {

//W
x -= STEP_SIZE;

}
3 => {

//NW
y -= STEP_SIZE;
x -= STEP_SIZE;

}
other => unreachable!("{}", other),

}
img.plot_line_width(prev, (x, y), 0.);

}
}
(x, y)

}

let mut image = Image::new(WINDOW_WIDTH, WINDOW_WIDTH, 0, 0);
curve(&mut image, 0, 7, 0, WINDOW_WIDTH as i64);

112

patterns

44.2 Sierpiński curve

Switching the table from the Hilbert implementation to this:

const SIERP: &[&[usize]] = &[
&[17, 25, 33, 41],
&[17, 20, 41, 18],
&[25, 36, 17, 28],
&[33, 44, 25, 38],
&[41, 12, 33, 48],

];

And switching two lines from the function to

- let step = HILBERT[k][j];
- row = (step / 10) - 1;
+ let step = SIERP[k][j];
+ row = (step / 10);

You can draw a Sierpinshi curve of order 𝑛 by calling curve(&mut image,
0,n+1, 0, 0).

44.3 Peano curve
Add Peano curve

113

patterns

44.4 Z-order curve

Drawing the Z-order curve is really simple: first, have a counter variable that
starts from zero and is incremented by one at each step. Then, you extract the
(𝑥, 𝑦) coordinates the new step represents from its binary representation. The
bits for the 𝑥 coordinate are located at the odd bits, and for 𝑦 at the even bits. I.e.
the values are interleaved as bits in the value of the step:

114

patterns

Knowing this, implementing the drawing process will consist of computing
the next step, drawing a line segment from the current step and the next, set the
current step as the next and continue;

fn zcurve(img: &mut Image, x_offset: i64, y_offset: i64) {
const STEP_SIZE: i64 = 8;
let mut sx: i64 = 0;
let mut sy: i64 = 0;
let mut b: u64 = 0;
let mut prev_pos = (sx + x_offset, sy + y_offset);
loop {

let next = b + 1;
sx = 0;
if (next & 1) as i64 > 0 {

sx += STEP_SIZE;
}
if next & 0b100 > 0 {

sx += 2 * STEP_SIZE;
}
if next & 0b10_000 > 0 {

sx += 4 * STEP_SIZE;
}
if next & 0b1_000_000 > 0 {

sx += 8 * STEP_SIZE;
}
if next & 0b100_000_000 > 0 {

sx += 16 * STEP_SIZE;
}
if next & 0b10_000_000_000 > 0 {

sx += 32 * STEP_SIZE;
}
if next & 0b1_000_000_000_000 > 0 {

sx += 64 * STEP_SIZE;
}
if next & 0b100_000_000_000_000 > 0 {

sx += 128 * STEP_SIZE;

115

patterns

}
if next & 0b10_000_000_000_000_000 > 0 {

sx += 256 * STEP_SIZE;
}
if next & 0b1_000_000_000_000_000_000 > 0 {

sx += 512 * STEP_SIZE;
}
sy = 0;
if (next & 0b10) as i64 > 0 {

sy += STEP_SIZE;
}
if next & 0b1_000 > 0 {

sy += 2 * STEP_SIZE;
}
if next & 0b100_000 > 0 {

sy += 4 * STEP_SIZE;
}
if next & 0b10_000_000 > 0 {

sy += 8 * STEP_SIZE;
}
if next & 0b1_000_000_000 > 0 {

sy += 16 * STEP_SIZE;
}
if next & 0b100_000_000_000 > 0 {

sy += 32 * STEP_SIZE;
}
if next & 0b10_000_000_000_000 > 0 {

sy += 64 * STEP_SIZE;
}
if next & 0b1_000_000_000_000_000 > 0 {

sy += 128 * STEP_SIZE;
}
if next & 0b100_000_000_000_000_000 > 0 {

sy += 256 * STEP_SIZE;
}
if next & 0b10_000_000_000_000_000_000 > 0 {

sy += 512 * STEP_SIZE;
}
img.plot_line_width(prev_pos, (sx + x_offset, sy + y_offset), 1.0);
if next == 0b111_111_111_111_111_111_111_111 {

break;
}
if sx as usize > img.width && sy as usize > img.height {

break;
}
prev_pos = (sx + x_offset, sy + y_offset);
b = next;

}
}

116

patterns

44.5 Flowsnake curve

The first three orders of the Gosper curve.

As a fractal curve, the flowsnake curve or Gosper curve is defined by a set of re-
cursive rules for drawing it. There are four kind of rules and two of them define
rulesets (i.e. they are non-terminal steps).

𝐴 ↦ 𝐴−𝐵−−𝐵+𝐴++𝐴𝐴+𝐵−
𝐵 ↦ +𝐴−𝐵𝐵−−𝐵−𝐴++𝐴+𝐵

117

patterns

The fourth order Gosper curve consists of a minimum of 2057 distinct line
segments (but our algorithm draws 36015)

patterns

Chapter 45
Flow fields

Add Flow fields

119

interaction

120

interaction

Part VII

Interaction

121

interaction

122

interaction

Chapter 46
Infinite panning and zooming

Add Infinite panning and zooming

123

interaction

Chapter 47
Nearest neighbours

Add Nearest neighbours

124

interaction

Chapter 48
Point in polygon

Add Point in polygon

125

colors

Part VIII

Colors

126

colors

127

colors

Chapter 49
Mixing colors

Add Mixing colors

128

colors

Chapter 50
Bilinear interpolation

Add Bilinear interpolation

129

colors

Chapter 51
Barycentric coordinate blending

Add Barycentric coordinate blending

130

adden-
dum

Part IX

Addendum

131

adden-
dum

Chapter 52
Faster drawing a line segment from
its two endpoints using symmetry

Add Faster drawing a line segment from its two endpoints using symmetry

132

adden-
dum

Chapter 53
Composingmonochromebitmapswith
separate alpha channel data

Add Composing monochrome bitmaps with separate alpha channel data

133

adden-
dum

Chapter 54
Orthogonal connectionof twopoints

Add Orthogonal connection of two points

134

adden-
dum

Chapter 55
Faster line clipping

Add Faster line clipping

135

adden-
dum

Chapter 56
Dithering

136

adden-
dum

56.1 Floyd-Steinberg

detail of a standard test image, Sailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lake, with Floyd-Steinberg dithering

137

https://sipi.usc.edu/database/database.php?volume=misc&image=12

adden-
dum

src/bin/floyddither.rs:

This code file is a PDF
attachment

fn floyd(image: &mut Image) {
let w = image.width;
let m = [(0, 7), (w - 2, 3), (w - 1, 5), (w, 1)];
let mut e = vec![0.0; w + 1];
let bytes = image

.bytes

.iter()

.map(|&byte| {
let (r, g, b) = from_u32_rgb(byte);
let g: f64 = (0.299 * (r as f64)) + (0.587_f64 * (g as f64)) + (0.114 * (b as

f64));↪
let pix = g / 255.0 + {

e.push(0.);
e.remove(0)

};
let col = if pix > 0.5 { 1. } else { 0. };
let err = (pix - col) / 16.;
for (x, y) in m.iter() {

e[*x] += err * (*y as f64);
}
if col.floor() as u32 == 1 {

WHITE
} else {

BLACK
}

})
.collect::<Vec<u32>>();

image.bytes = bytes;
}

138

adden-
dum

56.2 Atkinson dithering

detail of a standard test image, pepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspeppers, with Atkinson dithering

src/bin/atkinsondither.rs:

This code file is a PDF
attachment

The following code implements Atkinson dithering:*

fn atkinson(image: &mut Image) {
let w= image.width;
let mut e = vec![0.0;2*w];
let m = [0, 1, w-2, w-1, w, 2*w-1];
for byte in image.bytes.iter_mut() {

let (r,g,b) = from_u32_rgb(*byte);
let g:f64 = ((0.299*(r as f64))) + ((0.587_f64*(g as f64))) + ((0.114*(b as

f64)));↪
let pix = g/255.0 + { e.push(0.); e.remove(0)};
let col = if pix > 0.5 { 1. } else { 0. };
let err = (pix-col)/8.;
for m in m.iter() {

e[*m] += err;
}
*byte = if (col.floor() as u32 == 1) {

WHITE

*Algorithm taken from https://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.html

139

https://sipi.usc.edu/database/database.php?volume=misc&image=13

https://beyondloom.com/blog/dither.html

adden-
dum

} else {
BLACK

};
}

}

140

adden-
dum

Chapter 57
Marching squares

⸎

142

Bibliography

143

144

Index

alpha channel, 133
angle

between two lines, 30
bisectioning, 39
trisectioning, 39

area filling, see flood filling
Atkinson dithering, 139

bucket filling, see flood filling

centroid
polygon, 65
rectangle, 90

circle
bounding, 52
constructions, 47
equations, 47
out of three points, 49, 53
out of two points, 52

contour, see marching squares
curves

Basis spline, 78
Bézier, 79
cubic, 84
quadratic, 79
weighted, 84

elliptical, 76
Flowsnake curve, 117
Hilbert curve, 111
Peano curve, 113
space-filling, 110

de Casteljau’s algorithm, 80
distance

between two points, 21
moving a point, 22
point from a line, 27

dithering, 136
Atkinson, 139

Floyd-Steinberg, 137

ellipse
equations, 47

ellipses
constructions, 47

equidistant line, 34

flood filling, 68
triangle filling, 67

Flowsnake curve, 117
Floyd-Steinberg dithering, 137

Gosper curve, see Flowsnake curve

hexagon tiling, 109
Hilbert curve, 111

line
drawing, 26
equations, 23
equidistant, 34
intersection, 32
perpendicular, 29
reflection of point, 36
through point and slope, 23
through two points, 24

magnification, 94
marching squares, 141
midpoint, 34, 72
mirroring, 96

point to line, 36

Peano curve, 113
perpendicular, 29
point

reflection on line, 36
polygon

boolean operations, 64

145

centroid, 65
clipping, 66
rounded edges, 63
smooth edges, 63

Pythagorean tiling, 107

reflection of point, 36
rotation, 88

scaling, 94
shearing, 97
skewing, see shearing
smoothing, 95

stretching, 95

tiling, 104
hexagon, 109
Pythagorean, 107
Truchet, 105

triangle, 59
filling, 67
from point and angles, 59

Truchet tiling, 105

wallpaper groups, 103

146

About this text

The text has been typeset in XƎLATEX using the book class and:

• Redaction for the main text.

• Fira Sans for referring to the programming language Rust .

• Redaction20 for referring to the words bitmap and pixels
as a concept.

Todo list

Add angle bisectioning 39

Add angle trisectioning 39

Add some explanation behind the algorithm inDrawing a line segment from
its two endpoints 41

Add Equations of a circle and an ellipse 47

Add Circle that passes through given pointΑ and point Β on line 𝐿 50

Add Tangent line of given circle 50

Add Tangent line of given circle that passes through point 𝑃 51

Add Tangent line common to two given circles 51

AddMaking a triangle from a point and given angles 59

Add Polygons with rounded edges 63

Add Union, intersection and difference of polygons 64

Add Centroid of polygon 65

Add Polygon clipping 66

Add Triangle filling explanation 67

Add Flood filling 68

Add Seamlessly joining lines and curves 70

Add Centre of arc which blends with two given line segments at right angles 70

Add Centre of arc which blends given line with given circle 70

Add Centre of arc which blends two given circles 71

Add B-spline 78

Add Cubic Bézier curves 84

AddWeighted Béziers 84

Add Archimedean spiral 85

Add Fast 2D Rotation 92

Add 90° Rotation of a bitmap by parallel recursive subdivision 93

Add Smoothing enlarged bitmaps 95

Add Stretching lines of bitmaps 95

148

Add screenshots and figure and code inMirroring 96

Reproduce cover skull 100

Add Projections 101

Add The 17 Wallpaper groups 103

Add Hexagon tiling 109

Add Space-filling Curves 110

Add Hilbert curve explanation 111

Add Peano curve 113

Add Flow fields 119

Add Infinite panning and zooming 123

Add Nearest neighbours 124

Add Point in polygon 125

AddMixing colors 128

Add Bilinear interpolation 129

Add Barycentric coordinate blending 130

Add Faster drawing a line segment from its two endpoints using symmetry 132

Add Composing monochrome bitmaps with separate alpha channel data 133

Add Orthogonal connection of two points 134

Add Faster line clipping 135

149

	Title page
	Contents
	I Introduction
	Data representation
	Displaying pixels to your screen
	Bits to byte pixels
	Loading graphics files in Rust
	Including xbm files in Rust

	II Points And Lines
	Distance between two points
	Moving a point to a distance at an angle
	Equations of a line
	Line through a point P=(xp,yp) and a slope m
	Line through two points

	Drawing a line
	Distance from a point to a line
	Using the implicit equation form
	Using an L defined by two points P1, P2
	Using an L defined by a point Pl and angle θ

	Perpendicular lines
	Find perpendicular to line that passes through given point
	Find point in line that belongs to the perpendicular of given point

	Angle between two lines
	Intersection of two lines
	Line equidistant from two points
	Reflection of point on line
	Find perpendicular to line segment AB that passes through its middle (perpendicular bisector of AB)

	Angle sectioning
	Bisection
	Trisection

	Drawing a line segment from its two endpoints
	Drawing line segments with width
	Intersection of two line segments
	Fast intersection of two line segments

	III Shapes
	Circles and Ellipses
	Equations of a circle and an ellipse
	Constructions of Circles and Ellipses
	Construction with given center and radius/radiii.
	Circle from three given points
	Circle inscribed in given polygon (e.g. a triangle) as list of vertices
	Circumscribed circle of given regular polygon (e.g. a triangle) as list of vertices
	Circle that passes through given point Α and point Β on line L
	Tangent line of given circle
	Tangent line of given circle that passes through point P
	Tangent line common to two given circles

	Bounding circle

	Rectangles and parallelograms
	Squares
	From a center point
	From a corner point

	Rectangles

	Triangles
	Making a triangle from a point and given angles

	Squircle
	Polygons with rounded edges
	Union, intersection and difference of polygons
	Centroid of polygon
	Polygon clipping
	Triangle filling
	Flood filling

	IV Curves
	Seamlessly joining lines and curves
	Centre of arc which blends with two given line segments at right angles
	Centre of arc which blends given line with given circle
	Centre of arc which blends two given circles
	Join segments with round corners

	Parametric elliptical arcs
	B-spline
	Bézier curves
	Quadratic Bézier curves
	Drawing the quadratic

	Cubic Bézier curves
	Weighted Béziers

	Archimedean spiral

	V Vectors, matrices and transformations
	Rotation of a bitmap
	Fast 2D Rotation

	90° Rotation of a bitmap by parallel recursive subdivision
	Magnification/Scaling
	Smoothing enlarged bitmaps
	Stretching lines of bitmaps

	Mirroring
	Shearing
	The relationship between shearing factor and angle

	Anamorphic transformations
	Projections

	VI Patterns
	The 17 Wallpaper groups
	Tilings and Tessellations
	Truchet Tiling
	Pythagorean Tiling
	Hexagon tiling

	Space-filling Curves
	Hilbert curve
	Sierpiński curve
	Peano curve
	Z-order curve
	Flowsnake curve

	Flow fields

	VII Interaction
	Infinite panning and zooming
	Nearest neighbours
	Point in polygon

	VIII Colors
	Mixing colors
	Bilinear interpolation
	Barycentric coordinate blending

	IX Addendum
	Faster drawing a line segment from its two endpoints using symmetry
	Composing monochrome bitmaps with separate alpha channel data
	Orthogonal connection of two points
	Faster line clipping
	Dithering
	Floyd-Steinberg
	Atkinson dithering

	Marching squares

	Bibliography
	Index
	About this text

