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Combinatorial Knot Floer Homology

Note these notes are based on notes by Candice Price (primary source), Peter Osvzath, and Rob
Ghrist

1 Homology

http://www.ima.umn.edu/2008-2009/ND6.15-26.09/activities/Ghrist-Robert/lecture4.pdf

To calculate homology, we need something like

1.) Chains: These are often formal sums of generators.

If S = set of generators, let Cn = {Σnigi | ni ∈ Z, gi ∈ S}

2.) Grading: A function f: Chains → Z

Let Cn = {C ∈ C | f(C) = n}.

3.) boundary maps: ∂n : Cn → Cn−1 such that ∂2 = 0. Thus im∂n+1 ⊂ ker∂n

Defn: Hn = ker∂n/im∂n+1.

Lemma: If (C∗, ∂) is a finite-dimensional chain complex and H∗ its homology, then

χ(C∗) = Σ∞k=0dimCk = Σ∞k=0dimHk = χ(H∗)

2 Combinatorial Description

Definition 1 (Planar grid diagram). A planar grid diagram G lies in a square grid on the
plane with n× n squares, where n = grid number. Each square is decorated with an X, an O or
nothing, such that

� every row contains exactly one X and one O.

� every column contains exactly one X and one O.

We can label the Os and Xs from 1 to n and denote the collections O = {Oi}ni=1 and X = {Xi}ni=1.

A projection of an oriented link can be constructed in a grid diagram by

� draw horizontal segments from an element in O to an element in X in each row.

� draw vertical segments from an element in X to an element in O in each column.
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Figure 1. A grid presentation. Grid presentation for the figure eight knot.

a planar diagram for an oriented link !L in S3. We say that !L has a grid presentation given by G.
See Figure 1 for an example.

We transfer our grid diagrams to the torus T obtained by gluing the topmost segment to the
bottom-most one, and the leftmost segment to the rightmost one. In the torus, our horizontal
and vertical arcs become horizontal and vertical circles. The torus inherits its orientation from the
plane. We call the resulting object a toroidal grid diagram, or simply a grid diagram, for K. We
will again denote it by G.

Given a toroidal grid diagram, we associate to it a chain complex
(
C−(G), ∂−)

as follows. The
set of generators of C−(G), denoted S or S(G), consists of one-to-one correspondences between the
horizontal and vertical circles. More geometrically, we can think of the generators as n-tuples of
intersection points between the horizontal and vertical circles, with the property that no intersection
point appears on more than one horizontal (or vertical) circle.

Before defining the differentials, we turn to a filtration and a grading on the complex, determined
by two functions A : S −→ Z and M : S −→ Z! defined as follows.

First, we define a function a from lattice points on the grid diagram to Z!. For a lattice point p
the ith component of a is minus one times the winding number of the projection of the ith component
of the oriented link around p. Each X and O in the diagram lies in a square. We thus obtain 2n
distinguished squares, and each of them has four corners. We denote the resulting collection of
corners {ci,j}, i ∈ {1, . . . , 2n}, j ∈ {1, . . . , 4}. Given x ∈ S, we set

(1) A(x) =
∑

x∈x

a(x) − 1

8

(∑

i,j

a(ci,j)
)

−
(

n1 − 1

2
, . . . ,

n! − 1

2

)
,

where here ni denotes the number of horizontal segments on the ith component of #.
The function M is defined as follows. Given two collections A, B of finitely many points in the

plane, let I(A,B) be the number of pairs (a1, a2) ∈ A and (b1, b2) ∈ B with a1 < b1 and a2 < b2.
Take a fundamental domain for the torus which is cut along a horizontal and vertical circle, with
the left and bottom edges included. Given a generator x ∈ S, we view x as a collection of points
in this fundamental domain. Similarly, we view O = {Oi}n

i=1 as a collection of points in the plane.
Define

M(x) = I(x,x) − I(x, O) − I(O,x) + I(O, O) + 1.

Note that the definition of M appears to depend on which circles we cut along to create a funda-
mental domain. In fact, it does not. See Lemma 2.4 below. Note also that this definition of the

(c)

Figure 1: Projection of the 41 knot drawn on a 6× 6 grid diagram.

� At each intersection point we let the horizontal segment be the underpass and the vertical
segment be the overpass.

We then take this diagram and turn it into a torus in the usual way by associating the top and
bottom lines of the square and associating the left and right lines of the square with one another
creating a new diagram known as the torodial grid diagram.

Grid diagrams were first studied by Brunn in 1898. They have resurfaced many times since,
including in work of Birman and Menasco, and also in the guise of Legendrian knot projections.

Theorem. (Cromwell) An invariant associated to grid diagrams is a knot invariant precisely if it
is invariant under the following three types of moves:

� Cyclic permutations.

� Commutation moves.

� Stabilizations.

See also Dynnikov arXiv:math/0208153

To this torodial grid diagram, we associate the chain complex C(G).

Chains:

The set of generators for C(G), denoted S, consists of 1-1 correspondences between the horizontal
and vertical circles created in the torodial grid diagram.

Thus for an n× n grid, S = the set of permutations of {1, ..., n}.

There are several different versions of knot Floer homology:

The simplest version of the chain complex associated to this diagram is a chain complex over field
F = Z/2Z with generators in S.

C̃F (K) =
⊕

p∈S
Z/2Z · p.
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Figure 2: An example of the generator (4 1 3 6 2 5) [or (3 0 2 5 1 4) depending on your convention]
for the 6 × 6 torodial grid diagram. Recall that the leftmost and rightmost lines, respectively top and
bottom lines, are identified. Geometrically, we can think of these generators as n-tuples of intersection
points between horizontal and vertical circles, with the property that no intersection point appears on
more than one horizontal (or vertical) circle.

We will focus on this chain complex first, but its homology will need a ”correction factor” to turn
it into a knot invariant

Grading

Given two collections A and B of finitely many points in the plane,

Define I(A,B) as the number of pairs (a1, a1) ∈ A and (b1, b2) ∈ B with a1 < b1 and a2 < b2.

Define J (A,B) = I(A,B)+I(B,A)
2

.

We can extend this function bilinearly over formal sums of subsets.

Taking a fundamental domain for the torus, cut along a horizontal and vertical circle with the left
and bottom edges included. Thus, given a generator p, which is viewed as a collection of points
with integer coordinates, and O = {Oi}ni=1 as a collection of points in the plane with half-integer
coordinates, the function M : S→ Z, known as the Maslov grading, is defined as follows:

MO(p) = I(p,p)− I(p,O)− I(O,p) + I(O,O) + 1.

We also define the Alexander filtration for a knot A : S→ Z where

A(p) =
MX(p)−MO(p)

2
− n− 1

2
where MX(p) = I(p,p)− I(p,X)− I(X,p) + I(X,X) + 1

Boundary maps

To define the differential associated to this chain complex, the following definition is needed: Let
p and q ∈ S. Then p and q can be connected by a rectangle if all but two coordinates of p are
equal to two coordinates of q. The rectangle r connects p to q if:

1. all four corners of r are intersection points in p ∪ q, and
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2. the bottom left corner of r is a point from p.

We denote this set of rectangles Rect(p,q). Notice that if q and p can be connected by one
rectangle then |Rect(p,q)| = |Rect(q,p)| = 2.

 

Figure 3: There are two shaded rectangles connecting p to q.

The simplest version of the chain complex associated to this diagram is a chain complex over field
F = Z/2Z with generators in S.

C̃FK(K) =
⊕

p∈S
Z/2Z · p.

The associated differential is defined as:

∂̃(p) =
∑

q∈S
#

{
r ∈ Rect(p,q)

∣∣∣∣X ∩ r = ∅,O ∩ r = ∅,p ∩ int r = ∅
}
· q

keeps a count of the empty rectangles connecting generators. This differential has the following
properties:

Theorem 1. Let ∂− be defined as above. Then,

� ∂− ◦ ∂− = 0

� ∂− drops the Maslov grading by 1.

� ∂− preserves the Alexander grading.

2.1 Homology

H̃FK(K) ∼= ĤFK(K)⊗H∗(T n−1)
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3 Invariance

Lemma 3.1. The function M is invariant under cyclic permutations.

Proof. Fix p ∈ S, so that there is one component a with coordinates (m, 0). Let p′ denote the
same generator in the fundamental domain with the top and left edges included, so there is now
a component b with coordinates (m,n). For each i with 0 ≤ i < n, i 6= m, there is one component
ci in p and p′ with first coordinate i.

 

(a) Generator p
 

(b) Generator p′

For each i, such that m < i < n, the pair (a, ci) contributes 1 to the count of I(p,p). The
corresponding pair (ci, b) does not contribute to I(p′,p′). Symmetrically, for each i with 0 ≤ i < m
the pair (ci, a) does not contribute to I(p,p) but (ci, b) contributes to I(p′,p′). Thus,

I(p,p) +

#of ci
that contribute to I(p′,p′)

but not to I(p,p)︷︸︸︷
m = I(p′,p′) + n−m− 1︸ ︷︷ ︸

#of ci
that contribute to I(p,p)

but not to I(p,′p′)

.

Now, notice that for 1
2
≤ i ≤ n− 1

2
, there is an Oi ∈ O with first coordinate i. For m+ 1

2
≤ i < n

the pair (a,Oi) contributes 1 to I(p,O) whereas the corresponding pair (b, Oi) does not contribute
to I(p′,O). Symmetrically, for 1

2
≤ i ≤ m− 1

2
, the pair (a,Oi) does not contribute to I(O,p) and

each pair (b, Oi) contributes 1 to I(O,p′). Therefore

I(p′,O) + I(O,p′) + n−m = I(p,O) + I(O,p) +m.

To complete the rotation, we have to change O to O′ by moving the bottom row which contains
an O with coordinates (l− 1

2
, 1
2
) to the top row, creating O′ with coordinates (l− 1

2
, n+ 1

2
). Similar

arguments will show that

I(p′,O′) + I(O,p′) = I(p′,O) + I(O,p′) + 2l − n

2I(O′,O′) = 2I(O,O) + 2l − n− 1.

Plugging in these substitutions we see that M(p) = M(p′), as desired.
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Figure 4: Complete rotation of generator p to p′ now including O′.

Lemma 3.2. The function A is under cyclic permutations.

Proof. This is analogous to the proof of lemma 3.1 by definition of Alexander grading.

Etc...............................................................................

3.1 Other versions

There are several different versions of knot Floer homology:

The simplest version of the chain complex associated to this diagram is a chain complex over field
F = Z/2Z with generators in S.

C̃F (K) =
⊕

p∈S
Z/2Z · p.

Maslov grading = MO(p) = I(p,p)− I(p,O)− I(O,p) + I(O,O) + 1.

Alexander filtration for a knot = A(p) =
MX(p)−MO(p)

2
− n− 1

2
.

The associated differential is defined as:

∂̃(p) =
∑

q∈S
#

{
r ∈ Rect(p,q)

∣∣∣∣X ∩ r = ∅,O ∩ r = ∅,p ∩ int r = ∅
}
· q

Note its homology needed a ”correction factor” to turn it into a knot invariant

A more enhanced version of this chain complex works over a polynomial ring F[U1, . . . , Un] with
generators also in S and is described as

CF−(K) =
⊕

p∈S
F[U1, . . . , Un] · p.
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where n = the grid number.

The summand for this chain complex are generated by expressions Um1
1 · · ·Umn

n · p, with p ∈ S,
with maslov grading

d = M(p)− 2
n∑

i=1

mi

and alexander grading

a = A(p)−
n∑

i=1

mi.

The differential

∂−(p) =
∑

q∈S

∑

{r∈Rect(p,q|p/∈int(r),X /∈r}
U#Oi∩r
1 · . . . · U#On∩r

n · q,

where #Oi ∩ r denotes the number of times Oi is in r. This number is either 1 or 0. Thus, ∂−

keep account of the elements of O that are in rectangles connecting generators.

These differentials have the following properties:

Theorem 2. Let ∂− and ∂̂ be defined as above. Then,

� ∂− ◦ ∂− = 0, ∂̂ ◦ ∂̂ = 0

� Both differentials drop Maslov grading by 1.

� Both differentials preserve the Alexander grading.

4 Examples

(a) (b)

Figure 5: (a) is an example of a 3× 3 grid for the unknot with one crossing. We can see in (b) the
knot drawn on the grid.

In this example is a calculation of HFK−(1crossing knot). Let F = Z/2Z. Looking at this 3 × 3
grid, figure 5, we see that there are six generators.
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Figure 6: The generators for the grid diagram in figure 5 labelled from left to right and top to
bottom: (1 2 3), (1 3 2), (2 1 3), (2 3 1), (3 1 2) and (3 2 1).

Using the following formulas for the Maslov and Alexander gradings,

Maslov Grading: MO(p) = I(p,p)− I(p,O)− I(O,p) + I(O,O) + 1

Alexander Grading: A(p) =
MX(p)−MO(p)

2
− n− 1

2

we can calculate the two gradings (A(·),M(·)), associated to each generator as seen in table1

p I(p,p) I(p,O) I(O,p) I(p,X) I(X,p) I(O,O) I(X,X) (A(p),M(p))

(1 2 3) 3 4 1 4 1 1 1 (−1, 0)

(1 3 2) 2 4 1 4 1 1 1 (−1,−1)

(2 1 3) 2 4 1 4 1 1 1 (−1,−1)

(2 3 1) 1 3 0 4 1 1 1 (0, 0)

(3 1 2) 1 4 1 3 0 1 1 (−2,−2)

(3 2 1) 0 3 0 3 0 1 1 (−1,−1)

Table 1: This table shows the calculations needed to calculate the gradings of each of the generators
in figure 6.
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Figure 7: This figure is a graph with x-axis equal to the Alexander grading and the y-axis equal
to the Maslov grading.

In order to calculate the differentials of each generator, by definition we count rectangles connecting
one generator to another without any element of the generators or any element in X. Recall that we
are looking at rectangles on a torus and that we will have two rectangles connecting one generator
to another.

Figure 8: The differential for the generator (1 2 3) is calculated using the rectangles created from
generators (2 1 3), (3 1 2) and (1 3 2), as seen in this figure. Thus ∂−(1 2 3) = (2 1 3) + (3 2 1) +
(1 3 2 ).
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Figure 9: The differential for the generator (1 3 2) is calculated using the rectangles created from
generators (3 1 2), (2 3 1) and (1 2 3), as seen in this figure. Thus ∂−(1 3 2 ) = (U3 + U2)(2 3 1).

Figure 10: The differential for the generator (2 1 3) is calculated using the rectangles created from
generators (1 2 3), (3 1 2) and (2 3 1), as seen in this figure. Thus ∂−(2 1 3) = (U1 + U2)(2 3 1).

Figure 11: The differential for the generator (2 3 1) is calculated using the rectangles created from
generators (3 2 1), (1 3 2) and (2 1 3), as seen in this figure. Thus ∂−(2 3 1) = 0.

Figure 12: The differential for the generator (3 1 2) is calculated using the rectangles created
from generators (1 3 2), (2 1 3) and (3 2 1), as seen in this figure. Thus∂−(3 1 2) = U1(1 3 2) +
U2(2 1 3) + U3(3 2 1).

Thus, table 2 shows us the differential we get for each generator. Using this information, we can
calculate the homology of our chain complex. We know from homology theory the following:

HFK= ker∂n
img∂n+1

.
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Figure 13: The differential for the generator (3 2 1) is calculated using the rectangles created from
generators (2 3 1), (1 2 3) and (3 1 2), as seen in this figure. Thus ∂−(3 2 1) = (U1 + U3)(2 3 1).

∂−(123) = (213) + (321) + (132)

∂−(132) = (U3 + U2)(231)

∂−(213) = (U1 + U2)(231)

∂−(231) = 0

∂−(312) = U1(132) + U2(213) + U3(321)

∂−(321) = (U1 + U3)(231)

Table 2: Differential for each of the generators.

Figure 14: The figure is a graph that shows the generators as red circles and the generators times
U1, U2, U3 as blue triangles.

Looking at the (0, 0) homology level, we see that ∂−(2 3 1) = 0. The ker(∂(0,0)) =< (2 3 1) >. And
since there does not exist a map above this map, we see that HFK−(0,0)(unknot) =< (2 3 1) >=

F. Continuing in this matter we look at the HFK−(−1,0), HFK
−
(−1,−1) and HFK−(−1,−2). At the
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(−1, 0) level there is one generator: (1 2 3). At the (−1,−1) level there are three generators:
(1 3 2), (2 1 3), (3 2 1). At the (−1,−2) level, there are also three elements, the generator (2 3 1)
times U1, U2, and U3 respectively. This gives us the following sequence:

0
∂−3−→ F

∂−2−→ F3 ∂−1−→ F3 ∂−0−→ 0

where the mapping notation is simplified.

We know that this sequence begins and ends where it does with 0 because we have no other
elements with Alexander grading = −1. Thus looking at ∂−3 we see that the img(∂−3 ) = 0. Notice,
ker(∂−2 ) = 0. Thus,

HFK−(−1,0)(unknot) = ker(∂−2 )/img(∂−3 ) = 0.

Calculating the image of ∂−2 we see that img(∂−2 ) = F since ker(∂−2 ) = 0. Now, calculating ker(∂−1 )
we see that ∂−1 ((1 3 2) + (2 1 3) + (3 2 1)) = 0. Thus, ker(∂−1 ) = n((1 3 2) + (2 1 3) + (3 2 1)), i.e.
ker(∂−1 ) = F. Thus

HFK−(−1,−1)(unknot) =
F
F

= 0.

Notice then we can we see that img(∂−1 ) = F2. To calculate the kernal of ∂−0 notice that
∂−0 (Ui(2 3 1)) = 0 for i = 1, 2, 3. Thus we have that ker(∂−0 ) = niUi(2 3 1) for i = 1, 2, 3 and ni ∈ F.
Thus we have

HFK−(−1,−2)(unknot) =
F3

F2
= F.

We can continue in this manner to find

HFK−(−2,−2)(unknot) = 0, HFK−(−2,−3)(unknot) = 0, HFK−(−2,−4)(unknot) = F

giving us fig??.

Figure 15: Graph of the homology groups of 3× 3 grid diagram of the unknot.
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So at each level {−n,−2n} we have Un
i times the generator (2 3 1) giving a non-trivial homology.

Thus
HFK−(−n,−2n)(unknot) = F[U ].

Yet even with the combinatorial tool, the homology quickly becomes difficult to calculate. Notice
that the number of generators for an n× n grid is n!. Thus several computations tools have been
developed to help with calculations.

5 Computational Tools

GridLink is a program by Marc Culler that calculates ĤFK for knots only. Also, Jean-Marie
Droz of the University of Zurich (working along with Anna Beliakova) wrote a Python program to
compute the (hat-version) Heegaard-Floer Knot Homology, which has been integrated into Dror
Bar-Nataan’s Knot Atlas page:

http://katlas.math.toronto.edu/wiki/Heegaard Floer Knot Homology.

Curently, there are no computational tools to find the Floer homology of a 2 or more component
link.
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