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Chapter 1
Data representation

The data structures we’re going to use is Point and Image. Image represents a
bitmap, although we will use full RGB colors for our points therefore the size of
a pixel in memory will be u8 instead of 1 bit.

Wewill work on the cartesian grid representing the framebuffer that will show
us the pixels. The origin of this grid (i.e. the center) is at (0, 0).

(0,0)

We will represent points as pairs of signed integers. When actually drawing
them though, negative values and values outside the window’s geometry will be
ignored (clipped). src/lib.rs:

This code file is a PDF
attachment

pub type Point = (i64, i64);
pub type Line = (i64, i64, i64);
pub const fn from_u8_rgb(r: u8, g: u8, b: u8) -> u32 {

let (r, g, b) = (r as u32, g as u32, b as u32);
(r << 16) | (g << 8) | b

}
pub const AZURE_BLUE: u32 = from_u8_rgb(0, 127, 255);
pub const RED: u32 = from_u8_rgb(157, 37, 10);
pub const WHITE: u32 = from_u8_rgb(255, 255, 255);

11
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pub const BLACK: u32 = 0;
pub struct Image {

pub bytes: Vec<u32>,
pub width: usize,
pub height: usize,
pub x_offset: usize,
pub y_offset: usize,

}
impl Image {

pub fn new(width: usize, height: usize, x_offset: usize, y_offset: usize) -> Self;
pub fn magick_open(path: &str, x_offset: usize, y_offset: usize) -> Result<Self,
Box<dyn Error>>;↪
pub fn from_xbm(path: &str, x_offset: usize, y_offset: usize) -> Result<Self, Box<dyn
Error>>;↪
pub fn draw(&self, buffer: &mut Vec<u32>, fg: u32, bg: Option<u32>, window_width:
usize);↪
pub fn draw_outline(&mut self);
pub fn clear(&mut self);
pub fn plot(&mut self, x: i64, y: i64);
pub fn get(&mut self, x: i64, y: i64) -> u32;
pub fn plot_ellipse(

&mut self,
(xm, ym): (i64, i64),
(a, b): (i64, i64),
quadrants: [bool; 4],
_wd: f64,

);
pub fn plot_line_width(&mut self, point_a: Point, point_b: Point, wd: f64);
pub fn flood_fill(&mut self, mut x: i64, y: i64);

}

An RGB color with coordinates (𝑟, 𝑔, 𝑏) where 𝑟, 𝑔, 𝑏 ∶ u8 values is repre-
sented as a u32 number with the red component shifted 16 bits to to the left, the
green component 8 bits, and the final 8 bits are the blue component. It’s essen-
tially laying the 𝑟, 𝑔, 𝑏 values sequentially and forming a 32 bit value out of three
8 bit values.

Our Image::plot(x,y) function sets the (𝑥, 𝑦) pixel to black. To do that we
set the element y * width + x of the Image's buffer to the black color as RGB.

12
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Chapter 2

Displaying pixels to your screen

A way to display an Image is to use the minifb crate which allows you to create
a window and draw pixels directly on it. Here’s how you could set it up: src/bin/introduction.rs:

This code file is a PDF
attachment

use bitmappers_companion::*;
use minifb::{Key, Window, WindowOptions};
const WINDOW_WIDTH: usize = 400;
const WINDOW_HEIGHT: usize = 400;
fn main() {

let mut buffer: Vec<u32> = vec![WHITE; WINDOW_WIDTH * WINDOW_HEIGHT];
let mut window = Window::new(

"Test - ESC to exit",
WINDOW_WIDTH,
WINDOW_HEIGHT,
WindowOptions {

title: true,
//borderless: true,
//resize: false,
//transparency: true,
..WindowOptions::default()

},
)
.unwrap();
// Limit to max ~60 fps update rate
window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
let mut image = Image::new(50, 50, 150, 150);
image.draw_outline();
image.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
while window.is_open()

&& !window.is_key_down(Key::Escape)
&& !window.is_key_down(Key::Q) {

window
.update_with_buffer(&buffer, WINDOW_WIDTH, WINDOW_HEIGHT)
.unwrap();

let millis = std::time::Duration::from_millis(100);
std::thread::sleep(millis);

}
}

Running this will show you something like this:

13
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Bydrawing each individual pixelwith theImage::plot andImage::plot_color
functions, we can draw any possible RGB picture of the buffer size. In this book’s
chapters, we will usually calculate pixels by using discrete calculations of each
pixels as integers, or by using rational values (with 64 bit floating point represen-
tation) and then calculating their integer values with the floor function. This
can also be done by casting an f64 type to i64 with as:

let val: f64 = 5.5;
let val: i64 = val as i64;
assert_eq!(5i64, val);

14
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Chapter 3
Bits to byte pixels

If weworkedwith 1 bit images (black andwhite) it could be amore space-efficient
representation to store the pixels as bits: 8 pixels in 1 byte. For this bookwe accept
that our images can have RGB colors. The xbm format stores pixels like that, and
we might wish to convert them to our representation.

Let’s define a way to convert bit information to a byte vector:

pub fn bits_to_bytes(bits: &[u8], width: usize) -> Vec<u32> {
let mut ret = Vec::with_capacity(bits.len() * 8);
let mut current_row_count = 0;
for byte in bits {

for n in 0..8 {
if byte.rotate_right(n) & 0x01 > 0 {

ret.push(BLACK);
} else {

ret.push(WHITE);
}
current_row_count += 1;
if current_row_count == width {

current_row_count = 0;
break;

}
}

}ret
}

15
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Chapter 4
Loading graphics files in Rust

The book’s library includes a method to load xbm files on runtime (see Includ-
ing xbm files in Rust for including them in your binary at compile time). If your
system has ImageMagick installed and the commands identify and magick
are in your PATH environment variable, you can use the Image::magick_open
method:

impl Image {...
pub fn magick_open(path: &str, x_offset: usize, y_offset: usize) -> Result<Self,
Box<dyn Error>>;↪ ...

}

It simply converts the image file you pass to it to raw bytes using the invocation
magick convert path RGB:- which prints raw RGB content to stdout.

If you have another way to load pictures such as your own code or a picture
format library crate, all you have to do is convert the pixel information to an
Image whose definition we repeat here:
pub struct Image {

pub bytes: Vec<u32>,
pub width: usize,
pub height: usize,
pub x_offset: usize,
pub y_offset: usize,

}

16
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Chapter 5

Including xbm files in Rust

The end of this chapter includes a short Rust program to automatically convert xbm
files to equivalent Rust code.

xbm files are C source code files that contain the pixel information for an image
asmacro definitions for the dimensions and a staticchar array for the pixels, with
each bit column representing a pixel. If the width dimension doesn’t have 8 as a
factor, the remaining bit columns are left blank/ignored.

They used to be a popular way to share user avatars in the old internet and
are also good material for us to work with, since they are small and numerous.
The following is such an image:

Then, we can convert the xbm file from C to Rust with the following transfor-
mations:

#define news_width 48
#define news_height 48
static char news_bits[] = {

to

const NEWS_WIDTH: usize = 48;
const NEWS_HEIGHT: usize = 48;
const NEWS_BITS: &[u8] = &[

And replace the closing } with ].
We can then include the new file in our source code:

include!("news.xbm.rs");

load the image:

17
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let mut image = Image::new(NEWS_WIDTH, NEWS_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(NEWS_BITS, NEWS_WIDTH);

and finally run it:

The following short program uses the regex crate to match on these simple
rules and print the equivalent code in stdout. You can use it like so:

cargo run --bin xbmtors -- file.xbm > file.xbm.rs

src/bin/xbmtors.rs:

This code file is a PDF
attachment

use regex;
use regex::Regex;
use std::fs::File;
use std::io::prelude::*;
fn main() {

let args = std::env::args().skip(1).collect::<Vec<String>>();
if args.len() != 1 {

println!("one argument expected, the xbm file path to convert.");
return;

}
let mut file = match File::open(&args[0]) {

Err(err) => panic!("couldn't open {}: {}", args[0], err),
Ok(file) => file,

};
let mut s = String::new();
if let Err(err) = file.read_to_string(&mut s) {

panic!("couldn't read {}: {}", args[0], err);
}
let re = Regex::new(

r"(?imx)
^\s*\x23\s*define\s+(?P<i>.+?)_width\s+(?P<w>\d\d*)$
\s*
^\s*\x23\s*define\s+.+?_height\s+(?P<h>\d\d*)$
\s*
^\s*static(\s+unsigned){0,1}\s+char\s+.+?_bits..\s*=\s*\{(?P<b>[^}]+)\};

",
)
.unwrap();

18
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let caps = re
.captures(&s)
.expect("Could not convert file, regex doesn't match :(");

let ident = caps.name("i").unwrap().as_str().to_uppercase();
let out = re.replace_all(&s, format!("const {i}_WIDTH: usize = $w;\nconst {i}_HEIGHT:
usize = $h;\nconst {i}_BITS: &[u8] = &[$b];", i = &ident));↪
println!("{}", out.trim());

}

19
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Part II

Points And Lines
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Chapter 6
Distance between two points

K

L

r

Given two points, 𝐾 and 𝐿, an elementary application of Pythagoras’ Theorem
gives the distance between them as

𝑟 = √(𝑥𝐿 − 𝑥𝐾)2 + (𝑦𝐿 − 𝑦𝐾)2 (6.1)

which is simply coded:

pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {
let (x_k, y_k) = p_k;
let (x_l, y_l) = p_l;
let xlk = x_l - x_k;
let ylk = y_l - y_k;
f64::sqrt((xlk*xlk + ylk*ylk) as f64)

}

21
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Chapter 7
Moving a point to a distance at an
angle

Moving a point 𝑃 = (𝑥, 𝑦) at distance 𝑑 at an angle of 𝑟 radians is solved with
simple trigonometry:

𝑃′ = (𝑥 + 𝑑 × cos 𝑟, 𝑦 + 𝑑 × sin 𝑟)

Why? The problem is equivalent to calculating the point of a circle with 𝑃 as
the center, 𝑑 the radius at angle 𝑟 and as we will later* see this is how the points
of a circle are calculated.

pub fn move_point(p: Point, d: f64, r: f64) -> Point {
let (x, y) = p;
(x + (d * f64::cos(r)).round() as i64, y + (d * f64::sin(r)).round() as i64)

}

*Equations of a circle and an ellipse page 47
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Chapter 8

Equations of a line

There are several ways to describe a linemathematically. We’ll list the convenient
ones for drawing pixels.

The equation that describes every possible line on a two dimensional grid
is the implicit form 𝑎𝑥 + 𝑏𝑦 = 𝑐, (𝑎, 𝑏) ≠ (0, 0). We can generate equivalent
equations by adding the equation to itself, i.e. 𝑎𝑥 + 𝑏𝑦 = 𝑐 ≡ 2𝑎𝑥 + 2𝑏𝑦 = 2𝑐 ≡
𝑎′𝑥+𝑏′𝑦 = 𝑐′, 𝑎′ = 2𝑎, 𝑏′ = 2𝑏, 𝑐′ = 2𝑐 asmany times aswewant. To ”minimize”
the constants 𝑎, 𝑏, 𝑐we want to satisfy the relationship 𝑎2 + 𝑏2 = 1, and thus can
convert the equivalent equations into one representative equation by multiplying
the two sides with 1

√𝑎2+𝑏2
; this is called the normalized equation.

The slope intercept form describes any line that intercepts the 𝑦 axis at 𝑏 ∈ ℝ
with a specific slope 𝑎:

𝑦 = 𝑎𝑥 + 𝑏

The parametric form…

8.1 Line through a point 𝑃 = (𝑥𝑝, 𝑦𝑝) and a slope𝑚

𝑦 − 𝑦𝑝 = 𝑚(𝑥 − 𝑥𝑝)

23
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8.2 Line through two points

L

M

N

It seems sufficient, given the coordinates of two points𝑀, 𝑁 , to calculate 𝑎, 𝑏 and
𝑐 to form a line equation:

𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

If the two points are not the same, they necessarily form such a line. To get
there, we start from expressing the line as parametric over 𝑡: at 𝑡 = 0 it’s at point
𝑀 and at 𝑡 = 1 it’s at point 𝑁:

𝑐 = 𝑐𝑀 + (𝑐𝑁 − 𝑐𝑀)𝑡, 𝑡 ∈ 𝑅, 𝑐 ∈ {𝑥, 𝑦}
𝑐 = 𝑐𝑀, 𝑡 ∈ 𝑅, 𝑐 ∈ {𝑥, 𝑦}

Substituting 𝑡 in one of the equations we get:

(𝑦𝑀 − 𝑦𝑁)𝑥 + (𝑥𝑁 − 𝑥𝑀)𝑦 + (𝑥𝑀𝑦𝑁 − 𝑥𝑁𝑦𝑀) = 0

Which is what we were after. We should finish by normalising what we found
with 1

√𝑎2+𝑏2
, but our coordinates are integers and have no decimal or floating

point accuracy.
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fn find_line(point_a: Point, point_b: Point) -> (i64, i64, i64) {
let (xa, ya) = point_a;
let (xb, yb) = point_b;
let a = yb - ya;
let b = xa - xb;
let c = xb * ya - xa * yb;
(a, b, c)

}

25
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Chapter 9
Drawing a line

fn plot_line(image: &mut Image, (a, b, c): (i64, i64, i64)) {
let x = if a != 0 { -1 * (c) / a } else { 0 };
let mut prev_point = (x, 0);
for y in 0..(WINDOW_HEIGHT as i64) {

// ax+by+c =0 =>
// x=(-c-by)/a
let x = if a != 0 { -1 * (c + b * y) / a } else { 0 };
let new_point = (x, y);
image.plot_line_width(prev_point, new_point, 1.0);
prev_point = new_point;

}
}

26
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Chapter 10

Distance from a point to a line

P

L

P1

P2

10.1 Using the implicit equation form

Let’s find the distance from a given point 𝑃 and a given line 𝐿. Let 𝑑 be the
distance between them. Bring 𝐿 to the implicit form 𝑎𝑥 + 𝑏𝑦 = 𝑐.

𝑑 =
|𝑎𝑥𝑝 + 𝑏𝑦𝑝 + 𝑐|

√𝑎2 + 𝑏2

10.2 Using an 𝐿 defined by two points 𝑃1, 𝑃2

With 𝑃 = (𝑥0, 𝑦0), 𝑃1 = (𝑥1, 𝑦1) and 𝑃2 = (𝑥2, 𝑦2).

𝑑 = |(𝑥2 − 𝑥1)(𝑦1 − 𝑦0) − (𝑥1 − 𝑥0)(𝑦2 − 𝑦1)|
√((𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2
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10.3 Using an 𝐿 defined by a point 𝑃𝑙 and angle
̂𝜃

𝑑 = ∣cos ( ̂𝜃)(𝑃𝑙𝑦 − 𝑦𝑝) − sin ( ̂𝜃)(𝑃𝑙𝑥 − 𝑃𝑥)∣

The code
This function uses the implicit form.This code is included in

the distributed library
file in the Data

representation chapter.
type Line = (i64, i64, i64);
pub fn distance_line_to_point((x, y): Point, (a, b, c): Line) -> f64 {

let d = f64::sqrt((a * a + b * b) as f64);
if d == 0.0 {

0.
} else {

(a * x + b * y + c) as f64 / d
}

}
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Chapter 11
Perpendicular lines

11.1 Find perpendicular to line that passes through
given point

Now, we wish to find the equation of the line that passes through 𝑃 and is per-
pendicular to 𝐿. Let’s call it 𝐿⊥. 𝐿 in implicit form is 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0. The
perpendicular will be:

𝐿⊥ ∶ 𝑏𝑥 − 𝑎𝑦 + (𝑎𝑃𝑦 − 𝑏𝑃𝑥) = 0

The code
This code is included in
the distributed library
file in the Data
representation chapter.

type Line = (i64, i64, i64);
fn perpendicular((a, b, c): Line, p: Point) -> Line {

(b, -1 * a, a * p.1 - b * p.0)
}

11.2 Find point in line that belongs to the perpen-
dicular of given point

The code
This code is included in
the distributed library
file in the Data
representation chapter.

fn point_perpendicular((a, b, c): Line, p: Point) -> Point {
let d = (a * a + b * b) as f64;
if d == 0. {

return (0, 0);
}
let cp = a * p.1 - b * p.0;
(

((-a * c - b * cp) as f64 / d) as i64,
((a * cp - b * c) as f64 / d) as i64,

)
}
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Chapter 12

Angle between two lines

By angle we mean the angle formed by the two directions of the lines; and direc-
tion vectors start from the origin (in the figure, they are the red arrows). So if we
want any of the other three angles, we already know them from basic geometry
as shown in the figure above.

If you prefer using the implicit equation, bring the two lines 𝐿1 and 𝐿2 to that
form (𝑎1𝑥 + 𝑏1𝑦 + 𝑐 = 0 and 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2 = 0) and you can directly find ̂𝜃
with the formula:

̂𝜃 = arccos
𝑎1𝑎2 + 𝑏1𝑏2

√(𝑎2
1 + 𝑏2

1) (𝑎2
2 + 𝑏2

2)
For the following parametric equations of 𝐿1, 𝐿2:

𝐿1 = ({𝑥 = 𝑥1 + 𝑓1𝑡}, {𝑦 = 𝑦1 + 𝑔1𝑡})
𝐿2 = ({𝑥 = 𝑥2 + 𝑓2𝑠}, {𝑦 = 𝑦2 + 𝑔2𝑠})

the formula is:
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̂𝜃 = arccos
𝑓1𝑓2 + 𝑔1𝑔2

√(𝑓 2
1 + 𝑔2

1) (𝑓 2
2 + 𝑔2

2)

The code:

src/bin/anglebetweenlines.rs:

This code file is a PDF
attachment

fn find_angle((a1, b1, c1): (i64, i64, i64), (a2, b2, c2): (i64, i64, i64)) -> f64 {
let nom = (a1 * a2 + b1 * b2) as f64;
let denom = ((a1 * a1 + b1 * b1) * (a2 * a2 + b2 * b2)) as f64;
f64::acos(nom / f64::sqrt(denom))

}

The src/bin/anglebetweenlines.rs example has two interactive lines and
computes their angle with 64bit floating point accuracy.
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Chapter 13
Intersection of two lines

If the lines 𝐿1, 𝐿2 are in implicit form (𝑎1𝑥+𝑏1𝑦+𝑐 = 0 and 𝑎2𝑥+𝑏2𝑦+𝑐2 = 0),
the result comes after checking if the lines are parallel (in which case there’s no
single point of intersection):

𝑎1𝑏2 − 𝑎2𝑏1 ≠ 0

If they are not parallel, 𝑃 is:

𝑃 = ( 𝑏1𝑐2 − 𝑏2𝑐1
𝑎1𝑏2 − 𝑎2𝑏1

, 𝑎2𝑐1 − 𝑎1𝑐2
𝑎1𝑏2 − 𝑎2𝑏1

)

The code:

src/bin/lineintersection.rs:

This code file is a PDF
attachment

fn find_intersection((a1, b1, c1): (i64, i64, i64), (a2, b2, c2): (i64, i64, i64)) ->
Option<Point> {↪
let denom = a1 * b2 - a2 * b1;
if denom == 0 {

return None;
}
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Some(((b1 * c2 - b2 * c1) / denom, (a2 * c1 - a1 * c2) / denom))
}

The src/bin/lineintersection.rs example has two interactive lines and
computes their point of intersection.
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Chapter 14

Line equidistant from two points

Let’s name this line 𝐿. From previous chapter* we know how to get the line 𝐿
that’s created by the two points𝑀 and 𝑁:

𝐿 ∶ (𝑦𝑀 − 𝑦𝑁)𝑥 + (𝑥𝑁 − 𝑥𝑀)𝑦 + (𝑥𝑀𝑦𝑁 − 𝑥𝑁𝑦𝑀) = 0

We need the perpendicular line over the midpoint of 𝐿.† The midpoint also sat-
isfies 𝐿’s equation. The midpoint’s coordinates are intuitively:

𝑃𝑚𝑖𝑑 = (𝑥𝑀 + 𝑥𝑁
2 , 𝑦𝑀 + 𝑦𝑁

2 )

The perpendicular’s 𝐿⊥ equation is

𝐿𝐸𝑄 = 𝐿⊥ ∶ 𝑦𝑥 − 𝑎𝑦 + (𝑎𝑃𝑚𝑖𝑑𝑦 − 𝑏𝑃𝑚𝑖𝑑𝑥) = 0

The code:
src/bin/equidistant.rs:

This code file is a PDF
attachment

fn find_equidistant(point_a: Point, point_b: Point) -> (i64, i64, i64) {
let (xa, ya) = point_a;
let (xb, yb) = point_b;
let midpoint = ((xa + xb) / 2, (ya + yb) / 2);
let al = ya - yb;
let bl = xb - xa;
// If we had subpixel accuracy, we could do:
//assert_eq!(al*midpoint.0+bl*midpoint.1, -cl);

*See Line through two points, page 24
†See Perpendicular lines, page 29
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let a = bl;
let b = -1 * al;
let c = (al * midpoint.1) - (bl * midpoint.0);
(a, b, c)

}

The src/bin/equidistant.rs example has two interactive points and
computes their 𝐿𝐸𝑄.
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Chapter 15

Reflection of point on line

P

P'

L: ax+
by+c=0

Pm

Line 𝑃𝑃′ will be perpendicular to 𝐿 ∶ 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, meaning they will satisfy
the equation 𝐿⊥ ∶ 𝑏𝑥 − 𝑎𝑦 + (𝑎𝑃𝑦 − 𝑏𝑃𝑥) = 0.* Wewill find the middlepoint 𝑃𝑚·
𝐿 and 𝐿⊥ intercept at 𝑃𝑚, so substituting 𝐿⊥’s 𝑦 to 𝐿 gives:

𝑎x+ 𝑏 (
𝑏x+ (𝑎𝑃𝑦 − 𝑏𝑃𝑥)

𝑎 ) + 𝑐 = 0

⟹ 𝑎x+ 𝑏2

𝑎 x+ 𝑏𝑃𝑦 − 𝑏2

𝑎 𝑃𝑥 + 𝑐 = 0

⟹ (𝑎 + 𝑏2

𝑎 )x = 𝑏2

𝑎 𝑃𝑥 − 𝑐 − 𝑏𝑃𝑦

⟹ x = ⎛⎜⎜
⎝

𝑏2
𝑎 𝑃𝑥 − 𝑐 − 𝑏𝑃𝑦

𝑎 + 𝑏2
𝑎

⎞⎟⎟
⎠

𝑃𝑚𝑦 is foundby substituting𝑃𝑚𝑥 to𝐿. Now, knowing length of 𝑃𝑃𝑚 = length of 𝑃𝑚𝑃′,
we can find 𝑃′𝑥 and 𝑃′𝑦:

*See Perpendicular lines, page 29
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𝑃𝑚𝑥 − 𝑃𝑥 = 𝑃′𝑥 − 𝑃𝑚𝑥

𝑃𝑚𝑦 − 𝑃𝑦 = 𝑃′𝑦 − 𝑃𝑚𝑦

⟹ 𝑃′𝑥 = 2𝑃𝑚𝑥 − 𝑃𝑥
𝑃′𝑦 = 2𝑃𝑚𝑦 − 𝑃𝑦

The code
src/bin/mirror.rs:

This code file is a PDF
attachment

fn find_mirror(point: Point, l: Line) -> Point {
let (x, y) = point;
let (a, b, c) = l;
let (a, b, c) = (a as f64, b as f64, c as f64);
let b2a = (b * b) / a;
let mx = (b2a * x as f64 - c - b * y as f64) / (a + b2a);
let my = (-a * mx - c) / b;
let (mx, my) = (mx as i64, my as i64);
(2 * mx - x, 2 * my - y)

}

The src/bin/mirror.rs example lets you drag a point and draws its
reflection across a line.
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15.1 Findperpendicular to line segment𝐴𝐵 that passes
through its middle (perpendicular bisector of
𝐴𝐵)

Find midpoint𝑚𝐴𝐵 of 𝐴𝐵:

𝑚𝐴𝐵 = (𝑥𝑎 + 𝑥𝑏
2 , 𝑦𝑎 + 𝑦 + 𝑏

2 )

Slope of 𝐴𝐵 is𝑚𝑙 = 𝑦𝑏−𝑦𝑎
𝑥𝑏−𝑥𝑎

Slope of perpendicular will be𝑚𝑝 × 𝑚𝑙 ⟹ 𝑚𝑝 = −1
𝑚𝑙

Perpendicular satisfies line equation 𝑦 = 𝑚𝑥+𝑐 and passes through midpoint
𝑚𝐴𝐵: 𝑐 = 𝑦𝐴𝐵 − 𝑚𝑝 × 𝑥𝐴𝐵.

fn perp_bisector((x_a, y_a): Point, (x_b, y_b): Point) -> (i64, i64, i64) {
let m_a = if x_b != y_b { (y_a - y_b) as f64 } else { -1.0 };
let m_b = (x_b - x_a) as f64;
let (x_m, y_m) = ((x_b + x_a) as f64 / 2.0, (y_b + y_a) as f64 / 2.0);
// slope form y=mx+b
// m_og = (y_m - y_n / x_m - x_n)
// m_og * m = -1 => m = (x_n - x_m) / (y_m - y_n) = m_b / m_a
//
// y = mx+b => y_m = m*x_m + b => b = y_m - m * x_m
//
// slope form y=mx+b -> implicit form αx+βy=γ
// y = m*x + y_m - m* x_m
(

m_b as i64,
-m_a as i64,
(((y_m * m_a) - (m_b * x_m)) as i64),

)
}
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Chapter 16
Angle sectioning

16.1 Bisection
Add angle bisectioning

16.2 Trisection
Add angle trisectioning

If the title startled you, be assured it’s not a joke. It’s totally possible to trisect
an angle… with a ruler. The adage that angle trisection is impossible refers to
using only a compass and unmarked straightedge.
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Chapter 17
Drawing a line segment from its two
endpoints

For any line segment with any slope, pixels must be matched with the infinite
amount of points contained in the segment. As shown in the following figure,
a segment touches some pixels; we could fill them using an algorithm and get a
bitmap of the line segment.

K

L

The algorithmpresented herewas first derived byBresenham.[bresenham1996]In
the Image implementation, it is used in the plot_line_widthmethod.
pub fn plot_line_width(&mut self, (x1, y1): (i64, i64), (x2, y2): (i64, i64)) {

/* Bresenham's line algorithm */
let mut d;
let mut x: i64;
let mut y: i64;
let ax: i64;
let ay: i64;
let sx: i64;
let sy: i64;
let dx: i64;
let dy: i64;
dx = x2 - x1;
ax = (dx * 2).abs();
sx = if dx > 0 { 1 } else { -1 };
dy = y2 - y1;
ay = (dy * 2).abs();
sy = if dy > 0 { 1 } else { -1 };
x = x1;
y = y1;
let b = dx / dy;
let a = 1;
let double_d = (_wd * f64::sqrt((a * a + b * b) as f64)) as i64;
let delta = double_d / 2;
if ax > ay {

d = ay - ax / 2;
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loop {
self.plot(x, y);
if x == x2 {return;
}
if d >= 0 {y = y + sy;

d = d - ax;
}x = x + sx;
d = d + ay;

}
} else {

d = ax - ay / 2;
let delta = double_d / 3;
loop {

self.plot(x, y);
if y == y2 {

return;
}
if d >= 0 {x = x + sx;

d = d - ay;
}y = y + sy;
d = d + ax;

}
}

}

Add some explanation behind the algorithm in Drawing a line segment from its two endpoints
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Chapter 18

Drawing line segments with width

pub fn plot_line_width(&mut self, (x1, y1): (i64, i64), (x2, y2): (i64, i64), _wd: f64) {
/* Bresenham's line algorithm */
let mut d;
let mut x: i64;
let mut y: i64;
let ax: i64;
let ay: i64;
let sx: i64;
let sy: i64;
let dx: i64;
let dy: i64;
dx = x2 - x1;
ax = (dx * 2).abs();
sx = if dx > 0 { 1 } else { -1 };
dy = y2 - y1;
ay = (dy * 2).abs();
sy = if dy > 0 { 1 } else { -1 };
x = x1;
y = y1;
let b = dx / dy;
let a = 1;
let double_d = (_wd * f64::sqrt((a * a + b * b) as f64)) as i64;
let delta = double_d / 2;
if ax > ay {

d = ay - ax / 2;
loop {

self.plot(x, y);
{

let total = |_x| _x - (y * dx) / dy + (y1 * dx) / dy - x1;
let mut _x = x;
loop {

let t = total(_x);
if t < -1 * delta || t > delta {

break;
}
_x += 1;
self.plot(_x, y);

}
let mut _x = x;
loop {

let t = total(_x);
if t < -1 * delta || t > delta {

break;
}
_x -= 1;
self.plot(_x, y);

}
}
if x == x2 {return;
}
if d >= 0 {y = y + sy;

d = d - ax;
}x = x + sx;
d = d + ay;

}
} else {

d = ax - ay / 2;
let delta = double_d / 3;
loop {
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self.plot(x, y);
{

let total = |_x| _x - (y * dx) / dy + (y1 * dx) / dy - x1;
let mut _x = x;
loop {

let t = total(_x);
if t < -1 * delta || t > delta {

break;
}
_x += 1;
self.plot(_x, y);

}
let mut _x = x;
loop {

let t = total(_x);
if t < -1 * delta || t > delta {

break;
}
_x -= 1;
self.plot(_x, y);

}
}
if y == y2 {

return;
}
if d >= 0 {x = x + sx;

d = d - ay;
}y = y + sy;
d = d + ax;

}
}

}
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Chapter 19
Intersection of two line segments

Let points 1 = (𝑥1, 𝑦1), 2 = (𝑥2, 𝑦2), 3 = (𝑥3, 𝑦3) and 4 = (𝑥4, 𝑦4) and 1,2, 3,4
two line segments they form. We wish to find their intersection:

First, get the equation of line 𝐿12 and line 𝐿34 from chapter Equations of a
line.

Substitute points 3 and 4 in equation 𝐿12 to compute 𝑟3 = 𝐿12(3) and 𝑟4 =
𝐿12(4) respectively.

If 𝑟3 ≠ 0, 𝑟4 ≠ 0 and 𝑠𝑔𝑛(𝑟3) == 𝑠𝑖𝑔𝑛(𝑟4) the line segments don’t intersect,
so stop.

In 𝐿34 substitute point 1 to compute 𝑟1, and do the same for point 2.

If 𝑟1 ≠ 0, 𝑟2 ≠ 0 and 𝑠𝑔𝑛(𝑟1) == 𝑠𝑖𝑔𝑛(𝑟2) the line segments don’t intersect,
so stop.

At this point, 𝐿12 and 𝐿34 either intersect or are equivalent. Find their inter-
section point. (See Intersection of two lines page 32)

19.1 Fast intersection of two line segments
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Part III

Shapes
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In concave shapes you cannot draw a line segment connecting any two of its
points without going outside the shape. In convex shapes you can.
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Chapter 20
Circles and Ellipses

Parts of a circle. Figures reproduced from K. Morling - GEOMETRIC and ENGINEERING DRAWING, second edition,

1974

20.1 Equations of a circle and an ellipse
Add Equations of a circle and an ellipse

20.2 Constructions of Circles and Ellipses
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20.2.1 Construction with given center and radius/radiii.

We present a very easy algorithm that can draw an ellipse with inputs center
𝑥𝑐, 𝑦𝑐 and radii 𝑎, 𝑏. An advantage of this algorithm is that at every step you are
computing a point in all four quadrants due to symmetry, so, if you wish you can
only draw specific quadrants and skip others.

To draw a circle with centre 𝑃 = (𝑥, 𝑦) and radius 𝑟, you will need to call this
algorithm with 𝑥𝑐 = 𝑥, 𝑦𝑐 = 𝑦 and radii 𝑎 = 𝑟, 𝑏 = 𝑟.

This code is included in
the distributed library

file in the Data
representation chapter.

fn plot_circle(center: Point, r: i64) {
plot_ellipse(center, (r, r), [true, true, true, true])

}
fn plot_ellipse(

(xm, ym): (i64, i64),
(a, b): (i64, i64),
quadrants: [bool; 4],

) {
let mut x = -a;
let mut y = 0;
let mut e2 = b;
let mut dx = (1 + 2 * x) * e2 * e2;
let mut dy = x * x;
let mut err = dx + dy;
loop {

if quadrants[0] {
plot(xm - x, ym + y); /* I. Quadrant */

}
if quadrants[1] {

plot(xm + x, ym + y); /* II. Quadrant */
}
if quadrants[2] {

plot(xm + x, ym - y); /* III. Quadrant */
}
if quadrants[3] {

plot(xm - x, ym - y); /* IV. Quadrant */
}
e2 = 2 * err;
if e2 >= dx {

x += 1;
dx += 2 * b * b;
err += dx;
//err += dx += 2*(long)b*b; } /* x step */

}
if e2 <= dy {

y += 1;
dy += 2 * a * a;
err += dy;
//err += dy += 2*(long)a*a; } /* y step */

}
if x > 0 {

break;
}

}
while y < b {

/* to early stop for flat ellipses with a=1, */
y += 1;
plot(xm, ym + y); /* -> finish tip of ellipse */
plot(xm, ym - y);

}
}
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20.2.2 Circle from three given points

The naïve way: Calculate the lines defined by the line segments created by taking
a point and one of each of the rest. The order and pairings don’t matter. The
intersection point of their perpendiculars that pass through the middle of those
line segments is the circle’s center.

Find perpendicular bisector of line segment: See Find perpendicular to line seg-
ment 𝐴𝐵 that passes through its middle (perpendicular bisector of 𝐴𝐵) page 38
Find intersection point of lines: See Intersection of two lines page 32

src/bin/circle3points.rs:

This code file is a PDF
attachment

The code:

let mut p_a = (35, 35);
let mut p_b = (128, 250);
let mut p_c = (179, 220);
let mut image = Image::new(WINDOW_WIDTH, WINDOW_WIDTH, 0, 0);
image.plot_circle(p_a, 3, 0.);
image.plot_circle(p_b, 3, 0.);
image.plot_circle(p_c, 3, 0.);
let perp1 = perp_bisector(p_a, p_b);
let perp2 = perp_bisector(p_b, p_c);
let centre = find_intersection(perp1, perp2);
let radius = distance_between_two_points(centre, p_a);
image.plot_line_width(p_a, p_b, 2.5);
image.plot_line_width(p_b, p_c, 2.5);
image.plot_line_width(p_c, p_a, 2.5);
image.plot_circle(centre, radius as i64, 2.0);
image.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
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20.2.3 Circle inscribed in given polygon (e.g. a triangle) as
list of vertices

Bisect any two angles and take the intersection point of the bisecting lines. This
point, called the incentre is the centre of the circle and the distance of the centre
from the line defined by any side is the radius.

20.2.4 Circumscribed circle of given regular polygon (e.g. a
triangle) as list of vertices

Just like with three points, take the perpendicular lines through the middle point
of any of two sides. Their intersection point, called the circumcentre is the center
of the circumscribed circle. The radius is the distance of the centre from any
vertice.

20.2.5 Circle that passes through given point Α and point Β
on line 𝐿

Add Circle that passes through given pointΑ and pointΒ on line𝐿

20.2.6 Tangent line of given circle

Add Tangent line of given circle

50



shapes

20.2.7 Tangent line of given circle that passes through point
𝑃

Add Tangent line of given circle that passes through point𝑃

20.2.8 Tangent line common to two given circles

Add Tangent line common to two given circles
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20.3 Bounding circle

src/bin/boundingcircle.rs:

This code file is a PDF
attachment

A bounding circle is a circle that includes all the points in a given set. Usually
we’re interested in one of the smallest ones possible.

We can use the following methodology to find the bounding circle: start from
two points and the circle theymake up, and for each of the rest of the points check
if the circle includes them. If not, make a bounding circle that includes every point
up to the current one. To do this, we need some primitive operations.

We will need a way to construct a circle out of two points:
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let p1 = points[0];
let p2 = points[1];
//The circle is determined by two points, P and Q. The center of the circle

is↪
//at (P + Q)/2.0 and the radius is |(P – Q)/2.0|
let d_2 = (
(((p1.0 + p2.0) / 2), (p1.1 + p2.1) / 2),
(distance_between_two_points(p1, p2) / 2.0),
);

And a way to make a circle out of three points:

fn min_circle_w_3_points(q1: Point, q2: Point, q3: Point) -> Circle {
let (ax, ay) = (q1.0 as f64, q1.1 as f64);
let (bx, by) = (q2.0 as f64, q2.1 as f64);
let (cx, cy) = (q3.0 as f64, q3.1 as f64);
let mut d = 2. * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by));
if d == 0.0 {

d = std::cmp::max(
std::cmp::max(

distance_between_two_points(q1, q2) as i64,
distance_between_two_points(q2, q3) as i64,

),
distance_between_two_points(q1, q3) as i64,

) as f64
/ 2.;

}
let ux = ((ax * ax + ay * ay) * (by - cy)

+ (bx * bx + by * by) * (cy - ay)
+ (cx * cx + cy * cy) * (ay - by))
/ d;

let uy = ((ax * ax + ay * ay) * (cx - bx)
+ (bx * bx + by * by) * (ax - cx)
+ (cx * cx + cy * cy) * (bx - ax))
/ d;

let mut center = (ux as i64, uy as i64);
if center.0 < 0 {

center.0 = 0;
}
if center.1 < 0 {

center.1 = 0;
}
let d = distance_between_two_points(center, q1);
(center, d)

}

The algorithm:
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use bitmappers_companion::*;
use minifb::{Key, Window, WindowOptions};
use rand::seq::SliceRandom;
use rand::thread_rng;
use std::f64::consts::{FRAC_PI_2, PI};
include!("../me.xbm.rs");
const WINDOW_WIDTH: usize = 400;
const WINDOW_HEIGHT: usize = 400;
pub fn distance_between_two_points(p_k: Point, p_l: Point) -> f64 {

let (x_k, y_k) = p_k;
let (x_l, y_l) = p_l;
let xlk = x_l - x_k;
let ylk = y_l - y_k;
f64::sqrt((xlk * xlk + ylk * ylk) as f64)

}
fn image_to_points(image: &Image) -> Vec<Point> {

let mut ret = Vec::with_capacity(image.bytes.len());
for y in 0..(image.height as i64) {

for x in 0..(image.width as i64) {
if image.get(x, y) == Some(BLACK) {

ret.push((x, y));
}

}
}ret

}
type Circle = (Point, f64);
fn bc(image: &Image) -> Circle {

let mut points = image_to_points(image);
points.shuffle(&mut thread_rng());
min_circle(&points)

}
fn min_circle(points: &[Point]) -> Circle {

let mut points = points.to_vec();
points.shuffle(&mut thread_rng());
let p1 = points[0];
let p2 = points[1];
//The circle is determined by two points, P and Q. The center of the
circle is↪
//at (P + Q)/2.0 and the radius is |(P – Q)/2.0|
let d_2 = (

(((p1.0 + p2.0) / 2), (p1.1 + p2.1) / 2),
(distance_between_two_points(p1, p2) / 2.0),

);
let mut d_prev = d_2;
for i in 2..points.len() {

let p_i = points[i];
if distance_between_two_points(p_i, d_prev.0) <= (d_prev.1) {

// then d_i = d_(i-1)
} else {

let new = min_circle_w_point(&points[..i], p_i);
if distance_between_two_points(p_i, new.0) <= (new.1) {

d_prev = new;
}

}
}
d_prev

}
fn min_circle_w_point(points: &[Point], q: Point) -> Circle {

let mut points = points.to_vec();
points.shuffle(&mut thread_rng());
let p1 = points[0];
//The circle is determined by two points, P_1 and Q. The center of the
circle is↪
//at (P_1 + Q)/2.0 and the radius is |(P_1 – Q)/2.0|
let d_1 = (

(((p1.0 + q.0) / 2), (p1.1 + q.1) / 2),
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(distance_between_two_points(p1, q) / 2.0),
);
let mut d_prev = d_1;
for j in 1..points.len() {

let p_j = points[j];
if distance_between_two_points(p_j, d_prev.0) <= (d_prev.1) {

//d_prev = d_prev;
} else {

let new = min_circle_w_points(&points[..j], p_j, q);
if distance_between_two_points(p_j, new.0) <= (new.1) {

d_prev = new;
}

}
}
d_prev

}
fn min_circle_w_points(points: &[Point], q1: Point, q2: Point) -> Circle {

let mut points = points.to_vec();
let d_0 = (

(((q1.0 + q2.0) / 2), (q1.1 + q2.1) / 2),
(distance_between_two_points(q1, q2) / 2.0),

);
let mut d_prev = d_0;
for k in 0..points.len() {

let p_k = points[k];
if distance_between_two_points(p_k, d_prev.0) <= (d_prev.1) {
} else {

let new = min_circle_w_3_points(q1, q2, p_k);
if distance_between_two_points(p_k, new.0) <= (new.1) {

d_prev = new;
}

}
}
d_prev

}
fn min_circle_w_3_points(q1: Point, q2: Point, q3: Point) -> Circle {

let (ax, ay) = (q1.0 as f64, q1.1 as f64);
let (bx, by) = (q2.0 as f64, q2.1 as f64);
let (cx, cy) = (q3.0 as f64, q3.1 as f64);
let mut d = 2. * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by));
if d == 0.0 {

d = std::cmp::max(
std::cmp::max(

distance_between_two_points(q1, q2) as i64,
distance_between_two_points(q2, q3) as i64,

),
distance_between_two_points(q1, q3) as i64,

) as f64
/ 2.;

}
let ux = ((ax * ax + ay * ay) * (by - cy)

+ (bx * bx + by * by) * (cy - ay)
+ (cx * cx + cy * cy) * (ay - by))
/ d;

let uy = ((ax * ax + ay * ay) * (cx - bx)
+ (bx * bx + by * by) * (ax - cx)
+ (cx * cx + cy * cy) * (bx - ax))
/ d;

let mut center = (ux as i64, uy as i64);
if center.0 < 0 {

center.0 = 0;
}
if center.1 < 0 {

center.1 = 0;
}
let d = distance_between_two_points(center, q1);
(center, d)

}
fn main() {
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let mut buffer: Vec<u32> = vec![WHITE; WINDOW_WIDTH * WINDOW_HEIGHT];
let mut window = Window::new(

"Test - ESC to exit",
WINDOW_WIDTH,
WINDOW_HEIGHT,
WindowOptions {

title: true,
//borderless: true,
resize: true,
//transparency: true,
..WindowOptions::default()

},
)
.unwrap();
// Limit to max ~60 fps update rate
window.limit_update_rate(Some(std::time::Duration::from_micros(16600)));
let mut full = Image::new(WINDOW_WIDTH, WINDOW_HEIGHT, 0, 0);
let mut image = Image::new(ME_WIDTH, ME_HEIGHT, 45, 45);
image.bytes = bits_to_bytes(ME_BITS, ME_WIDTH);
let (center, r) = bc(&image);
image.draw_outline();
full.plot_circle((center.0 + 45, center.1 + 45), r as i64, 0.);
while window.is_open() && !window.is_key_down(Key::Escape) &&
!window.is_key_down(Key::Q) {↪

image.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
full.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
window

.update_with_buffer(&buffer, WINDOW_WIDTH, WINDOW_HEIGHT)

.unwrap();
let millis = std::time::Duration::from_millis(100);
std::thread::sleep(millis);

}
}
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Chapter 21
Rectangles and parallelograms

21.1 Squares

21.1.1 From a center point

Square from given center point 𝑃𝑐𝑒𝑛𝑡𝑒𝑟 and radius 𝑟

fn plot_square(image: &mut Image, center: Point, r: i64, wd: f64) {
let (cx, cy) = center;
let a = (cx - r, cy - r);
let b = (cx + r, cy - r);
let c = (cx + r, cy + r);
let d = (cx - r, cy + r);
image.plot_line_width(a, b, wd);
image.plot_line_width(b, c, wd);
image.plot_line_width(c, d, wd);
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image.plot_line_width(d, a, wd);
}

21.1.2 From a corner point

fn calc_center_point(p: Point, top: bool, right: bool, r: i64) -> Point {
let (x, y) = p;
match (top, right) {

// Top right
(true, true) => (x - r, y + r),
// Top left
(true, false) => (x + r, y + r),
// Bottom right
(false, true) => (x - r, y - r),
// Bottom left
(false, false) => (x + r, y - r),

}
}
let r = 50;
let center_p = calc_center_point((155, 215), false, false, r);
//image.plot_circle(center_p, 3, 1.0);
plot_square(&mut image, center_p, r, 1.0);

21.2 Rectangles
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Chapter 22
Triangles

22.1 Making a triangle from a point and given an-
gles

Add Making a triangle from a point and given angles
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Chapter 23
Squircle

src/bin/squircle.rs:

This code file is a PDF
attachment

A squircle is a compromise between a square and a circle. It is purported to be
more pleasing to the eye because the rounding corner is smoother than that of a
circle arc (like the result of Join segments with round corners, page 71).

A way to describe a squircle is as a superellipse, meaning a generalization of

the ellipse equation 𝑥2
𝑎2 + 𝑦2

𝑏2 = 1 by making the exponent parametric:

|𝑥 − 𝑎|𝑛 + ∣𝑦 − 𝑏∣𝑛 = 1

The squircle as a superellipse is usually defined for 𝑛 = 4.

The code

pub fn plot_squircle(
image: &mut Image,
(xm, ym): (i64, i64),
width: i64,
height: i64,
n: i32,
_wd: f64,

) {
let r = width / 2;
let w = width / 2;
let h = height / 2;
let mut prev_pos = (xm - w, xm - h);
for i in 0..(2 * r + 1) {

let x: i64 = (i - r) + w;
let y: i64 = ((r as f64).powi(n) - (i as f64 - r as f64).abs().powi(n)).powf(1. /

n as f64)↪
as i64
+ h;

if i != 0 {
image.plot_line_width(prev_pos, (xm - x as i64, ym - y), _wd);

}
prev_pos = (xm - x as i64, ym - y);

}
for i in (2 * r)..(4 * r + 1) {
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let x: i64 = (3 * r - i) + w;
let y = -1

* (((r as f64).powi(n) - ((3 * r - i) as f64).abs().powi(n)).powf(1. / n as
f64))↪

as i64
+ h;

image.plot_line_width(prev_pos, (xm - x as i64, ym - y), _wd);
prev_pos = (xm - x as i64, ym - y);

}
}

Different values of 𝑛

Increasing𝑛 insrc/bin/squircle.rsmakes the hyperellipse corners approach
the square’s.
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Chapter 24
Polygons with rounded edges

Add Polygons with rounded edges
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Chapter 25
Union, intersectionanddifference of
polygons

Add Union, intersection and difference of polygons
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Chapter 26
Centroid of polygon

Add Centroid of polygon
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Chapter 27
Polygon clipping

Add Polygon clipping

66



shapes

Chapter 28
Triangle filling

Add Triangle filling explanation

This code is included in
the distributed library
file in the Data
representation chapter.

The book’s library methods include a fill_trianglemethod:
pub fn fill_triangle(&mut self, q1: Point, q2: Point, q3: Point) {

let make_equation =
|p1: Point, p2: Point, p3: Point, a: &mut i64, b: &mut i64, c: &mut i64| {

*a = p2.1 - p1.1;
*b = p1.0 - p2.0;
*c = p1.0 * p2.1 - p1.1 * p2.0;
if *a * p3.0 + *b * p3.1 + *c < 0 {

*a = -*a;
*b = -*b;*c = -*c;

}
};

let mut x_min = q1.0;
let mut y_min = q1.1;
let mut x_max = q1.0;
let mut y_max = q1.1;
let mut a = [0_i64; 3];
let mut b = [0_i64; 3];
let mut c = [0_i64; 3];
// find bounding box
for q in [q1, q2, q3] {

x_min = std::cmp::min(x_min, q.0);
x_max = std::cmp::max(x_max, q.0);
y_min = std::cmp::min(y_min, q.1);
y_max = std::cmp::max(y_max, q.1);

}
make_equation(q1, q2, q3, &mut a[0], &mut b[0], &mut c[0]);
make_equation(q1, q3, q2, &mut a[1], &mut b[1], &mut c[1]);
make_equation(q2, q3, q1, &mut a[2], &mut b[2], &mut c[2]);
let mut d0 = a[0] * x_min + b[0] * y_min + c[0];
let mut d1 = a[1] * x_min + b[1] * y_min + c[1];
let mut d2 = a[2] * x_min + b[2] * y_min + c[2];
for y in y_min..=y_max {

let mut f0 = d0;
let mut f1 = d1;
let mut f2 = d2;
d0 += b[0];
d1 += b[1];
d2 += b[2];
for x in x_min..=x_max {

if f0 >= 0 && f1 >= 0 && f2 >= 0 {
self.plot(x, y);

}
f0 += a[0];
f1 += a[1];
f2 += a[2];

}
}

}
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Chapter 29
Flood filling

Add Flood filling

[Shani-1980]
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Part IV

Curves
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Chapter 30

Seamlessly joining lines and curves

Add Seamlessly joining lines and curves

30.1 Centre of arcwhichblendswith twogiven line
segments at right angles

Add Centre of arc which blends with two given line segments at right angles

30.2 Centre of arcwhichblends given linewith given
circle

Add Centre of arc which blends given line with given circle
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30.3 Centre of arc which blends two given circles

Add Centre of arc which blends two given circles

30.4 Join segments with round corners

[gragevol3-225]
Round corners are everywhere around
us. It is useful to know at least one
method of construction. This specific
method constructs a circle that has a
commonpointwith each given line seg-
ment, and calculates the arc that when
added to the line segments they are
smoothly joined. The excess length,
since those common points will be be-
fore the end of the line segments, must
be erased. Therefore, it’s best to begin
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with just the points of the two segments
before starting to draw anything.

Since the segments intercept, the
round corner will end up beneath the intersection. We wish to find a circle that
has a common point with each segment and the arc made up from those points
and the circle is the round corner we are after.

We are given 4 points,𝑃1, 𝑃2 and𝑃3, 𝑃4 thatmake up segments𝑆1 and𝑆2. Begin
by finding the midpoints𝑚1 and𝑚2 of segments 𝑆1 and 𝑆2. These will be:

𝑚1 = 𝑃1 + 𝑃2
2

𝑚2 = 𝑃3 + 𝑃4
2

Then, find the signed distances (i.e. don’t use the absolute value of distance) 𝑑1
of𝑚1 from 𝑆2 and 𝑑2 of𝑚2 from 𝑆1.
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Construct parallel lines 𝑙1 to 𝑆1 that is 𝑑1 pixels away. Repeat with 𝑙2 for 𝑆2 and
𝑑2.

Their intersection is the circle’s center, 𝑃𝑐.

The intersection of 𝑙1, 𝑙2 with the two segments are the points where we should
clip or extend the segments: 𝑞1 and 𝑞2.

The starting angle is found by calculating the angle of 𝑞1𝑃𝑐 with the 𝑥-axis with
the atan2math library procedure.
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The subtended angle* of the arc from the center 𝑃𝑐 is found by calculating the dot
product of 𝑞1𝑃𝑐 and 𝑞2𝑃𝑐:

src/bin/roundcorner.rs:

This code file is a PDF
attachment

The code:

*the subtended angle of an arc
⌢

𝐴𝐶 to a point𝑃 is the angle between𝑃𝐴 and𝑃𝐶:
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The src/bin/roundcorner.rs example has two interactive lines and
computes the joining fillet.
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Chapter 31
Parametric elliptical arcs

𝑃, 𝑄 and 𝐾 are the arc’s control points.

This algorithm* draws an elliptical arc starting from point𝑃 and ending at𝑄. The
control point 𝐾 mirrors the ellipse’s center 𝐽: drawing the quadrilateral 𝑃𝐾𝑄𝐽
would appear as a lozenge, or rhombus.

The parameter 𝑡 defines the step angle in radians and is limited to 0 < 𝑡 ≤ 1.
For each point calculation, the point is 𝑡 radians away from the previous one, so
to increase the amount of points calculated keep 𝑡 small.src/bin/parellarc.rs:

This code file is a PDF
attachment

fn parellarc(image: &mut Image, p: Point, q: Point, k: Point, t: f64) {
if t <= 0. || t > 1. {return;
}
let mut v = ((k.0 - q.0) as f64, (k.1 - q.1) as f64);
let mut u = ((k.0 - p.0) as f64, (k.1 - p.1) as f64);
let j = ((p.0 as f64 - v.0 + 0.5), (p.1 as f64 - v.1 + 0.5));

*Graphics Gems III page 164
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u = (
(u.0 * f64::sqrt(1. - t * t * 0.25) - v.0 * t * 0.5),
(u.1 * f64::sqrt(1. - t * t * 0.25) - v.1 * t * 0.5),

);
let n = (std::f64::consts::FRAC_PI_2 / t).floor() as u64;
let mut prev_pos = p;
for _ in 0..n {

let x = (v.0 + j.0).round() as i64;
let y = (v.1 + j.1).round() as i64;
let new_point = (x, y);
image.plot_line_width(prev_pos, new_point, 1.);
prev_pos = new_point;
u.0 -= v.0 * t;
v.0 += u.0 * t;
u.1 -= v.1 * t;
v.1 += u.1 * t;

}
}

Changing 𝑛 to 2𝜋
𝑡 draws the entire ellipse.
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Chapter 32
B-spline

Add B-spline
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Chapter 33

Bézier curves

Two cubic Bézier curves joined together as displayed in graphics software.

33.1 Quadratic Bézier curves
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33.1.1 Drawing the quadratic

To actually draw a curve, i.e. with points 𝑃1, 𝑃2, 𝑃3 we will use de Casteljau’s
algorithm. The gist behind the algorithm is that the length of the curve is visited
at specific percentages (e.g. 0%, 0.2%, 0.4%… 99.8%, 100%), meaning wewill have
that many steps, and for each such percentage 𝑡 we calculate a line starting at the
𝑡-nth point of 𝑃1𝑃2 and ending at the 𝑡-nth point of 𝑃2𝑃3. The 𝑡-eth point of that
line also belongs to the curve, so we plot it.

Computing curve points for values of 𝑡 ∈ [0, 1] with de Casteljau’s algorithm

Let’s draw the curve 𝑃1 = (25, 115), 𝑃2 = (225, 180), 𝑃3 = (250, 25)src/bin/bezier.rs:

This code file is a PDF
attachment

The result:
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The minifb library allows to track user input, so we detect user clicks and
the mouse’s position; thus we can interactively modify a curve with some modifi-
cations in the code:
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Interactively modifying a curve with the bezier.rs tool.

We can go one step further and insult type designers* and use the tool to make
a font glyph.src/bin/bezierglyph.rs:

This code file is a PDF
attachment

Of course, it requires effort to match the beginning and end of each curve that
makes up the glyph. That’s why font designing tools have point snapping to ensure
curve continuation. But for a quick font designer app prototype, it’s good enough.

*who use cubic Béziers or other fancier curves (splines)
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Left: A font glyph drawn with the interactive bezierglyph.rs tool. Right: the
same glyph exported to SVG.
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33.2 Cubic Bézier curves
Add Cubic Bézier curves

33.3 Weighted Béziers
Add Weighted Béziers
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Chapter 34
Archimedean spiral

Add Archimedean spiral

The code

src/bin/archimedeanspiral.rs:

This code file is a PDF
attachment

pub fn arch(image: &mut Image, center: Point) {
let a = 1.0_f64;
let b = 9.0_f64;
// max_angle = number of spirals * 2pi.
let max_angle = 5.0_f64 * 2.0_f64 * std::f64::consts::PI;
let mut theta = 0.0_f64;
let (dx, dy) = center;
let mut prev_point = center;
while theta < max_angle {
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theta = theta + 0.002_f64;
let r = a + b * theta;
let x = (r * theta.cos()) as i64 + dx;
let y = (r * theta.sin()) as i64 + dy;
image.plot_line_width(prev_point, (x, y), 1.0);
prev_point = (x, y);

}
}
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Part V

Vectors, matrices and
transformations
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Chapter 35

Rotation of a bitmap

𝑝′ = ⎡⎢
⎣
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

⎤⎥
⎦

⎡⎢
⎣

𝑥𝑝
𝑦𝑝

⎤⎥
⎦

𝑐 = cos 𝜃, 𝑠 = sin 𝜃, 𝑥𝑝′ = 𝑥𝑝𝑐 − 𝑦𝑝𝑠, 𝑦𝑝′ = 𝑥𝑝𝑠 + 𝑦𝑝𝑐.

Let’s load an xface. We will use bits_to_bytes (See Bits to byte pixels,
page 15).src/bin/rotation.rs:

This code file is a PDF
attachment

include!("dmr.rs");
const WINDOW_WIDTH: usize = 100;
const WINDOW_HEIGHT: usize = 100;
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);

This is the xface of dmr. Instead of displaying the bitmap, this time we will
rotate it 0.5 radians. Setup our image first:

let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.draw_outline();
let dmr = bits_to_bytes(DMR_BITS, DMR_WIDTH);

And then, loop for each byte in dmr’s face and apply the rotation transforma-
tion.
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let angle = 0.5;
let c = f64::cos(angle);
let s = f64::sin(angle);
for y in 0..DMR_HEIGHT {

for x in 0..DMR_WIDTH {
if dmr[y * DMR_WIDTH + x] == BLACK {

let x = x as f64;
let y = y as f64;
let xr = x * c - y * s;
let yr = x * s + y * c;
image.plot(xr as i64, yr as i64);

}
}

}

The result:

We didn’t mention in the beginning that the rotation has to be relative to a
point and the given transformation is relative to the origin, in this case the upper
left corner (0, 0). So dmr was rotated relative to the origin :

(0,0) (0,0)

�

(the distance to the origin (actually 0 pixels) has been exaggerated for the sake of
the example)
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Usually, we want to rotate something relative to itself. The right point to
choose is the centroid of the object.

If we have a list of 𝑛 points, the centroid is calculated as:

𝑥𝑐 = 1
𝑛

𝑛
∑
𝑖=0

𝑥𝑖

𝑦𝑐 = 1
𝑛

𝑛
∑
𝑖=0

𝑦𝑖

Since in this case we have a rectangle, the centroid has coordinates of half the
width and half the height.

By subtracting the centroid from each point before we apply the transforma-
tion and then adding it back after we get what we want:

Here’s it visually: First subtract the center point.

(0,0)

Then, rotate.
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(0,0)

�

xcrotated

And subtract back to the original position.

(0,0)

�

xc
+ centroid

In code:

let center_point = ((DMR_WIDTH/2) as i64, (DMR_HEIGHT/2) as i64);
for y in 0..DMR_HEIGHT {

for x in 0..DMR_WIDTH {
if dmr[y * DMR_WIDTH + x] == BLACK {

let x = (x as i64 -center_point.0) as f64;
let y = (y as i64 -center_point.1) as f64;
let xr = x * c - y * s;
let yr = x * s + y * c;
image.plot(xr as i64+center_point.0,

yr as i64 + center_point.1);
}

}
}
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The result:

35.1 Fast 2D Rotation
Add Fast 2D Rotation
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Chapter 36
90° Rotation of a bitmap by parallel
recursive subdivision

Add 90° Rotation of a bitmap by parallel recursive subdivision
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Chapter 37
Magnification/Scaling

Wewant to magnify a bitmapwithout any smoothing. We define an Image scaled
to the dimensions we want, and loop for every pixel in the scaled Image. Then,
for each pixel, calculate its source in the original bitmap: if the coordinates in the
scaled bitmap are (𝑥, 𝑦) then the source coordinates (𝑠𝑥, 𝑠𝑦) are:

𝑠𝑥 = 𝑥 ∗ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.𝑤𝑖𝑑𝑡ℎ
𝑠𝑐𝑎𝑙𝑒𝑑.𝑤𝑖𝑑𝑡ℎ

𝑠𝑦 = 𝑦 ∗ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙.ℎ𝑒𝑖𝑔ℎ𝑡
𝑠𝑐𝑎𝑙𝑒𝑑.ℎ𝑒𝑖𝑔ℎ𝑡

So, if (𝑠𝑥, 𝑠𝑦) are painted, then (𝑥, 𝑦) must be painted as well.
src/bin/scale.rs:

This code file is a PDF
attachment

let mut original = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
original.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);
original.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);
let mut scaled = Image::new(DMR_WIDTH * 5, DMR_HEIGHT * 5, 100, 100);
let mut sx: i64; //source
let mut sy: i64; //source
let mut dx: i64; //destination
let mut dy: i64 = 0; //destination
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let og_height = original.height as i64;
let og_width = original.width as i64;
let scaled_height = scaled.height as i64;
let scaled_width = scaled.width as i64;
while dy < scaled_height {

sy = (dy * og_height) / scaled_height;
dx = 0;
while dx < scaled_width {

sx = (dx * og_width) / scaled_width;
if original.get(sx, sy) == Some(BLACK) {

scaled.plot(dx, dy);
}
dx += 1;

}
dy += 1;

}
scaled.draw(&mut buffer, BLACK, None, WINDOW_WIDTH);

37.1 Smoothing enlarged bitmaps
Add Smoothing enlarged bitmaps

37.2 Stretching lines of bitmaps
Add Stretching lines of bitmaps
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Chapter 38
Mirroring

Add screenshots and figure and code in Mirroring

Mirroring to an axis is the transformation of one coordinate to its equidistant
value across the axis:

To mirror a pixelacross the 𝑥 axis, simply multiply its coordinates with the
following matrix:

𝑀𝑥 = ⎡⎢
⎣

1 0
0 −1

⎤⎥
⎦

This results in the 𝑦 coordinate’s sign being flipped.
For 𝑦-mirroring, the transformation follows the same logic:

𝑀𝑦 = ⎡⎢
⎣

−1 0
0 1

⎤⎥
⎦
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Chapter 39

Shearing

src/bin/shearing.rs:

This code file is a PDF
attachment

Simple shearing is the transformation of one dimension by a distance propor-
tional to the other dimension, In 𝑥-shearing (or horizontal shearing) only the 𝑥
coordinate is affected, and likewise in 𝑦-shearing only 𝑦 as well.

With 𝑙 being equal to the desired tilt away from the 𝑦 axis, the transformation
is described by the following matrix:

𝑆𝑥 = ⎡⎢
⎣

1 𝑙
0 1

⎤⎥
⎦

Which is as simple as this function:

fn shear_x((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {
(x_p+(l*(y_p as f64)) as i64, y_p)

}
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For 𝑦-shearing, we have the following:

𝑆𝑦 = ⎡⎢
⎣

1 0
𝑙 1

⎤⎥
⎦

fn shear_y((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {
(x_p, (l*(x_p as f64)) as i64 + y_p)

}

A full example:

include!("../dmr.xbm.rs");
const WINDOW_WIDTH: usize = 200;
const WINDOW_HEIGHT: usize = 200;
fn shear_x((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {

(x_p+(l*(y_p as f64)) as i64, y_p)
}
fn shear_y((x_p, y_p): (i64, i64), l: f64) -> (i64, i64) {

(x_p, (l*(x_p as f64)) as i64 + y_p)
}
let mut image = Image::new(DMR_WIDTH, DMR_HEIGHT, 25, 25);
image.bytes = bits_to_bytes(DMR_BITS, DMR_WIDTH);
image.draw_outline();
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let l = -0.5;
let mut sheared = Image::new(DMR_WIDTH*2, DMR_HEIGHT*2, 25, 25);
for x in 0..DMR_WIDTH {

for y in 0..DMR_HEIGHT {
if image.bytes[y * DMR_WIDTH + x] == BLACK {
let p = shear_x((x as i64 ,y as i64 ), l);
sheared.plot(p.0+(DMR_WIDTH/2) as i64, p.1+(DMR_HEIGHT/2) as i64);

}
}

}
sheared.draw_outline();

39.1 The relationship between shearing factor and
angle

Shearing is a delta movement in one dimension, thus the point before moving
and the point after form an angle with the 𝑥 axis. To move a point (𝑥, 0) by 30°
forward we will have the new point (𝑥 + 𝑓 , 0) where 𝑓 is the shear factor. These
two points and (𝑥, ℎ)where ℎ is the height of the bitmap form a triangle, thus the
following are true:

cot 𝜃 = ℎ
𝑓

Therefore to find your factor for any angle 𝜃 replace its cotangent in the fol-
lowing formula:

𝑓 = ℎ
cot 𝜃

For example to shear by −30° (meaning the bitmap will move to the right,
since rotations are always clockwise) we need cot(−30𝑑𝑒𝑔) = −√3 and 𝑓 = − ℎ

√3
.
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Chapter 40
Anamorphic transformations

Reproduce cover skull
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Chapter 41
Projections

Add Projections
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Part VI

Patterns
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Chapter 42
The 17 Wallpaper groups

Add The 17 Wallpaper groups
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Chapter 43
Tilings and Tessellations
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43.1 Truchet Tiling
Truchet tiling is a repetition of four specific tiles in any specific order. It can be
random or deterministic.

The four tiles

Random arrangement of truchet tiles using rand.
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The code
src/bin/floyddither.rs:

This code file is a PDF
attachment

fn truchet(image: &mut Image, size: i64) {
let mut x = 0;
let mut y = 0;
#[repr(u8)]
enum Tile {

A = 0,
B,
C,
D,

}
let tiles = [Tile::A, Tile::B, Tile::C, Tile::D];
let width = image.width as i64;
let height = image.height as i64;
let mut rng = thread_rng();
while y < height {

while x < width {
let t = tiles.choose(&mut rng).unwrap();
let (a, b, c) = match t {

Tile::A => {
let a = (x, y + size);
let b = (x + size, y + size);
let c = (x + size, y);
(a, b, c)

}
Tile::B => {

let a = (x, y);
let b = (x, y + size);
let c = (x + size, y + size);
(a, b, c)

}
Tile::C => {

let a = (x, y);
let b = (x + size, y);
let c = (x, y + size);
(a, b, c)

}
Tile::D => {

let a = (x, y);
let b = (x + size, y);
let c = (x + size, y + size);
(a, b, c)

}
};
image.plot_line_width(a, b, 1.);
image.plot_line_width(b, c, 1.);
image.plot_line_width(c, a, 1.);
let c = ((a.0 + b.0 + c.0) / 3, (a.1 + b.1 + c.1) / 3);
image.flood_fill(c.0, c.1);
x += size;

}
x = 0;
y += size;

}
}
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43.2 Pythagorean Tiling
Pythagorean tiling consists of two squares, one filled and one blank and is de-
scribed by the ratio of their sizes.

Pythagorean tiling using the golden ratio 𝜙 ≡ 1+√5
2

The code
src/bin/pythagorean.rs:

This code file is a PDF
attachment

fn pythagorean(image: &mut Image, size_a: i64, size_b: i64) {
let width = image.width as i64;
let height = image.height as i64;
let times = 4 * width / (size_a + size_b);
for i in -times..times {

let mut x = -width + i * (size_b - size_a);
let mut y = -height - i * (size_b + size_a);
while y < 2 * height && x < 2 * width {

// Draw the first smaller and filled rectangle
let a = (x, y);
let b = (x + size_a, y);
let c = (x + size_a, y + size_a);
let d = (x, y + size_a);
image.plot_line_width(a, b, 0.);
image.plot_line_width(b, c, 0.);
image.plot_line_width(c, d, 0.);
image.plot_line_width(d, a, 0.);
// Calculate the center point of the rectangle in order to start flood

filling from it↪
let (cx, cy) = ((a.0 + b.0 + c.0 + d.0) / 4, (a.1 + b.1 + c.1 + d.1) / 4);
image.flood_fill(cx, cy);
x += size_a;
// Draw the second bigger rectangle
let a = b;
let b = (a.0 + size_b, y);
let c = (a.0 + size_b, y + size_b);
let d = (a.0, y + size_b);
image.plot_line_width(a, b, 1.);
image.plot_line_width(b, c, 1.);
image.plot_line_width(c, d, 1.);
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image.plot_line_width(d, a, 1.);
y += size_b;

}
}

}

The output of src/bin/pythagorean.rs
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43.3 Hexagon tiling
Add Hexagon tiling
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Chapter 44
Space-filling Curves

Add Space-filling Curves
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44.1 Hilbert curve
Add Hilbert curve explanation

The first six iterations of the Hilbert curve by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000by Braindrain0000

src/bin/hilbert.rs:

This code file is a PDF
attachment

Here’s a simple algorithm for drawing a Hilbert curve.*

const HILBERT: &[&[usize]] = &[
&[22, 10, 16, 38],
&[10, 22, 24, 48],
&[44, 36, 30, 18],
&[36, 44, 42, 28],

];
fn curve(img: &mut Image, k: usize, order: i64, mut x: i64, mut y: i64) -> (i64, i64) {

const STEP_SIZE: i64 = 5;
let mut row: usize;
let mut direction: usize;
if order > 0 {

for j in 0..4 {
let step = HILBERT[k][j];
row = (step / 10) - 1;
let (xn, yn) = curve(img, row, order - 1, x, y);x = xn;y = yn;
direction = step % 10;
let prev = (x, y);
match direction {

8 => {
// null op

}
2 => {

//N
y -= STEP_SIZE;

}
1 => {

*Griffiths, J. G. (1985). Table-driven algorithms for generating space-filling curves. Computer-
Aided Design, 17(1), 37–41. doi:10.1016/0010-4485(85)90009-0
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// NE
y -= STEP_SIZE;
x += STEP_SIZE;

}
0 => {

//E
x += STEP_SIZE;

}
7 => {

//SE
x += STEP_SIZE;
y += STEP_SIZE;

}
6 => {

//S
y += STEP_SIZE;

}
5 => {

//SW
y += STEP_SIZE;
x -= STEP_SIZE;

}
4 => {

//W
x -= STEP_SIZE;

}
3 => {

//NW
y -= STEP_SIZE;
x -= STEP_SIZE;

}
other => unreachable!("{}", other),

}
img.plot_line_width(prev, (x, y), 0.);

}
}
(x, y)

}

let mut image = Image::new(WINDOW_WIDTH, WINDOW_WIDTH, 0, 0);
curve(&mut image, 0, 7, 0, WINDOW_WIDTH as i64);
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44.2 Sierpiński curve

Switching the table from the Hilbert implementation to this:

const SIERP: &[&[usize]] = &[
&[17, 25, 33, 41],
&[17, 20, 41, 18],
&[25, 36, 17, 28],
&[33, 44, 25, 38],
&[41, 12, 33, 48],

];

And switching two lines from the function to

- let step = HILBERT[k][j];
- row = (step / 10) - 1;
+ let step = SIERP[k][j];
+ row = (step / 10);

You can draw a Sierpinshi curve of order 𝑛 by calling curve(&mut image,
0,n+1, 0, 0).

44.3 Peano curve
Add Peano curve
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44.4 Z-order curve

Drawing the Z-order curve is really simple: first, have a counter variable that
starts from zero and is incremented by one at each step. Then, you extract the
(𝑥, 𝑦) coordinates the new step represents from its binary representation. The
bits for the 𝑥 coordinate are located at the odd bits, and for 𝑦 at the even bits. I.e.
the values are interleaved as bits in the value of the step:
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Knowing this, implementing the drawing process will consist of computing
the next step, drawing a line segment from the current step and the next, set the
current step as the next and continue;

fn zcurve(img: &mut Image, x_offset: i64, y_offset: i64) {
const STEP_SIZE: i64 = 8;
let mut sx: i64 = 0;
let mut sy: i64 = 0;
let mut b: u64 = 0;
let mut prev_pos = (sx + x_offset, sy + y_offset);
loop {

let next = b + 1;
sx = 0;
if (next & 1) as i64 > 0 {

sx += STEP_SIZE;
}
if next & 0b100 > 0 {

sx += 2 * STEP_SIZE;
}
if next & 0b10_000 > 0 {

sx += 4 * STEP_SIZE;
}
if next & 0b1_000_000 > 0 {

sx += 8 * STEP_SIZE;
}
if next & 0b100_000_000 > 0 {

sx += 16 * STEP_SIZE;
}
if next & 0b10_000_000_000 > 0 {

sx += 32 * STEP_SIZE;
}
if next & 0b1_000_000_000_000 > 0 {

sx += 64 * STEP_SIZE;
}
if next & 0b100_000_000_000_000 > 0 {

sx += 128 * STEP_SIZE;
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}
if next & 0b10_000_000_000_000_000 > 0 {

sx += 256 * STEP_SIZE;
}
if next & 0b1_000_000_000_000_000_000 > 0 {

sx += 512 * STEP_SIZE;
}
sy = 0;
if (next & 0b10) as i64 > 0 {

sy += STEP_SIZE;
}
if next & 0b1_000 > 0 {

sy += 2 * STEP_SIZE;
}
if next & 0b100_000 > 0 {

sy += 4 * STEP_SIZE;
}
if next & 0b10_000_000 > 0 {

sy += 8 * STEP_SIZE;
}
if next & 0b1_000_000_000 > 0 {

sy += 16 * STEP_SIZE;
}
if next & 0b100_000_000_000 > 0 {

sy += 32 * STEP_SIZE;
}
if next & 0b10_000_000_000_000 > 0 {

sy += 64 * STEP_SIZE;
}
if next & 0b1_000_000_000_000_000 > 0 {

sy += 128 * STEP_SIZE;
}
if next & 0b100_000_000_000_000_000 > 0 {

sy += 256 * STEP_SIZE;
}
if next & 0b10_000_000_000_000_000_000 > 0 {

sy += 512 * STEP_SIZE;
}
img.plot_line_width(prev_pos, (sx + x_offset, sy + y_offset), 1.0);
if next == 0b111_111_111_111_111_111_111_111 {

break;
}
if sx as usize > img.width && sy as usize > img.height {

break;
}
prev_pos = (sx + x_offset, sy + y_offset);
b = next;

}
}

116



patterns

44.5 Flowsnake curve

The first three orders of the Gosper curve.

As a fractal curve, the flowsnake curve or Gosper curve is defined by a set of re-
cursive rules for drawing it. There are four kind of rules and two of them define
rulesets (i.e. they are non-terminal steps).

𝐴 ↦ 𝐴−𝐵−−𝐵+𝐴++𝐴𝐴+𝐵−
𝐵 ↦ +𝐴−𝐵𝐵−−𝐵−𝐴++𝐴+𝐵
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The fourth order Gosper curve consists of a minimum of 2057 distinct line
segments (but our algorithm draws 36015)
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Chapter 45
Flow fields

Add Flow fields
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Part VII

Interaction
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Chapter 46
Infinite panning and zooming

Add Infinite panning and zooming
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Chapter 47
Nearest neighbours

Add Nearest neighbours
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Chapter 48
Point in polygon

Add Point in polygon
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Part VIII

Colors
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Chapter 49
Mixing colors

Add Mixing colors
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Chapter 50
Bilinear interpolation

Add Bilinear interpolation
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Chapter 51
Barycentric coordinate blending

Add Barycentric coordinate blending
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Part IX

Addendum
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Chapter 52
Faster drawing a line segment from
its two endpoints using symmetry

Add Faster drawing a line segment from its two endpoints using symmetry
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Chapter 53
Composingmonochromebitmapswith
separate alpha channel data

Add Composing monochrome bitmaps with separate alpha channel data
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Chapter 54
Orthogonal connectionof twopoints

Add Orthogonal connection of two points
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Chapter 55
Faster line clipping

Add Faster line clipping
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Chapter 56
Dithering
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56.1 Floyd-Steinberg

detail of a standard test image, Sailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lakeSailboat on lake, with Floyd-Steinberg dithering
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src/bin/floyddither.rs:

This code file is a PDF
attachment

fn floyd(image: &mut Image) {
let w = image.width;
let m = [(0, 7), (w - 2, 3), (w - 1, 5), (w, 1)];
let mut e = vec![0.0; w + 1];
let bytes = image

.bytes

.iter()

.map(|&byte| {
let (r, g, b) = from_u32_rgb(byte);
let g: f64 = (0.299 * (r as f64)) + (0.587_f64 * (g as f64)) + (0.114 * (b as

f64));↪
let pix = g / 255.0 + {

e.push(0.);
e.remove(0)

};
let col = if pix > 0.5 { 1. } else { 0. };
let err = (pix - col) / 16.;
for (x, y) in m.iter() {

e[*x] += err * (*y as f64);
}
if col.floor() as u32 == 1 {

WHITE
} else {

BLACK
}

})
.collect::<Vec<u32>>();

image.bytes = bytes;
}
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56.2 Atkinson dithering

detail of a standard test image, pepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspepperspeppers, with Atkinson dithering

src/bin/atkinsondither.rs:

This code file is a PDF
attachment

The following code implements Atkinson dithering:*

fn atkinson(image: &mut Image) {
let w= image.width;
let mut e = vec![0.0;2*w];
let m = [0, 1, w-2, w-1, w, 2*w-1];
for byte in image.bytes.iter_mut() {

let (r,g,b) = from_u32_rgb(*byte);
let g:f64 = ((0.299*(r as f64)) ) + ((0.587_f64*(g as f64)) ) + ((0.114*(b as

f64)) );↪
let pix = g/255.0 + { e.push(0.); e.remove(0)};
let col = if pix > 0.5 { 1. } else { 0. };
let err = (pix-col)/8.;
for m in m.iter() {

e[*m] += err;
}
*byte = if (col.floor() as u32 == 1) {

WHITE

*Algorithm taken from https://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.htmlhttps://beyondloom.com/blog/dither.html
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} else {
BLACK

};
}

}
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Chapter 57
Marching squares

⸎
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alpha channel, 133
angle

between two lines, 30
bisectioning, 39
trisectioning, 39

area filling, see flood filling
Atkinson dithering, 139

bucket filling, see flood filling

centroid
polygon, 65
rectangle, 90

circle
bounding, 52
constructions, 47
equations, 47
out of three points, 49, 53
out of two points, 52

contour, see marching squares
curves

Basis spline, 78
Bézier, 79
cubic, 84
quadratic, 79
weighted, 84

elliptical, 76
Flowsnake curve, 117
Hilbert curve, 111
Peano curve, 113
space-filling, 110

de Casteljau’s algorithm, 80
distance

between two points, 21
moving a point, 22
point from a line, 27

dithering, 136
Atkinson, 139

Floyd-Steinberg, 137

ellipse
equations, 47

ellipses
constructions, 47

equidistant line, 34

flood filling, 68
triangle filling, 67

Flowsnake curve, 117
Floyd-Steinberg dithering, 137

Gosper curve, see Flowsnake curve

hexagon tiling, 109
Hilbert curve, 111

line
drawing, 26
equations, 23
equidistant, 34
intersection, 32
perpendicular, 29
reflection of point, 36
through point and slope, 23
through two points, 24

magnification, 94
marching squares, 141
midpoint, 34, 72
mirroring, 96

point to line, 36

Peano curve, 113
perpendicular, 29
point

reflection on line, 36
polygon

boolean operations, 64
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centroid, 65
clipping, 66
rounded edges, 63
smooth edges, 63

Pythagorean tiling, 107

reflection of point, 36
rotation, 88

scaling, 94
shearing, 97
skewing, see shearing
smoothing, 95

stretching, 95

tiling, 104
hexagon, 109
Pythagorean, 107
Truchet, 105

triangle, 59
filling, 67
from point and angles, 59

Truchet tiling, 105

wallpaper groups, 103
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