A
 Bitmapper's Companion

an introduction
to basic bitmap
mathematics
and algorithms
with code
samples in Rust

Manos Pitsidianakis (epilys)
https://nessuent.xyz
https://github.com/epilys
epilys@nessuent.xyz

All non-screenshot figures were generated by hand in Inkscape unless otherwise stated.

The skull in the cover is a transformed bitmap of the skull in the 1533 oil painting by Hans Holbein the Younger, The Ambassadors, which features a floating distorted skull rendered in anamorphic perspective.
A Bitmapper's Companion, 2021
Special Topics $>$ Computer Graphics $>$ Programming
006.6'6-dc20

Copyright © 2021 by Emmanouil Pitsidianakis
This work is licensed under the Creative Commons Attribution-NonCommercialShareAlike 3.0 Unported License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/3.0/or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

The source code for this work is available under the GNU GENERAL PUBLIC LICENSE version 3 or later. You can view it, study it, modify it for your purposes as long as you respect the license if you choose to distribute your modifications. The source code is available here
https://github.com/epilys/bitmappers-companion

Contents

I Introduction 10
1 Data representation 11
2 Displaying pixels to your screen 13
3 Bits to byte pixels 15
4 Loading graphics files in Rust 16
5 Including xbm files in Rust 17
II Points And Lines 20
6 Distance between two points 21
7 Moving a point to a distance at an angle 22
8 Equations of a line 23
8.1 Line through a point $P=\left(x_{p}, y_{p}\right)$ and a slope m 23
8.2 Line through two points 24
9 Drawing a line 26
10 Distance from a point to a line 27
10.1 Using the implicit equation form 27
10.2 Using an L defined by two points P_{1}, P_{2} 27
10.3 Using an L defined by a point P_{l} and angle $\hat{\theta}$ 28
11 Perpendicular lines 29
11.1 Find perpendicular to line that passes through given point 29
11.2 Find point in line that belongs to the perpendicular of given point 29
12 Angle between two lines 30
13 Intersection of two lines 32
14 Line equidistant from two points 34
15 Reflection of point on line 36
15.1 Find perpendicular to line segment $A B$ that passes through its middle (perpendicular bisector of $A B$) 38
16 Angle sectioning 39
16.1 Bisection 39
16.2 Trisection 39
17 Drawing a line segment from its two endpoints 40
18 Drawing line segments with width 42
19 Intersection of two line segments 44
19.1 Fast intersection of two line segments 44
III Shapes 45
20 Circles and Ellipses 47
20.1 Equations of a circle and an ellipse 47
20.2 Constructions of Circles and Ellipses 47
20.2.1 Construction with given center and radius/radiii. 48
20.2.2 Circle from three given points 49
20.2.3 Circle inscribed in given polygon (e.g. a triangle) as list of vertices 50
20.2.4 Circumscribed circle of given regular polygon (e.g. a tri- angle) as list of vertices 50
20.2.5 Circle that passes through given point A and point B on line L 50
20.2.6 Tangent line of given circle 50
20.2.7 Tangent line of given circle that passes through point P 51
20.2.8 Tangent line common to two given circles 51
20.3 Bounding circle 52
21 Rectangles and parallelograms 57
21.1 Squares 57
21.1.1 From a center point 57
21.1.2 From a corner point 58
21.2 Rectangles 58
22 Triangles 59
22.1 Making a triangle from a point and given angles 59
23 Squircle 60
24 Polygons with rounded edges 63
25 Union, intersection and difference of polygons 64
26 Centroid of polygon 65
27 Polygon clipping 66
28 Triangle filling 67
29 Flood filling 68
IV Curves 69
30 Seamlessly joining lines and curves 70
30.1 Centre of arc which blends with two given line segments at right angles 70
30.2 Centre of arc which blends given line with given circle 70
30.3 Centre of arc which blends two given circles 71
30.4 Join segments with round corners 71
31 Parametric elliptical arcs 76
32 B-spline 78
33 Bézier curves 79
33.1 Quadratic Bézier curves 79
33.1.1 Drawing the quadratic 80
33.2 Cubic Bézier curves 84
33.3 Weighted Béziers 84
34 Archimedean spiral 85
V Vectors, matrices and transformations 87
35 Rotation of a bitmap 88
35.1 Fast 2D Rotation 92
3690° Rotation of a bitmap by parallel recursive subdivision 93
37 Magnification/Scaling 94
37.1 Smoothing enlarged bitmaps 95
37.2 Stretching lines of bitmaps 95
38 Mirroring 96
39 Shearing 97
39.1 The relationship between shearing factor and angle 99
40 Anamorphic transformations 100
41 Projections 101
VI Patterns 102
42 The 17 Wallpaper groups 103
43 Tilings and Tessellations 104
43.1 Truchet Tiling 105
43.2 Pythagorean Tiling 107
43.3 Hexagon tiling 109
44 Space-filling Curves 110
44.1 Hilbert curve 111
44.2 Sierpiński curve 113
44.3 Peano curve 113
44.4 Z-order curve 114
44.5 Flowsnake curve 117
45 Flow fields 119
VII Interaction 121
46 Infinite panning and zooming 123
47 Nearest neighbours 124
48 Point in polygon 125
VIII Colors 126
49 Mixing colors 128
50 Bilinear interpolation 129
51 Barycentric coordinate blending 130
IX Addendum 131
52 Faster drawing a line segment from its two endpoints using symmetry 132
53 Composing monochrome bitmaps with separate alpha channel data 133
54 Orthogonal connection of two points 134
55 Faster line clipping 135
56 Dithering 136
56.1 Floyd-Steinberg 137
56.2 Atkinson dithering 139
57 Marching squares 141
Bibliography 143
Index 145

Part I

Introduction

Chapter 1

Data representation

The data structures we're going to use is Point and Image. Image represents a bitmap, although we will use full RGB colors for our points therefore the size of a pixel in memory will be $u 8$ instead of 1 bit.

We will work on the cartesian grid representing the framebuffer that will show us the pixels. The origin of this grid (i.e. the center) is at $(0,0)$.
$(0,0)$

We will represent points as pairs of signed integers. When actually drawing them though, negative values and values outside the window's geometry will be ignored (clipped).

```
pub type Point = (i64, i64);
pub type Line = (i64, i64, i64);
pub const fn from_u8_rgb(r: u8, g: u8, b: u8) -> u32 {
    let (r,g, b) = (r as u32,g as u32, b as u32);
    (r<< 16)'| (g<< 8) | b
}
pub const AZURE_BLUE: u32 = from_u8_rgb(0, 127, 255);
pub const RED: u32 = from_u8_rgb(157, 37, 10);
pub const WHITE: u32 = from_u8_rgb(255, 255, 255);
```

This code file is a PDF attachment

```
pub const BLACK: u32 = 0;
pub struct Image {
    pub bytes: Vec<u32>,
    pub width: usize
    pub height: usize,
    pub x_offset: usize,
    pub y_offset: usize,
}
impl Image {
    pub fn new(width: usize, height: usize, x_offset: usize, y_offset: usize) -> Self;
    pub fn magick_open(path: &str, x_offset: usize, y_offset: usize) -> Result<Self,
\hookrightarrow Box<dyn Error>>;
    pub fn from_xbm(path: &str, x_offset: usize, y_offset: usize) -> Result<Self, Box<dyn
G Error>>;
    pub fn draw(&self, buffer: &mut Vec<u32>, fg: u32, bg: Option<u32>, window_width:
4 usize);
    pub fn draw_outline(&mut self);
    pub fn clear(&mut self);
    pub fn plot(&mut self, x: i64, y: i64);
    pub fn get(&mut self, x: i64, y: i64) -> u32;
    pub fn plot_ellipse(
        &mut selff,
        (xm, ym):'(i64, i64),
        (a, b): (i64, i64),
        quadrants: [bool; 4],
        _wd: f64,
    );
    pub fn plot_line_width(&mut self, point_a: Point, point_b: Point, wd: f64);
    pub fn flood_fill(&mut self, mut x: i64, y: i64);
}
```

An RGB color with coordinates (r, g, b) where $r, g, b: u 8$ values is represented as a u32 number with the red component shifted 16 bits to to the left, the green component 8 bits, and the final 8 bits are the blue component. It's essentially laying the r, g, b values sequentially and forming a 32 bit value out of three 8 bit values.

Our Image : : plot (x, y) function sets the (x, y) pixel to black. To do that we set the element $\mathrm{y} *$ width +x of the Image 's buffer to the black color as RGB.

Chapter 2

Displaying pixels to your screen

A way to display an Image is to use the minifb crate which allows you to create a window and draw pixels directly on it. Here's how you could set it up:

```
use bitmappers_companion::*;
use minifb}::{Key, Window, WindowOptions}
const WINDOW_WIDTH: usize = 400;
const WINDOW_HEIGHT: usize = 400;
fn main() {
    let mut buffer: Vec<u32> = vec![WHITE; WINDOW_WIDTH * WINDOW_HEIGHT];
    let mut window = Window;:new(
        "Test-ESC to exit",
        WINDOW_WIDTH,
        WINDOW-HEIGHT,
        WindowŌptions'{
            title: true,
            //borderless: true,
            //resize: false,
            //transparency: true,
            ..WindowOptions::default()
        },
    )
    .unwrap();
    // Limit to max ~60 fps update rate
    window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
    let mut image = Image::new (50, 50, 150, 150);
    image.draw_outline();
    image.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
    while window.is_open()
        && !window.is_key_down(Key::Escape)
        && !window.is_key_down(Key::Q) {
        window
            .update_with_buffer(&buffer, WINDOW_WIDTH, WINDOW_HEIGHT)
            .unwrap();
        let millis = std::time::Duration::from_millis(100);
        std::thread::sleep(millis);
    }
}
```

Running this will show you something like this:

By drawingeach individual pixel with the Image : :plot and Image : :plot_color functions, we can draw any possible RGB picture of the buffer size. In this book's chapters, we will usually calculate pixels by using discrete calculations of each pixels as integers, or by using rational values (with 64 bit floating point representation) and then calculating their integer values with the floor function. This can also be done by casting an f 64 type to 164 with as:

```
let val: f64 = 5.5;
let val: i64 = val'as i64;
assert_eq!(5i64, val);
```


Chapter 3

Bits to byte pixels

If we worked with 1 bit images (black and white) it could be a more space-efficient representation to store the pixels as bits: 8 pixels in 1 byte. For this book we accept that our images can have RGB colors. The xbm format stores pixels like that, and we might wish to convert them to our representation.

Let's define a way to convert bit information to a byte vector:

```
pub fn bits_to_bytes(bits: &[u8], width: usize) -> Vec<u32> {
    let mut ret = Vec::with_capacity(bits.len() * 8);
    let mut current_row_count = 0;
    for byte in bits {
        for n in 0..8 {
            if byte.rotate_right(n) & 0x01 > 0 {
                ret.push(BLACK);
            } else {
                ret.push(WHITE);
            }
            current_row_count += 1;
            if current_row_count == width {
                current__row_count = 0;
                break;
            }
        }
    }
}
```


Chapter 4

Loading graphics files in Rust

The book's library includes a method to load xbm files on runtime (see Including $x b m$ files in Rust for including them in your binary at compile time). If your system has ImageMagick installed and the commands identify and magick are in your PATH environment variable, you can use the Image : :magick_open method:

```
impl Image {
    pub fn magick_open(path: &str, x_offset: usize, y_offset: usize) -> Result<Self,
    Box<dyn Error>>;
}
```

It simply converts the image file you pass to it to raw bytes using the invocation magick convert path RGB:- which prints raw RGB content to stdout.

If you have another way to load pictures such as your own code or a picture format library crate, all you have to do is convert the pixel information to an Image whose definition we repeat here:

```
pub struct Image {
    pub bytes: Vec<u32>,
    pub width: usize,
    pub height: usize,
    pub x_offset: usize,
    pub y_offset: usize,
}
```


Chapter 5

Including xbm files in Rust

The end of this chapter includes a short Rust program to automatically convert $x b m$ files to equivalent Rust code.
xbm files are C source code files that contain the pixel information for an image as macro definitions for the dimensions and a static char array for the pixels, with each bit column representing a pixel. If the width dimension doesn't have 8 as a factor, the remaining bit columns are left blank/ignored.

They used to be a popular way to share user avatars in the old internet and are also good material for us to work with, since they are small and numerous. The following is such an image:

Then, we can convert the xbm file from C to Rust with the following transformations:

```
#define news_width 48
#define news_height 48
static char news_bits[] = {
```

to

```
const NEWS_WIDTH: usize = 48
const NEWS_HEIGHT: usize = 48;
const NEWS_BITS: &[u8] = &[
```

And replace the closing $\}$ with].
We can then include the new file in our source code:

```
include!("news.xbm.rs");
```

load the image:
and finally run it:

\checkmark Test- ESC to exit $-\mathbf{x}$

The following short program uses the regex crate to match on these simple rules and print the equivalent code in stdout. You can use it like so:

```
cargo run --bin xbmtors -- file.xbm > file.xbm.rs
```

src/bin/xbmtors.rs:

This code file is a PDF attachment

```
use regex;
use regex::Regex
use std::fs::File
use std::io::prelude::*
fn main() {
    let args = std::env::args().skip(1).collect::<Vec<String>>();
    if args.len() != 1 {
        println!("one argument expected, the xbm file path to convert.");
    }
    let mut file = match File::open(&args[0]) {
        Err(err) => panic!("couldn't open {}: {}", args[0], err),
        Ok(file) => file,
    };
    let mut s = String::new();
    if let Err(err) = file.read_to_string(&mut s) {
        panic!("couldn't read {}: {}", args[0], err);
    }
    let re = Regex::new(
        r'\prime(?imx)
    |s*|x23|s*define|s+(?P<i>. +?)_width|s+(?P<w> |d|d*)$
    \s*
    - |s*|x23|s*define\s+.+?_height \s+(?P<h> |d|d*)$
    |s*
^|s*static(|s+unsigned){0,1}|s+char|s+.+?_bits..|s*=|s*|{(?P<b>[^}]+)|};
", )
    .unwrap();
```

```
    let caps = re
        captures(&s)
    .expect("Could not convert file, regex doesn't match :(")
    let ident = caps.name("i").unwrap().as_str().to_uppercase();
    let out = re.replace_all(&s, format!("const {i}_WIDTH: usize = $w;|nconst {i}_HEIGHT:
    usize = $h;|nconst {i}_BITS: E[u8] = E[$b];", i = &ident));
    println!("{}", out.trim());
}
```


Part II

Points And Lines

Chapter 6

Distance between two points

Given two points, K and L, an elementary application of Pythagoras' Theorem gives the distance between them as

$$
\begin{equation*}
r=\sqrt{\left(x_{L}-x_{K}\right)^{2}+\left(y_{L}-y_{K}\right)^{2}} \tag{6.1}
\end{equation*}
$$

which is simply coded:

```
pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {
    let (x_k, y_k) = p_k;
    let (x_l, y_l) = p_l;
    let (x_l, y_l) = p_l;
    let xlk = x_l - x-k;
    f64::sqrt((xlk*xlk + ylk*ylk) as f64)
}
```


Chapter 7

Moving a point to a distance at an angle

Moving a point $P=(x, y)$ at distance d at an angle of r radians is solved with simple trigonometry:

$$
P^{\prime}=(x+d \times \cos r, y+d \times \sin r)
$$

Why? The problem is equivalent to calculating the point of a circle with P as the center, d the radius at angle r and as we will later* see this is how the points of a circle are calculated.

```
pub fn move_point(p: Point, d: f64, r: f64) -> Point {
    let (x, y) = p;
    (x + (d * f64::cos(r)).round() as i64, y + (d * f64::sin(r)).round() as i64)
}
```


Chapter 8

Equations of a line

There are several ways to describe a line mathematically. We'll list the convenient ones for drawing pixels.

The equation that describes every possible line on a two dimensional grid is the implicit form $a x+b y=c,(a, b) \neq(0,0)$. We can generate equivalent equations by adding the equation to itself, i.e. $a x+b y=c \equiv 2 a x+2 b y=2 c \equiv$ $a^{\prime} x+b^{\prime} y=c^{\prime}, a^{\prime}=2 a, b^{\prime}=2 b, c^{\prime}=2 c$ as many times as we want. To "minimize" the constants a, b, c we want to satisfy the relationship $a^{2}+b^{2}=1$, and thus can convert the equivalent equations into one representative equation by multiplying the two sides with $\frac{1}{\sqrt{a^{2}+b^{2}}}$; this is called the normalized equation.

The slope intercept form describes any line that intercepts the y axis at $b \in \mathbb{R}$ with a specific slope a :

$$
y=a x+b
$$

The parametric form...

8.1 Line through a point $P=\left(x_{p}, y_{p}\right)$ and a slope m

$$
y-y_{p}=m\left(x-x_{p}\right)
$$

8.2 Line through two points

It seems sufficient, given the coordinates of two points M, N, to calculate a, b and c to form a line equation:

$$
a x+b y+c=0
$$

If the two points are not the same, they necessarily form such a line. To get there, we start from expressing the line as parametric over t : at $t=0$ it's at point M and at $t=1$ it's at point N :

$$
\begin{gathered}
c=c_{M}+\left(c_{N}-c_{M}\right) t, t \in R, c \in\{x, y\} \\
c=c_{M}, t \in R, c \in\{x, y\}
\end{gathered}
$$

Substituting t in one of the equations we get:

$$
\left(y_{M}-y_{N}\right) x+\left(x_{N}-x_{M}\right) y+\left(x_{M} y_{N}-x_{N} y_{M}\right)=0
$$

Which is what we were after. We should finish by normalising what we found with $\frac{1}{\sqrt{a^{2}+b^{2}}}$, but our coordinates are integers and have no decimal or floating point accuracy.

```
fn find_line(point_a: Point, point_b: Point) -> (i64, i64, i64) {
    let (xa, ya) = point_a;
    let (xb, yb) = point_b;
    let a = yb - ya;
    let b = xa - xb;
    let c = xb * ya - xa * yb;
}
```


Chapter 9

Drawing a line

```
fn plot_line(image: &mut Image, (a, b, c): (i64, i64, i64)) {
    let x = if a != 0 { -1 * (c) / a } else { 0 };
    let mut prev_point = (x, 0);
    for y in O..(WINDOW_HEIGHT as i64) {
        // ax+by+c =0 =>
        // x=(-c-by)/a
        let x = if a != 0 {-1 * (c + b * y) / a } else { 0 };
        let new_point = (x, y);
        image.plot_line_width(prev_point, new_point, 1.0);
        prev_point = new_point;
}
```


Chapter 10 Distance from a point to a line

10.1 Using the implicit equation form

Let's find the distance from a given point P and a given line L. Let d be the distance between them. Bring L to the implicit form $a x+b y=c$.

$$
d=\frac{\left|a x_{p}+b y_{p}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

10.2 Using an L defined by two points P_{1}, P_{2}

With $P=\left(x_{0}, y_{0}\right), P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$.

$$
d=\frac{\left|\left(x_{2}-x_{1}\right)\left(y_{1}-y_{0}\right)-\left(x_{1}-x_{0}\right)\left(y_{2}-y_{1}\right)\right|}{\sqrt{\left(\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right.}}
$$

10.3 Using an L defined by a point P_{l} and angle $\hat{\theta}$

$$
d=\left|\cos (\hat{\theta})\left(P_{l_{y} y}-y_{p}\right)-\sin (\hat{\theta})\left(P_{l_{x}}-P_{x}\right)\right|
$$

The code

This code is included in
the distributed library file in the Data
representation chapter.
This function uses the implicit form.

```
type Line = (i64, i64, i64);
pub fn distance_line_to_point((x, y): Point, (a, b, c): Line) -> f64 {
    let d = f64::sqrt((a * a + b * b) as f64);
    if }\mp@subsup{d}{0}{}==0.0
        } else {
        (a * x + b * y + c) as f64/d
    }
```


Chapter 11

Perpendicular lines

11.1 Find perpendicular to line that passes through given point

Now, we wish to find the equation of the line that passes through P and is perpendicular to L. Let's call it L_{\perp}. L in implicit form is $a x+b y+c=0$. The perpendicular will be:

$$
L_{\perp}: b x-a y+\left(a P_{y}-b P_{x}\right)=0
$$

The code

```
type Line = (i64, i64, i64);
fn perpendicular((a, b, c): Line, p: Point) -> Line {
    (b, -1 *a, a * p.1 - b * p.0)
}

\subsection*{11.2 Find point in line that belongs to the perpendicular of given point}

\section*{The code}
```

fn point_perpendicular((a, b, c): Line, p: Point) -> Point {
let \overline{d}=(a* a + b * b) as f64;
if d == 0. {
if d == (urn (0, 0);
}
((-a * c - b * cp) as f64 / d) as i64,
((a * cp - b * c) as f64 / d) as i64,
)
}

```

This code is included in the distributed library file in the Data

\section*{Chapter 12}

\section*{Angle between two lines}


By angle we mean the angle formed by the two directions of the lines; and direction vectors start from the origin (in the figure, they are the red arrows). So if we want any of the other three angles, we already know them from basic geometry as shown in the figure above.

If you prefer using the implicit equation, bring the two lines \(L_{1}\) and \(L_{2}\) to that form \(\left(a_{1} x+b_{1} y+c=0\right.\) and \(\left.a_{2} x+b_{2} y+c_{2}=0\right)\) and you can directly find \(\hat{\theta}\) with the formula:
\[
\hat{\theta}=\arccos \frac{a_{1} a_{2}+b_{1} b_{2}}{\sqrt{\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right)}}
\]

For the following parametric equations of \(L_{1}, L_{2}\) :
\[
\begin{aligned}
& L_{1}=\left(\left\{x=x_{1}+f_{1} t\right\},\left\{y=y_{1}+g_{1} t\right\}\right) \\
& L_{2}=\left(\left\{x=x_{2}+f_{2} s\right\},\left\{y=y_{2}+g_{2} s\right\}\right)
\end{aligned}
\]
the formula is:
\[
\hat{\theta}=\arccos \frac{f_{1} f_{2}+g_{1} g_{2}}{\sqrt{\left(f_{1}^{2}+g_{1}^{2}\right)\left(f_{2}^{2}+g_{2}^{2}\right)}}
\]

The code:
```

fn find_angle((a1, b1, c1): (i64, i64, i64), (a2, b2, c2): (i64, i64, i64)) -> f64 {
let nom = (a1 * a2 + b1 * b2) as f64;
let denom =((a1 * a1 + b1 * b1) * (a2 * a2 + b2 * b2)) as f64;
f64::acos(nom / f64::sqrt(denom))
}

```


The src/bin/anglebetweenlines.rs example has two interactive lines and computes their angle with 64bit floating point accuracy.

\section*{Chapter 13}

\section*{Intersection of two lines}


If the lines \(L_{1}, L_{2}\) are in implicit form \(\left(a_{1} x+b_{1} y+c=0\right.\) and \(\left.a_{2} x+b_{2} y+c_{2}=0\right)\), the result comes after checking if the lines are parallel (in which case there's no single point of intersection):
\[
a_{1} b_{2}-a_{2} b_{1} \neq 0
\]

If they are not parallel, \(P\) is:
\[
P=\left(\frac{b_{1} c_{2}-b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}, \frac{a_{2} c_{1}-a_{1} c_{2}}{a_{1} b_{2}-a_{2} b_{1}}\right)
\]

The code:
```

fn find_intersection((a1, b1, c1): (i64, i64, i64), (a2, b2, c2): (i64, i64, i64)) ->
Option<Point> {
let denom = a1 * b2 - a2 * b1;
if denom == 0 {
return None;
}

```
```

}

```


The src/bin/lineintersection.rs example has two interactive lines and computes their point of intersection.

\section*{Chapter 14}

\section*{Line equidistant from two points}


Let's name this line \(L\). From previous chapter* we know how to get the line \(L\) that's created by the two points \(M\) and \(N\) :
\[
L:\left(y_{M}-y_{N}\right) x+\left(x_{N}-x_{M}\right) y+\left(x_{M} y_{N}-x_{N} y_{M}\right)=0
\]

We need the perpendicular line over the midpoint of \(L .^{\dagger}\) The midpoint also satisfies \(L\) 's equation. The midpoint's coordinates are intuitively:
\[
P_{m i d}=\left(\frac{x_{M}+x_{N}}{2}, \frac{y_{M}+y_{N}}{2}\right)
\]

The perpendicular's \(L_{\perp}\) equation is
\[
L_{E Q}=L_{\perp}: y x-a y+\left(a P_{m i d_{y}}-b P_{m_{i d_{x}}}\right)=0
\]

The code:

This code file is a PDF attachment
```

fn find_equidistant(point_a: Point, point_b: Point) -> (i64, i64, i64) {
let (xa, ya) = point_a;
let (xb, yb) = point_b;
let midpoint = ((xa + xb) / 2, (ya + yb) / 2);
let al = ya - yb;
// If we had subpixel accuracy, we could do:
//assert_eq!(al*midpoint.0+bl*midpoint.1, -cl);

```

\footnotetext{
*See Line through two points, page 24
\({ }^{\dagger}\) 'See Perpendicular lines, page 29
}
```

 let a = bl;
 let b = -1;* al;
 let c = (al * midpoint.1) - (bl * midpoint.0);
 }

```


The src/bin/equidistant.rs example has two interactive points and computes their \(L_{E Q}\).

\section*{Chapter 15}

\section*{Reflection of point on line}


Line \(P P^{\prime}\) will be perpendicular to \(L: a x+b y+c=0\), meaning they will satisfy the equation \(L_{\perp}: b x-a y+\left(a P_{y}-b P_{x}\right)=0\).* We will find the middlepoint \(P_{m}\). \(L\) and \(L_{\perp}\) intercept at \(P_{m}\), so substituting \(L_{\perp}\) 's \(y\) to \(L\) gives:
\[
\begin{aligned}
& a \mathbf{x}+b\left(\frac{b \mathbf{x}+\left(a P_{y}-b P_{x}\right)}{a}\right)+c=0 \\
\Rightarrow & a \mathbf{x}+\frac{b^{2}}{a} \mathbf{x}+b P_{y}-\frac{b^{2}}{a} P_{x}+c=0 \\
\Longrightarrow & \left(a+\frac{b^{2}}{a}\right) \mathbf{x}=\frac{b^{2}}{a} P_{x}-c-b P_{y} \\
\Longrightarrow & \mathbf{x}=\left(\frac{\frac{b^{2}}{a} P_{x}-c-b P_{y}}{a+\frac{b^{2}}{a}}\right)
\end{aligned}
\]
\(P_{m_{y}}\) is found by substituting \(P_{m_{x}}\) to \(L\). Now, knowing length of \(P P_{m}=\) length of \(P_{m} P^{\prime}\), we can find \(P_{x}^{\prime}\) and \(P_{y}^{\prime}\) :
\[
\begin{aligned}
& P_{m_{x}}-P_{x}=P_{x}^{\prime}-P_{m_{x}} \\
& P_{m_{y}}-P_{y}=P_{y}^{\prime}-P_{m_{y}} \\
\Rightarrow & P_{x}^{\prime}=2 P_{m_{x}}-P_{x} \\
& P_{y}^{\prime}=2 P_{m_{y}}-P_{y}
\end{aligned}
\]

\section*{The code}
```

fn find_mirror(point: Point, l: Line) -> Point {
let (x, y) = point;
let (a, b, c) = l;
let (a, b, c) = (a as f64, b as f64, c as f64);
let b2a = (b * b) / a;
let mx = (b2a * x as f64 - c - b * y as f64) / (a + b2a);
let my = (-a * mx - c) / b;
let (mx, my) = (mx as i64,'my as i64);
(2 * mx - x, 2 * my - y)
}

```


The src/bin/mirror.rs example lets you drag a point and draws its reflection across a line.

\subsection*{15.1 Find perpendicular to line segment \(A B\) that passes through its middle (perpendicular bisector of \(A B\) )}

Find midpoint \(m_{A B}\) of \(A B\) :
\[
m_{A B}=\left(\frac{x_{a}+x_{b}}{2}, \frac{y_{a}+y+b}{2}\right)
\]

Slope of \(A B\) is \(m_{l}=\frac{y_{b}-y_{a}}{x_{b}-x_{a}}\)
Slope of perpendicular will be \(m_{p} \times m_{l} \Longrightarrow m_{p}=\frac{-1}{m_{l}}\)
Perpendicular satisfies line equation \(y=m x+c\) and passes through midpoint \(m_{A B}: c=y_{A B}-m_{p} \times x_{A B}\).
```

fn perp_bisector((x_a, y_a): Point, (x_b, y_b): Point) -> (i64, i64, i64) {

```
    let \(m_{-} a=\) if \(x_{-} b\) ! \(=y_{-} b\left\{\left(y_{-} a-y_{-} b\right)\right.\) as f64 \} else \{ -1.0\(\}\);
    let \(m_{-} b=\left(x_{-} b-x_{-} a\right)\) as \(f 64\);
    let ( \(x_{\_} m, y_{-}\)) \(=\left(\left(x_{-} b+x_{-} a\right)\right.\) as \(f 64 / 2.0,\left(y \_b+y_{-} a\right)\) as f64/2.0);
    // slope form \(y=m x+b\)
    // \(m_{-} o g=\left(y_{-} m-y_{-} n / x_{-} m-x_{-} n\right)\)
    \(/ / m_{-} \circ g * m \stackrel{ }{=}-1 \stackrel{>}{=} m=\left(x_{-} n-x_{-} m\right) /\left(y_{-} m-y_{-} n\right)=m_{-} b / m_{-} a\)
    // \(y=m x+b \Rightarrow y_{-} m=m * x_{-} m+b \Rightarrow b=y_{-} m-m * x_{-} m\)
    // slope form \(y=m x+b\)-> implicit form \(a x+\beta y=\gamma\)
    // \(y=m * x+y_{-} m-m * x_{-} m\)
        \(\mathrm{m}_{-} \mathrm{b}\) as i64,
        -m_a as i64,
        \(\left(\left(\left(y_{-} \mathrm{m} * \mathrm{~m}_{-} \mathrm{a}\right)-\left(\mathrm{m}_{-} \mathrm{b} * \mathrm{x}_{-} \mathrm{m}\right)\right)\right.\) as i64),
    )
\}

\section*{Chapter 16}

\section*{Angle sectioning}

\subsection*{16.1 Bisection}
\(\square\)

\subsection*{16.2 Trisection}

\section*{Add angle trisectioning}

If the title startled you, be assured it's not a joke. It's totally possible to trisect an angle... with a ruler. The adage that angle trisection is impossible refers to using only a compass and unmarked straightedge.

\section*{Chapter 17}

\section*{Drawing a line segment from its two endpoints}

For any line segment with any slope, pixels must be matched with the infinite amount of points contained in the segment. As shown in the following figure, a segment touches some pixels; we could fill them using an algorithm and get a bitmap of the line segment.


The algorithm presented here was first derived by Bresenham.[bresenham1996]In the Image implementation, it is used in the plot_line_width method.
```

pub fn plot_line_width(\&mut self, (x1, y1): (i64, i64), (x2, y2): (i64, i64)) {
/* Bresenham's line algorithm */
let mut d;
let mut x: i64;
let mut x: i64
let ax: 164;
let ax: 164;
let ay: i64;
let sx: i64;
let sy: i64;
let dx: i64;
let dy: i64;
dx = x2-x1;
ax = (dx * 2).abs();
ax = (dx * 2).abs() ; else {-1};
dy = y2 - y1;
ay = (dy * 2).abs();
sy = if dy > 0 { 1 } else { -1 };
x = x1;
let b = dx / dy;
let a = 1.
let double_d = (_wd * f64::sqrt((a * a + b * b) as f64)) as i64;
let delta = double_d / 2;
if ax > ay {
d = ay - ax / 2;

```
```

 loop {
 self.plot(x, y);
 if x == x2.
 }
 if d >= 全 {
 d = d - ax;
 l
 }
 } else { = ax - ay / 2.
 let delta = double_d / 3;
 loop {
 self.plot(x, y);
 if y == y2
 return;
    ```

```

 l
 }
 }
 }

```

Add some explanation behind the algorithm in Drawing a line segment from its two endpoints

\section*{Chapter 18}

\section*{Drawing line segments with width}
```

pub fn plot_line_width(\&mut self, (x1, y1): (i64, i64), (x2, y2): (i64, i64), _wd: f64) {
/* Bresenham's line algorithm */
let mut d;
let mut x: i64;
let mut y: i64;
let ax: i64
let ay: i64;
let sx: i64
let sy: i64
let dx: i64
let dy: i64;
dx = x2 - x1;
ax = (dx * 2).abs()
sx = if dx > 0 { 1 } else { -1 };
dy = y2 - y1;
ay = (dy * 2).abs();
sy = if dy > 0 { 1 } else { -1 };
x = x1;
let b = dx / dy
let a = 1; dy
let double_d = (_wd * f64::sqrt((a * a + b * b) as f64)) as i64;
let delta = double_d / 2;
if ax > ay {
d = ay - ax / 2;
loop {
self.plot(x, y);
let total = |_x| _x - (y * dx) / dy + (y1 * dx) / dy - x1;
let mut _x = x;
loop {
let t = total(_x);
if t < -1 * delta || t > delta {
break;
}
_x += 1;
self.plot(_x, y);
}
let mut _x = x;
loop {
let t = total(_x);
if t < -1 * dellta|| t > delta {
_x -= 1;
self.plot(_x, y)
}
M.r
x == x2,
}

```

```

 }
 \}
 } else {
 d = ax - ay / 2;
 let delta = double_d / 3;
 loop {
    ```
```

 self.plot(x, y);
 let total = |_x| _x - (y * dx) / dy + (y1 * dx) / dy - x1;
 let mut _x = x;
 loop
 let t = total(_x);
 if t < -1 * delta'|| t > delta {
 break;
 }
 _x += 1;
 self.plot(_x, y);
 }
 let mut _x = x;
 loop
 let t = total(_x);
 if t < -1 * delta || t > delta {
 break;
 } x -= 1;
 self.plot(_x, y);
 }
 }
 if y == y2 {
 return;
 if d > > = 0 { sx;
 }}\begin{array}{l}{y=y+sy;}\\{d=d + ax;}
 }
 }
 }

```

\section*{Chapter 19}

\section*{Intersection of two line segments}

Let points \(\mathbf{1}=\left(x_{1}, y_{1}\right), \mathbf{2}=\left(x_{2}, y_{2}\right), \mathbf{3}=\left(x_{3}, y_{3}\right)\) and \(\mathbf{4}=\left(x_{4}, y_{4}\right)\) and \(\mathbf{1 , 2}, 3,4\) two line segments they form. We wish to find their intersection:

First, get the equation of line \(L_{12}\) and line \(L_{34}\) from chapter Equations of a line.

Substitute points 3 and 4 in equation \(L_{12}\) to compute \(r_{3}=L_{12}(3)\) and \(r_{4}=\) \(L_{12}\) (4) respectively.

If \(r_{3} \neq 0, r_{4} \neq 0\) and \(\operatorname{sgn}\left(r_{3}\right)==\operatorname{sign}\left(r_{4}\right)\) the line segments don't intersect, so stop.

In \(L_{34}\) substitute point \(\mathbf{1}\) to compute \(r_{1}\), and do the same for point 2.
If \(r_{1} \neq 0, r_{2} \neq 0\) and \(\operatorname{sgn}\left(r_{1}\right)==\operatorname{sign}\left(r_{2}\right)\) the line segments don't intersect, so stop.

At this point, \(L_{12}\) and \(L_{34}\) either intersect or are equivalent. Find their intersection point. (See Intersection of two lines page 32)

\subsection*{19.1 Fast intersection of two line segments}

\section*{Part III}

\section*{Shapes}


In concave shapes you cannot draw a line segment connecting any two of its points without going outside the shape. In convex shapes you can.

\section*{Chapter 20}

\section*{Circles and Ellipses}

shapes

Parts of a circle. Figures reproduced from K. Morling - GEOMETRIC and ENGINEERING DRAWING, second edition, 1974

\subsection*{20.1 Equations of a circle and an ellipse}

\section*{Add Equations of a circle and an ellipse}

\subsection*{20.2 Constructions of Circles and Ellipses}

\subsection*{20.2.1 Construction with given center and radius/radiii.}

We present a very easy algorithm that can draw an ellipse with inputs center \(x_{c}, y_{c}\) and radii \(a, b\). An advantage of this algorithm is that at every step you are computing a point in all four quadrants due to symmetry, so, if you wish you can only draw specific quadrants and skip others.

To draw a circle with centre \(P=(x, y)\) and radius \(r\), you will need to call this algorithm with \(x_{c}=x, y_{c}=y\) and radii \(a=r, b=r\).

This code is included in the distributed library file in the Data representation chapter.
```

fn plot_circle(center: Point, r: i64) {
plot_ellipse(center, (r, r), [true, true, true, true])
}
fn plot_ellipse(
(xm, ym):(i64, i64),
(a, b): (i64, i64),
quadrants: [bool; 4],
) {
let mut x = -a;
let mut y = 0;
let mut e2 = b;
let mut dx = (1 + 2 * x) * e2 * e2;
let mut dy = x * x;
let mut err = dx + dy;
loop {
if quadrants[0] {
plot(xm - x, ym + y); /* I. Quadrant */
}
if quadrants[1] {
plot(xm + x, ym + y); /* II. Quadrant */
}
if quadrants[2] {
plot(xm + x, ym - y); /* III. Quadrant */
}
f quadrants[3] {
plot(xm - x, ym - y); /* IV. Quadrant */
}
e2 = 2* * err;
f e2 >= dx
x += 1;
err += b b * b;
//err += dx += 2*(long)b*b; } /* x step */
}
if e2<= dy {
y += 1;
dy += 2 * a * a;
err += dy;
//err += dy += 2*(long)a*a; } /* y step */
}
if x > > 0 { {
}
}
while y < b {
/* to early stop for flat ellipses with a=1, */
y += 1;
plot(xm, ym + y); /* -> finish tip of ellipse */
plot(xm, ym - y);
}
}

```

\subsection*{20.2.2 Circle from three given points}


The naïve way: Calculate the lines defined by the line segments created by taking a point and one of each of the rest. The order and pairings don't matter. The intersection point of their perpendiculars that pass through the middle of those line segments is the circle's center.

Find perpendicular bisector of line segment: See Find perpendicular to line segment \(A B\) that passes through its middle (perpendicular bisector of \(A B\) ) page 38

Find intersection point of lines: See Intersection of two lines page 32
The code:
src/bin/circle3points.rs:

This code file is a PDF attachment
```

let mut p_a = (35, 35);
let mut p_b = (128, 250);
let mut p_c = (179, 220);
let mut image = Image::new(WINDOW_WIDTH, WINDOW_WIDTH, 0, 0);
image.plot_circle(p_a, 3, 0.);
image.plot_circle(p_b, 3, 0.);
image.plot_circle(p_c, 3, 0.);
let perp1 = perp_bisector(p_a, p_b);
let perp2 = perp_bisector(p_b, p_c);
let centre = find_intersection(perp1, perp2);
let radius = distance_between_two_points(centre, p_a);
image.plot_line_width(p_a, p_b, 2.5);
image.plot_line_width(p_b, p_c, 2.5);
image.plot_line_width(p_c, p_a, 2.5);
image.plot_circle(centre, radius as i64, 2.0);
image.draw(\&mut buffer, BLACK, None, WINDOW_WIDTH);

```

\subsection*{20.2.3 Circle inscribed in given polygon (e.g. a triangle) as list of vertices}

Bisect any two angles and take the intersection point of the bisecting lines. This point, called the incentre is the centre of the circle and the distance of the centre from the line defined by any side is the radius.

\subsection*{20.2.4 Circumscribed circle of given regular polygon (e.g. a triangle) as list of vertices}

Just like with three points, take the perpendicular lines through the middle point of any of two sides. Their intersection point, called the circumcentre is the center of the circumscribed circle. The radius is the distance of the centre from any vertice.
20.2.5 Circle that passes through given point \(A\) and point \(B\) on line \(L\)
```

Add Circle that passes through given point A and point B on line L

```

\subsection*{20.2.6 Tangent line of given circle}

\section*{Add Tangent line of given circle}

\title{
20.2.7 Tangent line of given circle that passes through point \(P\)
}

Add Tangent line of given circle that passes through point \(P\)
20.2.8 Tangent line common to two given circles

Add Tangent line common to two given circles

\subsection*{20.3 Bounding circle}


A bounding circle is a circle that includes all the points in a given set. Usually we're interested in one of the smallest ones possible.


We can use the following methodology to find the bounding circle: start from two points and the circle they make up, and for each of the rest of the points check if the circle includes them. If not, make a bounding circle that includes every point up to the current one. To do this, we need some primitive operations.

We will need a way to construct a circle out of two points:

```

let p1 = points[0];
let p2 = points[1]
//The circle is determined by two points, P and Q. The center of the circle
|/at (P + Q)/2.0 and the radius is I(P - Q)/2.01
let d_2 = (
(((p1.0 + p2.0) / 2), (p1.1 + p2.1) / 2),
(distance_between_two_points(p1, p2) / 2.0),
);

```

And a way to make a circle out of three points:

```

fn min_circle_w_3_points(q1: Point, q2: Point, q3: Point) -> Circle {
let (ax, ay) = (q1.0 as f64, q1.1 as f64);
let (bx, by) = (q2.0 as f64, q2.1 as f64);
let (cx, cy) = (q3.0 as f64, q3.1 as f64);
let mut d = 2. * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by));
if d == 0.0 {
d = std::cmp::max(
std::cmp::max(
distance_between_two_points(q1, q2) as i64,
distance_between_two_points(q2, q3) as i64,
),
distance_between_two_points(q1, q3) as i64,
) as f64
}
let ux = ((ax * ax + ay * ay) * (by - cy)
+ (bx * bx + by * by) * (cy - ay)
+ (cx * cx + cy * cy) * (ay - by))
/ d;
let uy = ((ax * ax + ay * ay) * (cx - bx)
+(bx * bx + by * by) * (ax - cx)
+(cx * cx + cy * cy) * (bx - ax))
/ d;
let mut center = (ux as i64, uy as i64);
if center.0< 0 {
}
if center.1< 0 {
center.1 = 0;
}
let d = distance_between_two_points(center, q1);
(center, d)
}

```

The algorithm:
```

use bitmappers_companion::*;
use minifb::{Key, Window, WindowOptions};
use rand::seq::SliceRandom;
use rand::thread_rng;
use std::f64::consts::{FRAC_PI_2, PI};
include!("../me.xbm.rs");
const WINDOW_WIDTH: usize = 400;
const WINDOW_HEIGHT: usize = 400
pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {
let (x_k, y_k) = p_k;
let (x_l, y_l) = p_l;
let xlk = x_l - x-k;
f64::sqrt((xlk * xlk + ylk * ylk) as f64)
}
fn image_to_points(image: \&Image) -> Vec<Point> {
let mut ret = Vec::with_capacity(image.bytes.len());
for y in 0..(image.height as i64) {
for x in 0..(image.width as i64) {
if image.get(x, y) == Some(BLACK) {
ret.push((x, y));
}
}
}
}
type Circle = (Point, f64);
fn bc(image: \&Image) -> Circle {
let mut points = image_to_points(image);
points.shuffle(\&mut thread_rng());
min_circle(\&points)
}
fn min_circle(points: \& [Point]) -> Circle {
let mut points = points.to_vec();
points.shuffle(\&mut thread_rng());
let p1 = points[0];
let p2 = points[1];
//The circle is determined by two points, P and Q. The center of the
circle (/at (P is + Q)/2.0 and the radius is /(P - Q)/2.01
let d_2 =
(((p1.0 + p2.0) / 2), (p1.1 + p2.1) / 2),
(distance_between_two_points(p1, p2) / 2.0),
);
let mut d_prev = d_2;
for i in 2..points.len() {
let p_i = points[i];
if distance_between_two_points(p_i, d_prev.0) <= (d_prev.1) {
// then d_ i = d_ (i-1)
} else {
let new = min_circle_w_point(\&points[..i], p_i);
if distance_between_two_points(p_i, new.0) <= (new.1) {
d_prev = new;
}
}
}
d_prev
}
fn min_circle_w_point(points: \& [Point], q: Point) -> Circle {
let mut points = points.to_vec();
points.shuffle(\&mut thread_rng());
let p1 = points[0];
//The circle is determined by two points, P_1 and Q. The center of the
circle is
l/at (P_1 + Q)/2.0 and the radius is /(P_1 - Q)/2.0/
let d_1 =(
(((p1.0 + q.0) / 2),(p1.1 + q. 1) / 2),

```
```

(distance_between_two_points(p1, q) / 2.0),
);
let mut d_prev = d_1;
for j in 1..points.len() {
let p_j = points[j];
if distance_between_two_points(p_j, d_prev.0) <= (d_prev.1) {
//d_prev = d_prev;
} else {
let new = min_circle_w_points(\&points[..j], p_j, q);
if distance_between_two_points(p_j, new.0) <= (new.1) {
d_prev = new;
}
}
d
}
fn min_circle_w_points(points: \&[Point], q1: Point, q2: Point) -> Circle {
let mut points = points.to_vec();
let d_0 = (
(((q1.0 + q2.0) / 2), (q1.1 + q2.1) / 2),
(distance_between_two_points(q1, q2) / 2.0),
);
let mut d_prev = d_0;
for k in O..points.len() {
let p_k = points[k];
if distance_between_two_points(p_k, d_prev.0) <= (d_prev.1) {
} else {
let new = min_circle_w_3_points(q1, q2, p_k);
if distance_between_two_points(p_k, new.0)<= (new.1) {
d_prev = new;
}
}
d
}
fn min_circle_w_3_points(q1: Point, q2: Point, q3: Point) -> Circle {
let (ax, ay)= (q1.0 as f64, q1.1 as f64);
let (bx, by) = (q2.0 as f64, q2.1 as f64)
let (cx, cy) = (q3.0 as f64, q3.1 as f64);
let mut d = 2.* (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by));
if d == 0.0 {
d = std::cmp::max(
std::cmp::max(
distance_between_two_points(q1, q2) as i64,
distance_between_two_points(q2, q3) as i64,
),
distance_between_two_points(q1, q3) as i64,
) as f64
/ 2.;
}
let ux = ((ax * ax + ay * ay) * (by - cy)
+ (bx * bx + by * by) * (cy - ay)
+(cx * cx + cy * cy) * (ay - by))
/ d;
let uy = ((ax * ax + ay * ay) * (cx - bx)
+ (bx * bx + by * by) * (ax - cx)
+ (cx * cx + cy * cy) * (bx - ax))
/ d;
let mut center = (ux as i64, uy as i64);
if center.0<< 0 {
center.0 = 0;
}
if center.1 < 0 {
center.1 = 0;
}
let d = distance_between_two_points(center, q1);
(center, d)
}
fn main() {

```
```

let mut buffer: Vec<u32> = vec![WHITE; WINDOW_WIDTH * WINDOW_HEIGHT];
let mut window = Window::new(
Test - ESC to exit",
WINDOW_WIDTH,
WINDOW_HEIGHT,
WindowÖptions'{
title: true,
//borderless: true,
resize: true,
//transparency: true,
..WindowOptions::default()
},
)
.unwrap();
// Limit to max ~60 fps update rate
window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
let mut full = Image::new(WINDOW_WIDTH, WINDOW_HEIGHT, 0, 0);
let mut image = Image::new(ME_WIDTH, ME_HEIGHT, 45, 45);
image.bytes = bits_to_bytes(ME_BITS, ME_WIDTH);
let (center, r) = bc(\&image);
image.draw_outline();
full.plot_circle((center.0 + 45, center.1 + 45), r as i64, 0.);
while window.is_open() \&\& !window.is_key_down(Key::Escape) \&\&
|window.is_key_down(Key::Q) {
image.draw(\&mut buffer, BLACK, None, WINDOW_WIDTH);
full.draw(\&mut buffer, BLACK, None, WINDOW_WIDTH);
window
.update_with_buffer(\&buffer, WINDOW_WIDTH, WINDOW_HEIGHT)
unwrap();
let millis = std::time::Duration::from_millis(100);
std::thread::sleep(millis);
}

```
\}

\section*{Chapter 21}

\section*{Rectangles and parallelograms}

\subsection*{21.1 Squares}

\subsection*{21.1.1 From a center point}


Square from given center point \(P_{\text {center }}\) and radius \(r\)
```

fn plot_square(image: \&mut Image, center: Point, r: i64, wd: f64) {
let (cx, cy) = center;
let a = (cx - r, cy - r);
let b = (cx + r, cy - r);
let c = (cx + r, cy + r);
let d = (cx - r, cy + r);
image.plot_line_width(a, b, wd);
image.plot_line_width(b, c, wd);
image.plot_line_width(c, d, wd);

```
```

image.plot_line_width(d, a, wd);

```
\}

\subsection*{21.1.2 From a corner point}
```

fn calc_center_point(p: Point, top: bool, right: bool, r: i64) -> Point {
let (x, y) = p;
match (top, right) {
// Top right
(true, true) => (x - r, y + r),
// Top left
(true, false) => (x + r, y + r)
// Bottom right
(false, true) => (x - r, y - r),
// Bottom left
(false, false) => (x + r, y - r),
}
}
let r = 50;
let center_p = calc_center_point((155, 215), false, false, r);
//image.plot_circle(center_p, 3, 1.0);
plot_square(\&mut image, center_p, r, 1.0);

```

\subsection*{21.2 Rectangles}

\section*{Chapter 22 Triangles}
22.1 Making a triangle from a point and given angles

\section*{Add Making a triangle from a point and given angles}

\section*{Chapter 23}

\section*{Squircle}

\section*{0}
src/bin/squircle.rs:

\section*{shapes} de file is a PDF attachment

A squircle is a compromise between a square and a circle. It is purported to be more pleasing to the eye because the rounding corner is smoother than that of a circle arc (like the result of Join segments with round corners, page 71).

A way to describe a squircle is as a superellipse, meaning a generalization of the ellipse equation \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) by making the exponent parametric:
\[
|x-a|^{n}+|y-b|^{n}=1
\]

The squircle as a superellipse is usually defined for \(n=4\).

\section*{The code}
```

```
pub fn plot_squircle(
```

```
pub fn plot_squircle(
    image: &mut Image,
    image: &mut Image,
    (xm, ym):(i64, i64),
    (xm, ym):(i64, i64),
    width: i64
    width: i64
    width: i64,
    width: i64,
    n: i32,
    n: i32,
    n: _wd: f64,
    n: _wd: f64,
) {
) {
let r = width / 2;
    let h = height / 2;
    let h = height / 2;
    let mut prev_pos = (xm - w, xm - h);
    let mut prev_pos = (xm - w, xm - h);
    for i in 0..(2*r + 1) {
    for i in 0..(2*r + 1) {
        let x: i64 = (i - r) + w;
        let x: i64 = (i - r) + w;
        let y: i64 = ((r as f64).powi(n) - (i as f64 - r as f64).abs().powi(n)).powf(1. /
        let y: i64 = ((r as f64).powi(n) - (i as f64 - r as f64).abs().powi(n)).powf(1. /
n as f64)
n as f64)
            as i64
            as i64
            if i + ! = 0 {
            if i + ! = 0 {
                image.plot_line_width(prev_pos, (xm - x as i64, ym - y), _wd);
                image.plot_line_width(prev_pos, (xm - x as i64, ym - y), _wd);
        }
        }
        prev_pos = (xm - x as i64, ym - y);
        prev_pos = (xm - x as i64, ym - y);
    }
    }
    for i in (2*r)..(4*r + 1) {
```

 for i in (2*r)..(4*r + 1) {
    ```
```

 ash;
    ```
```

 ash;
    ```
```

 let x: i64 = (3 * r - i) + w;
 let y = (()r as f64).powi(n) - ((3*r - i) as f64).abs().powi(n)).powf(1. / n as
 f64))
 as i64
 image.plot_line_width(prev_pos, (xm - x as i64, ym - y), _wd);
 prev_pos = (xm - x as 164, ym - y)
 }
 }

```

\section*{Different values of \(n\)}

Increasing \(n\) in src/bin/squircle.rs makes the hyperellipse corners approach the square's.

Squircle - ESC to exit


Chapter 24
Polygons with rounded edges

\section*{Chapter 25}

\section*{Union, intersection and difference of polygons}

\footnotetext{
Add Union, intersection and difference of polygons
}

\title{
Chapter 26 \\ Centroid of polygon
}

\section*{Add Centroid of polygon}

\section*{Chapter 27 Polygon clipping}

\section*{Add Polygon clipping}

\section*{Chapter 28 Triangle filling}

The book's library methods include a fill_triangle method:
```

pub fn fill_triangle(\&mut self, q1: Point, q2: Point, q3: Point) {
let make_equation =
|p1: Point, p2: Point, p3: Point, a: \&mut i64, b: \&mut i64, c: \&mut i64| {
*a = p2.1 - p1.1;
*b = p1.0 - p2.0;
*c = p1.0 * p2.1' - p1.1 * p2.0;
if *a * p3.0 + *b * p3.1 + *c < 0 {
*a = -*a;
*b = -*b;
}
};
let mut x_min = q1.0;
let mut y_min = q1.1;
let mut x_max = q1.0;
let mut y_max = q1.1;
let mut a = [0_i64; 3];
let mut b = [0_i64; 3];
let mut c = [0_i64; 3];
// find bounding box
for q in [q1, q2, q3] {
x_min = std::cmp::min(x_min, q.0);
x_max = std::cmp::max(x_max, q.0);
y_min = std::cmp::min(y_min, q.1);
y_max = std::cmp::max(y_max, q.1);
}
make_equation(q1, q2, q3, \&mut a[0], \&mut b[0], \&mut c[0]);
make_equation(q1, q3, q2, \&mut a[1], \&mut b[1], \&mut c[1]);
make_equation(q2, q3, q1, \&mut a[2], \&mut b[2], \&mut c[2]);
let mut d0 = a[0] * x_min + b[0] * y_min + c[0];
let mut d1 = a[1] * x_min + b[1] * y_min + c[1];
let mut d2 = a[2] * x_min + b[2] * y_min + c[2];
for y in y_min..=y_max {
let mut f0 = dO}\mathrm{ ;
let mut f1 = d1;
d0 += b[0] ;
d1 += b[1]
d2 += b[2];
for x in x_min..=x_max {
if f0>= 0 \&\& f1 >= 0 \&\& f2 >= 0 {
self.plot(x, y);
}
f0 += a[0];
f1 += a[1];
}
}
}

```

\title{
Chapter 29 \\ Flood filling
}

Add Flood filling
[Shani-1980]

\section*{Part IV}

\section*{Curves}

\section*{Chapter 30} Seamlessly joining lines and curves

\title{
30.1 Centre of arc which blends with two given line segments at right angles
}

\section*{Add Centre of arc which blends with two given line segments at right angles}
30.2 Centre of arc which blends given line with given circle

\footnotetext{
Add Centre of arc which blends given line with given circle
}

\subsection*{30.3 Centre of arc which blends two given circles}
\(\square\)

\subsection*{30.4 Join segments with round corners}

\section*{[gragevol3-225]}

Round corners are everywhere around us. It is useful to know at least one method of construction. This specific method constructs a circle that has a common point with each given line segment, and calculates the arc that when added to the line segments they are smoothly joined. The excess length, since those common points will be before the end of the line segments, must be erased. Therefore, it's best to begin

with just the points of the two segments before starting to draw anything.

Since the segments intercept, the round corner will end up beneath the intersection. We wish to find a circle that has a common point with each segment and the arc made up from those points and the circle is the round corner we are after.


We are given 4 points, \(P_{1}, P_{2}\) and \(P_{3}, P_{4}\) that make up segments \(S_{1}\) and \(S_{2}\). Begin by finding the midpoints \(m_{1}\) and \(m_{2}\) of segments \(S_{1}\) and \(S_{2}\). These will be:
\[
\begin{aligned}
& m_{1}=\frac{P_{1}+P_{2}}{2} \\
& m_{2}=\frac{P_{3}+P_{4}}{2}
\end{aligned}
\]

Then, find the signed distances (i.e. don't use the absolute value of distance) \(d_{1}\) of \(m_{1}\) from \(S_{2}\) and \(d_{2}\) of \(m_{2}\) from \(S_{1}\).

Construct parallel lines \(l_{1}\) to \(S_{1}\) that is \(d_{1}\) pixels away. Repeat with \(l_{2}\) for \(S_{2}\) and \(d_{2}\).

Their intersection is the circle's center, \(P_{c}\).

The intersection of \(l_{1}, l_{2}\) with the two segments are the points where we should clip or extend the segments: \(q_{1}\) and \(q_{2}\).


The starting angle is found by calculating the angle of \(q_{1} P_{c}\) with the \(x\)-axis with the atan2 math library procedure.


The subtended angle* of the arc from the center \(P_{c}\) is found by calculating the dot product of \(q_{1} P_{c}\) and \(q_{2} P_{c}\) :
src/bin/roundcorner.rs:
The code:
This code file is a PDF attachment


The src/bin/roundcorner.rs example has two interactive lines and computes the joining fillet.

\section*{Chapter 31}

\section*{Parametric elliptical arcs}

\(P, Q\) and \(K\) are the arc's control points.

This algorithm* draws an elliptical arc starting from point \(P\) and ending at \(Q\). The control point \(K\) mirrors the ellipse's center \(J\) : drawing the quadrilateral \(P K Q J\) would appear as a lozenge, or rhombus.

The parameter \(t\) defines the step angle in radians and is limited to \(0<t \leq 1\). For each point calculation, the point is \(t\) radians away from the previous one, so

This code file is a PDF attachment to increase the amount of points calculated keep \(t\) small.
```

fn parellarc(image: \&mut Image, p: Point, q: Point, k: Point, t: f64) {
if t <= 0. | | t > 1. {
}
let mut v = ((k.0 - q.0) as f64, (k.1 - q.1) as f64);
let mut u = ((k.0 - p.0) as f64, (k.1 - p.1) as f64);
let j = ((p.0 as f64 - v.0 + 0.5), (p.1 as f64 - v.1 + 0.5));

```

\footnotetext{
*Graphics Gems III page 164
}
```

u =
(u.0 * f64::sqrt(1. - t * t * 0.25) - v.0 * t * 0.5),
(u.1 * f64::sqrt(1. - t * t * 0.25) - v.1 * t * 0.5),
);
let n = (std::f64::consts::FRAC_PI_2 / t).floor() as u64;
let mut prev_pos = p;
for _ in O..n
let x = (v.0 + j.0).round() as i64;
let y = (v.1 + j.1).round() as i64;
let new_point = (x, y);
image.plot_line_width(prev_pos, new_point, 1.);
prev_pos = new_point;
u.0 == v.0 * t;
v.0 += u.0 * t;
u.1 -= v.1 * t;
}

```
\}

Changing \(n\) to \(\frac{2 \pi}{t}\) draws the entire ellipse.

\section*{Chapter 32 B-spline}

\section*{Chapter 33}

\section*{Bézier curves}


\subsection*{33.1 Quadratic Bézier curves}

\subsection*{33.1.1 Drawing the quadratic}

To actually draw a curve, i.e. with points \(P_{1}, P_{2}, P_{3}\) we will use de Casteljau's algorithm. The gist behind the algorithm is that the length of the curve is visited at specific percentages (e.g. \(0 \%, 0.2 \%, 0.4 \% \ldots 99.8 \%, 100 \%\) ), meaning we will have that many steps, and for each such percentage \(t\) we calculate a line starting at the \(t\)-nth point of \(P_{1} P_{2}\) and ending at the \(t\)-nth point of \(P_{2} P_{3}\). The \(t\)-eth point of that line also belongs to the curve, so we plot it.




\[
t=0.7 \quad t=0.9
\]

Computing curve points for values of \(t \in[0,1]\) with de Casteljau's algorithm
src/bin/bezier.rs:

\section*{} Let's draw the curve \(P_{1}=(25,115), P_{2}=(225,180), P_{3}=(250,25)\)

The result:


The minifb library allows to track user input, so we detect user clicks and the mouse's position; thus we can interactively modify a curve with some modifications in the code:


Interactively modifying a curve with the bezier.rs tool.

We can go one step further and insult type designers* and use the tool to make src/bin/bezierglyph.rs: a font glyph.

Of course, it requires effort to match the beginning and end of each curve that makes up the glyph. That's why font designing tools have point snapping to ensure curve continuation. But for a quick font designer app prototype, it's good enough.

\footnotetext{
*who use cubic Béziers or other fancier curves (splines)
}


Left: A font glyph drawn with the interactive bezierglyph.rs tool. Right: the same glyph exported to SVG.

\subsection*{33.2 Cubic Bézier curves}

Add Cubic Bézier curves
33.3 Weighted Béziers
nat Wesematraces

\section*{Chapter 34}

Archimedean spiral

\section*{Add Archimedean spiral}


\section*{The code}
\(\square\)
```

pub fn arch(image: \&mut Image, center: Point) {
let a = 1.0_f64;
let b = 9.0_f64;
// max_angle = number of spirals * 2pi.
let max_angle = 5.0_f64 * 2.0_f64 * std::f64::consts::PI;
let mut theta = 0.0_f64;
let (dx, dy) = center;
let mut prev_point = center;
while theta < max_angle {

```
```

 theta = theta + 0.002_f64;
 let r = a + b * theta;
let x = (r * theta.cos()) as i64 + dx
let y = (r * theta.sin()) as i64 + dy;
image.plot_line_width(prev_point, (x, y), 1.0);
prev_point = (x, y);
}
}

```


\section*{Part V}

\section*{Vectors, matrices and transformations}

\section*{Chapter 35 Rotation of a bitmap}
\[
\begin{gathered}
p^{\prime}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right] \\
c=\cos \theta, s=\sin \theta, x_{p^{\prime}}=x_{p} c-y_{p} s, y_{p^{\prime}}=x_{p} s+y_{p} c .
\end{gathered}
\]

Let's load an xface. We will use bits_to_bytes (See Bits to byte pixels, src/bin/rotation.rs: page 15).

This code file is a PDF attachment
include!("dmr.rs");
const WINDOW_WIDTH: usize \(=100\);
const WINDOW_HEIGHT: usize \(=100\);
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image. bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);


This is the xface of dmr. Instead of displaying the bitmap, this time we will rotate it 0.5 radians. Setup our image first:
```

let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.draw_outline();
let dmr = bits_to_bytes(DMR_BITS, DMR_WIDTH);

```

And then, loop for each byte in dmr's face and apply the rotation transformation.
```

let angle = 0.5;
let c = f64::cos(angle);
let s = f64::sin(angle);
for y in 0..DMR_HEIGHT {
for x in O..DMR_WIDTH {
if dmr[y * DMR_WIDTH + x] == BLACK {
let x = x as f64;
let y = y as f64
let xr = x * c - y * s;
let yr = x * s + y * c;
image.plot(xr as i64, yr as i64);
}
}
}

```

The result:


We didn't mention in the beginning that the rotation has to be relative to a point and the given transformation is relative to the origin, in this case the upper left corner \((0,0)\). So dmr was rotated relative to the origin:

(the distance to the origin (actually 0 pixels) has been exaggerated for the sake of the example)

Usually, we want to rotate something relative to itself. The right point to choose is the centroid of the object.

If we have a list of \(n\) points, the centroid is calculated as:
\[
\begin{aligned}
& x_{c}=\frac{1}{n} \sum_{i=0}^{n} x_{i} \\
& y_{c}=\frac{1}{n} \sum_{i=0}^{n} y_{i}
\end{aligned}
\]

Since in this case we have a rectangle, the centroid has coordinates of half the width and half the height.

By subtracting the centroid from each point before we apply the transformation and then adding it back after we get what we want:

Here's it visually: First subtract the center point.
\((0,0)\)


Then, rotate.
\((0,0)\)

\[
\operatorname{rotated}_{\mathrm{Xc}}
\]

And subtract back to the original position.
\((0,0)\)


In code:
```

let center_point = ((DMR_WIDTH/2) as i64, (DMR_HEIGHT/2) as i64);
for y in 0..DMR_HEIGHT {
for x in 0..DMR WIDTH {
if dmr[y * DMR_WIDTH + x] == BLACK {
let x = (x as i64 -center_point.0) as f64;
let y = (y as i64 -center_point.1) as f64;
let xr = x * c - y * s;
image.plot(xr as i64+center_point.0,
yr as i64 + center_point.1);
}
}
}

```


\subsection*{35.1 Fast 2D Rotation}

\section*{Add Fast 2D Rotation}

\section*{Chapter 36}

\section*{\(90^{\circ}\) Rotation of a bitmap by parallel recursive subdivision}

\section*{Add \(90^{\circ}\) Rotation of a bitmap by parallel recursive subdivision}

\section*{Chapter 37}

\section*{Magnification/Scaling}


We want to magnify a bitmap without any smoothing. We define an Image scaled to the dimensions we want, and loop for every pixel in the scaled Image. Then, for each pixel, calculate its source in the original bitmap: if the coordinates in the scaled bitmap are \((x, y)\) then the source coordinates \((s x, s y)\) are:
\[
\begin{aligned}
& s x=\frac{x * \text { original.width }}{\text { scaled.width }} \\
& \text { sy }=\frac{y * \text { original.height }}{\text { scaled.height }}
\end{aligned}
\]

So, if ( \(s x, s y\) ) are painted, then \((x, y)\) must be painted as well.

\footnotetext{
let mut original = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
original.bytes = bits_to_bytes (DMR_BITS, DMR_WIDTH);
original.draw(\&mut buffer, BLACK, None, WINDOW_WIDTH);
let mut scaled = Image::new(DMR_WIDTH * 5, DMR_HEIGHT * 5, 100, 100);
let mut sx: i64; //source
let mut sy: i64; //source
let mut dx: i64; //destination
let mut dy: \(i 64=0 ; / /\) destination
}
```

let og_height = original.height as i64;
let og_width = original.width as i64;
let scaled_height = scaled.height as i64;
let scaled_width = scaled.width as i64
while dy < scaled_height {
sy = (dy * og_height) / scaled_height;
dx = 0;
while dx < scaled_width {
sx = (dx * og_width) / scaled_width;
if original.get(sx, sy) == Some(BLACK) {
scaled.plot(dx, dy);
dx
}
}
scaled.draw(\&mut buffer, BLACK, None, WINDOW_WIDTH);

```

\subsection*{37.1 Smoothing enlarged bitmaps}

Add Smoothing enlarged bitmaps

\subsection*{37.2 Stretching lines of bitmaps}
\begin{tabular}{|l|}
\hline Add Stretching lines of bitmaps \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

\section*{Chapter 38 Mirroring}

Add screenshots and figure and code in Mirroring
Mirroring to an axis is the transformation of one coordinate to its equidistant value across the axis:

To mirror a pixelacross the \(x\) axis, simply multiply its coordinates with the following matrix:
\[
M_{x}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\]

This results in the \(y\) coordinate's sign being flipped.
For \(y\)-mirroring, the transformation follows the same logic:
\[
M_{y}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
\]

\section*{Chapter 39}

\section*{Shearing}

Simple shearing is the transformation of one dimension by a distance proportional to the other dimension, In \(x\)-shearing (or horizontal shearing) only the \(x\) coordinate is affected, and likewise in \(y\)-shearing only \(y\) as well.

This code file is a PDF attachment


With \(l\) being equal to the desired tilt away from the \(y\) axis, the transformation is described by the following matrix:
\[
S_{x}=\left[\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right]
\]

Which is as simple as this function:
```

fn shear_x((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {
(x_p+(l*(y_p as f64)) as i64, y_p)
}

```


For \(y\)-shearing, we have the following:
\[
S_{y}=\left[\begin{array}{ll}
1 & 0 \\
l & 1
\end{array}\right]
\]
fn shear_y ((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) \{
(x_p, (l*(x_p as f64)) as i64 + y_p)
\}

A full example:
```

include!("../dmr.xbm.rs");
const WINDOW_WIDTH: usize = 200;
const WINDOW_HEIGHT: usize = 200;
fn shear_x((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {
(x_p+(l*(y_p as f64)) as i64, y_p)
}
fn shear_y((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {
(x_p, (l*(x_p as f64)) as i64 + y_p)
}
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);
image.draw_outline();

```
```

let l = -0.5;
let mut sheared = Image::new(DMR_WIDTH*2, DMR_HEIGHT*2, 25, 25);
for x in O..DMR_WIDTH {
for y in O..DMR_HEIGHT
if image.bytes[y * DMR_WIDTH + x] == BLACK {
let p = shear_x((x as i64,y as i64), l);
sheared.plot(p.0+(DMR_WIDTH/2) as i64, p.1+(DMR_HEIGHT/2) as i64);
}
}
}
sheared.draw_outline();

```

\subsection*{39.1 The relationship between shearing factor and angle}


Shearing is a delta movement in one dimension, thus the point before moving and the point after form an angle with the \(x\) axis. To move a point \((x, 0)\) by \(30^{\circ}\) forward we will have the new point \((x+f, 0)\) where \(f\) is the shear factor. These two points and ( \(x, h\) ) where \(h\) is the height of the bitmap form a triangle, thus the following are true:
\[
\cot \theta=\frac{h}{f}
\]

Therefore to find your factor for any angle \(\theta\) replace its cotangent in the following formula:
\[
f=\frac{h}{\cot \theta}
\]

For example to shear by \(-30^{\circ}\) (meaning the bitmap will move to the right, since rotations are always clockwise) we need \(\cot (-30 \mathrm{deg})=-\sqrt{3}\) and \(f=-\frac{h}{\sqrt{3}}\).

\title{
Chapter 40 Anamorphic transformations
}

\title{
Chapter 41 \\ Projections
}

\section*{Part VI}

\section*{Patterns}

\section*{Chapter 42}

\section*{The 17 Wallpaper groups}

\section*{Chapter 43}

Tilings and Tessellations

\subsection*{43.1 Truchet Tiling}

Truchet tiling is a repetition of four specific tiles in any specific order. It can be random or deterministic.


The four tiles


Random arrangement of truchet tiles using rand.

\section*{The code}
src/bin/floyddither.rs:

This code file is a PDF attachment
```

fn truchet(image: \&mut Image, size: i64) {
let mut x = 0;
let mut y = 0;
\# [repr(u8)]
enum Tile {
A =0,
C,
}
let tiles = [Tile::A, Tile::B, Tile::C, Tile::D];
let width = image.width as i64;
let height = image.height as i64;
let mut rng = thread_rng();
while y < height {
while x < width {
let t = tiles.choose(\&mut rng).unwrap();
let (a, b, c) = match t {
Tile::A => {
let a = (x, y + size);
let b = (x + size, y + size);
let c = (x + size, y);
(a, b, c)
}
Tile::B => {
let a = (x, y);
let b = (x, y + size);
let c = (x + size, y + size);
(a, b, c)
}
Tile::C => {
let a = (x, y);
let b = (x + size, y);
let c = (x, y + size);
(a, b, c)
}
Tile::D => {
let a = (x, y);
let b = (x + size, y);
let c = (x + size, y + size);
(a, b, c)
}
};
image.plot_line_width(a, b, 1.);
image.plot_line_width(b, c, 1.);
image.plot_line_width(c, a, 1.);
let c=((a.0 + b.0 + c.0)/3,(a.1 + b.1 +c.1) / 3);
image.flood_fill(c.0, c.1);
x += size;
}
x = 0;
y += size;
}
}

```

\subsection*{43.2 Pythagorean Tiling}

Pythagorean tiling consists of two squares, one filled and one blank and is described by the ratio of their sizes.


Pythagorean tiling using the golden ratio \(\phi \equiv \frac{1+\sqrt{5}}{2}\)

\section*{The code}
```

fn pythagorean(image: \&mut Image, size_a: i64, size_b: i64) {
let width = image.width as i64;
let height = image.height as i64;
let times = 4 * width / (size_a + size_b);
for i in -times..times {
let mut x = -width + i * (size_b - size_a);
let mut y = -height - i * (size_b + size_a);
while y< 2 * height \&\& x< < 2 * width {
// Draw the first smaller and filled rectangle
let a = (x, y);
let b = (x + size_a, y);
let c = (x + size_a, y + size_a);
let d = (x, y + size_a);
image.plot_line_width(a, b, 0.);
image.plot_line_width(b, c, 0.);
image.plot_line_width(c, d, 0.);
image.plot_line_width(d, a, 0.);
// Calculate the center point of the rectangle in order to start flood
cilling from it
let (cx, cy) = ((a.0 + b.0 + c.0 + d.0) / 4, (a.1 + b.1 + c.1 + d.1)/4);
image.flood_fill(cx, cy);
x += size_a;
// Draw the second bigger rectangle
let a = b;
let b = (a.0 + size_b, y);
let c = (a.0 + size_b, y + size_b);
let d = (a.0, y + size_b);
image.plot_line_width(a, b, 1.);
image.plot_line_width(b, c, 1.);
image.plot_line_width(c, d, 1.);

```
```

 image.plot_line_width(d, a, 1.);
 y += size_b;
 *)
    ```


The output of src/bin/pythagorean.rs

\subsection*{43.3 Hexagon tiling}

\section*{Chapter 44}

\section*{Space-filling Curves}

\section*{Add Space-filing Curves}

\subsection*{44.1 Hilbert curve}

\section*{Add Hilbert curve explanation}


Fig. 2.


The first six iterations of the Hilbert curve by Braindrain0000

Here's a simple algorithm for drawing a Hilbert curve.*
```

const HILBERT: \&[\&[usize]] = \&[
\&[22, 10, 16, 38]
\&[10, 22, 24, 48],
\& [44, 36, 30, 18]
\& [36, 44, 42, 28]
];
fn curve(img: \&mut Image, k: usize, order: i64, mut x: i64, mut y: i64) -> (i64, i64) {
const STEP SIZE: 164 = 5
let mut row: usize;
let mut direction: usize;
if order > 0 {
for j in 0..4 {
let step = HILBERT[k][j];
row = (step / 10) - 1;
let (xn, yn) = curve(img, row, order - 1, x, y);
x = xn;
direction = step % 10;
let prev = (x, y);
match direction {'
8 => {
}
2 => //N
y -= STEP_SIZE;
}
=> {

```
*Griffiths, J. G. (1985). Table-driven algorithms for generating space-filling curves. ComputerAided Design, 17(1), 37-4l. doi:10.1016/0010-4485(85) 90009-0
```

 // NE
 y -= STEP_SIZE;
 }
 0 \/ E
 //E += STEP_SIZE;
 }
 => {
 //SE
 x += STEP_SIZE;
 y += STEP_SIZE;
 }
 6 => {//S
 y += STEP_SIZE;
 }
 5 => {
 //SW
 y += STEP_SIZE;
 }
 4 => {//W
 //W -= STEP_SIZE;
 }
 => {//NW
 y -= STEP_SIZE;
 y -= STEP_SIZE;
 }
 other => unreachable!("{}", other),
 }
 img.plot_line_width(prev, (x, y), 0.);
 }
 }(x,y)
 }

```
let mut image = Image::new(WINDOW_WIDTH, WINDOW_WIDTH, 0, 0);
curve(\&mut image, 0, 7, 0, WINDOW_WIDTH as i64);


\subsection*{44.2 Sierpiński curve}


Switching the table from the Hilbert implementation to this:
```

const SIERP: \&[\&[usize]] = \&[
\&[17, 25, 33, 41],
\&[17, 20, 41, 18],
];

```

And switching two lines from the function to
```

- let step = HILBERT[k][j];
- row = (step / 10) - 1;
+ let step = SIERP[k][j];
+ row = (step / 10);

```

You can draw a Sierpinshi curve of order \(n\) by calling curve (\&mut image, \(0, \mathrm{n}+1,0,0\) ).

\subsection*{44.3 Peano curve}

\subsection*{44.4 Z-order curve}


Drawing the Z-order curve is really simple: first, have a counter variable that starts from zero and is incremented by one at each step. Then, you extract the \((x, y)\) coordinates the new step represents from its binary representation. The bits for the \(x\) coordinate are located at the odd bits, and for \(y\) at the even bits. I.e. the values are interleaved as bits in the value of the step:


Knowing this, implementing the drawing process will consist of computing the next step, drawing a line segment from the current step and the next, set the current step as the next and continue;
```

fn zcurve(img: \&mut Image, x_offset: i64, y_offset: i64) {
const STEP_SIZE: i64 = 8;
let mut sx: i64 = 0;
let mut sy: i64 = 0;
let mut b: u64 = 0;
let mut prev_pos = (sx + x_offset, sy + y_offset);
loop {
let next = b + 1;
sx =(next \& 1) as i64 > 0 {
sx += STEP_SIZE;
}
if next \& Ob100 > O { {
}
if next \& 0b10_000 > O {
}
if next \& Ob1_000_000 > 0 {
Sx += 8 *-STEP__SIZE;
}
if next \& 0b100 000 000
if next \& Ob100-000_000 > 0 {
}
if next \& 0b10_000_000-000 > 0 {
sx += 32 *-STE\overline{P}_SIZ̄E;
}
if next \& Ob1_000_000_000_000 > 0 {
sx += 64 * STËP_SİZE;
}
if next \& Ob100_000_000_000_000 > 0 {

```
```

 }
 if next & Ob10_000_000_000_000_000 > 0 {
 }
 if next & 0b1_000_000_000_000_000_000 > 0 {
 }
 sy = 0;
 if (next & 0b10) as i64 > 0 {
 sy += STEP_SIZE;
 }
 if next & Ob1_000 > 0 {
 }
 if next \& 0b100 000 > 0 {
sy += 4 * STEP_SIZE;
}
if next \& Ob10_000_000 > 0 {
Sy += 8 * STEP_SIZE;
}
if next \& 0b1_000_000_000 > 0 {
}
if next \& Ob100_000_000_000 > 0 {
sy += 32 * STTEP_SIZ\overline{E};
}
if next \& Ob10_000_000_000_000 > 0 {
Sy += 64 *- STEP_SIZ\overline{Z};
}
if next \& Ob1_000_000_000_000_000 > 0 {
sy += 128** ST̄EP_S̄IZE;
}
if next \& Ob100_000_000_000_000_000 > 0 {
sy += 256 *-STEP
if next \& Ob10_000_000_000_000_000_000 > 0 {
if next \& Ob10_O STEPP_SIZE;
}
img.plot_line_width(prev_pos, (sx + x_offset, sy + y_offset), 1.0);
if next == Ob111_1111_111_111_111_111_111_111 {
break;
}
if sx as usize > img.width \&\& sy as usize > img.height {
break;
}
prev_pos = (sx + x_offset, sy + y_offset);
}
}

```


\subsection*{44.5 Flowsnake curve}


The first three orders of the Gosper curve.

As a fractal curve, the flowsnake curve or Gosper curve is defined by a set of recursive rules for drawing it. There are four kind of rules and two of them define rulesets (i.e. they are non-terminal steps).
\[
\begin{aligned}
& A \mapsto A-B--B+A++A A+B- \\
& B \mapsto+A-B B--B-A++A+B
\end{aligned}
\]


The fourth order Gosper curve consists of a minimum of 2057 distinct line segments (but our algorithm draws 36015)

\section*{Chapter 45 \\ Flow fields}

\section*{Part VII}

\section*{Interaction}

\title{
Chapter 46 \\ Infinite panning and zooming
}

\section*{Chapter 47}

Nearest neighbours

\section*{Add Nearest neighbours}

\title{
Chapter 48 \\ Point in polygon
}

\section*{Part VIII}

\section*{Colors}

\section*{Chapter 49 Mixing colors}

\section*{Add Mixing colors}

\title{
Chapter 50 Bilinear interpolation
}

\section*{Add Bilinear interpolation}

\section*{Chapter 51 Barycentric coordinate blending}

\footnotetext{
Add Barycentric coordinate blending
}

\section*{Part IX}

\section*{Addendum}

\section*{Chapter 52}

Faster drawing a line segment from its two endpoints using symmetry

\section*{Chapter 53}

Composing monochrome bitmaps with separate alpha channel data

\section*{Chapter 54 Orthogonal connection of two points}

\title{
Chapter 55 \\ Faster line clipping
}

\section*{Chapter 56 Dithering}

\subsection*{56.1 Floyd-Steinberg}

detail of a standard test image, Sailboat on lake, with Floyd-Steinberg dithering


This code file is a PDF attachment
```

fn floyd(image: \&mut Image) {
let w = image.width;
let m = [(0, 7), (w - 2, 3), (w - 1, 5), (w, 1)];
let mut e = vec![0.0; w + 1].
let bytes = image
.bytes
.iter()
.map(|\&byte| {
let (r, g, b)= from_u32_rgb(byte); (0.587_f64 * (g as f64)) + (0.114 * (b as
4 f64));
let pix = g / 255.0 + {
e.push(0.);
e.remove(0)
};
let col = if pix > 0.5 { 1. } else { 0. };
let err = (pix - col) / 16.;
for (x, y) in m.iter() {
e[*x] += err * (*y as f64);
}f
f col.floor() as u32 == 1 {
} else {
BLACK
})
collect::<Vec<u32>>();
image.bytes = bytes;
}

```


\subsection*{56.2 Atkinson dithering}

detail of a standard test image, peppers, with Atkinson dithering


The following code implements Atkinson dithering:*
```

fn atkinson(image: \&mut Image) {
let w= image.width;
let mut e = vec![0.0;2*w];
let m = [0, 1, W-2, W-1, W, 2*W-1];
for byte in image.bytes.iter_mut() {
let (r,g,b) = from_u32_rgb(*byte);
let g:f64 = ((0.299*(r as f64))) + ((0.587_f64*(g as f64))) + ((0.114*(b as
4 f64)))
let pix = g/255.0 + { e.push(0.); e.remove(0)};
let col = if pix > 0.5 {1.} else { 0.};
let err = (pix-col)/8.;
for m in m.iter() {
e[*m] += err;
}
byte = if (col.floor() as u32 == 1) {
WHITE

```

\footnotetext{
*Algorithm taken from https://beyondloom.com/blog/dither.html
}
```

 else {{
 };
 }

```


\section*{Chapter 57 \\ Marching squares}
\[
\frac{\underline{z}}{\overline{3}}
\]

\section*{Bibliography}

\section*{Index}
alpha channel, 133
angle
between two lines, 30
bisectioning, 39
trisectioning, 39
area filling, see flood filling
Atkinson dithering, 139
bucket filling, see flood filling
centroid
polygon, 65
rectangle, 90
circle
bounding, 52
constructions, 47
equations, 47
out of three points, 49, 53
out of two points, 52
contour, see marching squares

\section*{curves}

Basis spline, 78
Bézier, 79
cubic, 84
quadratic, 79
weighted, 84
elliptical, 76
Flowsnake curve, 117
Hilbert curve, 111
Peano curve, 113
space-filling, 110
de Casteljau's algorithm, 80
distance
between two points, 21
moving a point, 22
point from a line, 27
dithering, 136
Atkinson, 139

Floyd-Steinberg, 137
ellipse
equations, 47
ellipses
constructions, 47
equidistant line, 34
flood filling, 68
triangle filling, 67
Flowsnake curve, 117
Floyd-Steinberg dithering, 137
Gosper curve, see Flowsnake curve
hexagon tiling, 109
Hilbert curve, 111
line
drawing, 26
equations, 23
equidistant, 34
intersection, 32
perpendicular, 29
reflection of point, 36
through point and slope, 23
through two points, 24
magnification, 94
marching squares, 141
midpoint, 34,72
mirroring, 96
point to line, 36
Peano curve, 113
perpendicular, 29
point
reflection on line, 36
polygon
boolean operations, 64
centroid, 65
clipping, 66
rounded edges, 63
smooth edges, 63
Pythagorean tiling, 107
reflection of point, 36
rotation, 88
scaling, 94
shearing, 97
skewing, see shearing smoothing, 95
stretching, 95
tiling, 104
hexagon, 109
Pythagorean, 107
Truchet, 105
triangle, 59
filling, 67
from point and angles, 59
Truchet tiling, 105
wallpaper groups, 103

\section*{About this text}

The text has been typeset in \(\mathrm{X}_{\mathrm{g}} \mathrm{AT} \mathrm{T}_{\mathrm{E}} \mathrm{X}\) using the book class and:
- Redaction for the main text.
- Fira Sans for referring to the programming language Rust .
- Redaction20 for referring to the words bitmap and pixels as a concept.

\section*{Todo list}
Add angle bisectioning ..... 39
Add angle trisectioning ..... 39
Add some explanation behind the algorithm in Drawing a line segment from its two endpoints ..... 41
Add Equations of a circle and an ellipse ..... 47
Add Circle that passes through given point A and point B on line \(L\) ..... 50
Add Tangent line of given circle ..... 50
Add Tangent line of given circle that passes through point \(P\) ..... 51
Add Tangent line common to two given circles ..... 51
Add Making a triangle from a point and given angles ..... 59
Add Polygons with rounded edges ..... 63
Add Union, intersection and difference of polygons ..... 64
Add Centroid of polygon ..... 65
Add Polygon clipping ..... 66
Add Triangle filling explanation ..... 67
Add Flood filling ..... 68
Add Seamlessly joining lines and curves ..... 70
Add Centre of arc which blends with two given line segments at right angles ..... 70
Add Centre of arc which blends given line with given circle ..... 70
Add Centre of arc which blends two given circles ..... 71
Add \(B\)-spline ..... 78
Add Cubic Bézier curves ..... 84
Add Weighted Béziers ..... 84
Add Archimedean spiral ..... 85
Add Fast 2D Rotation ..... 92
Add \(90^{\circ}\) Rotation of a bitmap by parallel recursive subdivision ..... 93
Add Smoothing enlarged bitmaps ..... 95
Add Stretching lines of bitmaps ..... 95
Add screenshots and figure and code in Mirroring ..... 96
Reproduce cover skull ..... 100
Add Projections ..... 101
Add The 17 Wallpaper groups ..... 103
Add Hexagon tiling ..... 109
Add Space-filling Curves ..... 110
Add Hilbert curve explanation ..... 111
Add Peano curve ..... 113
Add Flow fields ..... 119
Add Infinite panning and zooming ..... 123
Add Nearest neighbours ..... 124
Add Point in polygon ..... 125
Add Mixing colors ..... 128
Add Bilinear interpolation ..... 129
Add Barycentric coordinate blending ..... 130
Add Faster drawing a line segment from its two endpoints using symmetry ..... 132
Add Composing monochrome bitmaps with separate alpha channel data ..... 133
Add Orthogonal connection of two points ..... 134
Add Faster line clipping ..... 135```

