.
├── C
│ └── Stephen G. Kochan Programming in C.epub
├── C++
├── DataScience
│ ├── (Advances in Intelligent Systems and Computing 456) Maria Brigida Ferraro, Paolo Giordani, Barbara Vantaggi, Marek Gagolewski, María Ángeles Gil, Przemysław Grzegorzewski, Olgierd Hryniewicz (eds.)-So.pdf
│ ├── Allen B. Downey-Think Stats, 2nd Edition_ Exploratory Data Analysis-O'Reilly Media (2014).pdf
│ ├── Brian Steele, John Chandler, Swarna Reddy-Algorithms for Data Science-Springer (2017).pdf
│ ├── Jeroen Janssens Data Science at the Command Line Facing the Future with Time-Tested Tools.pdf
│ ├── Modern Data Science with R.pdf
│ ├── Ted Dunning, Ellen Friedman-Time Series Databases_ New Ways to Store and Access Data-O'Reilly Media (2014).pdf
│ └── Torgo, Luís Data Mining with R Learning with Case Studies, Second Edition.pdf
├── HFT
│ ├── High_Frequency_Trading_and_Modeling_in_Finance.pdf
│ ├── High-frequency trading - a practical guide to algorithmic strategies and trading systems.pdf
│ ├── High-frequency Trading.pdf
│ └── [Zhaodong_Wang,_Weian_Zheng]_High-Frequency_Tradining_and_Probability_Theory.pdf
├── MySQL
├── Python
│ ├── Automate the Boring Stuff with Python.pdf
│ ├── Daniel Y. Chen-Pandas for Everyone. Python Data Analysis-Addison-Wesley Professional (2017).pdf
│ ├── Data Science Essentials in Python Collect - Organize - Explore - Predict - Value.pdf
│ ├── Fluent Python - Clear, Concise, and Effective Programming.pdf
│ ├── [Giancarlo_Zaccone]_Python_Parallel_Programming_Co(b-ok.org).pdf
│ ├── HighPerformancePythonfromTrainingatEuroPython2011_v0.2.pdf
│ ├── High Performance Python.pdf
│ ├── Luciano Ramalho-Fluent Python-O'Reilly Media (2015).pdf
│ ├── Michael Heydt-Learning pandas_ Get to grips with pandas - a versatile and high-performance Python library for data manipulation, analysis, and discovery-Packt Publishing (2015).pdf
│ ├── Michael Heydt-Mastering Pandas for Finance-Packt Publishing (2015).pdf
│ ├── [Micha_Gorelick,_Ian_Ozsvald]_High_Performance_Pyt(b-ok.org).pdf
│ ├── Micha Gorelick, Ian Ozsvald-High Performance Python_ Practical Performant Programming for Humans-O'Reilly Media (2014).pdf
│ ├── Python High Performance Programming - Lanaro, Gabriele.pdf
│ ├── Python Programming Advanced.djvu
│ ├── Steven F. Lott-Mastering Object-oriented Python-Packt Publishing (2014).pdf
│ ├── Violent Python.pdf
│ └── Web Scraping with Python Collecting Data from the Modern Web.pdf
├── Quant
│ ├── Algorithmic Trading and DMA.pdf
│ ├── Applied Quantitative Methods for Trading and Investment.pdf
│ ├── Automated Trading with R.pdf
│ ├── Empirical Market Microstructure.pdf
│ ├── Financial Econometrics and Empirical Market Microstructure.pdf
│ ├── Financial Markets and Trading.pdf
│ ├── High-Frequency Trading A Practical Guide to Algorithmic Strategies and Trading Systems.pdf
│ ├── Howard B. Bandy-Quantitative Trading Systems_ Practical Methods for Design, Testing, and Validation-Blue Owl Press (2007).pdf
│ ├── [Madhavan_A.]_Market_microstructure_A_practitioner_guide.pdf
│ ├── Michael Halls Moore-Advanced Algorithmic Trading (2017).pdf
│ ├── (New Developments in Quantitative Trading and Investment) Christian L. Dunis, Peter W. Middleton, Andreas Karathanasopolous, Konstantinos Theofilatos (eds.)-Artificial Intelligence in Financial Market.pdf
│ ├── Pairs Trading Quantitative Methods and Analysis.pdf
│ ├── Quantitative Analysis of Market Data (1).pdf
│ ├── Quantitative Analysis of Market Data.pdf
│ ├── Quantitative Investment Analysis.pdf
│ ├── Quantitative Investment Analysis, Workbook.pdf
│ ├── Quantitative Methods for Investment Analysis.pdf
│ ├── Statistics and Data Analysis for Financial Engineering
│ │ ├── bonds.R
│ │ ├── bugsfiles.zip
│ │ ├── datasets
│ │ │ ├── AirPassengers.csv
│ │ │ ├── AlphaBeta.csv
│ │ │ ├── berndtInvest.csv
│ │ │ ├── bmw.csv
│ │ │ ├── bmwRet.csv
│ │ │ ├── bondprices.txt
│ │ │ ├── capm2.csv
│ │ │ ├── Capm.csv
│ │ │ ├── CokePepsi.csv
│ │ │ ├── countries.txt
│ │ │ ├── CPI.csv
│ │ │ ├── CPI.dat.csv
│ │ │ ├── CPS1988.csv
│ │ │ ├── CreditCard.csv
│ │ │ ├── cree.csv
│ │ │ ├── CRSPday.csv
│ │ │ ├── CRSPmon.csv
│ │ │ ├── DefaultData.txt
│ │ │ ├── DowJones30.csv
│ │ │ ├── Earnings.csv
│ │ │ ├── equityFunds.csv
│ │ │ ├── EuStockMarket.csv
│ │ │ ├── EuStockMarkets.csv
│ │ │ ├── FamaFrenchDaily.txt
│ │ │ ├── FamaFrench_mon_69_98.txt
│ │ │ ├── FlowData.csv
│ │ │ ├── ford.csv
│ │ │ ├── FourStocks_Daily2013.csv
│ │ │ ├── FrozenJuice.csv
│ │ │ ├── Garch.csv
│ │ │ ├── GPRO.csv
│ │ │ ├── HousePrices.csv
│ │ │ ├── Hstarts.csv
│ │ │ ├── IBM_SP500_04_14_daily_netRtns.csv
│ │ │ ├── Icecream.csv
│ │ │ ├── IncomeUK.csv
│ │ │ ├── IP.csv
│ │ │ ├── IP.dat.csv
│ │ │ ├── Irates.csv
│ │ │ ├── KelvinFlowData.csv
│ │ │ ├── MacroVars.csv
│ │ │ ├── MCD_PriceDaily.csv
│ │ │ ├── midcapD.csv
│ │ │ ├── midcapD.ts.csv
│ │ │ ├── Mishkin.csv
│ │ │ ├── mk.maturity.csv
│ │ │ ├── mk.zero2.csv
│ │ │ ├── msft.csv
│ │ │ ├── nelsonplosser.csv
│ │ │ ├── prog.R
│ │ │ ├── RecentFord.csv
│ │ │ ├── siemens.csv
│ │ │ ├── S&P500.csv
│ │ │ ├── SP500.csv
│ │ │ ├── S&P500_new.csv
│ │ │ ├── Stock_Bond_2004_to_2006.csv
│ │ │ ├── Stock_Bond.csv
│ │ │ ├── Stock_FX_Bond_2004_to_2005.csv
│ │ │ ├── Stock_FX_Bond_2004_to_2006.csv
│ │ │ ├── Stock_FX_Bond.csv
│ │ │ ├── strips_dec95.txt
│ │ │ ├── TbGdpPi.csv
│ │ │ ├── Tbrate.csv
│ │ │ ├── treasury_yields.txt
│ │ │ ├── USMacroG.csv
│ │ │ ├── WeekInt.txt
│ │ │ ├── WeeklyInterest.txt
│ │ │ ├── yields.txt
│ │ │ └── ZeroPrices.txt
│ │ ├── datasets.zip
│ │ ├── EDA.R
│ │ ├── my.R
│ │ ├── returns.R
│ │ ├── R scripts for Statistics and Data Analysis for Financial Engineering with R Examples, 2nd ed..html
│ │ ├── SDAFE2.R
│ │ └── Solutions to Selected R Lab Problems and Exercises Statistics and Data Analysis for Financial Engineering with R Examples, 2nd ed..html
│ ├── Statistics and Data Analysis for Financial Engineering.pdf
│ ├── Statistics and Finance An Introduction.pdf
│ ├── The art and science of technical analysis.pdf
│ ├── Tim Leung, Xin Li-Optimal Mean Reversion Trading_ Mathematical Analysis and Practical Applications-World Scientific Publishing Company (2016).pdf.crdownload
│ ├── Trading and Exchanges Market Microstructure for Practitioners .pdf
│ ├── (Wiley Finance) Wesley R. Gray, Jack R. Vogel-Quantitative Momentum_ A Practitioner’s Guide to Building a Momentum-Based Stock Selection System-Wiley (2016).pdf
│ └── (Wiley Trading) Ernest P. Chan-Machine Trading_ Deploying Computer Algorithms to Conquer the Markets-Wiley (2017).pdf
├── R
│ ├── Data Analysis with R.pdf
│ ├── efficient-master.zip
│ ├── Efficient_R_Programming_A_Practical_Guide_to_Smarter_Programming.pdf
│ ├── Efficient R Programming.pdf
│ ├── [Hadley_Wickham_(auth.)]_ggplot2_Elegant_Graphics(b-ok.org).pdf
│ ├── Hadley Wickham, Garrett Grolemund-R for Data Science_ Import, Tidy, Transform, Visualize, and Model Data-O’Reilly Media (2017).pdf
│ ├── Learning_R_Programming_-_Become_an_efficient_data_scientist_with_R.pdf
│ ├── N.D Lewis-Deep Learning Made Easy with R_ A Gentle Introduction For Data Science-CreateSpace Independent Publishing Platform (2016).pdf
│ ├── Raja B. Koushik, Sharan Kumar Ravindran-R Data Science Essentials-Packt (2016).pdf
│ ├── Thomas Mailund (auth.)-Advanced Object-Oriented Programming in R_ Statistical Programming for Data Science, Analysis and Finance-Apress (2017).pdf
│ ├── Thomas Mailund (auth.)-Metaprogramming in R_ Advanced Statistical Programming for Data Science, Analysis and Finance-Apress (2017).pdf
│ ├── Thomas Mailund-Beginning Data Science in R_ Data Analysis, Visualization, and Modelling for the Data Scientist-Apress (2017).pdf
│ └── Thomas Mailund-Functional Programming in R. Advanced Statistical Programming for Data Science, Analysis and Finance-Apress (2017).pdf
├── Social
│ └── 万历十五年.mobi
├── Stat
│ ├── Advanced Linear Modeling.pdf
│ ├── All Figures.zip
│ ├── All Labs.txt
│ ├── An Elementary Introduction to Statistical Learning Theory.pdf
│ ├── An Introduction to Statistical Learning.pdf
│ ├── An Introduction to Statistical Learning with Applications in R.pdf
│ ├── Applying Regression and Correlation.pdf
│ ├── (Chapman & Hall_CRC Texts in Statistical Science) Norman Matloff-Statistical Regression and Classification_ From Linear Models to Machine Learning-Chapman and Hall_CRC (2017).pdf
│ ├── Elements of Statistics for the Life and Social Sciences.pdf
│ ├── Foundations of Statistical Algorithms.pdf
│ ├── Introduction to Statistical Machine Learning.pdf
│ ├── Plane Answers to Complex Questions The Theory of Linear Models.pdf
│ ├── Statistical Analysis and Data Display.pdf
│ └── Statistics_for_Finance.pdf
└── Unix
├── Anoop Chaturvedi, B.L. Rai-Unix and Shell Programming-Laxmi Publications (2017).pdf
├── B. Kernighan, R. Pike UNIX - Programming Environment .pdf
├── (Developer’s Library) Stephen G. Kochan, Patrick Wood-Shell Programming in Unix, Linux and OS X-Addison-Wesley Professional (2016).pdf
├── W. Richard Stevens, Stephen A. Rago Advanced Programming in the UNIX Environment.pdf
└── W. Richard Stevens, Stephen A. Rago Advanced Programming in the UNIX R Environment.pdf