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BIG BANG SINGULARITY IN THE

FRIEDMANN-LEMAÎTRE-ROBERTSON-WALKER

SPACETIME

CRISTI STOICA

Abstract. We show that the Big Bang singularity of the Friedmann-
Lemâıtre-Robertson-Walker model does not raise major problems to
General Relativity. We prove a theorem showing that the Einstein equa-
tion can be written in a non-singular form, which allows the extension
of the spacetime before the Big Bang.

These results follow from our research on singular semi-Riemannian
geometry and singular General Relativity [26, 27, 29] (which we applied
in previous articles to the black hole singularities [30, 31, 32, 28]).
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Introduction

0.1. The universe. According to the cosmological principle, our expand-
ing universe, although it is so complex, can be considered at very large scale
homogeneous and isotropic. This is why we can model the universe, at very
large scale, by the solution proposed by A. Friedmann [7, 9, 8]. This exact so-
lution to Einstein’s equation, describing a homogeneous, isotropic universe,
is in general called the Friedmann-Lemâıtre-Robertson-Walker (FLRW) met-
ric, due to the rediscovery and contributions made by Georges Lemâıtre [17],
H. P. Robertson [23, 24, 25] and A. G. Walker [34].

The FLRW model shows that the universe should be, at a given moment
of time, either in expansion, or in contraction. From Hubble’s observations,
we know that the universe is currently expanding. The FLRW model shows
that, long time ago, there was a very high concentration of matter, which
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2 CRISTI STOICA

exploded in what we call the Big Bang. Was the density of matter at the
beginning of the universe so high that the Einstein’s equation was singular
at that moment? This question received an affirmative answer, under gen-
eral hypotheses and considering General Relativity to be true, in Hawking’s
singularity theorem [10] (which is an application of the reasoning of Penrose
for the black hole singularities [20], backwards in time to the past singularity
of the Big Bang).

Of course, given that the extreme conditions which were present at the
Big Bang are very far from what our observations encountered so far, and
our theories managed to extrapolate, we cannot know precisely what hap-
pened then. If because some known or unknown quantum effect the energy
condition from the hypothesis of the singularity theorem was not obeyed,
the singularity might have been avoided, although it was a very high den-
sity. One such possibility is explored in the loop quantum cosmology [5, 3, 6],
which leads to a Big Bounce discrete model of the universe.

We will not explore here the possibility that the Big Bang singularity is
prevented to exist by quantum or other kind of effects, because we don’t
have the complete theory which is supposed to unify General Relativity and
Quantum Theory. What we will do in the following is to push the limits of
General Relativity to see what happens at the Big Bang singularity, in the
context of the FLRW model. We will see that the singularities are not a
problem, even if we don’t modify General Relativity and we don’t assume
very repulsive forces which prevented the singularity.

One tends in general to regard the singularities arising in General Rela-
tivity as an irremediable problem which forces us to abandon this successful
theory [13, 11, 1, 14, 2, 4]. In fact, we will see that the singularities of the
FLRW model are easy to understand and are not fatal to General Relativity.
In [26] we presented an approach to extend the semi-Riemannian geometry
to the case when the metric can become degenerate. In [27] we applied this
theory to the warped products, and provided by this ways to construct ex-
amples of singular semi-Riemannian manifolds of this type. We will develop
here some ideas suggested in some of the examples presented there, and
apply them to the singularities in the FLRW spacetime. We will see that
the singularities of the FLRW metric are even simpler than the black hole
singularities, which we discussed in [30, 31, 32, 29].

0.2. The Friedmann-Lemâıtre-Robertson-Walker model of the uni-
verse. Let’s consider the 3-space at any moment of time as being modeled,
up to a scaling factor, by a three-dimensional Riemannian space (Σ, gΣ).
The time is represented as an interval I ⊆ R, with the natural metric −dt2.
At each moment of time t ∈ I, the space Σt is obtaining by scaling (Σ, gΣ)
with a scaling factor a2(t). The scaling factor is therefore given by a func-
tion a : I → R, named the warping function. The FLRW spacetime is the
spacetime I × Σ endowed with the metric

(1) ds2 = −dt2 + a2(t)dΣ2.
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It is the warped product between (Σ, gΣ) and (I,−dt2), with the warping
function a : I → R.

The typical space Σ can be any Riemannian manifold we may need for
our cosmological model, but because of the homogeneity and isotropy con-
ditions, it is in general taken to be, at least at large scale, one of the homo-
geneous spaces S3, R3, and H3. In this case, the metric on Σ is, in spherical
coordinates (r, θ, φ),

(2) dΣ2 =
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

)
,

where k = 1 for the 3-sphere S3, k = 0 for the Euclidean space R3, and
k = −1 for the hyperbolic space H3.

0.3. The Friedman equations. Once we choose the 3-space Σ, the only
unknown part of the FLRW metric is the function a(t). To determine it,
we have to make some assumptions about the matter in the universe. In
general it is assumed, for simplicity, that the universe is filled with a fluid
with mass density ρ(t) and pressure density p(t). The density and the pres-
sure are taken to depend on t only, because we assume the universe to be
homogeneous and isotropic. The stress-energy tensor is

(3) T ab = (ρ+ p)uaub + pgab,

where ua is the timelike vector field ∂t, normalized.
From the energy density component of the Einstein equation, one can

derive the Friedmann equation

(4) ρ =
3

κ

ȧ2 + k

a2
,

where κ :=
8πG
c4

(G and c being the gravitational constant and the speed of

light, which we will consider equal to 1 for now on, by an appropriate choice
of measurement units). From the trace of the Einstein equation, we obtain
the acceleration equation

(5) ρ+ 3p = −6

κ

ä

a
.

From these two equations we obtain the fluid equation, expressing the con-
servation of mass-energy:

(6) ρ̇ = −3
ȧ

a
(ρ+ p) .

Let’s assume we know the function a. The Friedman equation (4) shows
that we can uniquely determine ρ from a. The acceleration equation deter-
mines p from both a and ρ. Hence, the function a determines uniquely both
ρ and p.

From the recent observations on supernovae, we know that the expansion
is accelerated, corresponding to the existence of a positive cosmological con-
stant Λ [22, 21]. The Friedmann’s equations were expressed here without Λ,
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but this doesn’t reduce the generality, because the equations containing the
cosmological constant are equivalent to those without it, by the substitution

(7)

{
ρ → ρ+ κ−1Λ
p → p− κ−1Λ

Therefore, for simplicity we will continue to ignore Λ in the following, with-
out any loss of generality.

Figure 1. The standard view is that the universe originated from
a very dense state, probably a singularity, and expanded, with a
short period of very high acceleration (the inflation).

The standard view on cosmology today is that the universe started with
the Big Bang, which is in general assumed to be singular, and then ex-
panded, with a very short period of exponentially accelerated expansion,
called inflation (Fig. 1).

1. The main ideas

The solution proposed here is simple: to show that the singularities of
the FLRW model don’t break the evolution equation, we show that the
equations can be written in an equivalent form which avoids the infinities in
a natural way. We consider useful to prepare the reader with some simple
mathematical observations, which will clarify our proof. These observations
can be easily understood, and combined they help us understanding the Big
Bang singularity in the FLRW spacetime.

1.1. Distance separation vs. topological separation. To understand
the singularities in the FLRW model, it is useful to make a parallel with
another type of singularities, and their standard resolution in mathematics.
Let’s consider a surface in R3. In general it can be defined locally as the
image of a map f : U → R3, where U ∈ R2 is an open subset of the plane.
If the function f is not injective, the surface will have self-intersections.
Another way to define the surface is implicitly, as the solution of an equation.



BIG BANG SINGULARITY IN THE FLRW SPACETIME 5

In this case it may happen again to have self-intersections. The typical
example is the cone, defined as

(8) x2 − y2 − z2 = 0.

We can desingularize it by making the transformation

(9)

{
x = u
y = uv
z = uw

which maps the cylinder u2+v2 = 1 from the space parametrized by (u, v, w),
to the cone from equation (8), in the space parametrized by (x, y, z). This
procedure is very used in mathematics, especially in algebraic geometry, and
it is was studied starting with Isaac Newton [18].

Figure 2. The old method of resolution of singularities shows
how we can “untie” the singularity of a cone and obtain a cylinder.
This illustrates the idea that it is not necessary to assume that,
at the Big Bang singularity, the entire space was a point, but only
that the space metric was 0.

The natural metric on the space (x, y, z) induces, by pull-back, a metric
on the cylinder u2 + v2 = 1 from the space (u, v, w). The induced metric on
the cylinder is singular: the distance between any pair of points of the circle
determined by the equations u = 0 and v2 + w2 = 0 is zero. But the points
of that circle are distinct.

From the viewpoint of the singularities in General Relativity, the main
implication is that just because the distance between two points is 0, it
doesn’t mean that the two points coincide. We can see something similar
even in Special Relativity: the 4-distance between two events separated by
a lightlike interval is equal to 0, but those events may be distinct.

1.2. Degenerate warped product and singularities. The mathemat-
ics of General Relativity is a branch of differential geometry, called semi-
Riemannian (or pseudo-Riemannian) geometry (see e.g. [19]). It is a gen-
eralization of the Riemannian geometry, to the case when the metric tensor
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is still non-degenerate, but its signature is not positive. In this geomet-
ric framework are defined notions like contraction, Levi-Civita connection,
covariant derivative, Riemann curvature, Ricci tensor, scalar curvature, Ein-
stein tensor. These are the main ingredients of the theory of General Rela-
tivity [12, 19, 33].

The problem with the singularities is that there, these main ingredients
can’t be defined, or become infinite. The perfection of semi-Riemannian
geometry is broken there, and by this, it is usually concluded that the same
happens with General Relativity.

In [26] we introduced a way to extend semi-Riemannian geometry to the
degenerate case. There is a previous approach [15, 16], which works for met-
ric of constant signature. Our need was to have a theory valid for variable
signature (because the metric changes from being non-degenerate to being
degenerate), and which in addition allows us to define the Riemann, Ricci
and scalar curvatures in an invariant way, and something like the covari-
ant derivative for the differential forms and tensor fields which are of use
in General Relativity. After developing this theory, introduced in [26, 29],
we generalized the notion of warped product to the degenerate case, provid-
ing by this a way to construct useful examples of singularities of this nice
behaved kind [27].

From the mathematics of degenerate warped products it followed that
a warped product like that involved in a FLRW metric (equation 1) has
only singularities which are well behaved, and which allow the extension
of General Relativity to those points. At these singularities, the Riemann
curvature tensor Rabcd is not degenerate, and it is smooth if a is smooth.
The Einstein equation can be replaced by a densitized version, which allows
the continuation to the singular points and avoids the infinities.

1.3. What happens if the density becomes infinite? In the Friedmann
equations (4), (5), and (6), the variables are a, the mass/energy density ρ and
the pressure density p. When a→ 0, ρ appears to tend to infinity, because a
finite amount of matter occupies a volume equal to 0. Similarly, the pressure
density p may become infinite. How can we rewrite the equations to avoid
the infinities? As it will turn out, not only there is a solution to do this,
but the quantities involved are actually the natural ones. As present in
the equations, both ρ and p are scalar fields. But the adequate, invariant
quantities actually involve the volume element, or the volume form

(10) dvol :=
√
−gdt ∧ dx ∧ dy ∧ dz,

where by the factor
√
−g we mean

√
−det gab. The densities are in fact not

the scalars ρ and p, but the quantities ρdvol and pdvol. They are differential
4-forms on the spacetime, and the components of these forms in a coordinate
system are ρ

√
−g and respectively p

√
−g.

Another hint that the natural quantities are the densitized ones is given
by the stress-energy tensor. When it is obtained from the Lagrangian, what
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we actually get is the tensor density

(11) T ab√−g = −2
δ(LM

√
−g)

δgab

The values ρ and p which appear in the Friedmann equations coincide
with the components of the corresponding densities only in an orthonormal
frame, where the determinant of the metric equals−1, and we can omit

√
−g.

But when a → 0, an orthonormal frame would become singular, because
det g → 0. A coordinate system in which the metric has the determinant
−1 will necessarily be singular when a(t) = 0. In a non-singular coordinate
system, det g has to be variable, as it is in the comoving coordinate system
of the FLRW model. From (1) , the determinant of the metric in the FLRW
coordinates is

(12) det g = −a6 det 3gΣ,

where by det3 gΣ we denoted the determinant of the metric tensor of the
3-dimensional typical space Σ. Since the typical space is the same for all
moments of time t, det3 gΣ is constant.

Given that the metric’s determinant in the comoving coordinates is

(13)
√
−g = a3√gΣ,

which tends to 0 when a → 0, we see that it might be possible for
√
−g to

cancel the singularity of ρ and p in ρdvol, respectively pdvol.

2. The Big Bang singularity resolution

As explained in section §1.3, we should account in the mass/energy density
and the pressure density for the term

√
−g.

Consequently, we make the following substitution:

(14)

{
ρ̃ = ρ

√
−g = ρa3√gΣ

p̃ = p
√
−g = pa3√gΣ

We have the following result:

Theorem 2.1. If a is a smooth function, then the densities ρ̃, p̃, and the
densitized stress-energy tensor Tab

√
−g are smooth (and therefore nonsin-

gular), even at moments t0 when a(t0) = 0.

Proof. The Friedmann equation (4) becomes

(15) ρ̃ =
3

κ
a
(
ȧ2 + k

)√
gΣ,

from which it follows that if a is a smooth function, ρ̃ is smooth as well.
The acceleration equation (5) becomes

(16) ρ̃+ 3p̃ = −6

κ
a2ä
√
gΣ,

which shows that p̃ is smooth too. Hence, for smooth a, both ρ̃ and p̃ are
non-singular.
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The four-velocity vector field is u =
∂

∂t
, which is a smooth unit timelike

vector. The densitized stress-energy tensor becomes therefore

(17) Tab
√
−g = (ρ̃+ p̃)uaub + p̃gab,

which is smooth, because ρ̃ and p̃ are smooth functions. �

Remark 2.2. We can write now a smooth densitized version of the Einstein
Equation:

(18) Gab
√
−g + Λgab

√
−g = κTab

√
−g.

Remark 2.3. If a(0) = 0, the equation (15) tells us that ρ̃(0) = 0. From
these and equation (16) we see that p̃(0) = 0 as well. Of course, this doesn’t
necessarily tell us that ρ or p are zero at t = 0, they may even be infinite.
Figure 3 shows how the universe will look, in general.

Figure 3. A schematic representation of a generic Big Bang sin-
gularity, corresponding to a(0) = 0. The universe can be continued
before the Big Bang without problems.

Figure 4. A schematic representation of a Big Bang similar to
an infinitesimal Big Bounce, corresponding to a(0) = 0, ȧ(0) = 0,
ä(0) > 0.
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Remark 2.4. One interesting possibility is that when a(0) = 0, also ȧ(0) =
0. In this case we may have a(t) ≥ 0 around t = 0, for example if ä(0), and
obtain a Big Bang represented schematically in Fig. 4. This is very similar
to a Big Bounce model, except that the singularity still appears.

Remark 2.5. Note that we preferred the stress-energy tensor with lowered
indices, Tab, to that with raised indices T ab, because the former involves the
smooth metric gab, while the latter involves its inverse, gab, which is singular
when gab becomes degenerate. Similarly for the Einstein Equation. The two
versions are equivalent only when the metric is non-degenerate.

3. The evolution of the universe

This paper presented several scenarios concerning the Big Bang singular-
ity, in the context of the Friedmann-Lemâıtre-Robertson-Walker model. It
was found that the singularity is of degenerate type, and the time evolution
is not obstructed. The solutions are schematically represented in Figures 3
and 4. These models only tell what happens at the singularity. At a global
scale, the universe may re-collapse in a similar singularity and then pass
again beyond it, in a cyclic cosmological model, or may expand accelerating
forever, as the present day observations seem to suggest [22, 21]. Maybe the
precedent universe, having t < 0, has no Big Bang at its origin, it just comes
from the infinite past and collapses in a Big Crunch. Then, its Big Crunch
becomes the Big Bang of our universe, and it starts its infinite expansion.

The cosmological arrow of our universe points from the Big Bang toward
the time direction where the universe expands, which is the direction in
which t increases (t→ +∞). The cosmological arrow of the universe existing
before the Big Bang points, of course, from the Big Bang, toward −∞ (see
Fig. 5).

Figure 5. If the anterior universe has the cosmological arrow of
time oriented toward our past, can we conclude that its entropic
arrow of time also points toward our past?

It is often assumed that the entropic arrow of time is determined by some
special conditions existing at the Big Bang. Of course, the “entropic arrow”
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may be undefined for a simple FLRW universe, bur it may be defined in
universes which are at large scale approximated by FLRW models. If the
entropic arrow is determined by the cosmological arrow, then our model
seems to suggest that the precedent universe has the entropic arrow of time
oriented toward −∞, and its time flows from the Big Bang toward −∞,
which is what the observers from the universe with t > 0 would call past.
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raumes, Zeitschrift für Physik A Hadrons and Nuclei 21 (1924), no. 1, 326–332.

9. A. Friedman, On the Curvature of Space, General Relativity and Gravitation 31
(1999), no. 12, 1991–2000.

10. S. Hawking, The occurrence of singularities in cosmology. iii. causality and singulari-
ties, Proc. Roy. Soc. London Ser. A (1967), no. 300, 187–201.

11. S. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D
(1976), no. 14, 2460.

12. S. Hawking and G. Ellis, The Large Scale Structure of Space Time, Cambridge Uni-
versity Press, 1995.

13. S. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology,
Proc. Roy. Soc. London Ser. A (1970), no. 314, 529–548.

14. S. Hawking and R. Penrose, The Nature of Space and Time, Princeton University
Press, 1996.

15. D. Kupeli, Degenerate Manifolds, Geom. Dedicata 23 (1987), no. 3, 259–290.
16. D. Kupeli, Singular Semi-Riemannian Geometry, Kluwer Academic Publishers Group,

1996.
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