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0 Overview

Some keywords. Group theory in connection to physics is an incredibly rich
topic:

symmetry
geometry

topology

solid state lattices
special relativity
quantum mechanics
spin

exchange statistics spin
quantum Hall effect
gauge theory
quantum anomalies
supersymmetry
integrable systems
string theory
exceptional groups

One might argue that physics of the 20th century is all about group theory. The
mathematics involved in this is not quite as recent though; modern mathematical
formulations of groups are very general and also abstract.

We will learn about many mathematical concepts of group theory in a physicist’s
or classical mathematics language. This is intended to be a (theoretical) physicist’s
course. [ will try to provide examples from various areas of physics and use them
as a motivation for the mathematical concepts.

0.1 Prerequisites

Prerequisites for this course are the core courses in mathematics and theoretical
physics of the bachelor syllabus:

linear algebra (basic concepts, linear maps)

quantum mechanics (representations of SO(3) or SU(2))
classical mechanics (formalism)

electrodynamics (fields)

mathematical methods in physics (HO, Fourier transforms, ... )



0.2 Contents

Two-Dimensional Rotations (
Three-Dimensional Symmetries (
Finite Group Theory (
Point and Space Groups (
Structure of Simple Lie Algebras (100 min
Finite-Dimensional Representations  (
Representations of SU(N) (
Classification of Simple Lie Algebras  (
Conformal Symmetry (

© 00N T W

Indicated are the approximate number of lecture minutes for each chapter.
Altogether, the course consists of 26 lectures.

0.3 References

There are many text books and lecture notes on group theory, representation and
physics. Here are some which I will refer to in my preparation:

e J. F. Cornwell, “Group Theory in Physics, An Introduction”, Academic Press
(1997)

S. Sternberg, “Group theory and physics”, Cambridge University Press (1994)
e H. F. Jones, “Groups, Representations and Physics”, CRC Press (1998)

M. Hamermesh, “Group Theory and Its Application to Physical Problems”,
Dover Publications (1989)

online: M. Gaberdiel, “Symmetries in Physics”, lecture notes (HS13),
http://edu.itp.phys.ethz.ch/hs13/Symmetries/
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1 Two-Dimensional Rotations

Symmetries in physics are typically expressed by mathematical groups acting in
some specific way on some objects or spaces.

In the first chapter we introduce the basic notions of group theory using the
example of rotations in two spatial dimensions. We shall proceed slowly and treat
some auxiliary details carefully so that we can rely on these discussions in more
complex situations to be encountered in the following chapters.

1.1 Group Basics

We start with rotations in two-dimensional space. A rotation by angle ¢ is defined

by the map
(:C) = (:cc.osgp—ymmp)‘ (11)
Y TSN @ + Y CoS ¢
This simple example already contains several notions of group theory which we
shall explore in the following. Most of them will be intuitive (for anyone who has
studied physics for a while), but it will be good to know the appropriate
mathematical terms and concepts and to associate them to physical applications

right away. We shall also highlight a few subtleties that are resolved by the
mathematical framework.

Definition of Group. Let us collect a few properties of the above maps:

e Two consecutive rotations by angles ¢, and ¢, yield another rotation, namely
by the angle ¢ = 1 + @o. This statement can be confirmed by direct
computation applying the addition theorem for the trigonometric functions.

e The rotation by the angle ¢ = 0 (or more generally by ¢ € 277Z) is
distinguished in that it maps all points (z,y) to themselves (identity map).

e For the rotation by any angle ¢ there exists the inverse rotation by the angle
— such that their composition is the trivial rotation.

e The order in which two or more rotations are performed does not matter.

e Rotations whose angles differ by an integer multiple of 27 are equivalent.

The former three of the above properties match nicely with the definition of a
group: A group is a set G with a composition rule x4 : G x G — G, which has the
following three properties:

e [t is associative

u(u(a,b),c) = u(a,u(b, c)) for all a,b,c € G. (1.2)
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e There exists a (unique) identity element e € G such that
ple,a) = p(a,e) =a forall a € G. (1.3)
e There exists a (unique) inverse map 7 : G — G such that

i(a,n(a)) = pu(n(a),a) =e forall a € G. (1.4)

Usually one considers the concept of a group as the generalisation of multiplication
of numbers. Therefore one writes the composition rule p(a,b) as multiplication a-b
or even shorter as ab. The inverse n(a) of an element a is denoted by a~!. In this
course, we will also denote the identity element as 1 instead of e.! The group
axioms in multiplicative notation read

(ab)e = a(be), la =al = a, aa” " =a a=1. (1.5)

In a general group, the order of the elements to be multiplied matters. In our
example, this is apparently not the case. A group with a symmetric composition
rule

p(a,b) = p(b, a) or  ab=ba (1.6)

is called abelian. Abelian groups are largely boring, up to some subtleties to be
discussed. This course will mostly be about non-abelian groups where the
composition rule is non-commutative.

Group Action. The group axioms translate to the properties of the rotations,
however, there is no immediate match for associativity. Associativity comes about
by considering the above rotation as a group action. In mathematics, one clearly
distinguishes between the group elements as abstract rotations and the group
action as a transformation rule acting on some set. The action of a group G on a
set M is a map a: G x M — M with the following properties

e Consecutive group actions can be combined, i.e. the action is compatible with
the group composition rule?

a(b,a(c, m)) = Oz(u(b, c),m) for all b,c € G, m € M. (1.7)
e The identity element acts trivially
ale,m) =m for all m € M. (1.8)

In physics one usually assumes a unique/natural action of a given group on a given
set, and in multiplicative notation it suffices to denote the group action «(b, m) by
b-m or just bm. Thus

b(em) = (be)m, Im =m. (1.9)

! Also the identity elements of various other algebraic structures will be denoted by 1 hoping
that no ambiguities will arise. 1 is one is 1 is id.

2Note that the order of the actions is from right to left (as for matrices acting on vectors), i.e.
¢ acts first in the product be, which can be confusing.
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The requirement that the composition of group actions is again a group action in
fact hinges on associativity of the group:®

((ab)c)m = (ab)(cm) = a(b(cm)) = a((bcym) = (a(bc))m. (1.10)

Furthermore, a simple corollary of the definition is that the group action a4 of a
given group element b is a bijection on M, i.e. the map ayp, : M — M with
ay(m) := a(b,m) is one-to-one. The inverse group action (a;)~! is given by the
inverse group element ag-1

b= (bm) = (b~'b)ym = 1m = m. (1.11)

Initially, we merely considered concrete rotational transformations on
two-dimensional space R2. For the group theoretical treatment we have to split up
this concept into a group element and a group action. The natural choice is to
introduce an abstract rotation by the angle ¢ € R denoted by R, € G. The group
composition rule, identity and inverse read

Rme - Rso1+<pz7 Ry =1, (Reo>_1 - R—cp' (1'12)

The action of R, on a point & € R? is then denoted by R,Z. More concretely,
T\  [xcosyp —ysinp
R, (y) N (xsingp—f—ycosgp) ' (1.13)

Group Topology. In fact, the above definition of the rotational group is not yet
uniquely determined by the discussion, and it makes sense to philosophise on the
appropriate definition in order to understand better the relationship between a
physical symmetry and an abstract group: For example, one could easily embed
the above group elements R, into a larger group and still obtain the same
rotational action on R2. To this end, a physically reasonable setup is to consider
the group of rotations together with time translations (¢ — ¢ + 7). However, time
translations are independent of spatial rotations, and the rotational action of a
group element would simply ignore the time translation. There surely is no need to
do this, but it can be done with the only penalty of having a somewhat bigger
abstract group. Such a group can be physically relevant, e.g. to describe a
constantly rotating reference frame where the angle of rotation is linked to time
(p = @o + wT). Equally, it makes sense to ask what is the minimal abstract group
with the above properties, and how to understand its extensions.

The abstract rotation R, is not yet uniquely defined because we have not specified
the suitable range of  which is evidently a subset of the real numbers. We know
that rotations which differ by multiples of 27 act equivalently

ch ~ RQ@+27rm or R(pf - R¢+2ﬂmf. (114)

3In principle, (ab)c and a(bc) could differ while their actions on m are identical. This logical
possibility is avoided by associativity of the group.
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However, that does not imply that the corresponding abstract rotations are the
same. In other words, it may or may not make physical sense to keep track of how
many full turns a given rotation contains. Let us identify group elements which
differ by n € Z* full turns using the symbols Rfon)

R = R™ (1.15)

© ©+2mn”

The corresponding group can be defined as
G = {RW; p € R/27nZ}. (1.16)
The group without identifications can be denoted as
G .= {Rg’o); ¢ € R}. (1.17)

Thus GM is the minimal definition for the group of rotations in two dimensions.
However, in quantum theory, G®) also has a natural meaning: Here, a rotation by
47 is the identity element e, but a rotation by 27 is a non-trivial element. For
quantum mechanical states with Fermi statistics, an odd number of full turns
should flip the sign of the state. Thus one would naturally identify this element
with the operator (—1)F

R = (=1)F. (1.18)

Finally, G(>) keeps track of all full rotations, which may be beneficial in some
cases. For instance, the function log(x + iy) which measures the logarithmic
distance and the angle w.r.t. the origin is not uniquely defined on plain R?. If
considered as a multi-valued function one could say that its value shifts by 2
under the action of Rfaoo) (if the multi-valued function is analytically continued
without jumps).

A further subtlety is that all groups G with finite n are equivalent, i.e.
tsomorphic. In other words, one can identify the elements

n) — p(1)
R =R (1.19)

©/n
such that the group composition rule is respected (with all applicable
identifications between the elements). From an abstract group theoretical point of
view, it suffices to consider GV and G(>).

In this picture, the above ambiguities in choosing the periodicity of R, translate to
the existence of inequivalent group actions of G on R? labelled by n € Z

N D7) x cos(ny) — ysin(nep)
nlfy7,7) (x sin(ng) + ycos(ngo)) ' (1.20)

In other words prl) could act as a rotation by n times the angle specified by the
group element. Note that ag is the trivial group action which acts as the identity
map for all group elements. The difference for G(*) as compared to G() is that
the parameter n of the action «, is not restricted to the integers, but can rather be
any real number, n € R, because of the absence of the periodicity constraint.

1.4



Furthermore, the groups are isomorphic to the additive groups on a circle or on the
real line

G =R/2mnZ, G =R, (1.21)

via the trivial identification Rc(p") = . This shows that the set of rotations has the
topology of either the circle or the real line

c¢m =g G =R (1.22)

Thus G™ is compact while G(* is non-compact in a topological sense. Compact
groups have some convenient features which simplifies their treatment
substantially. Furthermore, they play an important role in quantum physics.
Nevertheless, non-compact groups are very relevant for physics as well.

1.2 Representations

The final topic in connection to two-dimensional rotations are representations.
Representations are perhaps the most important objects in group theory relevant
to physics, in particular quantum physics. A representation is essentially a group
action which acts linearly on a set. For this to make sense, the set should have the
structure of a vector space. Useful examples of representations correspond to the
notions of vectors, tensor, spinors, but also momentum eigenstates, spherical
harmonics, and many other physics concepts.

Definition. A representation p * of a group G on a vector space V is a map
p: G — Aut(V), (1.23)

which respects the group composition law and the identity element

pla) o p(b) = p(p(a,b)),  p(e) = idy, (1.24)
or more concisely in the multiplicative notation
pla)p(®) = plab),  ple) = 1. (1.25)

Note that the formal definition of the representation is slightly different from a
linear group action o : G x V — V in that it maps a group element to an
automorphism of V, i.e. an invertible linear transformation from V to itself. The
space Aut(V) is equipped with a natural multiplication which is composition of the
linear transformations. In the finite-dimensional case, and given a certain basis of
V, a linear transformation can be viewed as a square matrix, and multiplication
corresponds to the matrix product.

In the physics context, as in the case of the group action, the representation symbol
p is often omitted, and p(a)v becomes av. This is valid because in many cases,

40ther common symbols are R, D, r, I', ...
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there is a distinguished representation for a particular vector space. Furthermore,
in the physics literature, no distinction is made between the representation as
defined above and the space V it acts upon. Often the context reveals which of the
two concepts is referred to. More correctly, the vector space can be called a
G-module. We shall refer to the space V as the representation space.

Types of Representations. The group actions discussed above are linear and
thus correspond to representations on the space V = R2. For the plain rotation we
can define the representation

__[cosp —sing
pEp) = (singp cos ¢ ) ' (1.26)
The resulting matrices are orthogonal, (R,)"R, = 1 and have unit determinant.
Matrices of this kind form the group SO(2). For the compact group G() the
representation p : G — SO(2) is one-to-one which shows the group isomorphism

GWY =50(2). (1.27)

The latter is a common name for the group of rotations in two-dimensional space.
In this case, the identity map on SO(2) in fact serves as a representation, namely
the defining or fundamental representation. The above representation is real,
two-dimensional and orthogonal, i.e. it acts on a vector space R? over the field R of
real numbers by orthogonal transformations (w.r.t. the canonical symmetric
bilinear form on R?).

It can equivalently be written as a complex, one-dimensional, unitary
representation which acts on a vector space C! over the field C of complex
numbers by unitary transformations (w.r.t. any hermitian form on C!).® To that
end, one embeds the vector (z,y) € R? into C' as x + iy and obtains®

pc(Ry) = (€) . (1.28)

Again, this map is one-to-one and thus we have a group isomorphism to the group
of unitary 1 x 1 matrices
¢ =u(). (1.29)

Beyond real and complex representations, one often encounters quaternionic or
pseudo-real representations over the field H of quaternions.” ®

Similarly, a representation is called symplectic if all group elements are mapped to
symplectic transformations (w.r.t. some anti-symmetric bilinear form on V).

°In the ordinary (strict) sense, the notion of unitarity requires that the underlying hermitian
form is positive definite.

6The real representation matrix has a particular form which allows the interpretation as
complex multiplication: (¢ + is)(z + ty) = (cx — sy) + i(sx + cy), where ¢ = cos and s = sin .

“Even though quaternions are non-commutative, matrices with quaternionic entries are
perfectly admissible (in contradistinction to the remaining division algebra of octonions, where
associativity is lost).

8For example, spinors in three-dimensional space (and correspondingly the Pauli matrices)
have a quaternionic structure rather than a complex one. Nevertheless, physicists usually avoid
thinking about quaternions and instead consider a complex vector space of twice the dimension.
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Representation Theory. The representation theory of a given group describes
its representations as well as their relations. For our example, the compact abelian
group GV ° we have already found further group actions which translate to

representations on R?

_ [cos(np) —sin(ny)
pr(Bp) = (sin(mp) cos(ny) ) ' (1.30)

Equivalently, we can write these as complex one-dimensional representations®’

pea(R,) =™ . (1.31)

Given some representation(s), there are three standard tools to construct further
ones, namely similarity transformations, direct sums and tensor products. A
similarity transformation by some invertible linear map 7" € Aut(V) applied to a
representation p on V yields a new representation p’ on V 1!

p(a) :=Tpla)T . (1.32)

It is straight-forward to convince oneself of this fact. This new representation p’
behaves for all purposes like p. Therefore, one hardly distinguishes between p and
p' in representation theory and calls the representations equivalent

P =p. (1.33)

For example, the real representations p,, and p_,, are equivalent
Pn = Pn via T = ((1) (1)) . (1.34)

The direct sum of two or more representations p; on the spaces V; is a
representation pg := p1 @ ...@® py on the direct sum of spaces Vg :=V; ... BEVy

The direct sum of vector spaces is easily explained if the individual vector spaces
are equipped with some bases. A basis of the direct sum is given by the union of
all the bases, where all basis vectors are treated as linearly independent. This
implies that the dimension of the direct sum equals the sum of dimensions of its
components. The direct sum of vector spaces is the same as the Cartesian product
Vg =V X ... X Vy. One can write the direct sum of representations as a matrix
in block form acting on the individual spaces V;

pi(a) 0 ... 0
0 o(a) 0 0

pow=| L (1.36)
0 .. 0 pnla)

9The representation theory for the non-compact abelian group G(*) is analogous, but the
parameters m,n can take arbitrary real values instead of integer values.

10Tt is not a coincidence that this function appears in Fourier series.

' More generally, the new space for p’ could also be a different but isomorphic space V.
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In other words, direct sums of representations are block-diagonal and vice versa.
One notable example is that the direct sum of pc, and pc _, is the
two-dimensional representation

pean(Ry) = (e;(;w e_?w) . (1.37)
This matrix is in fact equivalent to
pn(Ry) = Tpean(R)T™'  with T = ( L _12) . (1.38)
This shows the statement!?
Pn = P D PC,—n- (1.39)

Similarly, the tensor product of two or more representations p; on the spaces V; is
a representation pg 1= p; ® ... ® py on the tensor product of spaces
V@ :V1®®VN 13

A tensor product of vector spaces is conveniently defined via their bases. The basis
of the tensor product is the Cartesian product of the bases of the individual vector
spaces. As such, the dimension of the tensor product equals the product of the
dimensions of its components. The tensor product representation is defined by

pe(a) :=pi(a)®...® py(a). (1.41)

The representation axioms follow immediately from the multiplication rule for
tensor products'*

(M ®...my) (N &...0ny) =(mMn; ®... d myny). (1.42)

As an example, the tensor product of two generic complex one-dimensional
representations is another such representation

pcm ® PCn = PCmtn- (1.43)
The situation for two generic real representations is more involved

CmCn  —CmSn —SmCn  SmSn
(pm ® pu) (Rp) = | Tom T omon T m (1.44)

SmCn  —SmCn CmCn —CmSn
SmSn SmCn CmSn CmCn

2Note that the direct sum of a complex representation and its complex conjugate is a real
representation. In our case, the complex conjugate of pc,, is pc,—n. This statement is based on
the equivalence R? = C @ C where C is understood as the complex conjugate space of C.

13In quantum physics, the tensor product of two systems describes the combined system which
can take on entangled states.

A tensor product of two matrices A ® B can be viewed as a block matrix of type A whose
blocks are of type B, i.e. a nesting of two matrices. The elements of A ® B are the elements of A
times the elements of B (where every combination appears precisely once).
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with the abbreviations ¢, := cos(ky) and si := sin(ky). A similarity
transformation by the matrix

-1 0 0 1
01 1 0

T=|o 1 1o (1.45)
1 0 0 1

and use of the addition theorem for trigonometric functions brings the above
representation to the block form diag(pmin, pm—n). Consequently, we have the
equivalence

Pm ® Pn = Pm+n S Pm—n- (146)

Note that this statement also follows from the above equivalences.

We observe that some representations, in particular tensor products of
representations, are equivalent to the direct sum of representations. Direct sum
representations are easy to set up, therefore they can be discarded towards
understanding the representation theory of a given group; it suffices to focus on
atomic building blocks. There are three types of representations in this regard:

A representation p on V which takes a block-diagonal form on the direct sum of
two (suitably chosen) subspaces V; & V,

)= (%1 /?2) (1.47)

is called decomposable; otherwise it is indecomposable. For example, the
representation p, is indecomposable over R (but decomposable over C as we have
seen above) for generic n.'” For n = 0, however, the representation is trivial

pola) = (é ?) : (1.48)

and can be decomposed into two trivial one-dimensional representations.

A representation with an invariant subspace is called reducible; otherwise it called
irreducible. An invariant subspace of p is a space V; C V for which p(a)V; C V;
for all a € G. A reducible representation in a basis on V; & V5 has the block form

p= (%1 :2) . (1.49)

The restriction of the representation to the invariant subspace V; can easily be
shown to be a sub-representation p; of p.!® Note that a decomposable
representation is clearly reducible, while the converse is not necessarily true: there

15To show this statement, note that a real 1-dimensional representation is necessarily trivial,
and thus the direct sum of two 1-dimensional representations is also trivial, but p,, is clearly not.
16 Also py is a representation on Vy, but this is not a sub-representation of p because
p: Vo — V as compared to p: Vi — V. In fact, this implies that there is some freedom to
choose V5 and this choice has an influence on the representation ps.
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exist reducible but indecomposable representations. However, for certain classes of
representations (such as the physically relevant case of unitary representations)
they can be excluded. In representation theory, the irreducible representations
serve as the atomic building blocks from which other representations can be
constructed. Due to their importance the term irreducible representation is often
abbreviated as irrep.

Altogether, we observe that the set of considered representations of

G = 80(2) = U(1) closes under all the above elementary operations on
representations. All complex irreducible representations are one-dimensional and
unitary. In our case, they are labelled by an integer n € Z. All non-trivial real
irreducible representations are two-dimensional and orthogonal. In our case, they
are labelled by a positive integer n € Z*. The trivial irreducible representation is
clearly one-dimensional.'” We have also seen how to translate between real and
complex representations. In fact, the above classification of irreducible
representations (up to the precise labelling) is universal for compact abelian
groups: All complex representations are one-dimensional and all real
representations are two-dimensional except for the trivial one. Thus, the
representation theory of compact abelian groups is hardly exciting. For
non-abelian groups the representation theory has much richer structures by far.

"Note again the similarities to complex and real Fourier series.

1.10



Symmetries in Physics Chapter 2

ETH Zurich, 2020 FS Prof. N. Beisert
25.03.2020

2 Three-Dimensional Symmetries

In the following we consider the more exciting case of symmetries in three
dimensions. The group of rotations SO(3) and its double cover SU(2) serve as the
prototype of continuous groups.

2.1 Lie Group

Let us start by setting up the group. Then we shall discuss its intrinsic geometry
and relate it to physics.

Elements of the Group. Rotations are linear transformations of R*® which
=T —

leave the scalar product ¥ -y := 7'y = Z?Zl x;y; between two vectors T, i/
invariant. We can thus write a rotation as a 3 x 3 matrix which is orthogonal

R =R (2.1)

Reflections share the above properties, and we can exclude them by the further
requirement that the matrix has positive determinant

det R = +1. (2.2)

The above constraints are compatible with the group axioms, and hence the set of
all such matrices forms a group

SO(3) = {R € Aut(R*); R"TR = 1,det R = 1}. (2.3)

There are several ways of parametrising rotations in three dimensions. A
prominent one is Euler angles

Rypy = RERYRY, (2.4)

where R/ denote rotations about the corresponding axis,

cosp —sing 0 cos 0 sind
R, = [sing cos¢p 0], Ry = 0 1 0 . (2.5)
0 0 1 —sinf 0 cosf

The angles ¢ and ¥ are 2m-periodic and 0 < # < 7. Note that the individual
rotations do not commute (in general); rotations in three dimensions form a
non-abelian group. Therefore the first and last rotations cannot be combined into
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a single rotation about the z-axis. This feature allows to parametrise arbitrary
rotations in three dimensions, even about the z-axis.

A different way of parametrising rotations in three dimensions makes use of the
fact that any rotation leaves a one-dimensional subspace invariant.! We can
specify this subspace by a unit vector 7 € S* C R3. The rotation then acts on the
orthogonal two-dimensional subspace as a two-dimensional rotation about some
angle 1. This matrix of rotation can be written as

Ry = nn' + 1" siny + (1 —7n") cos . (2.6)

Here, v denotes the 3 x 3 anti-symmetric matrix that defines the cross product of
¥ with an arbitrary vector @ via matrix multiplication, @ 1= ¥ x ,?

0 —v, +v,
UX = “+v, 0 —Uz |, (’U‘X)Z] = Eikj’l}k. (27)
—vy Fv, 0

Without loss of generality we can assume that 0 < ¢ <. It is straight-forward to
confirm that the above form of Ry, describes a rotation that leaves the axis 7
invariant. In particular, R and R} are easily reproduced.

The group is defined as a subgroup of Aut(R?): Therefore, the identity map on
Aut(R?) restricted to SO(3)

id : SO(3) C Aut(R?) — Aut(R?) (2.8)

is in fact a representation. It is called the fundamental, defining or vector
representation of SO(3).?

Group Manifold and Topology. Let us discuss the geometric properties of the
group itself. The group elements are parametrised by three continuous numbers:
(¢,0,v) € R3 or (11,v) € S?> x R. The neighbourhood of a generic point is a patch
of R3; we shall discuss special points further below. Furthermore, the group
composition rule and inversion are apparently smooth functions of the coordinates.
These are the defining properties of a Lie group.

A Lie group is a group whose set G is a differentiable manifold and whose
composition rule and inversion are smooth maps on this manifold.

How about the special points? Let us discuss the parametrisation Ry . The
parameter 77 € S? has no distinguished point; S? is a symmetric space and treated

!The spectrum of R~! = R" coincides with the one of R. Consequently, the eigenvalues of
orthogonal matrices come in inverse pairs (e, e™*¥) or in singlets (+1 or —1). As there are
three eigenvalues whose overall product is 1, one of them must be 1.

2We assume the Einstein summation convention where for each pair of (upper and lower)
equal indices within a term there is an implicit sum over the range of allowable values, e.g.
vpwk = 22:1 vpwk.

3Many relevant examples of groups in physics are defined in terms of matrices. The proximity
of the group and its fundamental representation may be a reason for an occasional confusion of
terminology between groups, representations and, later on, algebras.
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as such in the matrix Rj,. The remaining parameter ¢ can be restricted to the
interval 0 < ¢ < m, both of whose end-points are special. For 1) = 0, the matrix
Ry is the identity and the dependence on 7@ becomes trivial. This situation is
analogous to polar coordinates at the coordinate origin. We could thus introduce a
non-unit vector to describe a general rotation

pi=ip eR’, [Pl < (2.9)

Its direction describes the axis of rotation, its magnitude the angle of rotation.
The dependence of the group element on 1 becomes non-singular at the coordinate
origin ¢ = 0, which describes the unit element.

It remains to discuss the boundary 1) = 7w of the parameter space. These are
rotations by half of a full turn. In this special case, it does not matter whether a
rotation is towards the left or the right; the two rotations are identical

n

i at Y= (2.10)
More generally, there is the following identification of group elements
Riy = R_iony (2.11)

This shows that the neighbourhood of a point at ¢y = 7 is not special and still a
patch of R?. The boundary at 1) = 7 simply arises by identifying rotations about
an angle 1) > 7 with rotations about an angle ¥ < 7.

Our findings are summarised in the figure:

b =0

(2.12)

It makes sense to view (77,1) as polar coordinates around the north-pole on a
three-dimensional sphere S®. The north-pole is the point ¢ = 0 while ¢ = 7
describes points on the equator. The above relation between the rotations then
simply identifies antipodes. This shows that the group manifold has the topology
of three-dimensional real projective space

SO(3) = S*/Zy = RP?. (2.13)

Now the Zs-quotient complicates the topology of the manifold somewhat. The
group manifold is connected, but not simply connected; its fundamental group is
Zso because S? is simply connected. It thus makes sense to consider a bigger group
which contains the original group and which is simply connected. This is the
universal cover of a group.* For SO(3) it is a double cover known as the spin

In the case of two-dimensional rotations, the fundamental group of G = SO(2) is Z and its
universal cover is G(®) = R.
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group Spin(3). It is isomorphic to a unitary group or a symplectic group, and it
has the topology of a three-sphere

Spin(3) = SU(2) = Sp(1) = S°. (2.14)

The extension to Spin(3) lifts the identification between 1 and 27 — ¢ and makes
1 a 4m-periodic parameter. The south pole of the group manifold becomes a
rotation by 27, i.e. it corresponds to the operator (—1)% in quantum mechanics.
This is summarised in the following figure:

»=0
p=m (2.15)

P =21

In fact, Lie theory provides a natural metric on the group manifold; here it is the
canonical metric on the round S®. The latter is a curved space, however, with a
large amount of symmetry, a so-called symmetric space. More on these issues will
follow later.

Parity. A physically meaningful extension of the group of rotations is to include
reflections. This yields the matrix group

O(3) = {R € Aut(R*); R"R = 1}. (2.16)

This group consists of the rotational elements Ry, and elements which combine a
reflection P with a rotation PRy ,. For three dimensions, a reasonable choice for
the elementary reflection is the overall parity operation®

P = —diag(1,1,1), (2.17)

which obeys the rules P? =1 and PR = RP. Thus parity decouples from the
rotations and extends the rotations by a discrete group Zs

0(3) = SO(3) X Zy. (2.18)

For the group manifold we obtain two disconnected copies of the projective space

O(3) = RP? + RP’ = a + e . (2.19)
o @

5The choice P = —id is a reflection for any odd number of dimensions. For even dimensions, it
is a (distinguished) rotation. This demonstrates that the group of rotations has some qualitative
differences for even and odd dimensions.

24



The situation becomes somewhat more interesting when we go to the double cover;
let us explore for the fun of it: Here, there are essentially two distinct choices for a
meaningful parity operation. One may assume parity to square to the identity

P? = 1. In this case, the group is a direct product

Spin(3) x Zs. (2.20)

However, we also have the almost trivial rotation by 27 at our disposal. It reduces
to the identity in SO(3), but it is a non-trivial element of Spin(3). Thus we can set
P? = (—1)¥ such that only the fourth power of parity is trivial P* = 1. In this
case the group can be written as a semi-direct product

Zs % Spin(3) (2.21)

meaning that Z, interacts non-trivially with Spin(3). More concretely, parity
combines with the centre Z, of Spin(3) consisting of 1 and (—1)* and forms the
group Z,. In both of the above cases, the group manifold is two copies of S3.

SP+ S = e - e (2.22)
& &

The interesting observation for physics is that there is a choice in how to define the
parity operation in the presence of fermions. Note that the interactions of parity
and spin will become even more complicated once Lorentz transformations are
included for a spacetime with indefinite signature.

2.2 Lie Algebra

We have seen (by means of example) that a non-abelian Lie group is based on a
curved manifold. Its elements and thus its representations were described by a
well-chosen combination of trigonometric functions. For more elaborate groups
such a direct approach becomes rather difficult. In physics we often use the
approach of series expansion in order to treat problems at least approximately. For
Lie groups this treatment is particularly fruitful because the linearisation of the
problem covers most aspects of these groups exactly. Merely questions concerning
topology require the full non-linear treatment.

A full treatment of Lie groups would require familiarity with differential geometry.
Here we shall try to go without differential geometry and merely touch on some
elementary concepts in passing. To this end and for conciseness, we shall restrict
to matrix groups, i.e. G C Aut(V) for some vector space V. This generalises the
case of G = SO(3) with V = R? which we shall use as the main example. Later on
we will discuss more general, abstract Lie groups where we can resort to our
previously gained intuition in geometry in the context of algebra.
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Tangent Space. Let us set up the perturbative treatment. The one point we
understand very well for any Lie group is the identity element 1. It therefore
makes sense to investigate its neighbourhood containing group elements which we
may declare as ‘small’. They are small in the sense that multiplying two such
elements will again yield another (not necessarily quite as) small element. To set
up perturbation theory, we consider differentiable curves on the group manifold
which pass through the identity element. In particular, let I}, C R be some
sufficiently small intervals containing the number 0, and let Ay : Iy, — G be some
differentiable curves on G such that Ax(0) = 1. For small ¢ € I}, the most relevant
information about the curve A is the derivative at ¢t =0

(2.23)

a = A,(0) € g C End(V). (’ _

Note that A(t) € Aut(V) C End(V) is an endomorphism (linear map from V to
V; square matrix), and the space of endomorphisms End(V) is a vector space. As
such, the derivative w.r.t. ¢ is canonically defined® and yields another
endomorphism. The space of all permissible ay, is called the tangent space TG of
G at the unit element 1. We denote it by a lowercase gothic letter g := T1G
corresponding to the uppercase letter G that labels the group. It naturally carries
the structure of a vector space for the composite path As(t) = A;(Ait)Aa(Aot) has
the derivative

az = A\ay + Asag € g. (224)

For the sample group SO(3), the corresponding tangent space so(3) follows
straight-forwardly from the form Ry ,.” The unit element is parametrised as
Ri, 0 = 1 with arbitrary 7y. We thus define a path 7i(t) = 7ip + ... and

Y =041ty + ... and expand

Ry = 1+ niiit+... . (2.25)

Here 71 is an anti-symmetric matrix by definition, and arbitrary 3 x 3
anti-symmetric matrices can be written as 7. This shows that so(3) is the
space of anti-symmetric 3 x 3 matrices

50(3) = {r € End(R?);r" = —r}. (2.26)

Adjoint Actions. The composition rule of the group induces a corresponding
algebraic structure on the vector space g. Before defining it, let us introduce the
concept of adjoint action.

We first define the adjoint action Ad(R) : g — g of a group element R € G on g.
We can combine R and a curve A;(t) to define another curve Ay(t) = RA;(t)R™*

5In any given basis, the derivative is determined element by element.
"The parametrisation Ry 9.4 using Euler angles is not immediately suitable because in first
order only € and ¢ + 1 contribute.
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which passes through the identity element. In the neighbourhood of t = 0 this
defines a relationship between two elements of g:

Ad(R)(a1) == RayR™ ' =ay € g. (2.27)

Since g is a vector space and the adjoint action is linear in aq, the latter in fact
defines a representation Ad : G — Aut(g) of the Lie group G on g, called the
adjoint representation.

With this we can go one step further, and consider the adjoint action of a curve
Ay(t) on g. Near ¢t = 0, this defines the adjoint action ad(a) : g — g of an element
a € gon g. Weset az(t) := Ad(As(t))(a;) and obtain®

ad(ag)(ay) := a5(0) = asa; — ajas € g. (2.28)
Clearly, the adjoint action ad : g — End(g) is a linear map.
Algebra. Altogether, the adjoint action ad(a)b € g is linear in both arguments
a,b € g. As such, it equips the vector space g with the structure of an algebra, the

so-called Lie algebra. The composition rule of a Lie algebra is called the Lie
bracket [-,-] : g x g — g,

[a,b] := ad(a)b = ab — ba =: [a, b]. (2.29)

Thus for any Lie group G there is a corresponding Lie algebra g.° In the case of a
Lie algebra, the composition rule is anti-symmetric'”

[a,b] = —[b,a] for all a,b € g. (2.30)
Moreover, it is not even associative. Instead, it satisfies the Jacobi identity*!
[a.[b.c]] + [b,[c,a]] + [c,[a,b]] =0 for all a,b,c € g. (2.31)

In our case, the anti-symmetry and Jacobi identity follow from the corresponding
identities of matrices

la,b] = —[b,a] for all a,b € End(V) (2.32)
and

[a,[b,c]] + [b,[c,al] + [¢,]a,b]] =0 for all a,b,c € End(V). (2.33)

Somewhat confusingly, the Lie bracket [, -] typically uses the same symbol as the
matrix commutator [-,-]. One should bear in mind that a bilinear map

8The terms aga; and ajas are merely elements of End(V), but typically not of g; only their
difference is an element of the Lie algebra g C End(V).

9We have shown this statement only for matrix Lie groups G C End(V), but it holds in
general.

10Tt measures by how much the composition rule of the Lie algebra deviates from being abelian.

1 The Jacobi identity is a consequence of associativity of the associated Lie group.
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[-,-] : g x g — g refers to Lie brackets while a bilinear map

[-,-] - End(V) x End(V) — End(V) refers to the matrix commutator. In cases
where the Lie algebra is given in terms of matrices, g C End(V), the Lie brackets
and the matrix commutator coincide.

The major difference between a Lie algebra g and some space of matrices End(V)
is that the former is equipped with the Lie bracket [-,-] as the only algebraic
operation, whereas the latter uses composition of matrices. Note that the Lie
bracket is anti-symmetric and non-associative whereas composition has indefinite
symmetry, but is associative. Clearly, composition of matrices is more general
because the commutator of matrices can be used to define a Lie bracket on End(V).

The algebra so(3). To apply the above concept to so(3), it makes sense to
introduce a basis J;, for this vector space. The elements of so0(3) are
anti-symmetric matrices. However, (quantum) physicists are obsessed with
hermitian matrices because their spectrum of eigenvalues is real. Therefore, we
introduce a conventional factor of 7 for the basis elements of g to make the

anti-symmetric matrices hermitian!? 3
Ji :==1€; €150(3) Cs0(3,C), k=uxy,z (2.34)
More explicitly
0 0 O 0 0 +i 0 —2 0
Jay,z 0 0 —¢),{0 O O},[+2 O O]. (2.35)
0 +¢ O -2 0 0 0 0 0

The Lie bracket on this space can now be expanded as follows

Above, we have claimed that the double cover of SO(3) is the group SU(2) of
unitary 2 x 2 matrices with unit determinant. Its Lie algebra su(2) consists of
anti-hermitian, traceless 2 X 2 matrices

su(2) = {m € End(C?);m = —m! trm = 0}. (2.37)

An (imaginary) basis J € 2su(2) for such matrices is provided by the well-known

Pauli matrices
Je = 50%. (2.38)

The Lie algebra follows by direct computation

[[Ji, J]]] = [%O’i, %Uj] = %Ei]’kak = igiijk. (239)

12Mathematicians prefer to avoid cluttering many expressions by factors of i and work with a
real basis J, = €, instead.

I3Note that the elements of the Lie algebra remain real, a € s0(3), merely our basis is complex
(purely imaginary), Ji € t50(3). A generic element thus expands as a = taJ;. Later on we shall
work with complex(ified) Lie algebras such as s0(3,C) where factors of ¢ are not an issue.
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It agrees perfectly with the Lie algebra s0(3), thus the two are isomorphic
50(3) = su(2). (2.40)

Note that the isomorphism of Lie algebras is blind to the topological structure of
the group manifold (SO(3) = SU(2)/Z,).

Finally, we point out that the Lie algebra for the group O(3) of reflections is the
same 50(3). The point here is that O(3) extends SO(3) by a disconnected

component. The neighbourhood of the identity element is the same in both
groups, and thus they share the same Lie algebra.

Exponential Map. We have defined the Lie algebra g as the tangent space of a
Lie group G at the identity element. Conversely, we can construct a map from the
Lie algebra to the Lie group, the so-called exponential map

exp:g— G. (2.41)
For matrix groups G C Aut(V) or for representations p : G — Aut(V) the map is

given by the matrix exponential exp : End(V) — Aut(V) defined as a power series

o0

1
expa = Z ] a”. (2.42)

n=0
Like the ordinary exponential function, this series converges for all a.

Importantly, the exponential map has the group property that
expaexpb = expC(a,b), (2.43)

where C'(a, b) € g is determined by the Baker—-Campbell-Hausdorff formula in
terms of iterated Lie brackets (or commutators where applicable)

Cla,b) =a+b+ i[a,b] + & [a, [a,0]] + 5[, [ba]] + ... . (2.44)
Furthermore, the inverse is given by

(expa)™' = exp(—a). (2.45)

For a connected Lie group, the exponential map is typically surjective. If there is
more than one connection component, however, only the component containing the
identity element can be reached. As physicists generally prefer to work with the
linearised Lie algebra, they frequently refer to the exponential map to denote
elements of the Lie group. A prominent example in physics is the coefficient * in
the Fourier transformation. Here, p refers to the eigenvalue of the momentum
operator P (representation of the algebra of translations) and x to the position
(shift from the origin). In terms of algebra, if P is the generator of infinitesimal
translations (Lie algebra), e’ generates a finite translation (Lie group). Note that
as usual the factor of 7 is due to the choice of an imaginary basis.
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2.3 Representations

We want to understand the representation theory of the rotation group SO(3). To
this end, the Lie algebra s0(3) comes in handy because the linearisation makes the
problem much easier to handle.

Lie Algebra Representations. First of all, representations of a Lie group G
straight-forwardly translate to representations of the corresponding Lie algebra g.
A representation of a Lie algebra is defined as a linear map

p:g— End(V) (2.46)
such that the Lie brackets are represented by the commutator of matrices

p([a,b]) = [p(a), p(b)] for all a,b € g. (2.47)

For example, we already know two representations of su(2) = so0(3) as the defining
representations of these two algebras!

)Osu(Q)(Jk) = %O’k € iEU(Q) C End((C2),
Pso(z) (i) = i€ € is0(3) C i End(R?). (2.48)

Furthermore, for every Lie algebra there is the trivial representation (it exist for
any vector space V, but typically one assumes V = R!)

po: g — End(V), po(Jx) =0, (2.49)
as well as the adjoint representation ad
ad : g — End(g), [a,b] = ad(a)b. (2.50)

It is straight-forward to prove that the latter is a representation via the Jacobi
identity: for all a,b,c € g

ad([a,b])c = [[a,b],c] = [a,[b,]] — [b. [a, ]
= ad(a) ad(b)c — ad(b) ad(a)c = [ad(a),ad(b)]c. (2.51)

The adjoint representation is equivalent to the defining representation pgo(3) of
50(3) noting that g = R?® as a vector space

ad = peo(3)- (2.52)
To show this statement, identify J;, = 7€}, and compare

ad(Jz)Jj = [[JZ, Jj]] - iéz’ijm

Pso(3)(Ji)J; = =€ €; = —€; X € = —€jR€), = i€4p k- (2.53)

14The appearance of the imaginary unit 4 is due to choice of imaginary basis.
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The above representations can be characterised as complex, two-dimensional,
unitary (peu(z)) and real, three-dimensional, orthogonal (pe(s))-

A third type of number field suitable for representations is given by the
quaternions H.'> We are now in a good position to discuss this option. The
quaternions are a generalisation of the complex numbers spanned by the real unit
1 and three imaginary units 7, j, k. Each imaginary unit on its own behaves as the
complex imaginary unit . Their products are given by 1) = —j = k and cyclic
permutations of 7, J, k. As such they are non-commutative numbers. Quaternions
are closely related to the Pauli matrices because they can be represented in terms
of 2 x 2 complex matrices as follows

(1,i,5,k) = (1, —io,, —io,, —io.). (2.54)

It is straight-forward to show the equivalence. This equivalence implies that the
representation pg(2) can be written as the quaternionic representation
Psp(1) - 9 — End(]HIl) 16

oo (—0a) = 30 papy(=idy) =350 ey (—iJ:) = k. (2.55)

Note that this representation is symplectic because

pep(1)(@)" = —pepy (@), (2.56)

where the adjoint operation { flips the order and sign of the imaginary units

2,7, k.7 This shows the equivalence of Lie algebras

su(2)

sp(1). (2.57)

In terms of physics, the defining representation of su(2) is in fact quaternionic,
even though hardly any physicist would think of it in this way.

Construction of Irreducible Representations. We now want to construct
general finite-dimensional irreps of s0(3) from scratch. For simplicity, the
representation is assumed to be complex N-dimensional

p:so(3) = End(V), V=cC". (2.58)

5 Quaternionic representations are also called ‘pseudo-real’.

16The imaginary basis Jj is not suitable for the quaternionic representation because of the
clash between the complex imaginary unit ¢ (which is meant to commute with everything) and
the the quaternionic imaginary unit ¢ (which does not commute with j, I%) Therefore we express
the representation in terms of the real basis —iJ.

17This does not explain the term ‘symplectic’ which for representations of the Lie algebra
means anti-symmetric w.r.t. an anti-symmetric metric. To that end, define the order-inverting
transpose operation as 1" =1, 1" =1, T = —J, kT = k. Thus, j is the only anti-symmetric number
and we define the symplectic conjugate as « — —jz"j. This operation is the same as  — 2T, and
—j277 =2t = —x is solved by the basis i, j, k.
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Let us single out the generator J, € is0(3) and split the space V into eigenspaces'®

V. corresponding to the eigenvalue m € C of p(J,)
V=V (2.59)

Furthermore, consider the generators J. defined as

Jy=J, £1], €50(3,C). (2.60)
These generators obey the following Lie brackets
[J.,J+] = £+,

[Jy,J_] =2J.. (2.61)

The former relation implies that p(J;) maps a vector of the space V,, to a vector
of the space V41 (if the latter exists, otherwise to 0): Suppose that |¢) € V,,,
then define [¢') := p(J1)|¢)) and show that the latter belongs to V,,1;

p(J)[0") = p(J:)p(Je) )

=mp(J)|Y) £ p(Jx)p)
= (m = DI). (262)

Now, the generators J, and J form a basis of so(3,C). For an irrep, the space V
must be spanned by the vectors which are obtained by applying a sequence of
p(Jg) on any particular state |¢) € V. This implies that the labels m of V,, must
form an uninterrupted sequence

me{m_m_+1,...,my—1,m}. (2.63)

Let us choose some state [1)) from the ‘highest’ eigenspace V,, .. We claim that the
sequence of states

’wk> = P(JJ’CW), k=0,...,N—1 :er_mia (264>

spans the complete space V. It suffices to show that all the states are non-trivial
and that the action of all generators p(J;) closes on this space: By construction
p(J.) maps all states back to themselves. Furthermore, p(J_) maps state |¢x) to
state [1g+1). The last state [¢hy_1) is mapped to the zero vector |i)y) = 0 because
there is no space V,,,__;. Likewise, the state |1y) is annihilated by p(J) because
there is no space V,,, .1. Let us act on any other state:

p(J) k) = p(J1)p(J )| k—1)
(J)p(I ) Yk—1) + [p(J4), p(T)[Whk—1)
(J)pT ) [e-1) +2(m™ =k + 1)[1)

=2 (m" —k+5)|r)

j=1

=k(2m"* — k+ 1)|tp_1). (2.65)

18 A priori, the matrix p(J.) could be non-diagonalisable. The following discussion nevertheless
works with minor adjustments. Eventually, we will see that p(J.) is in fact diagonalisable.
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The last step follows by induction terminated by the condition p(J4)[¢) = 0.
Most importantly, the calculation shows that no additional states for any of the
subspaces V,, are generated. As a consequence, all subspaces V,,, for the
irreducible representation are one-dimensional, and the dimension of the
representation is N =my —m_ + 1.

We can derive one further relationship: The state |i)y) = 0 does not exist. By the
above derivation, however, p(J,) maps it to N(2m*™ — N + 1)|tyy_1). This
contradiction is resolved by demanding the coefficient to vanish,

m* = +£1(N - 1). (2.66)

This concludes the construction of the irreducible representation. We see that
there exists one irrep for every positive integer N.

Spin Representations. Let us summarise the findings: An N-dimensional irrep
of s0(3) is labelled by a non-negative half-integer j = %(N — 1), the so-called spin

pcj:s0(3,C) — End(C¥™),  je iz, (2.67)
The representation space is spanned by the vectors
Im), me{—j,—j+1,....5—1,7} (2.68)
The generators acts as follows on these states!'
p(Jz)|m) = m|m),
p(Je)lm) = cqlm £ 1). (2.69)
The algebra implies the relationships

G = Con1 G = 2, ¢ =c;=0. (2.70)

With the combination 7, := ¢, _,c, these are of the form 7,, — V11 = 2m,
Ym+1 = V—m = 0, which are solved by

et oen = (j+1)j —m(m—1). (2.71)

Furthermore, we can investigate whether the representation is unitarity. Unitarity
is the statement that the representation maps elements of the real algebra to
anti-hermitian matrices. Our choice of complex basis leads to the following
unitarity relationships

p(J)T=p(J.),  p(I)" = p(Jo). (2.72)
The former is manifestly obeyed because m € R. The latter implies

() = ¢ (2.73)

197¢ is straight-forward to convert these relationships into a matrix notation. Then p(J,) is a
diagonal matrix while the p(Ji) have non-zero elements next to the diagonal.
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Together with the above relationship we have
el = lenl> = (G + 1) — m(m — 1). (2.74)

Importantly, the left hand side is non-negative for |m| < j, i.e. unitarity can be
achieved.”’. We can thus write the coefficients explicitly as the real numbers

=V +1)j—mm=1) =/([GFm)(jtm+1)

(2.75)

Reality of these coefficients, however, does not imply reality of the representation
because the states and generators were chosen to be complex. In fact, one finds
that representations with odd N, or equivalently integer j, are real

p; 1 60(3) = End(R¥™),  jeZ!. (2.76)

Conversely, representations with even N, or equivalently half-integers 7, are

quaternionic '
pj:s0(3) — End(lH/2),  jezf+1. (2.77)

We shall not show these statements, but merely refer to the examples j = 1 and
Jj= % discussed above.

We have already discussed that the algebras so(3), su(2) and sp(1) are isomorphic,
and thus their representation theory is identical. However, the corresponding Lie
groups SO(3) and SU(2) = Sp(1) are not isomorphic because the latter are double
covers of the former. The representation theory for the larger group SU(2) consists
of all of the above representations. The smaller group SO(3), however, can
accommodate only a subset of representations. It identifies the unit element with
the antipode (—1) on the three-sphere SU(2). Thus only such representations of
SU(2) where the antipode (—1)f is mapped to the identity matrix can be lifted to
representations of SO(3). These are precisely the representations with integer j
and odd dimension.

Spherical Harmonics. One of the main applications of the general
finite-dimensional representation of s0(3) is spherical harmonics. The spherical
harmonics Yy, with ¢ € Z§ and m € {—¢,...,+{} provide an orthogonal basis of
(square integrable) functions on the two-sphere S?

FO,6)=>_ > fomYem(0,9). (2.78)

=0 m=—¢

This decomposition is the analog of the Fourier series for periodic functions, i.e.
functions on the circle S'. We have already related the Fourier series to
representation theory of the group SO(2). Here the relevant group is SO(3) which

20Note that the sequence of states |m), |m + 1),... breaks precisely at the point where
otherwise unitarity would be violated. This coincidence plays an important role in the
representation theory of more general algebras.
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serves as the group of isometries of the round two-sphere S?. Note that S? is the
orbit of a point in R under the action of SO(3).

Spherical harmonics have been introduced in the context of electrodynamics
(multipole expansion) and quantum mechanics (orbital angular momentum) and
have been discussed extensively there. Here we note that the spherical harmonics
Y;.m provide a basis for functions which transform in the representation p, of s0(3)
or SO(3).?! The label m corresponds to the state |m). In other words, performing
a rotation on the function F(6, ¢) is equivalent to transforming the coefficients f,
by means of the representation p,. Alternatively, one can also say that a function
on S? transforms in the representation

ps2 = EP pr. (2.79)
=0

An interesting question is how to extend spherical harmonics to higher dimensions.
For the next higher-dimensional case S* C R? the relevant group is SO(4) whose
double cover is SU(2), x SU(2)r.?? The expansion of a function F on S? into
spherical harmonics can be expressed as

00 ¢ )4
F(Q, ¢7 ¢> = Z Z Z ff,mL,mRYZ,mL,mR(ea ¢7 ¢) (280)

{=0 mr=—C mp,=—/

The coefficients fy, my for fixed ¢ then naturally transform in irreps of both
SU(2) group factors with common overall spin j = ¢/2

Ps3 = @P%/z ® P?/z- (2.81)
=0

Casimir Operator. A useful way to classify representations is based on the
Casimir invariants, most importantly, the quadratic invariant. The latter is an
element of the tensor product of two copies of the Lie algebra

Ceg®ayg. (2.82)
It has the special property of being invariant
[a,C] =0, for all a € g, (2.83)
where the action of g on g ® g is defined as ad ® ad

[a,b® c] == [a,b] ® c+ b [a,c]. (2.84)

2INote that only representations pj with integer j appear in the decomposition. The
half-integer rotations possess non-trivial rotations by an angle of 27 which evidently cannot be
represented on the space R? containing the two-sphere S2.

22The indices L/R are used to distinguish the two isomorphic components SU(2)’s. They also
indicate the chirality of the corresponding spin.
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This definition has the convenient feature that a representation p : g — End(V)
can be lifted to a representation of the tensor product algebra p: g ® g — End(V)
with?3

pla ®b) := p(a)p(b) (2.85)
such that

p([[a,b@c]]) p([a, b]]®c—|—b®[[a c]])

— o~

= p([a,0])p(c) ([[a [)

= [p(a), p(0)] ( () [p(a), plc)]

= [p(a), p(b)p C}

= [p(a), p(b® c)]. (2.86)

Without further ado, the Casimir invariant for so(3) reads
C=lel=Lal+3],0J_+3]_®J. (2.87)
It obeys the invariance property

[Jj, C] = [[Jj, Jkﬂ RJp+ e ® [[Jj,Jk]]
= %Ejkam ® Jk + ié’jkak & Jm = 0. (288)

Its representation thus takes the form

p(C) = p(Jr)p(Ji)- (2.89)
By construction it commutes with the representation of all generators
[p(31),p(C)] = 0. (2.00)

This is a useful property because p(C') must act as a number on any irrep, e.g.

pi(C) =3 +1). (2.91)

To show this result, we act on the state |j) with highest eigenvalue of p(J,). Before
applying p(C') blindly, we adjust the representation slightly for the purposes of our
state which obeys p(J;)[7) =0

p(C) = p(J2)p(J2) + 30T )p(J-) + 5p(J-)p(J4)
= p(J2)p(J2) + p(J2) + p(J-)p(J+). (2.92)

The action on the state thus yields

p(O)g) = (5% + 5)li) = 305 + 1)l7)- (2.93)

By construction then p(C')|m) = j(j + 1)|m) irrespectively of the value of m.

23Elements of the Lie algebra cannot be multiplied, but their representations can. The concept
of universal enveloping algebra will later allow to multiply Lie elements directly.
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Tensor Product Decomposition. An important element of representation
theory is the decomposition of tensor products. The tensor product

pe 8 — End(Vg) of Lie algebra representations py : g — End(Vy), k=1,..., N,
is defined as a representation

N

pei=> 18..010pele...0L (2.94)
k=1

This definition is compatible with the Lie algebra as the tangent space of a Lie
group and the exponential map. The direct sum pg : g — End(Vg) of
representations is, however, defined analogously to the Lie group

P i=p1D...DpN. (2.95)

The central question which we want to answer is, how does the tensor product of
two representations with spin j and 7' decompose? The tensor product has
dimension (2j + 1)(2j" + 1). However, the maximum eigenvalue of pg(J,) is 7 + 5/
as can be seen from the above formula. This means that the tensor product cannot
be irreducible (unless j = 0 or j = 0), but it must contain a representation of spin
j + j’ among others.

In order to determine the decomposition, we can use a shortcut of group theory,
namely character polynomials. We first define a group element g(q) depending on a

formal variable ¢ as follows?* 25
9(q) = exp[2log(q)J.] = ¢*’=. (2.96)
We define the character of this group element in a certain representation p as
By(q) = trp(g(q))- (2.97)

The character is most conveniently determined in a basis where p(J,) is a diagonal
matrix. Then by construction, P,(q) evaluates to

Po(q) =Y nug™™. (2.98)
k

Here, the numbers m;, are the eigenvalues of p(J,) and the integers ny are their
corresponding multiplicities. For a finite representation, P,(q) is a Laurent
polynomial and it is a convenient tool to summarise the quantum numbers carried
by the representation. For example, a hypothetical representation with 2 states at
m = —1, 5 states at m = —%, 1 state at m = 0 and 4 states at m = +1
corresponds to the polynomial 2¢=2 4 5¢~! + 1 + 4¢*. This situation can also be
visualised by a collection of dots as follows:
:
$ ° °

2¢7% 5¢" 1 0gt" 4¢™?

(2.99)

241f reality conditions for group elements are to be respected, the variable ¢ should be on the
unit circle in the complex plane so that log ¢ is imaginary.

25The conventional factor of 2 ensures that the exponent of ¢ is integer-valued whenever J, is a
half-integer as is the case for finite-dimensional representations of so(3).
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Quite clearly, setting ¢ = 1 determines the dimension of some representation as
P,(1) = dim p. (2.100)

For the representation of spin j we have?®

2j 2j+1 —2j-1
k—24 q —dq
Pi(q) =) ¢ = — (2.101)
0 q—4q
or in terms of dots:
—j —j+1 +i—1 +j
e o o o o o (2.102)
g~ ¢2+2 gt g2

Now the character polynomial is useful because tensor products and direct sums of
characters are easily computed as the products and sums of characters

Pp®p’(@) = Pp(Q)Pp’(Q)a
Poap(a) = Ppla) + Py (). (2.103)

Thus the tensor product of two representations with spin 7 and j’ yields

q2j+1 _ q—2j—1 q2j/+1 _ q—2j/—1
Piej(q) = Pi(q)Py(q) = = p—— (2.104)
[ [ J [ ] [ ] [ d [
e o o o o o ° (2.105)
[ J [ ] [} [} [} [}

We should write this as a sum of polynomials P;(g). A standard algorithm to
determine the decomposition is analogous to long division:*’ Find the highest
power of ¢ and subtract as many of the corresponding irreps with the
corresponding spin. The residual polynomial has lower degree and the above step
can be iterated until there is nothing left.?® We find an identity which is easy to
confirm?’

Pioj(q) = Y Pij—i(q). (2.106)
R T

It translates to the tensor product decomposition of two generic finite-dimensional
representations of s0(3)

2min(j,j")

pi®py= B Py (2.108)
k=0

26In some sense, the denominator determines the spacing of the states whereas the numerator
determines the highest and lowest states.

27 An alternative algorithm for finite-dimensional representations is to identify monomials with
negative powers of m as ¢ — —¢~2~™ (and ¢! + 0). The resulting polynomial then counts
complete representations rather than states.

28 A shortcut is to write out the polynomial (¢ — ¢~')Pjg;(¢). The non-negative powers of ¢
correspond to irreps in the tensor product.

29We should assume that j’ < j. However, the formula holds even if 5’ > j in which case we
need to use P_j, = —P,_1 which cancels some terms.
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The above technique has many further applications and generalisations. For
instance, we can apply it to determine (anti)-symmetric tensor products. In
quantum mechanics, these describe the wave function of identical bosonic (or
fermionic) particles. They are obtained by projecting the tensor product of two
alike representations onto the (anti)-symmetric part

pt = (p® p)ms, (2.109)

where 74 are defined in terms of the permutation operator o as the
(anti)-symmetric projectors
Ty = %(1j:a). (2.110)

One can convince oneself that these are projectors and that p4 are indeed proper
representations. Now the character polynomial for the (anti)-symmetric tensor
product can be computed

P.(q) = (tr@tr) [p(g(q)) @ plg(q))5(1 £ 0)]

Py(q)* £ %Pp((f)- (2.111)
Note that the result is conveniently expressed in terms of the character polynomial
for the tensor factor.

The tensor product of two spin-j representations is described by the function

(q2j+1 _ q72j71)2 q4j+2 _ q,4j,2

Pi(q) = 2.112
@ 2(g—q7)? 2(¢* —q7?) (2112
The decomposition yields for the symmetric and anti-symmetric parts
7] li—1/2]
p]v2 = @szﬂn, P]Az = @ P2j—2n—1- (2.113)
n=0 n=0

TR B N L
‘8§§§§§§§:° (2.115)

Finally, let us remark that the totally symmetric product of k spin-%
representations is the irrep of spin k/2. Thus, all the representation theory of so(3)
follows from the smallest non-trivial representation and its tensor products.
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3 Finite Group Theory

We switch gears and consider groups with finitely many elements for a while. In
physics they are relevant when there are some preferred points or axes in space, for
example in a solid with a crystal lattice structure. Finite groups are also an
exciting topic on their own.

Many of the concepts we have discussed carry over to finite groups. On the one
hand, we can derive some stronger results based on finiteness. On the other hand,
the discrete nature of these groups complicates some issues because we have no
linearisation at our disposal as in the case of continuous groups.

3.1 Finite Group Basics

Before we start, let us introduce a few sample groups, representations and some
further basic notions of group theory.

Sample Groups and Representations. In order to get acquainted with finite
groups and their representations, let us present a few elementary examples:

e The trivial group consists of the unit element alone.

e The cyclic group C,, = Z, = Z/nZ, n > 1, consists of the integers modulo n
under addition. This group is abelian.

e The symmetric group S,, n > 1, consists of all n! permutations of a set of n
elements.

e The alternating group A,, n > 1, consists of all n!/2 even permutations of a set
of n elements.

Throughout this chapter we shall use the symmetric group Sz as the main
example. It has |S3| = 3! = 6 elements which can be written in terms of two
elementary permutations oy, 09 obeying the relations (01)* = (09)? = (0109)% = 1.
It can be viewed as the symmetry group of an equilateral triangle consisting of the
identity, 2 rotations o109, 0907 and 3 reflections o1, 05, 010907

(3.1)

“a 010201 &7

"'We shall only consider finite-dimensional representations in this chapter.
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A few elementary representations are listed in the following table:

9 le Pr P2 \ P3

C L GO0

0109 1 +1 (2:) g%é

o0 | 1 +1 (ZF) §é§ (3.2)
S RN (1

o |1 =1 (52) (810
o10901 || 1 -1 (:3) gé§

Of these, p1, p1r and py are irreducible while p3 = p; & po.

Orbits and Cosets. In the following we will introduce four relevant notions of
group theory in connection to geometry, i.e. when a group G acts on a set M by a
group action o : G x M — M. These are orbits, stabilisers, group cosets and
quotients, and we shall see how they are related.

The orbit M, of a point m € M is the image of m under the group action of all
group elements, i.e. the set

M,, == a(G,m) = {a(g,m); g € G}. (3.3)

By the group properties we have that m € M,, and M, = M,, if n € M,,. This is
sufficient to ensure that the sets M, partition the set M into disjoint subsets and
therefore define an equivalence relation on M.

The stabiliser G,, (sometimes isotropy group or in physics little group) of a point
m € M is the subgroup of G which leaves the point m fixed
Gm :={g € G;a(g,m) =m}. (3.4)

Similarly, one can define the stabiliser of a subset of points X C M as
Gx :={g € G;a(g,X) = X}. Then for example, the stabiliser of an orbit is the
full group by construction.

Finally, a left coset gH of an element ¢ € G and a subgroup H C G is the set”
gH :={gh; h € H}. (3.5)

Due to the group properties of H, the cosets of a fixed subgroup H partition the
group G into disjoint subsets. Consequently, they define an equivalence relation in
G, and the quotient set G/H is the set of cosets or equivalence classes.?

2Right cosets Hg are defined analogously, and they possess similar properties.
3Consistent group multiplication does not necessarily extend from G to the quotient set G /H.
The latter has a group structure only if H is a so-called normal subgroup.
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In the following, we shall show that the group action is a bijection between the
quotient G/G,, by the stabiliser G,, of some point m € M and the orbit M,, of
this point,

G/G, = M,,. (3.6)

First, we realise that all the elements gh of some left coset ¢G,, of the stabiliser
G,, map m to a common point n € M,, in the same orbit:

a(gh,m) = a(g,a(h,m)) = a(g,m) =n € M,y,. (3.7)

In other words, the group action is a map G/G,, — M,,, and it is surjective by
construction. Conversely, the image n € M,, specifies the coset uniquely:
Assuming that a(g,m) = a(g’,m) = n we infer

ol ,m)) = a(g™'g,m), (3.8)

in other words g~'¢’ is in the stabiliser G,, or ¢ is in the coset ¢gG,,. This implies
that the map gG,, — a(g, m) bijective (orbit-stabiliser theorem). As all the cosets
gG,, have the cardinality of the stabiliser G,,, we deduce that

-1 -1

m=a(g ",n) :a(g

In particular, both |M,,| and |G,,| must be divisors of the order of the group |G|.

For example, we can consider the action of the group Ss on the set M of vertices of
an equilateral triangle. Then the orbit of any point m € M is M,, = M. The
stabiliser is a Zy-subgroup of G consisting of the identity element and a reflection
passing through the point m. We confirm that |M,,||G,,| =2 -3 =6 = |G|.

Characters and Conjugacy Classes. We have already encountered the
character of a group element in a representation. It turned out to be a useful
concept towards decomposing a representation into its irreducible components. For
finite groups, characters of representations have an even more pronounced role.

The character x : G — C of a representation p : G — Aut(V) on a complex vector
space V is defined as the trace of the representation

x(g) :==trp(g) for all g € G. (3.10)

The character reduces the information contained in a representation to an essential
minimum. First, the character of the identity element describes the dimension of
the representation
X(1) =trid = dimV = dim p. (3.11)
Second, the characters of two equivalent representations p, = Rp; R~! are identical
maps
Xa(g) = tr Rp1(9)R™ = trpi(g) = xa(g)  forallg e G, (3.12)

Third, characters for direct sums and tensor products are computed easily as the
sums and products of the characters

Xolg) =D xe(g),  xslo) =]], xe(o). (3.13)
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These properties together with an orthogonality relation allow to describe the
decomposition of a representation into irreps in terms of its character as we shall
see later.

Let us calculate the characters of the elements of S3 in various representations:

g H X1 X1 X2 ‘ X3

1 1 1 2 13

0109 1 1 —-110
0901 1 1 —-1]0 (3.14)

o1 1 -1 0|1

09 1 -1 0 |1

oo901 | 1 =1 0 |1

Clearly, x3 = x1 + X2 because p3 = p; @ p2. One can also confirm the relationship
X1 X2 = X1 - X2 = X2 which at the level of representations means that the two
tensor products are equivalent (but not equal). Finally, x2 - x2 = x1 + X1 + X2
which also holds at the level of representations. The tools that we will develop in
the following allow us in general to promote such relationships among the
characters to relationship among representations.

From the table we can observe that the characters of several elements are the same.
In fact, the characters of g and bgb~! coincide for any ¢,b € G in any group G

x(bgb™") = tr p(b)p(g)p(b) ™" = tr p(g) = x(9). (3.15)

Therefore it makes sense to collect all elements bgb~! for a given ¢ € G into a
so-called conjugacy class [g]. The reduced table for the characters of irreps vs. the
conjugacy classes is called the character table:

9] ‘ X1 X1 X2
i [1 1 2
[0'10'2] 1 1 —1
[0’1] 1 -1 0

(3.16)

Conjugacy classes can be viewed as the orbits of the action of G on itself by
conjugation (b, g) — bgb~!. This implies that the order of each conjugacy class
must be a divisor of the order of the group. Furthermore, there is an associated
group to each conjugacy class acting as the stabiliser of some representative. In
our example S3 we find

identity, rotations, reflections,
=1 [lowe]| =2, |[on]] = 3,
Gpu =G, Gloyoy) = Z3, Gloy) = Zo. (3.17)

3.2 Complete Reducibility

We have seen that any representation can be reduced to its irreducible
components, and the irreps can be viewed as elementary building blocks. However,
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there also exist representations which are indecomposable in the sense that they
cannot be written as a direct sum of their components. A convenient feature of
finite groups is that all representations are completely reducible; any representation
is a direct sum of irreps. Therefore, the classification of representations reduces to
the classification of irreps.

The key ingredients for complete reducibility are unitary representations and
averaging over the group.

Unitary Representations. Recall that a unitary representation
p: G — Aut(V) to a complex vector space V 1 is a representation which obeys

(v, w) = {p(g)v, p(g)w) forall g € G, v,weV (3.18)
for some positive-definite hermitian form (-,-) on V| i.e.
(v,w) = (w,v)", (v,v) >0  with  (v,0) =0 < v=0. (3.19)

We want to show that every unitary representation is either completely
decomposable or irreducible.

Suppose there is some non-trivial invariant subspace W of V| i.e.
p(g)w € W forallge G, w e W. (3.20)
Define the hermitian complement W+ of W as
W = {v € V; (v,w) = 0 for all w € W}. (3.21)

We want to show that W+ is an invariant subspace as well, that is we need to show
that (p(g)v,w) = 0 for any w € W, v € W+ and g € G so that p(g)W+ C W.
Indeed by unitarity of p we have that

(p(g)v,w) = (v,p(g)"'w) =0 (3.22)

due to the assumption that W is an invariant subspace. This shows that also W+
is an invariant subspace of V.

Finally, we show that the full space V is the direct sum
V=WaoWwW (3.23)

This is because for finite-dimensional spaces, we can easily deduce the
dimensionality from the definition of W+ as dim W+ = dimV — dim W. It remains
to show that the intersection W N W+ is trivial: Consider a v € W+ which also
satisfies v € W. The former implies that (v, w) = 0 for all w € W, and in
particular, (v,v) = 0. By positive definiteness of the hermitian form, we deduce
that v = 0 so the intersection W N W+ is trivial. This shows that the
representation decomposes to the sub-representations on W and W+

p = Pl ® ply:- (3.24)

4The following discussion equally applies to real representations which are orthogonal w.r.t. a
positive-definite symmetric bilinear form.
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Averaging over the Group. The above argument applies to unitary
representations of generic groups. The important feature of finite groups is that all
representations are unitary w.r.t. some hermitian form. To see this, we start with
an arbitrary positive-definite hermitian form (-,-), on V. Now define another
hermitian form as follows

v,w) = Z plg)w),, (3.25)

geG

This above sum divided by the order 1/|G| represents an average over all group
elements. Finiteness of the group implies that the sum is well-defined. Hermiticity
of (-,-) follows by linearity and positivity from the fact that for v # 0 all
summands in (v, v) are strictly positive.

The representation p is unitary w.r.t. the averaged hermitian form

(plg)v. plg)w) = |G| Z(p p(b)p(g)w),

& 5 o),
= (U,w>. (3.26)

Here we made use of the fact that Gg = G for any g € G to relabel the summation
variable. This proves that every representation of a finite group is unitary with
respect to some positive-definite hermitian form and thus completely
decomposable according to our previous result.

In our main example Ss3, all representations but py are already unitary w.r.t. the
canonical hermitian form (v, w), = v'w. For ps we construct a suitable hermitian
form as described above

2 (42 -1
. Z
(v, w) == v'Huw, éG p2(g =3 <_1 +2) . (3.27)
o5

The representation is unitary w.r.t. the form (-, -). By conjugating the
representation with v H , we can also make it unitary (orthogonal) w.r.t. the
canonical hermitian (symmetric) form. We find®

won= (3 5) wlow-5 (70 ) e

3.3 Orthogonality Relations

A central tool for representation theory is Schur’s lemma which tightly constrains
the form of module homomorphisms or invariant linear maps. A module

SThese are elements of O(2) which map an equilateral triangle centred at the origin with one
vertex located at 45° to itself.
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homomorphism is a linear map 7' : V; — V5 between two vector spaces (modules)
V1, V, which is compatible with the representations pi, po of the group G on these
spaces

Tp1(g)v = pa(g)Tv  forall g € G and v € V;. (3.29)

Schur’s Lemma. In the case where the two representations are irreducible, a
module homomorphism is almost completely determined by Schur’s lemma:
Suppose T : V; — V5 is a module homomorphism for two irreps p;, po. Then:

e Kither T'= 0 or T is invertible.
e For equal representations 1" is proportional to the identity map, 7" ~ id.

Let us prove this lemma: First, we show that the kernel of 7" is an invariant
subspace of V,

Tpi(g)kerT = pa(g) Tker T =0 for all g € G. (3.30)

In other words, p; maps any vector from ker T’ to a vector which is annihilated by
T, i.e. back to ker T’
p1(g)ker T C ker T (3.31)

Since p; is irreducible, ker T' can either be trivial or V; itself. In other words,
either T" is injective or T' = 0. Secondly, we show that the image T'V; of T is an
invariant subspace of V,

Since ps is irreducible, TV, can either be trivial or V5 itself. In other words, either
T =0 or T is surjective. Altogether this shows that either T'= 0 or T is invertible.

Finally, it is easy to show that for equal representations p := p; = ps we must have
T = Xid: The map T has at least one eigenvalue A. Now the map 7" =T — \id is
also a module homomorphism. It is not invertible and by the above results it must
be zero, T" =T — Aid = 0. This completes the proof of the lemma.

Some notes and corollaries are as follows:

e [f T is invertible, the two representations are equivalent. Then 7" must be
proportional to the map that relates the irreps.
e For inequivalent irreps necessarily 7" = 0.

We can also generalise the results of Schur’s lemma to direct sums of irreps: A
module homomorphism 7" takes the form of a block matrix where

e the blocks corresponding to two inequivalent irreps must be zero,
e the blocks corresponding to two equivalent irreps must be proportional to their
similarity transformation map.

Effectively, one can view each block as a single numerical entry of the matrix. For
example, a module homomorphism V; @ Vo, @ V3 & V3@ Vs — V3 d V3 @ Vy (for
inequivalent irreps on the spaces V) has the most general form

0 0 * x x
0 0 % * x (3.33)
0« 000



Orthogonality Relations. We can combine Schur’s lemma with averaging over
the group to obtain a very useful relationship for working with representations.
For example, it can be used to construct projectors on selected irreps as we shall
see later.

Suppose again that we have two irreps pi, p2 on V1, V5 and a linear map
So : Vi — V5. Define another map S : V; — V, as follows

Zpa “1Sop(g). (3.34)

gGG

This map is a module homomorphism because

Sp1(9) = == 3 pa(6) L Sopr (D) (9)
Gl &
1
~Tal > palbg™) " Sopr(b)
bg—leG
= p2(9)S. (3.35)

Schur’s lemma then tells us that:

e If p; and py are inequivalent, the map S is zero, S = 0.

o If p; = po are equal representations on V, the map S is proportional to the
identity.

e If p; and ps are equivalent representations on V, the map S is proportional to
the map that relates p; to ps.

More concretely, we can find the factors of proportionality by taking the trace on
both sides of the defining relation. For identical representations we find

tr.S . trSo .
S = dimVld_ dimVld' (3.36)

For equivalent representations p, = R~1p; R, the combination RS : V; — V; is a
module homomorphism. By matching traces one finds
tI‘(RS) 1 tI‘(RSo) 1
dimv T dmv ©

g — (3.37)
It makes sense to rephrase the above result using tensor products by dividing out
by the arbitrary map Sy ©

Z ,01 ® pz 1) € EHd(Vl X Vg) (338)

gEG

If the representations are inequivalent one finds 715 = 0. Only for two equivalent
representations p;, p; on 'V with p, = R71p; R the above operator takes a

non-trivial form )

dimV

6Using the components of T} to be introduced below, the defining relationship between S and
S() reads Sij = Tkile()lk.

(R® R Yo (3.39)

T12
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with ¢ the permutation operator on the tensor square V ® V. Alternatively, the
result can be expanded using two bases for the spaces Vi, V,. In the case of
equivalent representations, the component expansion reads

(Ty2)"

A 1 o
~ql Zpl epag )= dmv RY(R™)y. (3.40)
geG

Relations like these frequently appear in the context of group theory, and they act
as completeness relations which allow to expand quantities in terms of a given
basis of group elements.

Projectors and Orthogonality. The above formula is very useful when
combined with characters. To that end, define the representation p[f] € End(V) of
a group function f: G — C as

Z flg™) (3.41)

gGG

When we take the trace of the above tensor 15 over V, we find

0 if p1 Z po,

3.42
(dlm Vl)_l 1d1 if P1 = P2, ( )

tro Tho = p1[Xx2] = {

where Y3 is the character of ps and thus a group function. This statement holds for
irreps p1, p2, and it can serve as a useful test for equivalence of representations
because a potential similarity transformation between the two representations
plays no role. Now, all representations are completely reducible for finite groups. If
p1 is reducible, the above describes a projector (with weight 1/dim V) to all of its
irreducible components equivalent to ps. A useful corollary is that characters of
inequivalent irreps must be linear independent functions.

We can go one step further and also take the trace over the other space in the
above formula (for irreps)

(X1, X2) == 7~ ZX2 Dxag

gEG

(3.43)

0 if P1 ?_é P2,
1 if P1 = P2.

This shows that the characters of irreps are orthonormal w.r.t. the symmetric
bilinear form (-, ).

This feature is extremely useful for determining the representation content of a
reducible representation p. It tells us that

06 xe) = s (3.44)

"Noting that all representations of finite groups are unitary (in some basis), we have
x(971) = x(g)* and thus the above bilinear form can also be viewed as a hermitian form.
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where ny is the multiplicity of the representation py in p. Knowing the character of
p and the characters of all irreps py (character table of G), it is straight-forward to
deduce the complete decomposition of p!

Conveniently, the sums over the group reduce to sums over the conjugacy classes
with their order as the weight factor

) = 3 %g%lX2q91>xlqu (3.45)
lg]CG

For example, recall the character table for Ss:

ﬂ gl | x1 xv xo
1 1|1 1 2
[o109) 2 |1 1 -1 (3.46)
1] 3 /1 -1 0

It is straight-forward to verify that the characters of the irreps are orthonormal

<Xj7 Xk> = 5jk7 j, ]{7 = 1, 1/, 2. (347)
Moreover, consider the reducible representation ps with character
xs([1) =3, xs(lo1o2]) =0, xs([on]) = 1. (3.48)
We find
<X17 X3> =1, <X1’7 X3> =0, <X27 X3> =1, (349)

and consequently ps = p; & po.

Group Algebra and Regular Representation. A few useful results for
representations and characters follow by considering the group algebra and the
regular representation.

The group algebra lifts a group G to a vector space C[G]. For each element g € G
there is a basis vector e, € C[G] and multiplication in the algebra is defined by
multiplication in the group via the basis vectors eye, = e4,.° The canonical
representation of the group on the group algebra, the so-called reqular
representation preg,’ is defined as

Preg(g)en = €gp. (3.50)

By applying the above concepts to the regular representation, we find some useful
identities.

The character of the regular representation is given by

|G| for g =1,
re - 3.51
es(9) {0 oty 351

8Note that the group algebra is the dual concept of a group function.
9 Another canonical representation is by conjugation Peonj(g)es = €gpg—1. Note that this
representation has very different properties from the regular representation.
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This follows from the fact that the identity element maps all |G| basis vectors to
themselves while any other element g maps any basis vector to some different one
with no contribution to the trace.

Let us now decompose the regular representation into irreps using characters. We
find

<Xrega Xk) - Xk(l) = dim Pk (352)

Thus, remarkably, any irrep pr of G appears in the regular representation with
multiplicity equals its dimension

pres = D, o (3.53)

A corollary is that the order of the group equals the sum of squares of the
dimensions of its irreps

: 2
dim preg = |G| = Zk(dlmpk) . (3.54)
In our example of Sz, we see that 6 = 1+ 1 + 2% and thus py, py, p2 form a

complete set of irreps up to equivalence.

Another useful statement that follows from considerations of the regular
representation is that the characters form a basis of the class functions. A class
function is a function f : G — C which is constant on the conjugacy classes, i.e.

f(g) = f(bgb™") = f([g]) for all g.b € G.
Let us prove the statement: First show that a representation p[f] € End(V) of the

class function f
o= g S (3.55)

geG

is a V — V module homomorphism because

plf |Zf

Z f(gb™ g~ )p(gh)
@l Zf p(b) = plg)olf). (3.56)

By Schur’s lemma this map p[f] is proportional to the identity if p is irreducible.
By taking the trace of p[f] we can evaluate the coefficient

{f, )
dim p

tr plf |Zf g ) =(f.x),  plfl=2200d (3.57)

geG
Suppose now that f is orthogonal to all characters y; w.r.t. the bilinear form (-, -).

Then pi[f] = 0 for all irreducible representations. As the regular representation is
a direct sum of irreducible representations, and by linearity of p[f] in p, we can
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extend the statement to the regular representation, p,ee[f] = 0. However, the
regular representation is faithful because every group element is mapped to a
different permutation of the basis vectors. In other words, the map f +— preq[f] is
injective and therefore f = 0. This proves that the characters of the irreps form an
(orthonormal) basis of class functions.

A corollary is that there are as many irreps as there are conjugacy classes. In the
example of S3 this number is 3.
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4 Point and Space Groups

In this chapter we will investigate discrete subgroups of the euclidean group
(consisting of rotations and translations in three dimensions) which play a role in
the presence of matter (crystal lattices). Regular lattices (in higher dimensions)
also play an important role in the theory of Lie algebras and their representations.

4.1 Point Groups

Suppose we put some matter in the form of a crystal into space. If the matter has
a macroscopic shape which is rotationally symmetric, the residual symmetry group
of the body is SO(2) for a single symmetry axis or SO(3) for a spherically
symmetric object like a ball. However, this residual symmetry does not hold at the
microscopic level which is relevant for orbital energies of individual atoms or
energy bands of the body. Here, the crystal nature comes into play, and breaks the
group of rotations even further. This group must map special axes of the crystal
among themselves allowing only for a discrete set of rotations.! Thus the group
SO(3) of rotations in three-dimensional space is broken by the crystal lattice to a
discrete (and thus finite) subgroup.

Discrete Subgroups of SO(3). Let us therefore find all the finite subgroups of
the group SO(3) (up to equivalence). Assume G is a finite subgroup. The central
tool to classify the subgroups is a consistency argument about the action on the
unit sphere S?, fixed points, orbits and stabiliser subgroups.

First we consider a non-trivial element g € G. We know that every rotation in
SO(3) is given by an axis and an angle. This implies that g has exactly two fixed
points on the unit sphere.

(4.1)

IThe macroscopic shape of the body has negligible influence on the microscopic properties.
Therefore we will assume the crystal to have infinite extent in all directions so that the
macroscopic shape does not spoil any symmetry.
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Next consider the set P of all fixed points on S? of the (non-trivial) elements in G.

It is evident that G must map these fixed points to themselves,? thus it has a
closed action on P. The set P furthermore splits into orbits P; under G, let us
suppose there are r such orbits.

Now let us consider the number N := 2|G| — 2, and express it using the above
fixed points and orbits. Evidently, NV counts twice the number of non-trivial group

elements
N= ) 2 (4.3)
g#1€G

As every group element has precisely two associated fixed points, we can recast N
as a sum over fixed points m where each fixed point contributes its multiplicity

|Gm| —1
N=> (IGunl—1). (4.4)

We can then split the above sum into orbits P; where each of the |P;| = |G|/|G,|
points m contributes the same amount |G,,| — 1

N = ZH&’ (|G| = 1). (4.5)

Altogether, we obtain a simple equation involving n := |G| and r further unknowns

i = |G| with m € P,
2 - 1
—;:Z<1—;>. (4.6)
i=1 v

This equation is very useful because it constrains the allowable values of r and n;
substantially. We know that n; > 2 and thus each summand on the r.h.s. is at
least /5. So we find 2 > r/2 or r < 4. On the other hand, r = 1 can be excluded
because n; < n and the equation has no solution. It remains to discuss the cases
r=2andr=3.

2Fixed points correspond to rotational axes and group composition maps the allowable axes to
themselves.
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Cyclic Group. The easiest case is r = 2 where the equation reduces to

1.1 (4.7)
n n1 )
We know that n; < n which only leaves the solution n; = ny, = n. In this case
there are only two fixed points and thus a single axis. The group consists of
rotations by multiples of 27 /n. This is the cyclic group C,, of order n. It is in fact
a subgroup of SO(2) rotations in the plane.

Dihedral Group. For r =3 we have
I+ —=—+—+ —, (4.8)

where we can assume n; < ny < nz. We can argue that for n; > 2 the equation has
no solution because the r.h.s. is less or equal 1. Similarly, ny > 3 yields a r.h.s. less
or equal 1. The simplest solution is (nq,n2,n3) = (2,2, k). This group is the
dihedral group Dy, of order 2k. It describes the symmetries of a dihedron which is a
flat polyhedron with two faces (front and back) each being a regular k-sided
polygon. The group consists of the identity element, k& — 1 rotations around the
central axis of the polygon by multiples of 27 /k as well as k rotations by 180°
around axes within the plane of the polygon. From a two-dimensional point of
view the latter can also be viewed as reflections in the plane: As such the dihedral
group is a subgroup of O(2), but the action on the coordinate orthogonal to the
plane is different from the embedding into SO(3).

Polyhedral Groups. The remaining solutions for (ny,ns, n3;n) are

(2,3,3;12) — T,
(2,3,4;24) — O,
(2,3,5;60) — L (4.9)

One can figure out that these groups are the rotational symmetry groups of the
regular polyhedra, the five Platonic solids.

e The tetrahedral group T maps a regular tetrahedron to itself. Apart from the
identity element, there are 8 = 4 - 2 rotations about an axis joining a vertex and
the centre of the opposite face as well as 3 rotations about an axis joining the
centres of two opposite edges.

e The octahedral group O maps a regular octahedron to itself. Likewise, it maps a
cube (regular hexahedron) to itself. Since the prototype of a three-dimensional
lattice is cubic, this group plays a dominant role for crystals. The symmetry
group of the octahedron (cube) has 8 = 4 -2 rotations about the faces (vertices),
6 rotations about the edges and 9 = 3 - 3 rotations about the faces (vertices).

e The icosahedral group I maps a regular icosahedron to itself; similarly, it maps
a regular dodecahedron to itself. Even though these polyhedra have the largest
amount of symmetry, the group does not apply to crystals as we shall see
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below.® As a symmetry group of the icosahedron (dodecahedron) it has
24 = 6 - 4 rotations of vertices (faces), 15 rotations of edges and 20 = 10 - 2
rotations of faces (vertices).

The platonic solids can also be viewed as regular tilings of the two-sphere. It is
therefore natural that they are associated to the finite subgroups of SO(3).

Reflections. So far we have restricted our attention to rotations, but we can
also consider reflections. Knowing that the determinant of such a transformation is
either +1 or —1 one can argue that there must be as many rotations as reflections
in a finite subgroup G C O(3). However, extending a finite rotational group Gy is
not necessarily unique, but can yield up to three alternatives. There are two main
classes to be distinguished:

e In the easier case, the reflection group contains the complete reflection —id.
Since —id commutes with all elements, also —g € G for all rotational g € Gy.
The reflection group is the direct product G = Gy, := Gy X Zy with Zs.

e In the other case —id is not an element. Then one can argue that the reflection
group is isomorphic to a rotational group G’ which contains Gq as a subgroup:
Simply multiply the reflections in G by the overall inversion —id to obtain a
finite subgroup of SO(3). Furthermore, the subgroup Gg is normal and has
index 2. In order to classify reflection groups of this kind, we therefore look for
rotation groups G’ which have a suitable subgroup Gg. This turns out to yield
at most two reflection group extensions G for each rotation group Go.

An instructive example is the extension of the tetrahedral group T. The direct

product
Ty, =T x Zy (4.10)

is straight-forward to understand. Note that the reflections in T}, are not
symmetries of a tetrahedron because they map points to centres of faces and vice
versa. The reflectional symmetries of a tetrahedron are given by the non-trivial
extension T4. This is isomorphic to a rotational group of twice as many elements
as T. One can also argue that it must be among the polyhedral groups, hence it
can only be the octahedral group

Alternatively one can argue by embedding the tetrahedron into alternating vertices
of a cube.

N\ L (4.12)

Those rotations in O which do not map vertices of the tetrahedron among
themselves should be multiplied by an overall inversion. This combination

3Nevertheless, this and related groups can appear in nature in the form of quasi-groups.
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preserves the tetrahedron, but curiously the group multiplication remains as in O.
The resolution to the apparent puzzle is that Tq = O has two inequivalent
representations of dimension 3. One is the defining representation of T4 describing
the reflectional symmetries of the tetrahedron. The other one is the defining
representation of O describing the rotational symmetries of the cube or
octahedron. Finally, one can say that the latter groups are isomorphic to the
symmetric group Sy describing permutations of the 4 vertices of the tetrahedron.
Equally, the tetrahedral group T is isomorphic to the alternating group A4

T = A4, Td =0= S4. (413)

The other polyhedral groups O and I only have the trivial extensions O x Zy and
I x Zy. Conversely, the cyclic and dihedral groups C,, and Dy, have up to three
reflectional extensions.

Discrete Subgroups of SU(2). In the presence of half-integer spin particles,
the double cover Spin(3) = SU(2) of SO(3) becomes relevant. Just like SO(3) this
group has discrete subgroups. Here each subgroup G C SO(3) has a unique double
cover G* C SU(2) which includes the element (—1)¥:* There are the two infinite
sequences C; and Dj of order 2n and 4k, respectively as well as the three
polyhedral cases:

e binary tetrahedral group T* of order 24,
e binary octahedral group O* of order 48,
e binary icosahedral group I* of order 120.

Recalling that Spin(3) = Sp(1), there is a curious quaternionic presentation of the
above groups: The group elements are given by unit quaternions distributed in a
regular pattern over the three-sphere S3.

4.2 Representations

Let us discuss a few aspects of the representations theory of the point groups
introduced above.

Irreducible Representations. The representation theory of the cyclic groups
C,, is trivial. The irreducible representations of the dihedral groups Dy are
one-dimensional (2 for odd k& and 4 for even k) or two-dimensional (all remaining).
We will not discuss the representation theory of these groups further.

4There are also finite subgroups of SU(2) which do not include the element (—1)F; these are
the cyclic groups of odd order.
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For the tetrahedral group A, one finds as the character table:

NP/t [3']
4|1 3 4 4
171 1 1 1
111 1 e+2ﬂ"2/3 6727&/3 (414>
111 1 67271'?/3 e+2ﬂi/3
313 -1 0 0

Note that the representations 1’ and 1’ form a complex conjugate pair of
representations while the others are real. It is straight-forward to infer the
decomposition of tensor products into irreducibles. Only 3®3=3®30101 @1
requires a brief calculation.

The character table for the octahedral group S, reads:

(21 Bl M (22
#11 6 3
11 1 1 1 1
{1 -1 1 -1 1 (4.15)
212 0 -1 0 2
33 -1 0 1 -1
13 1 0 -1 -1

Note that the irreducible representations 3 and 3’ are the defining geometrical
representations of O and Ty, respectively. Furthermore, the representation 1’ is the
determinant of the defining representation of Ty; the subgroup T is specified by
restricting to the group elements with positive determinant.

The icosahedral group is isomorphic to the alternating group As. This group has 5
irreducible representations of dimensions 1, 3,3,4,5 as well as 5 conjugacy classes
of sizes 1,12,12,15,20. As this group does not play a role for lattices, we will not
discuss it further.

Representations of the Binary Polyhedral Groups. The representation
theory of the binary polyhedral groups has a curious feature known as the McKay
correspondence. Let us discuss the representation theory using the McKay graph of
the group: Draw a node for each irreducible representation of the group. For each
node, consider the tensor product with the 2-dimensional defining representation
(as a subgroup of SU(2)). Draw an edge from this node to any node that appears
in the tensor product decomposition. It turns out that for the binary polyhedral
groups, each irreducible representation appears at most once and that the
connectivity is symmetric (hence no multiple lines or arrows are needed as
decorations).

The group T* has 7 irreducible representations of dimensions 1,1,1,2,2,2,3 and 7
conjugacy classes of sizes 1,1,4,4,4,4,6. Compared to the group T there are three
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additional representations of dimension 2,2,2. The McKay graph takes the form:

O
2) (4.16)
O—)——)—)

The group O* has 8 irreducible representations of dimensions 1,1,2,2,2,3,3,4 and
8 conjugacy classes of sizes 1,1,6,6,6,8,8,12. Compared to the group O there are
three additional representations of dimension 2,2,4. The McKay graph takes the

form:
@)
O——0B)—(D)—6)—2)—1)

The group I* has 9 irreducible representations of dimensions 1,2,2,3,3,4,4,5,6
and 9 conjugacy classes of sizes 1,1,12,12,12,12, 20, 20, 30. Compared to the
group I there are four additional representations of dimension 2,2,4,6. The
McKay graph takes the form:

(4.17)

Finally, the McKay graph for the cyclic groups and the binary dihedral groups
take the form:

(4.18)

) e) S 2)—@) (4.19)

The above graphs are the so-called extended ADE-graphs.® They also play a role
in the classification of simple finite-dimensional Lie algebras.

Splitting of Representations. In quantum mechanics the orbital motion of
particles (electrons) around a central point (nucleus) is given in terms of spherical
harmonics Y;,,. As we have seen above, the set of functions Y;,, with fixed [
correspond to a representation of SO(3) with spin I. Rotational symmetry of the
potential then implies that the energy levels must not depend on m.°

5The cyclic, dihedral and polyhedral groups have McKay graphs of type A, D and E,
respectively.

SFor the Coulomb potential, they actually also do not depend on [. The reason for the further
degeneracy is a hidden SO(4) symmetry related to the Runge-Lenz vector.

4.7



If, however, the atom resides within actual matter, the potentials of the
surrounding atoms break the rotational symmetry. Consequently, the degeneracies
of energy levels are also broken. If the disturbance is small, the symmetry still
holds approximately, and only minor deviations in the energy levels are expected.
Conversely, large disturbances may completely distort the spectrum and obscure
the symmetry of free space. The situation in a crystal is different because there can
be residual symmetries which still hold (at least to a good approximation). Then
the continuous rotational symmetries reduce to the finite point group of the lattice.
This will break some degeneracies of energy levels while others are preserved.
Here, representation theory gives a precise answer for the expected degeneracies.

Let us discuss the example of a simple cubic lattice where the octahedral group O
is the relevant residual symmetry. We start with a particle in an orbit with
angular momentum L. In a spherically symmetric potential all 2L + 1 states
within this orbit have the same energy because they transform in an irreducible
representation of SO(3). Within a lattice with orthogonal symmetry this
representation is clearly reducible for L > 1 because there are no irreducible
representations of O of dimension greater than 3. We have learned above how to
decompose representations using characters.

Let us therefore compute the character of the spin-L representation of SO(3). The
resulting formula remains valid for all subgroups when the group element is
restricted to the subgroup. We know that the character depends only on the
conjugacy class. Therefore we need to understand the conjugacy classes of SO(3).
A rotational element is specified by an axis 77 € S* and an angle 0 < ¢ < 7.
Conjugation of this element changes the axis to some other direction on S%, but it
does not alter the angle. Therefore the conjugacy classes are formed by rotations
with equal angles. In order to compute the character we choose a rotation around
the z-axis. By construction the states |m) are eigenstates under this rotation with
eigenvalue €. The spin-L character is thus given by the sum

L W(L+1/2) _ o—i(L+1/2)1
N im e (§]
xL(¥) = Z e = /2 _ o—i)2
m=—1L
B sin((L + %)w) (4.20)
- . 1 . .
sm(;gb)

We have to evaluate the representation for the 5 conjugacy classes of O. These are
elements with rotational angles ¢ = 0,7, 27, 2w, 7 for [-],[2], (3], [4], [2, 2],
respectively. The results reads

2
xo(m) =1,-1, for L=0,1 (mod?2),
1,0,—1, for L =0,1,2 (mod 3),
xo(3m) =1,1,—-1,-1, for L=0,1,2,3 (mod4). (4.21)

Using orthonormality and the character table of O one finds the branching rules
for SO(3) — O where the spin-L representations are labelled by their dimension
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2L + 1:

1—1,
3 — 3,
5—2d3,
T—-1®3®3,
910206333,
(4.22)

This table repeats after 12 lines with a certain shift of the multiplicities. In terms
of physics, one expects pairwise and triple degeneracies of energy levels in a crystal
with a cubic structure.

Suppose further, the cubic symmetry O is just approximate and breaks further to
dihedral symmetry D3. In order to understand the splitting of irreducible
representations, note that D3 is isomorphic to the symmetric group Sz and it
consists of elements from the conjugacy classes [-], [2], [3] of O. Comparing the
character tables of both groups one finds

1—=1,

1" =1,

2= 2

3132,

3 =12 (4.23)

This list tells us that all the pairwise degeneracies in the cubic crystal are preserved
while all threefold degeneracies are expected to split into pairs and singlets.

4.3 Crystallographic Groups

Finally, we discuss the implications of the lattice on the allowable discrete
symmetry groups.

Crystallographic Point Groups. We have found several infinite families of
discrete point symmetry groups as well as some special cases related to the regular
polyhedra. Gladly, only finitely many are suitable for lattice structures. There is a
simple argument to prove this fact.

A lattice is described by three vectors which span an elementary cell. Under a
rotation these vectors are not necessarily mapped to themselves because the
elementary cell could be mapped to another elementary cell. This implies that the
basis vectors should be mapped to some vectors on the lattice. In other words,
their image must be an integer linear combination of the basis vectors. When the
rotation matrix is expressed in the lattice basis, it must have integer coefficients
only, i.e. it must belong to SL(3,7Z). Now the lattice basis is typically not
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orthonormal, and it is not easy to understand which matrices are both orthogonal
and integer. Here the character is of help because it is independent of the choice of
basis. The trace of an integer matrix must be integer. As we have seen above, the
trace of a 3 x 3 orthogonal matrix (spin-1 representation of SO(3)) equals

_sin(3y)
" (k)

There are only 5 integer solutions, namely v = 0°,60°,90°,120°, 180° or

x1(%) =1+2cos. (4.24)

2
v="""" Wwith n=1,23 46 (4.25)
n

The order of the group elements cannot be 5 or greater than 6. This reduces the
rotational point groups suitable for crystals to just 11

{1}7C27C3;C47C67D27D37D47D67TJO' (426)

In particular, the 5-fold symmetry of the dodecahedron and icosahedron excludes
the group 1. If reflections are included, one obtains the 32 crystallographic point
groups or crystal classes.”

Space Groups. So far we have only discussed the symmetries that leave a point
fixed. However, in an (infinite) lattice there are also translational symmetries. The
combination of rotations and translations is called a space group Go. A space
group is based on one of the 32 crystallographic point groups Gg. Group elements
take the form (R, #) with the group multiplication

(R, 1) (Ray £2) = (Ry R, By + Ryf). (4.27)
Translations by any lattice vector are admissible, i.e.
(R,1) € Goo = (R,E+nply) € Goo, ny €7, (4.28)

and therefore space groups are infinite.® We have seen above that the basis vectors
must be mapped in a particular way by the rotations, but this restriction still
leaves some choices. Moreover, it is not even guaranteed that (R,0) € G for all
R € Gy; some space groups have this property, others not. In other words, Gy is
not necessarily a subgroup of G.,. The classification of all distinct space groups is
a tedious case-by-case study and leads to 230 cases altogether.

The representation theory of these space groups imposes constraints on the
electronic band structure of the crystals which we will not discuss in this course.

"Some of these groups are isomorphic as groups but they have inequivalent defining
representations which describe the action on three-dimensional space.

8Tn order to remain with finite groups and their favourable properties, one can impose
periodic boundary conditions.
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5 Structure of Simple Lie Algebras

In this chapter we will discuss the structure of a general simple Lie algebra g as
preparation for the representation theory in the following chapter. A simple Lie
algebra is defined as having no non-trivial ideals, i.e. it is minimal in a certain
sense and its adjoint representation is irreducible.!

5.1 The Algebra su(3)

Throughout this chapter and the following we will use the Lie algebra su(3) to
illustrate the general results by means of a simple example.

The Lie group SU(3) is the group of all 3 x 3 matrices U which are unitary

(UT = U~1') and have unit determinant (det U = 1). This group plays an important
role in low-energy hadronic physics where it serves as the approximate symmetry
group of the hadronic particles made from the lightest 3 of the 6 elementary quark
flavours. It also serves as the gauge group for Quantum Chromodynamics where it
related the three colour degrees of freedom of the quarks.

The Lie algebra su(3) is the infinitesimal form of the Lie group SU(3). It is
spanned by all 3 x 3 traceless anti-hermitian matrices L

su(3) = {L € End(C?); L = —L, tr L = 0}. (5.1)

In physics, the so-called Gell-Mann matrices A\, k = 1,...,8, are often used as an
imaginary basis for su(3). They are a straight-forward generalisation of the 2 x 2
Pauli matrices to 3 x 3 matrices. For our analysis of the representation theory they
will not be immediately applicable.

5.2 Cartan—Weyl Basis

First, we introduce a basis of generators suitable for the construction of
representations.

Complexification. We will proceed in analogy to s0(3) in Section 2.3 and
introduce a basis of generators which measure, raise or lower certain charges.? This

'Furthermore, one commonly excludes the one-dimensional abelian Lie algebra.

2We will rely on some notion of charges which is based on symmetries in quantum mechanics.
This notion generalises the z-component of spin in su(2). Such charges are well-defined in the
sense that they can be measured simultaneously, and they are additive under compositions of
charged objects.
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basis involved complex combinations J,, J4 of the generators, and more accurately
we discussed the complex Lie algebra so(3,C) = sl(2,C) and its representation
theory. Along the same lines it is convenient to consider the Lie algebra g to be
complex, such that we can naturally take arbitrary complex linear combinations of
basis elements. After the work is done, one can reduce to a real form of the algebra
and obtain certain restrictions on its representation theory. In our example, the
complexification of su(3) is the Lie algebra s((3,C). Let us for the time being
assume all Lie algebras to be complex, and abbreviate sl(N,C) as sl(N).

Cartan Subalgebra. For s((2), the generator J, was used to measure a certain
charge which allowed us to partition the representation space into subspaces with
fixed eigenvalue of the charge. For the bigger algebra sl(3) there is no single such
element, but rather a two-dimensional subalgebra b of diagonal (traceless) matrices

h = {diag<a’17 g, a3); ag € CJ a; +az +ag = 0} (52>

The elements of b allow to decompose a space into subspaces specified by two
charge eigenvalues. In general, the Cartan subalgebra b is the maximal abelian
subalgebra of the Lie algebra g that is self-normalising. The latter is the
requirement that provided some L € g with [H, L] € b for all H € h implies

L € b2 The requirement that all elements of § have trivial Lie brackets

[H,H] =0 for all H, H' € b, (5.3)

is essential because their representations mutually commute and can be
diagonalised simultaneously allowing to determine several charges at the same
time. Note that the choice of Cartan subalgebra is not unique; for example, one
can apply some similarity transformation to . However, the dimension of § is
well-defined, it is called the rank r = dim b of the Lie algebra. The earlier example
5[(2) is the unique simple Lie algebra of rank r = 1. The present example s[(3) has
rank r = 2 which adds several complications to the analysis. Conceptually, this
example is as difficult as it gets among the simple Lie algebras, and the treatment
of all higher-rank simple Lie algebras follows along the same lines.

Cartan—Weyl Basis. The Cartan subalgebra acts on the Lie algebra by the
adjoint representation, and thus we can decompose the Lie algebra into
eigenspaces of the Cartan algebra.? This is achieved via the eigenvalue equation

ad(H)L =[H,L] = ar(H) L for all H € b, (5.4)

where a, is a linear function h — C which describes the charges of the eigenvector
L € g.° The charges of the elements of the Cartan subalgebra are zero by
construction.

3The actual definition of Cartan subalgebras is in fact slightly different. Our definition refers
to the maximal Cartan subalgebra of a simple Lie algebra.

4In fact, this statement relies on diagonalisability of the adjoint representation of the Cartan
subalgebra which holds for simple Lie algebras.

5Tn physics one would pick a basis for h and define the charges as the eigenvalues of the r = 2
basis elements. The above statement is equivalent but independent of a choice of basis.
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For concreteness, we perform this decomposition for sl(3): Consider a Cartan
element € b and a generic algebra element L € g

ap 0 0 bir bz bi3
H = 0 (05} 0 s L= b21 b22 623 (55)
0 0 ag b31 b3z b33

with ay 4+ as + ag = b1y + bag + b33 = 0. Then

0 (al - a2)b12 (al - a3)b13
[[H, L]] = (CLQ - al)bgl 0 (CLQ - ag)bgg 5 (56)
(a3 —ai)bsy (as — az)bsy 0

and we can immediately see that the eigenvectors are given by the matrices L;;
with a 1 in row ¢ and column j and 0 everywhere else. Noting that the matrices
obey the algebra L;; Ly = d,,L; we can write more abstractly

HH, Lz]]] = Oéij(H>LZ‘j7 where Qi (H) = a; — a;. (57)

Analogously we can pick a basis for § consisting of the diagonal matrices
Ly — Ly = diag(1,—1,0), Ly — L3z = diag(0,1, —1). (5.8)
Altogether a so-called Cartan—Weyl basis for s[(3) is given by the generators

{Lll - L227 L22 - L337 L127 L137 L217 L237 L317 L32}' (59)

5.3 Root System

Having identified a set of generators with well-defined charges, we now proceed to
analyse the charges and their relationships.

Roots. We have decomposed our Lie algebra as

6="boPs. (5.10)

aeA

Here g, is the subspace of g defined by the above eigenvalue equation
[H,L] = a(H)L for all H € h, L € g,, (5.11)

and A defines the set of permissible non-zero eigenvalues. The linear function

a : h — C is by definition an element of the dual space h* of the Cartan algebra.
The permissible non-zero eigenvalues o € A are called the roots of the Lie algebra
g, and the subspace g, is the corresponding root space. The subspace gg
corresponding to the zero vector in h* is the Cartan subalgebra h. However, the
zero vector is usually not called a root and 0 ¢ A.
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A very useful feature is that the Lie brackets preserve the charges. For two
generators L, L/ with charges a, o’ the Jacobi identity implies

[H,1L, )] = (a(H) + of () [L, ] (5.12)

meaning that the Lie bracket [L, L'] carries the sum of charges o + o/. For the
root subspace this implies the relationship

[0 8a'] C Batars (5.13)

where the Lie bracket has to be zero when a + o ¢ AU {0}.

In our example, the set of roots is given by
A = {aiz, o3, a1, (o3, izp, i} (5.14)

The corresponding root spaces g;; = CL;; are all one-dimensional. Moreover, the
negative of every root is a root as well, A = —A. The latter two facts conveniently
extend to all simple Lie algebras. Only the subspace gg = b corresponding to

0 € h* has a higher dimension equalling the rank r. The Cartan—Weyl basis thus
consists of a basis for the Cartan subalgebra together with one generator L, for
each root v € A. For the example of s((3) with two-dimensional Cartan
subalgebra, we can conveninently plot the configuration of roots in a
two-dimensional root diagram:

omg g o3 (5.15)

Positive and Negative Roots. Our construction of finite-dimensional irreps of
5[(2) made use of a state which was distinguished by having the highest charge. For
rank r > 1 the charge is specified by more than one number, and thus there is no
canonical ordering principle. However, it suffices to specify some non-zero element
Hy € ¢ 7 with which a partial ordering for a, 5 € h* can be established via

a<p = a(Hy) < B(Ho). (5.16)

It will be of no concern that two unequal a # 8 may have equal distinguished
charges a(Hy) = f(Hy). However, the choice must ensure that all roots have
non-zero distinguished charge

a(Hy) #0 for all o € A. (5.17)

6Tt does not matter much which element is chosen.
"Strictly speaking, the spaces b and h* are complex and ordering would make no sense, but in
fact for the finite-dimensional simple Lie algebras there are canonical real slices for these spaces.
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This allows us to classify the roots as either positive or negative according to
A=A, UA_, A =-A, (5.18)
with
a(Hy) >0 foralla € A,. (5.19)

In terms of the distinguished charge, one can understand the positive and negative
roots to correspond to raising and lowering generators. Altogether the Lie algebra
splits into a positive part g, a negative part g_ and the Cartan subalgebra

g=g:@bdg-  with gi:= D ga. (5.20)
aEAL

Note that all of these form subalgebras of g as well as the so-called Borel
subalgebras by := g+ @ b.

g S T I
LoQ-—----- ® Lo
// \\ // \\
/ \\H/ \\
L3/ g L3
**O\ ,,,,,, /@}\ 77777 /’—— (521)
A_\\ // \\\ //AJ’_
\ Y /
\ S v
L32/d ****** ® Lo

In our example, a useful choice for the distinguished Cartan element is

Hy = diag(+1,0,—1). (5.22)
With this choice the positive roots are

Ay = {12, a3, an3}. (5.23)

These correspond to a basis Lis, L3, Laeg for strictly upper triangular 3 x 3
matrices. The corresponding negative generators Loy, L3y, Lo are the strictly lower
triangular matrices, while the diagonal matrices belong to the Cartan subalgebra.

Simple Roots. Furthermore, it makes sense to distinguish some basis for h* in
terms of the roots. Usually the number of positive roots is larger than the rank

r = dim b* of the algebra, and there must be linear dependencies among the
positive roots. The charge relationship [ga, §o] C garar paired with simplicity of
the Lie algebra then implies that some positive roots should be linear combinations
of other positive roots with non-negative integer coefficients. The remaining
positive roots which cannot be expressed in terms of others in this way are called
simple. There are always precisely r simple roots and they form a basis for h*.

In our example, the simple roots are a5 and asg while a3 = aqo + i3 is
composite. The corresponding simple generators L1, and Ly3 obey the Lie bracket

[L12, Las] = Lus, (5.24)

and thus all relations involving L3 can in principle be expressed in terms of the
simple generators. Note that the simple generators are next-to-diagonal matrices
while the non-simple generator is further away from the diagonal.
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Chevalley—Serre Generators. Following these lines, we can reduce the
algebraic relations to some minimal set. First, we denote the simple roots by
(k=1,2)

A = O k1 (525)

We then introduce a notation for the generators corresponding to these simple
roots (k = 1,2)
Ey = Ly 41, Fr = Lyqir, Hy = Lix — Lis1p41- (5.26)

These so-called Chevalley—Serre generators form a basic set of Lie generators
which are reminiscent of r = 2 copies of the raising, lowering and charge generators
J+ and J, for sl(2). The two remaining composite generators are given by

E12 = IIE17 EQ]] = L13, F12 = [[Fg,Fl]] = L31. (527)
Fio----- 3o
// \\ (6%} \\
Fooy  Hid o1 (5.28)
\\ HQ// ,
\\ // ap\
NG R Y oH

The Lie algebra relations can be expressed in a uniform way (j,k = 1,2)
[H;, H] =0, [Ej, Fi] = d;1Hy,
[[Hj, Ek]] = Ozk(Hj)Ek, [[Hj, Fk]] = —Ozk(Hj)Fk, (529)

where the simple roots evaluated on the basis of the Cartan algebra read

ap(H;) = (f? ;;) . (5.30)

The Lie brackets among the positive and among the negative generators are not
yet specified allowing for composites like E5 and Fi5 to form. Nevertheless,
constraints are needed to remove unwanted generators. These are the Serre
relations which read for sl(3)

[E1, [E1, Eo]] =0, [F1, [F1,Fs]] =0,
[Es, [E2, Eq]] =0, [Fa, [Fa, F1]] = 0. (5.31)

5.4 Invariant Bi-Linear Forms

We can equip the various vector spaces we have encountered with canonical
bi-linear forms. This will be of use for various relations later on.®

8... and cheer up the physicist who would not know how to handle a vector spaces without a

scalar product.

5.6



Killing Form. A Lie algebra has a canonical symmetric bi-linear form
k:gxg— C. Up to a prefactor this form is given by the Killing form which is
defined via the adjoint representation as

Kk(L, L") ~ tr[ad(L) ad(L")]. (5.32)

For a simple algebra we can alternatively use any other irreducible representation

P
K(L, L") ~ tr[p(L)p(L)]. (5.33)

By construction this form is invariant under the adjoint action of g as follows
k(ad(L")L, L") + k(L,ad(L")L") = 0. (5.34)

The bi-linear form is non-degenerate for simple Lie algebras. Furthermore, for a
real Lie algebra, the bi-linear form has a definite signature if and only if the Lie
group corresponding to the Lie algebra is compact. Finally, the invariance
property ensures that the Killing form is non-zero only for opposite root spaces,
K(8a, 8ar) = 0 for a + o’ # 0. As an aside, note that the Killing form is the inverse
of the quadratic Casimir invariant which we encountered earlier.

For sl(3) the bi-linear form is determined by providing the non-zero components.
We choose a normalisation based on the defining representation and obtain

HJ(EI, Fl) = H(EQ, Fg) = K(Elg, F12> =1 (535)
and
H(Hl,Hl) = K,(HQ,HQ) = 2, K(Hl,Hg) = —1. (536)

Upon inversion we obtain the quadratic Casimir invariant which reads for s[(3)
C=2H, ®H, + }H; ® Hy + $H, ® H; + 2H, @ H,
+E®F +E®Fy+ Ejp ® Fig
+FQE +F,®Ey +Fia ® Epp (5.37)

or more concisely

Scalar Product on h*. We can use the Killing form on g to obtain a scalar
product for the space h*. We thus restrict the bi-linear form to the Cartan
subalgebra where it remains invertible. By inverting and dualising the restricted
form we obtain a scalar product (-,-) : h* x h* — C on bh*.

In our example, the restricted Killing form reads

+2 -1
p(Hj Hi) = Aje, A= <_1 +2) : (5.39)
The scalar product on h* thus takes the form
* * —1 -1 2/3 1/3
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where the dual elements Hj, € h* are defined by the relationship H}(Hy) = 6.
However, we normally do not express elements of h* in the basis of Hy, but rather
in terms of the simple roots «;, which are related to H; by

Combining the various relationships we find a; = Ay;H; and finally
<ij, Odk> = Ajlc = (AA71A>]‘]€. (542)

This implies that the simple roots do not form an orthonormal basis of h*.°

The matrix A which appears frequently in the above is called the Cartan matriz.
For more general Lie algebras, the Cartan matrix is defined as'®

2(ayj, o)

A'k =
’ (aj, o)

= au(H,). (5.43)

The Cartan matrix will later be used to construct general simple Lie algebras from
scratch and to classify them.

9The above figures of root configurations use an orthonormal coordinate system, and one can
observe that the roots are not orthogonal.

10Tn our example all roots have the same length, (o, a5) = 2, and thus Aji equals the scalar
product of roots.
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6 Finite-Dimensional Representations

We are now in a good position to investigate the representation theory of a generic
simple Lie algebra g, and construct finite-dimensional irreducible representations.
Again, su(3) and its complexification sl(3) will serve as the main example to
illustrate the mostly general results.

6.1 Representations of su(3)

We already know at least 4 representations of su(3): There is the trivial
one-dimensional representation and the adjoint representation which is
eight-dimensional. These two representations are evidently real. Then there is the
defining three-dimensional representation. As a (truly) complex representation it
has a complex conjugate representation which is distinct. The latter two are also
called the fundamental and anti-fundamental representations. All of these
representations are irreducible, and often irreps are labelled by a bold number
giving their dimensionality:

= triv, 8 = adj, 3 = fund, 3 = 3* = fund”. (6.1)

Here the two fundamental representations have the same dimension and thus they
should be distinguished somehow.

Clearly, su(3) has many more distinct irreps and the goal of this chapter is to
understand their representation theory. In order to construct further
representations, we can use the tensor product of the above representations and
then decompose them into irreps. For example, one finds

303=6®3"
33 =8®1,
3*®3" =6"® 3. (6.2)

Apart from the previously known four representations, there are is a new pair of
complex conjugate six-dimensional irreps. When they are used within tensor
products, further irreps can be produced.

One may wonder why the tensor product 3 ® 3 decomposes and how. The crucial
point is that the two tensor factors are equivalent. In this case the tensor product
space and the representation can be decomposed (at least) into symmetric and
anti-symmetric contributions. The symmetric product forms the new irrep 6 while
the anti-symmetric product happens to yield the anti-fundamental representation
3* in the case of su(3). In fact, there is a general principle governing the tensor
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products of equivalent representations. Applied to the defining representation, this
will actually determine the representation theory of the algebras su(N) in terms of
the representation theory of the symmetric group. A general finite-dimensional
irrep of su(3) turns out to be labelled by two non-negative integers [ny,ns|. This is
analogous to the representation theory of su(2) which uses one non-negative label
[n] related to the spin j = n/2 of an irrep.

6.2 Weights

States of a finite-dimensional irrep of a simple Lie algebra can be classified by their
charges under the Cartan subalgebra, the so-called weights, which generalise the
spin quantum number of su(2). Irreps have a distinct pattern of weights, and there
is a unique state of highest weight which is often used to identify the irrep.

Weights. Consider a finite-dimensional irrep p : g — End(V). We shall assume
that the representation of the Cartan subalgebra h on V is diagonalisable.! We
proceed as in the case of s[(2) and decompose the representation space into
eigenspaces V)

V=@V, (6.3)

AEA,

under the representation of the Cartan subalgebra?
p(H)|v) = A(H)v) for all H € b, |v) € V. (6.4)

The charges A\ € A, C h* are called weights,® the corresponding eigenspaces

V C V are called weight spaces, and their dimension m) := dim V), is called the
multiplicity of the weight A. Clearly, the roots of the Lie algebra (including the
zero weight) are also weights, namely those of the adjoint representation,

1 forxe A
Apg = AU{0}, = ’ 6.5
a {0} " {7’ for A = 0. (6.5)
The weights are additive in the sense®
p(Lo)Vy C Vain for all L, € ga, (6.6)

!The latter requirement in fact follows from our setup, but the subsequent analysis is
simplified substantially if we can assume it from the start.

2Tt would suffice to abbreviate the representation of a generator L € g on a state |[v) € V by
L|v) := p(L)|v) whenever there is a canonical representation p on V and no ambiguities arise.
This is common practice at least in the physics literature.

3The weights are vectors of the dual Cartan subalgebra h*, but note that the term weight
vector usually refers to vectors of the representation space |v) € V) with definite charges. In
order to avoid potential ambiguities, we will refer to vectors of representation spaces as states, i.e.
|v) € Vy is a weight state.

4As usual we declare Vy := {0} if A & A,,.
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as can be confirmed straight-forwardly using the representation property involving
the Cartan subalgebra. This implies that the weighs of an irreducible
representation must be evenly spaced, i.e. differences should be integer linear
combinations of the (simple) roots. The weights of a representation lie on a lattice

Ay CA+ZA=X+Y Za  with A€ A, (6.7)

a€cA

In our example sl(3), we already understand the adjoint representation, and the
trivial representation is trivial. Let us therefore consider the two three-dimensional
fundamental representations. For the defining representation we declared

p(Hy) = diag(1,—1,0), p(Hy) = diag(0,1, —1). (6.8)

The matrices are already diagonalised and therefore the three weights of the
representation read (H = a1Hy + aoHy)

)\1(H) = daq, )\Q(H) = dag — aq, )\3(]‘.[) = —Aas. (69)
The weights of the conjugate representation are just the opposites

)\1(H) = —daq, /\Q(H) = a; — ag, /\3(H) = Q9. (610)

We can express the above weights as linear combinations of the simple roots (recall
Oél(H) = 2&1 — a9, O@(H) = 2(1,2 — al)

2 1 3\ 2 1
)\1 = +§Oé1 + §0z2, /\1 = —§Oé1 — 30[2,
1 1 3\ 1 1
/\2 = —5041 + §OéQ, )\2 = +§C¥1 — 30&2,
_ 1 2 N 1 2
)\3 = —301 — 3002, )\3 = ‘|’§Oé1 + 3009, (611)

and plot their configuration in a so-called weight diagram along with the roots:

.o 0
AN Ao 7
// \\ ] // \\
/< \\ // N \\
// )\30 \\ // O)\l \\
/ / N
. oo .- (6.12)
/
"\ A3@ )/ \ @)\ -
\\ / \ /
N // [e) \\ //
\\ / )\2 N7
o L

Highest Weight and Descendants. In the construction of irreps for sl(2) we
singled out the state with the highest z-component of spin, and derived all other
states from it. We have no canonical ordering on the set A, of higher-dimensional
charges, but we already introduced a partial ordering based on some Cartan
element H,. This partial ordering singles out a highest weight n € A, with the
maximum value of A(Hy). A priori, the highest weight is not necessarily unique,
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nor does it have multiplicity 1. We are free to choose any highest-weight state
|n) € V,, and we shall later see that this state is indeed unique for an irrep.

We know by construction that all the positive roots a € Ay obey a(Hp) > 0.
Therefore, the highest-weight state must be annihilated by all positive generators

p(L)|u) =0, forall L € {L,;a0 € AL} (6.13)

In fact, it suffices to demand that all simple positive generators E;, j =1,...,r
annihilate the state, p(E;)|x) = 0, because all other positive generators are
composed from the E;. Furthermore, the action of the Cartan subalgebra is
determined by the weight

p(H)|p) = p(H)|p). (6.14)

All other states of the representation must be generated by acting repeatedly with
the negative generators L_,, a € A, on |u). The representation space V is
spanned by (not necessarily independent or non-trivial) states

p(Ly) -+ p(L1)|p), where Ly € {L_,;a € Ay} (6.15)

These states can be called descendants of |u). Again it would suffice to restrict the
Ly, to the negative simple generators F;, j = 1,...,r because the non-simple
generators can be written as commutators which are also accounted for by longer
chains of operators acting on |u).

A more elaborate example of a finite-dimensional irrep of su(3) can be depicted by
its weight diagram:

° ° °
O a2
° ® ® o/
0 (6.16)
° O] °
oay
° °

It consists of 9 weights of multiplicity 1 and 3 weights of multiplicity 2. The
rightmost weight labelled by w is the highest weight, it can be specified in terms of
the simple roots as y = %al + %ag. Later, we shall use this example to discuss the
structure of finite-dimensional irreps.

6.3 Highest-Weight Representations

Our aim is to construct finite-dimensional irreps. The above discussion outlines
their structure in terms of weight states, but it does not tell which of these weight
states exist or are independent. In analogy to our construction of
finite-dimensional irreps of su(2) it makes sense to take a detour: We assume that
all weight states exist and are maximally independent. This leads us to a class of
infinite-dimensional representations which are conceptually simpler and from
which the finite-dimensional irreps can be deduced.
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Representation. Let us first show that the space spanned by the above
highest-weight state |u) and descendants p(Ly,,) - - - p(L1)|u) with negative
generators Ly can accommodate a consistent representation. We thus apply the
operator p(L) and show that we obtain a linear combination of states of the same
form:

e For all negative contributions to L we clearly obtain a state of the same form
but with one additional generator.

e Our aim is then to bring the remainder of the operator closer to the
highest-weight state |u). In each iteration, the operator is commuted one step
closer to |pu).

e Each commutator produces a new term with a new operator p(L’). All negative
contributions to L’ merely produce a state of the above form which we do not
have to consider further. The remainder is also one step closer to |u) than the
original operator p(L).

e After a finite number of iterations, all non-negative operators p(L”) reside right
next to |u). The positive contributions to L” annihilate the state, and the
remaining Cartan contribution multiply the state by a number.

e At the end of the day we obtain a linear combination of states of the above
form.

This argument also shows that there is a unique highest-weight state |x) in an
irreducible representation.

Basis. We now have a set of states p(L,) - - - p(Ly)|p) with negative Ly to span
the representation space, but we do not know which ones are trivial or linearly
dependent. For the individual states, the ordering of the Lj is relevant. However,
changing the ordering amounts to adding a state where two adjacent L; are
replaced by their Lie bracket. The latter is another negative generator and hence it
is a state of the same form but with lower n. Here we are interested in the span of
all states, where the latter state is already accounted for. For our purposes the
ordering therefore does not matter, and we can reduce the relevant states to

s 0) = | T] p(L-a)'= |1}, Lo € Z5. (6.17)

CMEAJr

One can show that all of these states are algebraically independent supposing that
they exist. Our assumption of a finite-dimensional representation implies that
almost all of them do not in fact exist, i.e. there are only finitely many non-trivial
weight spaces V.

However, this assumption complicates the analysis, and for the time being we shall
assume all of the above states to be non-trivial and independent. In other words,
the above states |u; ¢) with ¢, € Z{ form a basis for an infinite-dimensional space
Viw. On this space, we have established a representation p, : g — Vy,, which is a
so-called highest-weight representation. For a generic highest weight g this
representation is irreducible, but if i satisfies certain integrality constraints, it
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becomes reducible. After factoring out all sub-representations we will later obtain
a finite-dimensional representation.

Multiplicities. We thus consider the complete highest-weight representation
space where all states |u; £) are independent. Then we can more easily count the
multiplicities of the weights. The weight A, of the state |u; ¢) is given by

N=p— > lao. (6.18)

ac€A L

Now the elements of A, are dependent and therefore some of the A\, coincide and
lead to multiplicities. How these degeneracies come about depends on the details
of the Lie algebra g and its set of positive roots.

We shall therefore continue the analysis for s[(3). Here the only relationship
among the positive roots is
19 + 93 =— (X13. (619)

Given a weight
)\k1,k2 = U — lﬁOél — kgOéQ, (620)

there are min(kq, ko) + 1 ways of writing it in terms of a positive integer linear
combination of a9 = a1, g = an and a3 = a3 + ao. In other words, the
multiplicity of g, x, reads

My ey = Min(ky, ko) + 1. (6.21)

For sl(3) the highest-weight representations have a pattern of linearly increasing
multiplicities starting at the highest weight and along the direction —a; — as:

(6.22)

This completes the description of highest-weight representations.

6.4 Finite-Dimensional Representations

The next step is to reduce an infinite-dimensional highest-weight representation to
a finite-dimensional irrep.
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Quotient Representation. The above construction produces infinitely many
states which are related by a representation of g. To obtain a finite-dimensional
irrep with the same highest-weight state, we have to declare infinitely many of
these states (or linear combinations thereof) to be trivial. Now, the representation
on the reduced space is only consistent if the states to be projected out transform
under a sub-representation. The resulting representation is the quotient of the
highest-weight representation by all of its non-trivial sub-representations.
Furthermore, we have to make sure that the resulting representation is
finite-dimensional.

The standard approach to eliminate the unwanted states in highest-weight
representations is to look for further states |u/) which are annihilated by all
positive roots so that one cannot go back to the original state |u). Clearly such
states |1') have a definite weight and thus they satisfy all the above properties of
highest-weight states. They therefore reside at the top of another highest-weight
representation which is also a sub-representation of the original highest-weight
representation. If we declare this highest-weight state to be zero, then all of its
descendants will have to be set to zero as well due to the representation property.
This leads to various dependencies among the basis states |u; £) in the reduced
representation. Gladly, the sub-representation with the new highest weight 1/ has
very much the same structure as the original highest-weight representation based
at u, only with the highest weight shifted to a different location. Therefore it will
be sufficient to know all secondary highest weights 1/ to understand the structure
of the finite-dimensional irrep.

Weight Lattice. As emphasised above, a generic highest-weight representation
is irreducible; it becomes reducible only for specific highest weights u. In order to
derive the constraints on g it is convenient to rely on our earlier results for the
representation theory of s[(2). The latter is a subalgebra of s[(3) and as such, the
irreps of the latter should decompose into a direct sum of irreps of the former.
Moreover, there are inequivalent ways of embedding sl(2) into sl(3). This provides
us with several constraints which are necessary for our multi-dimensional weight
space.

An sl(2) subalgebra is generated by Hy, E1, F;. In our normalisation
HHl, El]] = (Hl)El with (03] (Hl) = 2. (623)

We know that for s[(2) the weights of the finite-dimensional representations are
integer or half-integer multiples of the simple root. Therefore

AHy) € sai(H))Z =17 for all A € A,. (6.24)

This statement derives from the representation of some generator in sl(3) and
therefore it applies to the representation as a whole. If the highest-weight
representation is to contain finite-dimensional components, the above constraint
will have to be satisfied.

A second choice of sl(2) subalgebra is generated by Ha, Eo, Fy. Likewise we obtain
the integrality constraint \(Hs) € Z. A third choice would be the subalgebra
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generated by H; + Hy, Eqo, Far, but this merely implies A\(H; + Hs) € Z which does
not correspond to an independent constraint.

Altogether we find one constraint for each basis vector of h*
AH;j)eZ  forj=1,...,randall A€ 4, (6.25)
Alternatively, the constraints can be formulated via the scalar product on h*

2 .
KNG cq =1, (6.26)
(aj, a;)

The above implies that the weights of finite-dimensional representations reside on
a lattice fixed by the algebra g, the so-called weight lattice £2.°

2= ZwkZ, (6.27)
k=1
where the lattice vectors wy, k = 1,...,r are determined by being dual to the

simple roots a;; w.r.t. the scalar product on h*

2(wy;, o))

(aj, ;)

= wi(Hj) = djp- (6.28)

For sl(3) the weight lattice vectors reads

(6.29)

(6.30)

Notice that the weight lattice is not necessarily spanned by the simple roots. As a
consequence, the weights of a given irrep only populate a sub-lattice of the weight
lattice which is spanned by the simple roots. In our example s[(3) we have three
sub-lattices while the earlier example s[(2) led to two sub-lattices (integer and
half-integer spin). In fact, this discrepancy of lattices translates to the centre of
the simply connected compact Lie group corresponding to the Lie algebra. We will

5Although the algebra g and its Cartan subalgebra h are complex, the weight lattice resides in
a real slice of h*. This is related to the fact that finite-dimensional representations are unitary in
the compact real form of g.
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not prove this fact, but merely note that the centre of SU(2) is Zy while the centre
of SU(3) is Z3.° The centre acts on all states of the representation with a common
eigenvalue and this eigenvalue distinguishes the sub-lattices. Note that the roots
reside on the sub-lattice based at zero.

Discrete Symmetries. Next, we will demonstrate that all weights are
symmetrically distributed about the origin in some way. We can deduce this by
considering s[(2) subalgebras.

More concretely, we consider subsets of weights related by the generators Hy, Eq,
F, spanning an sl(2) subalgebra. As such, each subset must reside on the
one-dimensional lattice A + a1Z, where X is one of the weights of the subset.

(6.31)

However, the distribution of weights is further constrained by the fact that these
weights form finite-dimensional representations of s[(2) whose structure we
understand well. In particular, we know that the weights of finite-dimensional
irreps s((2) are distributed symmetrically about the origin: The origin w.r.t. the
5[(2) subalgebra is given by some weight Ay with A\g(H;) = 0. A symmetric
distribution is expressed in terms of the multiplicities as

dim V)\+na1/2 = dim V)\fnal/Q' (632)

Equivalent statements hold for the other s[(2) subalgebra based on the second set
of Chevalley—Serre generators.

It makes sense to formulate the symmetry in terms of a reflection in h*

011 Ao+ xay = Ny — Ty, where A\o(H;) = 0. (6.33)
The second sl(2) subalgebra yields a second reflection

Ty 1 Ao + T = Ny — T, where \o(Hz) = 0. (6.34)

These reflections generate a group W called the Weyl group. For sl(3) it is the
symmetric group W = S3 which is also the reflectional symmetry group of the

6The centre of SU(3) is given by the identity matrix times the third roots of unity 1, e>7%/3,

6727”/3.
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equilateral triangle. With reference to our discussions of crystal lattices one can
also say that the Weyl group is the point group of the lattice.

(6.35)

i
i
l
i

In fact, we can deduce a further characteristic property of the weight diagram from
the structure of finite-dimensional s[(2) representations: The latter are direct sums
of irreps whose weights are distributed uniformly and symmetrically. This implies
that the multiplicities of weights must not decrease towards the centre

dim Vi ima, 2 > dim Ve, /2 for |m| < |n|, m —n € 2Z. (6.36)

This equally applies to all s[(2) subalgebras, and thus the density of weights should
not decrease towards the centre of h*, as can be observed in the sample weight
diagram.

The highest weight 11, now has up to five images under the Weyl group. However,
these must be all smaller than p, itself. This implies that the highest weight must
be in the highest of the 6 Weyl chambers for sl(3) which are fundamental domains
of h* under the action of the Weyl group.

[ | e o
e Q. ° SO 0 0T
AN : | IR LT '
LI S e el e
L \'\ [ /" L e
§ O 1 _ : o2 O :
. @z e (6.37)
f 0 i ',' T ewn o 5
N P ' S
e pog e BeN : o
R [ e R
/./ : ° ‘ ® 0'2\.-\._,\-:
- N . | L

Together with the fact that p, € {2 we can deduce that
Ly = Mqwy + Nows =: [ng, No with ny,ny € Zg . (6.38)

A finite-dimensional irrep of sl(3) is thus uniquely specified by a pair of
non-negative integers [n;,ns]. The labels of the trivial, adjoint and fundamental
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representations read

£0 [07 ]7 Pad [Ll]a
P3 - [17 ]7 P3* s 4]y
pe - [2,0], pe- - [0,2]. (6.39)

The sample representation in the above figures has labels [1,2].

For a general rank-r algebra, a finite-dimensional irrep is specified by r
non-negative integers [ni, ..., n,|, the so-called Dynkin labels of the representation,
which are related to the highest weight p as follows

2<N7 aj>

o) €Zg. (6.40)
79

T
W= anwj with n; =
j=1

Sub-Representations. We know so far that a finite-dimensional irrep is
described by a number of weights which are arranged symmetrically w.r.t. the
Weyl group around the origin of h*. We also know that there is a unique highest
weight p and that the multiplicities can only increase towards the origin of h*. In
some cases, this may suffice to determine the structure of the representation,
otherwise we must be more specific about the multiplicities.

Here we can again make use of the sl(2) subalgebras and their representation
theory. Let us consider the k-th subalgebra generated by Ej, Fy, Hy. The
highest-weight state carries the charge pu(Hy) = ng. We thus know that acting
ng + 1 times with p(Fy) on the highest-weight state |u) yields a state

1) = p(Fi)™ | ) (6.41)

which is not within the finite-dimensional sl(2) irrep. According to our above
discussions, it must satisfy p(Eg)|u;) = 0. Furthermore, it trivially satisfies
p(E;)|p,) = 0 for all other j # k. Therefore, |u},) is a secondary highest-weight
state, Moreover, there is one such secondary highest weight p) for each of the r
5[(2) subalgebras.

The remaining complication is that the sub-representations can have further
highest-weight states and sub-representations. In other words, we have to find all
the would-be highest-weight states among the |u;¢). Noting that the above map
from p +— g/ can be understood as a Weyl reflection, the full Weyl group W will be
of help. The complete set of would-be highest weights y’ is given by the Weyl
reflections acting on the original highest weight

W e{o(u+9)—0;0 € W} (6.42)
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(6.43)

More accurately, these Weyl reflections are not centred at the origin, but rather at
the point —) where § € h* is given by half the sum of all positive roots

b ::% > o (6.44)

a€A L
After quotienting out all sub-representations, the remaining irrep turns out to be

finite-dimensional.”

For the example sl(3), there are 5 additional highest-weight states in a
finite-dimensional highest-weight representation

—Ng — 2, —nyp — 2], (645)

where [ky, ka| := kw1 + kaws. Observing which of the highest weights are within
the representations of some other highest weights, cf. the figure above, we can
establish the full highest-weight spaces W in terms of the irreducible components V

W =v",

W, =V, oV,

W, =V, Vie VeV,
W=VoVieV,oVioV;a V" (6.46)

We are interested in the irreducible vector spaces, and therefore we have to

"One can also rephrase the integrality conditions for finite-dimensional irreps as follows: All
images of the highest weight p under the shifted Weyl reflections must be descendants of p (so
that their sub-representations can be quotiented out).
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“invert” these relations:
V//l — W///
" 1! "
V=W, e W7,
Vi =W, o W) o Wy & W,
V=WoW, oW,d W &wW;,ocw"” (6.47)
Here the subtraction of vector spaces can be understood as a subtraction of
multiplicities of corresponding weights. We obtain the following structure for the

weights of a finite-dimensional sl(3) representation with highest weight [n;, ns] and
their multiplicities:

(6.48)

1M1

e The weights are bounded by a hexagonal shape with triangular symmetry
centred at the origin.

The length of the sides alternates between n; and ns.

The multiplicity along the perimeter of the hexagon is 1.

The multiplicity increases linearly by one unit per step towards the centre.
The multiplicity reaches a plateau once the level set has degenerated from a
hexagonal shape to a triangular shape. The maximum multiplicity is
min(ny,n2) + 1 on a triangle of side length |n; — ns|.

Furthermore, we can compute the dimension of the representation with highest
weight p1 = [n1,ne): A direct computation based on the above structure yields the
following results (we assume n; < ny)

ni—1

dim p, = Y 3(ny +ny — 25)(j + 1)
j=0
+ 3(ny +1)(n2 —ny +1)(np — ny + 2)
= 3(n1 4+ 1)(ny + 1) (1 + ny + 2). (6.49)

Here the first term accounts for the hexagonal perimeter while the second term
accounts for the central triangular plateau. It is straightforward to confirm the
dimensions of the representations encountered above

dim pyg,g = 1, dim ppg 1) = 8,
dim pp ) = 3, dim pp,1; = 3,
dim pppg = 6, dim pyg 9 = 6,
dim p[172] = 15. (6.50)



As a side remark, one can also find similar expressions for the quadratic and cubic
Casimir invariants evaluated on the finite-dimensional irreps®

Cy ~ ni + ning + ns + 3nq + 3na,
03 ~ (n1 — ng)(nl + 2712 + 3)(’/12 + 2TL1 + 3) (651)

Character Polynomials. We can phrase our above results on the structure of
the finite-dimensional irreps of sl(3) in terms of character polynomials. Since we
have two charges to describe states and generators, we introduce a pair of variables
q := (q1,q2) and compute the character

Py(q) = x(a1"3?) = tr p(q;" 63). (6.52)

Within this polynomial a monomial mg* describes a state with weight A and
multiplicity m. Here we have introduced the notation

[k1,k2]

q = q’flq§2 where [k1, ko) = kqwy + kaws. (6.53)

As described above, the infinite-dimensional highest-weight representation space is
spanned by states

p(F1)" p(F2)*2 p(F12)"2| 1) (6.54)

with one independent state for each combination of non-negative integers
k1, ko, k12. Using the properties of formal geometric series one can figure out that
the character function for the highest-weight representation reads

P;;w((J) _ Z qﬂ—klal—k2a2—k12(a1+02)
k1,k2,k12=0
T (6.55)
= . .05
(1 =g )1 =g )1 —q )

After reducing to the finite-dimensional components we obtain

P ( ) - q;u — q/”‘ll — q:u‘/2 _I_ q/”‘lll _l_ q/”‘IQ/ — q.u‘”/ (6 56)
N A RO (SO |

This formula agrees perfectly with the structure of the representation discussed
above, and it serves as a formal expression for the weight diagram of
finite-dimensional irreps of su(3).

As usual, we can deduce the dimension of the representation as the characters of
the unit element at q; = go = 1. The character formula is singular at this point,
but the rational function can be regularised to yield

dim p, = P,(1) = 1(n1 + 1)(ne + 1)(ny + na + 2). (6.57)

8These combinations are invariant under the Weyl reflections based at —¢, whereas the above
expression for the dimension flips the sign. In fact, this property singles them out.
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The character and dimension formulas generalise to arbitrary simple Lie algebras.
The character polynomial is given by the Weyl character formula®

: o(p+0)—6
ZUEW sign(o)q
1 _ —
I, a-a™

Note that the Weyl group is a group of reflections and thus there is an associated
Zs-grading to define sign(o). The dimension of this representation follows by
setting ¢; = 1. The character polynomial formula is singular, and by properly
taking the limit one obtains the Weyl dimension formula

dimp, = [] % (6.59)

(q) = (6.58)

OCEA+

6.5 Hadronic Physics

The group SU(3) plays an important role in hadronic physics and (in a different
way) for the underlying quarks and the strong interactions among them. In fact,
the example of the SU(3) flavour group in hadronic physics paved the way for Lie
groups in physics.

Isospin. The lightest (bosonic and fermionic) hadronic particles are the pion
triplet (7=, 7% ") of pseudo-scalar mesons and the nucleon doublet N := (n°, p™)
consisting of the proton p* and the neutron n°. Although these particles all carry
different electrical charges, they are also similar in their masses: The meson masses
are around 135-140 MeV while the nucleon masses are around 938-940 MeV. This
suggests that the mesons transform in a spin I = 1 irrep of some approximate
SU(2) symmetry, while the nucleons transform in a spin [ = % irrep. Note that the
former is a real representation, and indeed the anti-particles of the pion triplet are
given by the pion triplet itself (with the charged pions interchanged). Conversely,
the latter irrep is complex (or quaternionic) which means that the anti-particles of
the nucleons are distinct particles: anti-proton and anti-neutron.

This SU(2) group is called the isospin symmetry. It is in fact part of the gauge
group of the weak interactions which is spontaneously broken. For the purposes of
the strong interaction the breaking effects are small and the masses of the particles
within the multiplets are similar. The most evident difference between the particles
in each multiplet is the electrical charge (). After symmetry breaking, it can be
expressed as a combination of the isospin component I3 and the baryon number B

Q=1I+3B. (6.60)

The nucleons are baryons and thus carry baryon number B = 1 while the mesons
are uncharged, B = 0. Conservation of the baryon number charge is expressed by

9Note that the denominator equals the numerator at x4 = 0 in order to reproduce the
appropriate character Py(g) = 1 of the trivial representation.
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the stability of the proton. As the lightest charged particle, it cannot decay into
anything else.'

Hadronic SU(3). Given more powerful particle physics experiments, new
hadronic particles and resonances were discovered. They come along with an
additional charge named strangeness. This charge is not exactly conserved, but
strangeness-violating decays have a substantially longer decay time than those
which preserve the charge. Moreover, processes which violate strangeness by more
than one unit are even further suppressed. This fact was attributed to
conservation of strangeness by the strong interactions whereas weak interactions
can violate strangeness by one unit. The strong interactions take place on a time
scale which is several orders of magnitude faster than the typical weak interaction
time scale. The introduction of particles carrying strangeness necessitates to adapt
the formula for the electrical charge

Q=L+, Y=B+S. (6.61)

Here Y is called the hypercharge.

Now the various hadronic particles and resonances can be classified by their spin,
parity, baryon number, isospin component /3 and hypercharge Y. For each given
set of quantum numbers, several hadrons with different masses and decay widths
have been identified. Here we consider only the lightest few of these particles. Let
us fix the spin, parity and baryon number and plot the lightest particles in a
diagram with horizontal axis I3 and vertical axis Y. For the pseudo-scalar mesons
(spin 0, negative parity, baryon number 0) we obtain the following diagram:

K° Kt
—————— °
SN0 7 | 137 MeV
S < K | 496 MeV
T @y e g Mev (6.62)
958 MeV
\’/ 777777 \’/
K~ K°

Note that the provided masses are approximate. One observes that the new
particles, in this case the kaons K, also form SU(2) multiplets because their masses
agree up to a few percent. The eta particle n and its heaver cousin 7’ form singlets
of SU(2). Therefore isospin continues to be an approximate symmetry.!! The new
particles, however, have a substantially higher mass, and thus they are not related
to the pions by some approximate symmetry.

10Tn the presence of anti-protons with B = —1, it could decay into lighter uncharged particles
such as the pions. However, there are hardly any anti-protons around at our present location
within the universe.

HHowever, it not longer coincides with the SU(2) group of the weak interactions which also
acts on strangeness.
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The next set of particles are the vector mesons (spin 1, positive parity, baryon
number 0):

K*O K*Jr
SN p | T75MeV
CE K* | 892MeV
- ®-----{(@®) - - - - - +
e @ e w | 782MeV (6.63)
DN ¢ [ 1019 MeV
.- .
K*f K*O

Again isospin is a good approximate symmetry, and also 8 of the 9 particle masses
are reasonably nearby so that they might be related by a broken symmetry. In any
case, one observes precisely the same hexagonal pattern of isospin /3 and
hypercharge Y as for the pseudo-scalar mesons.

Finally, there are also generalisations of the nucleons with half-integer spin. There
are 8 light baryons with spin %, positive parity and baryon number 1:

n0 p+
/.\ 777777 Vi .\
S N | 939MeV
STy A | 1116 MeV
E"f””jﬁ% ””” Rl 5 1193 MeV (6.64)
AN = 1318 MeV

Furthermore, there are 10 light baryons with spin 2, positive parity and baryon

2 )
number 1:

A~ A° AT At
LR S b
RS i B A [ 1232 MeV
oSS ¥ | 1385 MeV
Z | 1533 MeV (6.65)
Ch .= 2| 1672 MeV
\b/
g1

Again their structure is reminiscent of the mesons.

We observe an ordering pattern which we can clearly identify as the Lie group
SU(3).' The above particles appear to form multiplets which follow the structure
of SU(3) irreps. In particular we find octets (8 = [1,1]) sometimes joined by
singlets (1 = [0,0]) as well as a decuplet (10 = [3,0]). This hadronic SU(3) is
broken to the SU(2) hadronic isospin at an energy scale of several 100 MeV. In
other words, for light particles this symmetry is hardly apparent, only its subgroup

12In reality this ordering pattern was not so easy to identify: The particles were identified one
by one, masses were not accurately determined at first, the decay widths are substantial, several
other particles with comparable energies exist and some quantum numbers are not easy to read
out from collider experiment.
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SU(2) is more manifest. Conversely, for heavy particles SU(3) becomes more of an
approximate symmetry. However, at all energy levels the charge distribution is
reminiscent of SU(3) (provided that the particles are grouped correctly).

Masses. The masses in the multiplets also follow a certain pattern which derives
from the breaking of SU(3) symmetry to SU(2). We align the basis of s[(3) such
that the residual sl(2) algebra is given by Eq, Fq, Hy, i.e. it acts on the first two
elements of the defining vectors space C®. The symmetry breaking can be achieved
by an element in the adjoint representation, namely diag(1, 1, —2) which is the
defining representation of H; 4+ 2H,. Incidentally this combination is proportional
to the hypercharge

Y = %Hl + %Hg. (6.66)
All the symmetry breaking effects should be explained by using this algebra
element.

Let us consider the baryon decuplet first, where the symmetry is most apparent.
One finds that the mass decreases with the strangeness S with around 150 MeV for
each unit of strangeness. This dependency can be expressed in a simple ansatz for
the mass matrix M. In a situation where the symmetry breaking effect is small,
the symmetry breaking element Y should appear only in first order. The mass
matrix for particles transforming in a representation p can be expressed as

M=mo+mip(Y)+.... (6.67)

The two coefficients mg and m; determine the approximate mass structure in the
multiplet. For particles transforming in the decuplet this is indeed the only linear
term because the tensor product of a decuplet with an octet (V') yields only a
single decuplet

108 =35027® 10D 8. (6.68)

For the baryon octet one can admit one further linear term in the mass matrix
because the decomposition of the tensor product of the octet (particles) with
another octet (V') yields two octets:

8R8=27T®10H 10" H8H8 P 1. (6.69)

The elements of the mass matrix can be expressed in terms of the structure
constants fu. and the cubic Casimir coefficients d .

Mab = moéab + mlfachC + mlldabcyc + ... (670)

These determine the 4 isospin multiplets in the octet in terms of 3 undetermined
constants. Furthermore, the relationship is linear, and one can extract one
constraint, the so-called Gell-Mann-Okubo (GMO) relation

2Ms + 2My = 3M, + M;. (6.71)

Here M), denotes the mass of the isospin multiplet consisting of k states. Adding
up both sides for the baryon octet yields the masses 4514 MeV and 4541 MeV
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which are indeed very close and which confirms the results of the approximate
symmetry.

The situation for the vector mesons is more complicated: First of all this multiplet
contains its own anti-particles. Therefore the mass matrix must be symmetric
which excludes the term involving the structure constants f,;,.. Secondly, there is a
ninth vector meson which plays an important role. It is an SU(3) singlet, and
normally one would not expect any influence from it. Here, however the singlet
appears in the tensor product of the octet (particles) with another octet (Y), see
above. This allows for mixing effects between the two multiplets. The resulting
mass matrix reads (the index a = 0 denotes the singlet)

Mab = m05ab —|— m65a05b0 —|— m’ldabcyc —|— m’l'(éaon —|— éboYa) —|— e (672)

Here we find 4 undetermined constants for 4 independent masses and therefore the
symmetry allows almost arbitrary mass configurations. However, one might still
consider the parameter values and find that they all have a natural magnitude.

Finally, there are the pseudo-scalar mesons. Here the mixing of the octet and the
ninth state 7’ is not important, and one might expect the GMO relation to hold.
However, this yields a bad approximation. Instead one finds better GMO relation
for the squares of the masses

2Mj + 2M;, = 3M7 + M3, (6.73)

The numbers on both sides of the equation read (959 MeV)? and (992 MeV)? which
are not too far apart. In fact, there are several good reasons why the squared
masses appear in the relation:

e The Lagrangian for scalar fields contains the squared masses rather than the
masses, and thus it is natural to expand the matrix of squared masses.

e The pseudo-scalar multiplet is the lightest of all multiplets. It is well below the
symmetry breaking scale and non-linear effects become important. Above the
symmetry breaking scale, linearisation is typically a good approximation.

e These particles can be viewed as the Goldstone bosons for the breaking of our
(approximate) symmetry. As such, they require a special treatment.

The latter point also explains to some extent why there is little mixing with the
ninth singlet particle 7. Namely the U(1) symmetry for which it serves as the
Goldstone boson is broken more violently and by different means than the SU(3).
This implies the rather large mass observed for the 1’ and suppressed mixing with

n.

Strong SU(3). Just three types of hadron multiplets were observed in nature
(1, 8 and 10) while there are many more finite-dimensional irreps in SU(3). One
may wonder why this is the case. An obvious guess is that the hadrons are
composite particles made as bound states of some more elementary particles, the
so-called quarks. Assuming that there are three reasonably light types of quarks
which transform in the defining representation (3) of some SU(3) and its conjugate
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(3*) one can accommodate for all the meson and baryon multiplets by the two
tensor products

33" =8a1,
39323=1008®8a1. (6.74)

The three light quark flavours are called up, down and strange

« /
o-2----9
AN SR
/ \\ / \
Jdo . /S ou N
— / / ot
q=1u,d,s. @----- S REREEE b (6.75)
Lue S o e,
\ / N /
\\ // 9 \\ //
o----—- e}

The particle content of the mesons and baryons is given in the following weight
diagrams:

ddd udd uud uUU
Q. /.777777.\0
ds us ‘ RN SN ‘
/.\ 777777 /.\ - / \ // v
/ A / A // \\ /uds \\
\ AN B /
// N // \ dds.\ ****** .\ ****** *UUS
/ N \ /
_ qq o A s ’
du®----- @--- oud NN S (6.76)
\ AN / Ny \ /
\ / \ / Ny N/
N ) dss®-————- oUSS
Ny, \ / .
Ny N/ .
- . L
s sd
(@]
§88

Moreover the arising hadron spins are explained by declaring the quark to be
spin-% particles. Then the tensor products of the SU(2) representations naturally
yield the observed meson and baryon spins

Lol-1a0
Lol l 3,141
585805 =5D5Ds3. (6.77)
In this model, the masses of the up and down quarks are approximately the same
while the strange quark is substantially heavier. This means that the quark mass
matrix is a linear combination of the identity matrix and of pgef(Y). Therefore one
can view the symmetry breaking to be induced by the quark mass matrix.

However, there is one surprise: On the one hand, the decuplet wave function is
both symmetric in the quark flavours and in the spin degrees of freedom. In fact,
also the baryon octet wave function is totally symmetric under interchange of the
quarks

(3,5)% =(10,3) & (8,3). (6.78)
On the other hand, the quarks are spin—% particles and the spin-statistics theorem
demands that their wave function is totally anti-symmetric.
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The resolution to this mismatch is to introduce additional degrees of freedom for
the quarks. In addition to flavour and spin, a quark also carries a colour degree of
freedom, which can take one of three values (red, green, blue). The anti-quarks
carry the conjugate colours. The colour degrees of freedom transform under a new
SU(3) symmetry, which is the gauge symmetry of the strong interaction alias
quantum chromodynamics. This symmetry confines, and thus only singlets can be
observed at sufficiently low energies. For the baryons, the colour degrees of
freedom transform in the triple tensor product of the defining representation

33®3=10080801, 30 =1. (6.79)

This contains one singlet which is in fact totally anti-symmetric. Taking these
degrees of freedom into account, the baryon wave function is totally
anti-symmetric as it should. Also the tensor product for mesons contains a singlet

303 =81, (6.80)

so mesons can exist, but there are no further constraints on the particle content.
Finally, the additional degrees of freedom account for some factors of three
required in places to match theory with experiment, and all is well.
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7 Representations of SU(N)

Finally we will consider the representation theory of the unitary group SU(NNV) of
general rank N — 1 and its complexified Lie algebra sl(/N). We will introduce a
description of irreps in terms of certain diagrams.

7.1 Tensor Powers and Permutations

The complete finite representation theory for the algebras s[(N) can be obtained
by repeated tensor products of the defining representation. We therefore consider
the m-th tensor power

V™= (Vae)®", p" = pacty; (7.1)
j=1

where pger; denotes the defining representation pqer acting on the j-th factor in
(Vaer)®™ (and by the identity on the remaining factors).

The definition of the tensor power representation is manifestly symmetric under
any permutation of the tensor factors

m

p(m)p" = D pactxgp(m) = p" plr). (7.2)

Here m € S,, is a permutation of a set of m elements and p(7) € Aut(V™) is its
representation on the tensor power space.! This means that p(r) is a module
endomorphism? of V™ for all permutations m € S,,. As there is more than one
permutation, Schur’s lemma (which does apply to finite-dimensional
representations of Lie algebras) tells us that the tensor power representation is
reducible.

By taking linear combinations of the permutations, we can construct projectors to
certain symmetric components of the tensor power space. For instance, the
available projectors for two tensor factors are the symmetriser and the
anti-symmetriser

H(p(1) £ p(0)). (73)

These are module endomorphism of p™ as well, but they map the symmetric and
anti-symmetric subspaces V2 and V"2 of V™ to themselves. This implies that

! As before, one might abbreviate the representation of 7 on V™ by 7 itself because it does not
lead to ambiguities.
2A module homomorphism from the vector space to itself.
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p? = p¥"? @ p? decomposes into a symmetric and an anti-symmetric
sub-representation.

A characteristic feature of the defining representation of sl(/V) is that the
sub-representations obtained by complete symmetrisations of the tensor power are
in fact all irreducible. In other words, the representation theory of the symmetric
group S,,, determines the irreps in the m-th tensor power p™ of pger in s[(N).

7.2 Orthogonal Symmetrisers

As the projectors are linear combinations of representations of group elements, it
makes sense phrase them in terms of the group algebra C[S,,]. For instance, the
above projectors on p? can be written more generally as

%(61 + 60) € (C[SQ] (74)

Moreover, the two elements form a basis of C[Ss].

We can easily construct a set of projectors for m tensor factors given some irrep p,,

of S,,
dim p,,

P = - > {alpu(m)[b) ex. (7.5)

ﬂ'ESm

Here |b) and (a| are some states in the representation space of p, and its dual and
they are used to extract a matrix element of p,,.

Using the orthogonality relations of S,, we can show
P Pl

:(djmpﬂ)(dimpy) Z (a|pu(m1)]b)(c|p(m2)|d) €xyry

ml2

T, T2ESm

_ (dim p,)(dim p, ) S Salpu(m) ) clow (mr ) (1) d) ex

12
me T1,TESM
dim p,,
= Bl S (alpy () d) s
7T€Sm
= 6,05 P (7.6)

This orthogonality relation implies that the projectors P,,* are independent.
Moreover there are _ (dim pu)? = m! such projectors which therefore form a basis
of C[S,,]. Consequently, for each irrep p, of S,,, there are dim p, diagonal
projectors p(P"*) acting on the space V™. Provided that these do not map the
whole of V™ to zero, one obtains an irreducible representation of s[(V)

Pra = P(Pog")p™ (7.7)
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7.3 Young Tableaux

There is a useful alternative to enumerate the representations and a basis for their
representation spaces in terms of diagrams.

Young Diagrams and Standard Fillings. Let us first introduce the diagrams:
Consider a configuration of m boxes arranged into rows and columns. All the rows
should be filled starting from a straight line on the left. Likewise, all the columns
should be filled from a straight line on the top. In other words, the lower-left
boundary of the collection of boxes takes the form of a staircase.® Such a diagram
is called a Young diagram. For example, the following are Young diagrams:*

| LTI TT] I (7.8)

We furthermore introduce a filling of the Young diagram by some numbers called a
Young tableau. Many of the relevant Young tableaux respect a certain ordering
(increasing or decreasing) among the rows as well as among the columns. The
ordering is typically strict among the columns whereas the rows may have identical
entries. A standard filling is a filling with the following three properties:

e All numbers 1,...,m appear once.
e The numbers in each row are increasing from left to right.
e The numbers in each column are increasing from top to bottom.

For example, the following are standard fillings of a given Young diagram:

23 114[6 114]5 (7.9)
516 2[5[7 206]7
B1 B1

[~]i]—

There exists a simple algorithm for computing the number || of standard fillings
for a given Young diagram p: Fill all boxes with the hook length of the box. The
hook length of a box is defined as the number of boxes in the hook based at the
former box

o4
312
2(1

1] (7.10)

DO OH|C0
R P P

In other words, the hook length equals 1 plus the number of boxes directly below
and directly to the right of a given box. The number of standard fillings then

equals
m!

H hook-length(7, i) '

jEboxes(p)

Il = (7.11)

3... defying the laws of gravity.
4The empty diagram might be denoted by a dot.
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For example, for a particular Young diagram of 5 boxes we obtain the following 5
standard fillings:

5! 112) [1]2] [1]3] [1[{3] [L]|4
p= el = .. 3[4] [3]5] [2[4] [2]5] 2[5 (7.12)
C E1 Il 5 R Y
Young Symmetriser. For each standard filling a = 1,...,|u| of a Young
diagram g we can construct a Young symmetriser as the product
Y, '—MS A,. € C[S,) (7.13)
wa ml w.a4tp.a m .

with the total symmetriser of rows S, , and total anti-symmetriser of columns A, ,

S,u,a = H Z Cr,

jerows(u,a) mES(J)

Ao = H Z sign(m (7.14)

j€columns(u,a) wES(5)

Here S(j) C S,, denotes the subgroup of permutations acting on the subset defined
by a row or column j. The Young symmetrisers have the following properties
(without proof):

e BEvery Y, , is a projector,
YiaYiae = Yia (7.15)

Hsa

e The product of symmetrisers for different Young diagrams p # p’ is zero,
YaYyao =0 if . (7.16)

Note that the product of symmetrisers for different fillings a, a’ of the same
Young diagram g is not necessarily zero, although for many examples of small
Young tableaux this is the case.’

e The image of each symmetriser is the space of an irreducible sub-representation
of the regular representation p,e, acting on the group algebra C[S,,]. Two of
these sub-representations are equivalent if and only if the Young diagrams
match.

e The group algebra C[S,,] is the direct sum of all images of the symmetrisers

— EB Y,,.aC[Sim). (7.17)

The correspondence between the diagrams and the representation theory of S,, is
therefore as follows:

5The minimal example of a non-zero product is between the fillings 1,2,3/4,5 and 1,3,5/2,4
for m = 5 boxes.
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e The Young diagrams are in one-to-one correspondence to the irreps of S,,.%

e The number of standard fillings equals the dimension of the corresponding
representation. One might use the standard fillings to label a basis for the
representation space.

For example, for m = 3 there are four standard Young tableaux:

bz e (7.18)
2] <]

The former two correspond to the trivial and determinant representation. The
latter two correspond to the two-dimensional representation (which appears twice
in the regular representation). Correspondingly, there are four irreducible
representations in the tensor product of three defining representations of sl(N) (for
N > 3).

7.4 Young Tableaux for s[(INV)

Above, we have established a correspondence between the irreps of S,, and those of
s[(N). This is used to label the irreps of sI(/N) by Young diagrams. Based on
these, there are simple algorithms to compute the irrep dimensions and to perform
other tasks.

Correspondence. Let us first of all establish the correspondence for the most
basic representations: By construction, a single box corresponds to the defining
representation

paet = []. (7.19)

A vertical stack of N — 1 boxes corresponds to total anti-symmetrisation of N — 1
defining representations. This yields the N-dimension dual defining representation,

e.g. for N =4
p:;ef = E (720)

Finally, the adjoint representation is given by a hook of N — 1 in the first column
and 1 box in the second |

Pad = (7.21)

Next we have to limit the set of applicable Young diagrams. It is obvious that a
Young diagram with a column of k£ boxes yields a symmetriser which involves an
anti-symmetrisation of £ tensor factors. As there are only N linearly independent

6Curiously, the equivalence classes of S,,, can be enumerated by the same diagrams. An
equivalence class is specified by its cycle structure. Ordering the cycles by their lengths, we
associate to it a row of boxes of the same length and stacks these rows into Young diagram. At
least this shows that the number of Young diagrams agrees with the number of irreps of S,,.
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states in the defining representation space CV one cannot anti-symmetrise more
than N tensor factors. The height of the Young diagram should therefore be
bounded by N. Moreover, anti-symmetrisation of N boxes projects the
corresponding tensor factors to a one-dimensional space on which only the trivial
representation can act. A Young diagram with some columns of maximum height
corresponds to the same irrep as the Young diagram where these columns are
eliminated, e.g. for maximum height N = 4:

[ ] (7.22)

Finally, the dual representation’ corresponds to a dual Young diagram which is
obtained by cutting out the original Young diagram from a rectangular block of
maximum height N, e.g. for N = 5:

¥ [ |
= (7.23)

Note that some irreps, e.g. the adjoint, are self-dual. In the real algebra su(N)
they are thus real or quaternionic while all other irreps are complex.

Dimension. There is a simple algorithm for the dimension of the sl(N) irreps
given by the Young diagram. Here we fill the number N in the upper left corner of
the diagram. The rows are filled with numbers increasing by 1 per box, and the
columns are filled with numbers decreasing by 1 per box, for example for N = 4:

41516]7]8] (7.24)
314(5]6
2[3[4]5
112

The product of these numbers divided by the product of all hook lengths equals
the dimension of the sl(V) irrep:

H (N + column(j) — YOW(j))

j€boxes(u)

dim p = (7.25)
H hook-length(7, )
jEboxes()
For example, for N = 4 one obtains
4[5[6]7]8]
31415]6
2 3 415
dim = e 36. (7.26)

@ [Oo]e]e
IENEE
=

-

"The dual representation is the complex conjugate representation for su(N).
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Dynkin Labels. Finally, we want to determine the highest weight of the irrep
corresponding to a Young diagram. We thus fill the Young diagram with numbers
k=1,..., N corresponding to the states |k) € CV. Note that the numbers in each
column should all be distinct such that the state is not automatically destroyed by
anti-symmetrisation. In order to maximise the weight® there should be as many 1’s
as possible. The remaining boxes should be filled with as many 2’s as possible, and
so on. Consequently, the k-th row should be filled with all equal numbers k:

1[1[1]

i
5 (7.27)

N [OS] Nl
[N OV] N T

The highest-weight state can be described schematically as a Young symmetriser
acting on

N N
) = @)™, =D I, (7.28)
k=1 k=1

where [}, denotes the number of boxes on the k-th row. The weight of a state |k)
expressed in the simple roots o, j =1,...,7, 7 = N — 1 is given by

r j r
)\k:—ZNCKj—i-Zij. (729)
j=1 j=k

and the scalar product with the simple roots by
<)\k7 Oéj> = 514;7]' - 614:—1,]" (730)

Therefore the Dynkin labels [ny, ..., n,], of the highest-weight representation read

N
nj = (o) = h(ej = 0kry) =1 — L. (7.31)

k=1

We thus have a correspondence between the Dynkin labels and Young diagrams

1] -

1..n2

1, ...y m] (7.32)

or alternatively

1]
: 12 = [ll—lg,...7lN_1—lN]. (733)

[Ny Y JUY JUT

Ly

For example, one can now show that the two dimension formulas yield coincident
number, but the general proof requires some non-trivial combinatorics.

8 As before we assume the canonical ordering where the positive and negative generators of
s[(N) correspond to upper and lower triangular matrices.
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Tensor Products. The formalism of Young diagrams for sl(/N) arose from the
consideration of the m-fold tensor product of the defining representation. The
above results phrased in terms of Young diagrams provide the decomposition

= P () (7.34)

w with m boxes

(pdef

Note that the multiplicity of the irrep labelled by p is given by the number || of
standard fillings of the Young tableau u. For example

OoOe=L11ls[ s I@E. (7.35)

Note that this rule applies to all sI(NN), even for sl(2) where it reads
1®3®31=3®3:® 3. The final term must be left out because the total
anti-symmetrisation of three two-dimensional spaces does not exist.

The formalism of Young diagrams is also very useful for decomposing tensor
products of two arbitrary irreps. In particular, there is a simple algorithm for

computing the tensor product of an irrep p with the defining representation:

|
[® (7.36)

The resulting diagrams should be a sum of diagrams with one additional box. All

of these Young diagrams are obtained by adding a single box to the diagram of p.

Since the resulting terms should be Young diagrams as well, one has to make sure
to add the boxes only in certain allowed places, i.e. where the Young diagrams has
a concave corner:

Lo - | @ | (7.37)

The tensor product decomposition is simply the sum of all permissible additions of
boxes to the original diagram. There are analogous but more involved rules for
computing the tensor product decomposition for two generic Young diagrams.

Also for other tasks in group theory the Young tableaux can come in handy.
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8 Classification of Simple Lie Algebras

In this chapter we want to classify all finite-dimensional simple Lie algebras and
derive some of their properties and applications. We will again start with complex
Lie algebras and later consider their various real forms.

8.1 Classification of Complex Algebras

We start with explaining how the classification of simple Lie algebras works and
list some relevant features.

Chevalley—Serre Relations. We have already identified a useful set of
generators of a complex simple Lie algebra g: These are the simple generators
(E;,F;,H;), j=1,...,r along with non-simple positive and negative generators
obtained as Lie brackets among the E; and among the I;, respectively. Their Lie
brackets are reminiscent of r copies of the algebra s[(2) with a suitable set of
interactions between the factors

[H;, H] =0, [Ej, Fi] = 61 Hy,

The set of non-simple generators is constrained by the Serre relations (7 # k)
ad(E;)"4*E, =0,  ad(F;)'"4*F), = 0. (8.2)
The Cartan matrix Aj; is related to the roots as follows:

2(ayj, ay,)

Ay = ap(H;) = . 8.3
Jk ak( J) <CY]', ij> ( )
In particular this implies that all diagonal elements equal 2,
Apr = 2. (8.4)
The interactions between the sl(2) factors can be understood as follows: The
above relations for j # k can be written as
ad(H])Ek = AjkEk:a ad(HJ)Fk = —Aijk,
ad(Fj)Ek = 0, ad(E])Fk = 07
ad(E;) " *Ey, = 0, ad(F;) 4+ F, = 0. (8.5)
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They express that Ey is the lowest-weight state under a representation of the sl(2)
spanned by (E;, F;, H;); likewise Fj, is the highest-weight state of an equivalent
representation. From the constraints on the Cartan charges for a finite-dimensional
representation of sl(2) we know that A;; must be a non-positive integer

Ajk S Za (86)

This ensures that ad(E;) "+ Ey, is a highest-weight state within a lowest-weight
representation and thus ad(E;)'~4*E; must be zero; likewise for Fy..

For a finite-dimensional algebra, the scalar product (-, -) on h* must be positive
definite and likewise the Cartan matrix must be positive definite. One immediate
corollary of the definition of A is that

Another corollary is that
AjpAy; = 4dcos® iy < 4, (8.8)

where 1), denotes the angle between o and oy, as measured by the definite scalar
product (-, ). Finally, by construction of A there is an invertible diagonal matrix
D (given by D;; = (a;, o)) such that DA is symmetric.

Putting these constraints together, every pair of off-diagonal elements of the
Cartan matrix can only take one of 4 combinations

{Ajlm Akj} < {{07 0}7 {_17 _1}7 {_17 _2}7 {_1’ _3}}' (8'9)

Dynkin Diagrams. Now that we know the properties of Cartan matrices for
finite-dimensional simple Lie algebras, we can turn the logic around, and construct
the latter algebras from scratch. One can show that the above algebra relations,
where Aj; is a suitable Cartan matrix, describe a finite-dimensional semi-simple
Lie algebra. This reduces the classification of finite-dimensional simple Lie
algebras to the classification of matrices with the properties derived above.

There is a useful representation of Cartan matrices in terms of so-called Dynkin
diagrams:

e For each diagonal element A;; = 2 of the Cartan matrix draw a white dot.* In
total there are r dots where r is the rank of the Lie algebra.

e Two dots j # k are connected by 0 < max(|A,i|, |Ak;|) < 3 lines. In particular,
two dots are not connected if Aj, = Ay; = 0.

e When |Aj;| > |Ay;| draw an arrow head from dot k to dot j on top of the lines.
No arrow is drawn if A;, = Ag; = 0.2

1One may also associate the dots with the simple roots 0.
20ne can also view the arrow from a long to a short root as an inequality sign between the
lengths of the corresponding simple roots ;.
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For example, the Cartan matrix for sl(3) is described by two dots connected by a
line

Ajp = (_21 _21) =0—0. (8.10)

A useful feature of the Dynkin diagrams is that the ordering of simple roots plays
no particular role, and one can identify a Lie algebra by a brief look at a diagram
instead of the detailed table of matrix elements (most of which are typically 0).

Dynkin diagrams can be characterised by two properties: A connected Dynkin
diagram corresponds to a simple Lie algebra; a disconnected diagram then
evidently corresponds to a semi-simple Lie algebra where each connection
component corresponds to a simple factor. Here we shall mostly consider
connected diagrams. Furthermore, a Lie algebra whose Dynkin diagram has only
single lines is called simply laced. Here all roots have the same norm (o, ;). An
example of a simply laced Lie algebra is the above sl(3). Conversely, a Lie algebra
whose Dynkin diagram has multiple lines with arrows is called non-simply laced.
Here the roots have different lengths. An example of a non-simply laced Lie
algebra is s0(5) whose Cartan matrix is described by the Dynkin diagram

Ay = <_22 _21) =20 (8.11)

Here, the long root «; corresponds to the dot on the left and the short root aw
corresponds to the dot on the right.

Classical Lie Algebras. A complete enumeration of Dynkin diagrams for
finite-dimensional Lie algebras yields four infinite families called a,, b,., ¢, 0,:

0 OO0 si(r +1)

b, : O—CO----O—O0O  s0(2r +1)

i OO O—OO  sp(2r)

0, : O—---- s0(2r) (8.12)

These correspond to the three families of classical Lie algebras sl/su, so and sp.?
Here r describes the rank of the Lie algebras; their dimensions are given by

dimsl(n) = (n—1)(n + 1), dima, = r(r + 2),
dimso(n) = in(n —1), dimd, = r(2r — 1),
dimb, =r(2r +1),
dimsp(2n) = n(2n + 1), dime, = r(2r +1). (8.13)

3Note that there is a distinction between the orthogonal algebras for even and odd dimension.
This can be related to the fact that one of the eigenvalues of odd-dimensional rotational matrices
is always 1 while there is no such restriction for the even-dimensional ones.
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Note that a, and 9, are simply laced while b, and ¢, are non-simply laced.

The classical Lie algebras correspond to the matrix algebras

sl(n) = {A € End(C");tr A = 0},
so(n) = {A € End(C"); A+ H'A"H =0},
sp(2n) = {A € End(C*™"); A+ E'ATE = 0}, (8.14)
where H and E are invertible symmetric and anti-symmetric matrices,

respectively. The concrete choice of H and E leads to equivalent algebras, and in a
notation where each block corresponds to an n X n matrix the canonical choice is

H=(1), E= (fl _01> : (8.15)

Small Rank. For small rank 7, not all of the above sequences of diagrams make
sense. Let us give some note-worthy cases at low rank:

alzblzclz O

01 : )
»: 020
% OO0
bo=c: OO (8.16)

Here a shaded dot is meant to represent the one-dimensional abelian Lie algebra C
which is usually not considered simple. These follow from identities among the
classical Lie algebras at low rank which are related to the spinor representations of
the orthogonal algebras

s0(2) = gl(1), 0, =C,

50(3) = sp(2) = sl(2), by =0 =ay,

s0(4) =sp(2) ®sp(2), V=0, Day,

s0(5) = sp(4), by = ¢,

50(6) = sl(4), 03 = as. (8.17)

Note that the algebras 9; = s0(2) and 0, = s0(4) are not simple.*

4With some imagination one can visualise how the Dynkin diagram 0, arises at the lower end
of the sequence ...
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Exceptional Lie Algebras. In addition to the four classical Lie algebras, there
are five exceptional Lie algebras:

¢6 : | dimes =78 =6-13
er: | dime; =133 =7-19
eg ! | dimeg =248 = 8 - 31

e OO0 dimf, =52=4-13
g0 =D dimgy, =14=2-7 (8.18)

Their existence is often attributed to the existence of the division algebra of
octonions. This fourth division algebra is non-associative and hence it does not
make sense to construct arbitrary matrices with octonionic entries. This is possible
only in some restricted cases, expressed by the exceptional algebras.

Note that the sequence of algebras ¢, can be extended to lower rank as particular
combinations of the classical Lie algebras:’®

eo i =0a; DOy : Oc@ s((2) @ gl(1)

e3 = ao Dy : O—O@O 5[(3)@5[(2)

€y 1= 0y : O—O0—0—-0O sl

¢5 = 05 : 50(10) (819)

This finite sequence of exceptional algebras plays a role in various subjects of
theoretical physics such as grand unified theories, supergravity and string theory.

5Again, with some imagination, one can see how the sequence is continued to at least e3.
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Casimir Operators. It is good to know the degrees of the higher Casimir

invariants:® ”
a.=sl(r+1) |2,3,....,r+1
b, =s0(2r+1)|2,4,6,...,2r
¢, = 5p(2r) 2.4,6,....2r
0, = s50(2r) 2,4,6,...,2r—2,r
¢ 2.5,6,8,9,12
er 2,6,8,10,12, 14, 18
s 9.8,12, 14, 18, 20, 24, 30
A 2.6,8,12
go 2.6 (8.20)

8.2 The Exceptional Algebra g-

Here we want to briefly discuss g as one of the exceptional and non-simply laced
algebras.

Roots. The Cartan matrix reads

oo (2

Ay = oo 5 2)5%} (8.21)

This means that the root a is v/3 times as long as the root oy and that they are
at an angle of 150°. The Serre relations read

ad(E2)2E1 = ad(E1)4E2 = 0. (822)
They imply that there are four non-simple positive generators of the form
E12 = ad E1 E2 = — ad(Eg)El,
E12 ( ) E27
E21112 = ad EQ E1112 = ad(Eg) ad(El) E . (823)

By means of the Jacobi identities and Serre relations one can show that all other
combinations are trivial

ad(Eg)Elg = ad(Eg)Ellz = ad(El)E1112 = ad(Ej)Eglllg =0. (824)

SFor instance, the cubic Casimir invariant is related to chiral anomalies in four-dimensional
quantum field theories. The table shows that these can appear only in connection to groups a,.,
r > 1 as well as 03 (which equals a3). The higher Casimir invariants are related to anomalies in
higher dimensions.

"The dimension of the Lie algebra equals twice the sum of the Casimir ranks minus 7. It also
equals 7 times the highest rank plus 7.

8.6



The Lie algebra g, therefore has dimension 14. The distribution of roots is
summarised in a diagram:

g NN (8.25)

The dual basis is given by the vectors
w1 = 20&1 -+ g, Wo = 30&1 -+ 2052, (826)

and one can convince oneself that the weight lattice {2 is spanned by the simple
roots.

The dimensions of the smallest few irreps can be obtained from the Weyl
dimension formula

[1,00=7, [0,1]=ad=14, [2,00=27, [1,1] =64. (8.27)

The decomposition of the smallest tensor products can be deduced as Diophantine
equations

TRT=127T®1), D (14B7),,
TR14=64D27TDT. (8.28)

Octonions. The classical Lie algebras are related to the algebras of matrices
(with certain additional properties). How can the exceptional algebras be
interpreted?

For example, g is known to be the automorphism algebra of the octonions. The
octonions O form a non-associative non-commutative division algebra of real
dimension 8. They are spanned by the real unit ¢y = 1 and 7 imaginary units éy,
k=1,...7,

7
k=1

As for the complex numbers and the quaternions, the real unit commutes with

everything and squares to itself while the imaginary units square to minus the real

unit

~ ~ A~

(€o-€5) = (€5-€0) = ¢&;, (éo€0) = —(&5-¢;) = éo. (8.30)
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Furthermore, the imaginary units anti-commute according to the rule

Here +¢; is determined by the diagram such that [ lies on a common line with 7, k;
the sign is the parity of the permutation that orders the indices j, k, [ according to
the direction of the arrows along the line.®

The conjugate of an octonion is defined by

7
ot =19 — Y Tkl (8.32)
k=1
the square norm as
7
z|? == (2%2) = (z-2%) = Zx? e RJ, (8.33)
=0

and consequently the inverse takes the form =71 = z*/|z|%.

The exceptional algebra gs has a 7-dimensional irrep which can act on the
imaginary part of octonions. Combined with the trivial representation to act on
the real part, it has a representation on the octonions

poct(A)z 1= pr(A)juéy. (8.34)

Jk=1

This representation is an isomorphism in the sense

(poct(A)x'y) + (x'poct(A)y) - poct(A)(x'y)' (835)

For an element g of the corresponding Lie group Go the isomorphism statement is
(Poct (9)ZPoct(9)y) = Poct(9)(z-Y).

Subalgebras. Note that the isomorphisms of the imaginary octonions preserve
the norm | - | by construction. Since the norm is spherically symmetric in the space
R”, the algebra g, preserves the sphere S¢ € R7. This means that g, is a
subalgebra of s0(7) = bs.

8For instance, this implies that any two x,y € O generate an algebra of quaternions H. A
third element z € Q@ is needed to generate the whole of O.
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One may wonder how to characterise this subalgebra. For that we can look at the
splitting of some irreps under so(7) — g2

7T— 7,

8—>7d1,

21 51467,

27 — 27,

48 27D 14D 7. (8.36)

In particular, the 8-dimensional spinor representation splits into a singlet and a
7-dimensional irrep. Furthermore, the adjoint splits into the adjoint and the same
7-dimensional irrep. This implies that g is the stabiliser subalgebra of a
(non-zero) spinor of so(7).

Conversely one may ask about the biggest classical subalgebra of g,. The regular
triangular lattice of roots and weights suggests that this is s[(3). One finds the
following splitting of irreps for go — sl(3)

7T—-3303 @1,
14 - 80333, (8.37)

Again this pattern of splittings tells that s[(3) is the stabiliser of a non-zero
element in the 7 of g,.

8.3 Real Forms

In physics one is often interested in unitary representations, and those make sense
only in real forms of the complex Lie algebra. A real form ggr of a complex Lie
algebra gc is specified by a complex conjugation on gc¢ which obeys

[A*, B*] = [A, B]". (8.38)

The real slice gg := {A € gc; A = A*} of the complex algebra is a real Lie algebra.
Real forms are commonly classified by so-called Satake or Vogan diagrams which
are decorations of Dynkin diagrams describing the complex conjugation. We will
not introduce them here, but merely list the resulting real forms.

Classical Algebras. For the classical Lie algebras based on matrix algebras, the
real forms follow a regular pattern. There are ten families of classical real forms
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listed along with their maximally compact subalgebras:

so(p,n—p)  so(p) Bso(n—p)

s0(n,C) so(n)

so(n, H) su(n) ®R

sl(n,R) so(n)

sl(n,C) su(n)

sl(n, H) sp(n)

su(p,n—p)  su(p) su(n —p) R

sp(2n, R) su(n) ®R

(20, C)  sp(n)

sp(p,n—p)  sp(p) ®sp(n—p) (8.39)

These algebras are defined analogously to their complex counterparts introduced
before.”

Some comments are in order:

e The algebras are based on traceless (s[), anti-symmetric (so), anti-symplectic
(sp) or anti-hermitian, traceless (su) matrices over the real (R), complex (C) or
quaternionic (H) numbers. The hermitian property only applies to the field of
complex numbers.

e The default fields for so, su, sp are R, C, H, respectively. For these, the vector
spaces are equipped with a metric of signature (p,n — p) whose ordering does
not matter. The definite signature (n,0) is abbreviated by (n).

e We use the convention that the number(s) indicate the dimension over the
defining field. In other conventions the dimension of the complexified algebra is
used. This leads to notational differences for matrices over the quaternions;
here (n, H) refers to H", elsewhere it may refer to H"/2 = C". Yet other
conventions divide the dimension for sp(2n,R) and sp(2n, C) by two.

e The algebras based on quaternions are frequently denoted alternatively as:

usp(2p, 2n — 2p) — sp(p,n — p),
50%(2n) — so(n, H),
su*(2n) — sl(n, H). (8.40)

Small Rank. For small rank, there are some equivalences between the various
real forms. All the one-dimensional abelian Lie algebras are equal

s50(2) =s0(1,1) =so(1,H) =u(l) = gl(1,R) = R. (8.41)

9In order to define the quaternionic matrix algebras, note that for ¢ = w + zi +yj + zk the
transpose is defined by ¢" := w + x% — yj + zk and the trace by trq := w. The canonical
quaternionic symplectic metric is defined by F = diag(£1,...,+£1)j.
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For the non-abelian Lie algebras the equivalences are related to the spinor
representations of the orthogonal algebras:

50(3) = sp(1) = sl(1, H) = su(2),
s0(2,1) =sp(2,R) =sl(2,R) = su(1,1),
s0(4) = sp(1) @ sp(1),
50(3,1) = sp(2,C),
50(2,2) = sp(2,R) @ sp(2,R),
s0(2,H) = sp(1) & sp(2,R),
50(5) = sp(2),
s50(4,1) = sp(1,1),
50(3,2) = sp(4,R),
50(6) = su(4),
s0(5,1) = sl(2, H),
50(4,2) = su(2,2),
s0(3,3) = sl(4,R),
s0(3,H) = su(3,1),
50(6,2) = so(4, H). (8.42)

For instance, one can convince oneself that the maximally compact subalgebras of
the equivalent real forms coincide.

Standard Real Forms. There are always at least three real forms related to
each complex simple Lie algebra g.

The compact real form is obtained by the conjugation
H; = —Hy, E; = —Fy, Fy = —E;. (8.43)

The algebraic relations are preserved by this conjugation. It has the distinguished
property that the Killing form has (negative) definite signature. The associated
Lie group is compact. The compact real forms of the complex algebras so(n),
sl(n), sp(2n) are the real algebras so(n), su(n), sp(n), respectively.

The split real form is the opposite of the compact real form. It is obtained by
declaring all the Chevalley—Serre generators to be real

Hi=H,  E=E, F =F,. (8.44)

The defining algebraic relations are real, and therefore this conjugation defines a
proper real form of the algebra. The split real forms of the complex algebras
50(2n), s0(2n + 1), sl(n), sp(2n) are the real algebras so(n,n), so(n,n + 1),
sl(n,R), sp(2n, R), respectively.

Finally, there is the complex real form of g @ g which is largely equivalent to the
complex Lie algebra g. Here, a Lie algebra over the complex numbers is

8.11



interpreted as a Lie algebra over the real numbers with twice the dimension. Note
that formally the complex real form is a real Lie algebra and thus different from
the complex Lie algebra. For instance, the complex algebra has only complex
representations whereas the real algebra can also have real or quaternionic
representations. The compact real forms of the complex algebras so(n), sl(n),
sp(2n) are the real algebras so(n, C), su(n, C), sp(n, C), respectively.

Exceptional Algebras. For the exceptional algebras g, there are several real
forms denoted by g,(,—q) Where (p, q) is the signature of the Killing form and where
q is the dimension of the maximally compact subalgebra. We have seen above that
there always exist the compact and the complex real forms; there is not much to
say about these. For the split real forms g,y we specify the signature and the
maximally compact subgroups:

gy (8,6) su(3)

fa(4) (28,24) 50(7) @ su(2)

e)  (42,30) sp(4)

€7(7) (70 63) 511(8)

es(s) (128,120)  s0(16) (8.45)

Furthermore, there are a few more real forms:

fa-200  (16,36) 50(9)

e(—26) (26,52 fa

€6(—14) (32, 46) 50(10) e R

¢6(2) (40, 38) su(6) @ su(2)

e7(—25) (54,79) eg(—78) DR

e7(—5) (64, 69) s0(12) @ su(2)

e8(—24) (112,136) e7(—133) D su(2) (8.46)

8.4 Affine Algebras

The above formalism to classify simple finite-dimensional Lie algebras can be
extended to construct some useful infinite-dimensional algebras. The construction
uses the same algebra relations as above, however the Cartan matrices are now
allowed to be positive semi-definite with one degenerate direction. This results in
two classes of so-called affine Kac—Moody algebras.
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Affine Algebras. The first class are the untwisted affine algebras. There is
precisely one algebra g = gV for each finite-dimensional simple Lie algebra g:*

s[(r)(l)

b, : (D—@r----@D—23D so(2r — 1)
@
b1t GO~ sp(2r —2)%

@ (D
0,1 (D—2-----2—2) so(2r — 2)M
@ D
@

fa:
B GO (8.47)
Note that the diagram of g of rank r is obtained by adding one node to the Dynkin
diagram of the corresponding finite-dimensional simple algebra g of rank r — 1.
Moreover, this node 7 = 0 is attached in accordance with the Dynkin labels of the
adjoint representation of g. The numbers b; indicated on the nodes'! describe the
kernel of the Cartan matrix

r—1
D Agb; =0. (8.48)
j=0

The affine algebra g can be described conveniently in terms of the
finite-dimensional algebra g: It is an extension of the loop algebra glx, z7!] by a
central element C and a derivation D

g =g[z,»']®CCaCD. (8.49)

10The Dynkin diagrams of a,., 9, and ¢, are composed from simple lines only. They make
appearance in diverse topics in mathematics and theoretical physics, see Section 4.2, and they are
called the ADE-graphs.

' The numbers b; also determine the dimension of the underlying finite-dimensional Lie
algebra as dimg = (r — 1) + (r — 1) >_; b; where r — 1 is the rank of g.

8.13



The loop algebra glx,x'] ;= g ® C[z,z7!] is the tensor product of a Lie algebra g
with Laurent polynomials in one (formal) variable z. Thus g[z,z~!] is spanned by
the elements J, ® 2", n € Z where J,, a = 1,...,dim g denotes a basis of g. The
Lie brackets for g are given by

[A® 2™ B®2"] = [A, B] @ 2™ + mémino(A, B)C,
[D,A®z™] = mA® z™,
[C,A®2™] = [C,D] =0, (8.50)

Furthermore, there exist an invertible bilinear form?!?

<A X l’m, B® lﬂ) = m+n,0<Aa B>7
(C,D) = 1. (8.51)

Note that the central charge C is related to the kernel of the transpose Cartan
matrix

r—1 r—1
C= Z biH; where Z b; A = 0. (8.52)
=0 =0

This implies that [C,Ex] = [C, Fx] = 0. The derivation D is not accounted for by
the Chevalley—Serre generators.'?

Affine algebras have two types of representations of relevance in physics: The
highest-weight representations are constructed as before using the Chevalley—Serre
presentation of the algebra. The evaluation representation lifts a representation of
the underlying finite-dimensional algebra g to g

(A®a™)(la) @ |y) = (Ala)) @ (y™[y)).
D(la) @ ly)) = la) @ (=(yd/0y)|y)),
C(lay @ |y)) =0, (8.53)

Twisted Affine Algebras. There also exist affine Dynkin diagrams which do
not extend the ones of the finite-dimensional simple algebras. These take the form:
(D
o), OO—D-----0—Q si(2r —2)®@
0,
af) s OFO—@r--—-O—@®  sl2r—1)?
07 QDD O-OD s0(2r)?
o OO0
o DO 50(8)® (8.54)

12The value assigned to (C, D) is required to make the bilinear form non-singular and to define
the quadratic Casimir invariant consistently.

13The affine algebra is not simple. A simple algebra is obtained by dropping the derivation D
and quotienting out the central charge C. The resulting algebra is the loop algebra gz, z71].
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All of these algebras exist because some of the finite-dimensional Lie algebras
possess outer automorphisms. These are related to symmetries of the Dynkin
diagrams:'*

ao:  O-0O-----0-=0
o, O—O—----O—Ci
0y O_Ci (8.55)

Among these, the diagram 04 is special because it has a three-fold symmetry as
compared to the two-fold reflectional symmetries of the others.

The above Dynkin diagrams correspond to twisted affine algebras gy(nk).15 They can

be considered as subalgebras of the above affine algebras gs«l) := g, determined by
the outer automorphism o of order k. The elements A ® x™ of the subalgebra are
characterised by satisfying

oA @™ =¥k A @ ", (8.56)
Small Rank. Again the sequences of classical affine algebras should be specified

more clearly at low rank. The lower untwisted affine algebras are described by the
following Dynkin diagrams:

a=by =& =0 s50(3)M = sp(2)W
bo=0: DD s0(5)Y) = sp(4)V
s O=D & D=D  so(4)V
(1)
3y 0.0 50(6)D = 51(4)®
@
) QD
0y 23 s0(8)W (8.57)
O O©

Here the double line without an arrow!® describes a pair of equal off-diagonal
elements {A;x, Ag;} = {—2, —2} of the Cartan matrix.

14The twisted affine Dynkin diagrams are related to foldings of the untwisted Dynkin diagrams
under the symmetry.

The index r of ggk) is not directly related to the rank of the twisted affine algebra.
6Other conventions use double arrow or a quadruple line.
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The small-rank twisted affine algebras are described by the following Dynkin
diagrams:

o’ =D s1(3)"
of) =01 CDED sl = s0(6)?
o O sl(5)? (8.58)

Note that for affine algebras also a quadruple line with an arrow is permitted,
which describes a pair of off-diagonal elements {A,j, Ag;} = {—1, —4} of the
Cartan matrix.

8.5 Subalgebras

The Dynkin diagrams of the finite-dimensional algebras and their affine extensions
can be used to construct many related algebras.

Construction. Often one is interested in finding subalgebras of a given algebra.
For example, so(p + ¢) has as subalgebras so(p) and so(q) as well as their direct
sum so(p) @ s0(q). How can this be seen from the Dynkin diagrams? Suppose
p,q > 2 are even, then the relevant Dynkin diagrams are all of the form:

O—C----- (8.59)

By eliminating some nodes one can obtain so(p) and so(gq), but not their direct
sum. However, the direct sum is contained in the affine Dynkin diagram of

so(p+q):
}—@Q—@—Q@—ci (5.60)

This trick also works if one of p, ¢ is even and the other one is odd:

=== O—O—Or---- OO (8.61)

If both p, ¢ are odd, however, the subalgebra so(p) @ s0(q) has lower rank than
s0(p + q) and it cannot be obtained in this way. Here, the relevant Dynkin
diagram is the twisted affine so(p + ¢)®:

OO0 === OO0 === O—CF0 (8.62)

This method to obtain (large) subalgebras works for general simple Lie algebras. It
is based on the fact that the affine Lie algebras contain infinitely many copies of a
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given simple Lie algebra under the projection A ® 2™ — A. By removing a node
from the Dynkin diagram one obtains a subalgebra. When one node is removed
from an affine Dynkin diagram, the resulting subalgebra is a direct sum of
finite-dimensional simple algebras.

An alternative to obtain further subalgebras is to eliminate a node from a
finite-dimensional Dynkin diagram. For example, s0(2n) has a
gl(n) = sl(n) @ gl(1) subalgebra given by the elimination:

OO m- (8.63)

The difference w.r.t. the above cases is that we keep the associated Cartan element
Hj, which yields the additional abelian component C = gl(1) = s0(2). This is not
an option when starting with an affine Dynkin diagram because H;, essentially
corresponds to the central element C which is unrelated to the finite-dimensional
algebra.

By using the above splitting method on the various Dynkin diagrams and iterating
the procedure one obtains a wealth of subalgebras for any given simple Lie algebra.
In particular, the rank is preserved (unless the twisted affine algebras are used).
However, there are also many other subalgebras which do not follow from this
procedure, e.g. go C s0(7) discussed above.

Grading. From the above construction of subalgebras one can further deduce a
Z.,, grading structure on the decomposition. This means that the Lie algebra g
decomposes

n—1
g= @gk such that [[gj, gk]] C gj+k- (864)
k=0

The subalgebra is the component gy at grading 0. The label on the deleted node of
the untwisted affine Dynkin diagram determines the order n of the grading. For a
twisted Dynkin diagram g the order of the grading is the product nk. When
deleting a node from the finite Dynkin diagrams, the order is 2n where n is the
label on the associated affine diagram.

Understanding the grading is useful for constructing coset models which are based
on coset spaces G/H of a Lie group G and a Lie subgroup H. For instance, the Zs
cosets of Lie groups are called symmetric spaces and they have particularly nice
properties.

Real Forms. The real form of the finite-dimensional Lie algebras can be
obtained by considering their maximally compact subalgebras. These are given by
the even part of a Z, automorphism. Therefore there is a close correspondence
between the real forms and the symmetric spaces, and the real forms can be
classified via affine Dynkin diagrams:
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Remove a node of an untwisted affine Dynkin diagram with label 1. This
corresponds to the compact real form because the remaining Dynkin diagram
describes the original finite-dimensional Lie algebra.

Remove a node of an untwisted affine Dynkin diagram with label 2. This
corresponds to the real forms so0(2p, 2q), 50(2p,2q — 1), sp(p, q), ¢s2), 7(—5),
e7(7), €8(—24)5 €8(8)s F4(—20)s Fa(a)s B2(2)-

Remove two nodes of an untwisted affine Dynkin diagram with labels 1. This
corresponds to the real forms whose maximally compact subalgebra contains a
factor of R, namely so(p, 2), so(n, H), su(p,q), sp(2n,R), eg—14), e7(—25)-
Remove a node of a Z, twisted affine Dynkin diagram with label 1. This
corresponds to the real forms whose maximally compact subalgebra has lower
rank, namely sl(n,R), sl(n,H), so(2p — 1,2¢ — 1), eg(—26), e7(—25)-
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9 Conformal Symmetry

So far we have mainly discussed compact symmetry algebras with
finite-dimensional representations. However, also the non-compact symmetry
algebras play an important role in physics. In particular, in quantum field theory
the unitary irreps of the Poincaré group can be used to classify the various kinds of
particles. Here, we shall consider the somewhat bigger group of conformal
symmetries, which are the transformations that preserve angles but not necessarily
distances. Physical models with conformal symmetry are called conformal field
theories. We shall see that the construction of suitable representations for such
models is analogous to our previous constructions.

9.1 Conformal Field Theory

In the following, we will briefly introduce a few elements of conformal symmetry
and conformal field theory.

Conformal Symmetry. Conformal transformations are the transformations of a
space that preserve all angles between two intersecting smooth curves. We shall
assume that the space is flat. In that case, the rotations and translations clearly
preserve all angles. Furthermore, scale transformations, x — ax, do preserve
angles, but they evidently do not preserve distances. Finally, also inversions about
a point, v — x/x?, turn out to preserve angles. When combining inversions with
translations, one finds the conformal boosts as additional continuous
transformations.

\
K

(9.1)
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Altogether the (continuous) conformal transformations in d spatial dimensions
extend the euclidean transformations to the conformal algebra so(d+ 1,1). For a
d-dimensional spacetime, the conformal algebra is so(d,2). We shall mainly
consider the latter case here. Denote the generators of (Lorentz) rotations so(d) or
so(d—1,1) by M, = —M,,, and the generators of translations by P,. The
additional generators of conformal symmetries are the dila(ta)tion generator D
and the conformal boost generators K*.
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The conformal action on the coordinates is specified by

P,z" = iéz, KtaY = wxta” — %77‘“’:62,
Dx” =", My, 2” = i)z, —iohx,. (9.2)
The corresponding conformal algebra therefore reads
[[D,P#]] - —iPW
[D, K] = +iK*,
[P, K] = —iM,” + i,/ D,
[[D, M,uu]] =0. (93)

Conformal Field Theory. A conformal field theory is a special kind of
quantum field theory where the spacetime symmetries are given by the conformal
group. Examples are given by classical electromagnetism as well as physical
systems at a phase transition.!

Typically, the objects of interest in a conformal field theory are local operators
O(z). These are some combinations of the fields of the theory evaluated at a
particular point x in space(time). Often the local operators are not specified
explicitly through particular combination of fields, but rather implicitly through
their properties (spin, charges, quantum numbers). The observables related to
these local operators are the n-point correlation functions

(O1(11) ... Op()). (9.4)

Conformal symmetry imposes constraints on the form of correlation functions. For
example, translation symmetry evidently implies that two-point functions are
functions of the difference of points x5 := 21 — x9. Moreover, rotational symmetry
implies that only x2, can appear. Finally, the scaling and conformal boost
symmetries imply the very concrete form

(O(21) O()) = (9.5)

8
=N
N

[N

Here, O is assumed to be a scalar primary, A is its conformal dimension, and C' is
a normalisation constant. A primary operator is a local operator which is
annihilated by the conformal boosts at the origin x = 0 ? and which has a definite
scaling dimension A3

po(K,)O(0) =0, po(D)O(0) = ~iA0(0). (9.6)

Furthermore, a scalar operator satisfies po(M,,)O(0) = 0.

"'When tuning the parameters of a model between two phases, its correlation functions become
long-ranged and are described by conformal field theory.

2The point x = 0 is a fixed point of all conformal transformations except the translations.

3The origin is chosen as the reference point so that the conformal transformations on the
coordinate x are as simple as possible.
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Operators with spin transform in some non-trivial representation of so(d) or
s0(d —1,1) at the origin, and consequently they carry some vector (or spinor)
indices. In n-point functions the vector indices of primary operators are typically
contracted by the combination

5 xlyal
1y (219) 7= " — 2 =522 (9.7)
)

For example, a two-point function of vector primaries takes the form

(O"(21) 0" (a2)) = “552. (93)

(w1,

Most operators are not primary, but they are all related to some primary. A
descendant operator is obtained from a primary operator by applying the
translation generator

Ohoin (@) = po(Puy) - po (P, )O(x) = (=0)" Oy - - 0, O(). (9.9)

Since descendants are partial derivatives of the primary, their correlation functions
are all determined through the correlators of primaries. Therefore it largely suffices
to focus attention to the primary operators; the descendants are encoded into the
coordinate-dependence.

Global Aspects. The conformal group for spacetime has non-trivial topological
features which are also relevant for the representation theory. In order to
understand them, consider the following argument involving a finite conformal
boost as the conjugation of a translation by an inversion. The inversion of a point
in the distant past yields a point in the near future. A reasonably small translation
can shift this point between near future and near past. A subsequent inversion
maps this point to the distant future. This shows that even small conformal
transformations relate the distant past and future.

Consequently, the corresponding regions of spacetime should be topologically
nearby. In other words, spacetime appears to have closed time-like curves, a
feature which is highly undesirable from the point of view of causality. Spacetime
has a conformal topology of S* x S?~!/Z, where the circle S' describes time. The
resolution to the problem is to consider the conformal completion of spacetime.
The topology of the completed spacetime is R x S¥! where the time-like circle is
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unwound to a full time axis R as depicted in the following Penrose diagram*

Sd—l

Rdel

N\,

(9.10)

7/

e

The corresponding feature in group theory is that the (orthochronous proper)
conformal group SO(d, 2)" has the maximal compact subgroup SO(d) x SO(2).
The factor SO(2) describes time translations, and it has the topology of a circle S.
This circle can be unwound, and one obtains a group SAé(d, 2) which is an infinite
covering of SO(d,2)*.> Now the group SO(d,2)" acts as the conformal
transformations on ordinary spacetime whereas the infinite cover SNO(d, 2) acts on
the conformal completion of spacetime. A relevant feature for representation
theory will be that the fundamental group Z of the circle provides the central
elements of SO(d, 2).

The inversions are also large conformal transformations. However, they correspond
to reflections in the conformal completion of spacetime and thus they are not part
of SO(d,2)* or SO(d, 2). Here, we shall not discuss the discrete extensions like
inversion, parity or time reversal.

9.2 Representations of sl(2,R)

Let us start with the simplest case in d = 1 where the corresponding algebra has
rank 1. The ordinary definition of conformal symmetry in one dimension does not
actually make sense because there are no angles. Nevertheless the general
conformal group in d dimensions can be specified to d = 1 dimension where it

4Penrose diagrams display the global topology of a curved spacetime respecting angles (in
particular, light-like directions are at 45°) but not distances.

5Tt is somewhat cleaner to describe this group at the level of the double covering spin group
Spin(d, 2): Its fundamental group is the fundamental group of the circle. The universal cover

S})Aﬂl(d, 2) is a double cover of é()(d, 2).
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becomes the group PSL(2,R) © of real Mdbius transformations’

ar +b

— .
o cx+d

(9.11)

We already know the corresponding complexified Lie algebra sl(2,C), but the
unitary representation theory of the split real form sl(2,R) is much more diverse
than the one of the compact real form su(2).

Principal Series Representations. Gladly, the complete representation theory
of s[(2,C) derives from a single family of representations, the so-called principal
series representation. Let us therefore discuss this representation in detail.

It acts on an infinite-dimensional vector space VP* spanned by the states |m) with
m € Z. The representation of the generators J,, J+ is determined by two
parameters v, «

Pra(J)lm) = m(m + o+ v+ 3)lm + 1),
PE?a(Jz)|m> = (m—i—a)|m>,
Pra(I-)Im) = =6,0(m +a =7 = 3)lm — 1), (9.12)

The parameters J,, determine the relative normalisation of the states |m) and
|m + 1), hence they do not count as parameters of the representation.®

OO C 0202020202 (9.13)

A further equivalence of representations is given by shifting the labels of the states
by some integer n and at the same time shifting a by n

pfr})/?a = ps,soz-&—n? n € Z. (914>

Finally, one can flip the sign of v by multiplying ¢,, by
(m+a+3—7)/(m+a+ 3 +7). The resulting representation is also equivalent

P = (9.15)

The two parameters can be understood as follows: The eigenvalue of the Casimir
invariant on the representation is determined by the parameter

Pra(I)Im) = (4" = 3)Im). (9.16)

5The group PSL(n) is SL(n) modulo its centre Z,. In particular, flipping the sign of all
coefficients a, b, ¢, d does not change the map (but leaves the determination constraint
unchanged).

"Composition of transformations is equivalent to multiplication of 2 x 2 matrices whose entries
are a, b, c, d.

8Under some conditions, some of the 6,, can be zero or infinite. We shall exclude this case for
the time being.
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Conversely, the parameter « is related to the centre Z of the simply connected
group SL(2,R). The centre is given by powers of the group element Z defined by

Z = exp(2mi],). (9.17)
This element is central as can be seen from
Ad(Z))e = Z2)oZ7 =™ )L = ] (9.18)
The representation of the centre is determined by the parameter a (mod 1)
P (2)|m) = &7 m). (9.19)

The eigenvalue of the centre is important for selecting representations of the
non-simply connected Lie groups SL(2,R) and PSL(2,R) = SL(2,R)/Z,. In the
former case a € %Z while the latter case further restricts a € Z.

Reducibility. For generic parameters v, a, the principal series representation is
irreducible. For reducibility some of the coefficients (m + o« +~v + %) should be
zero; without loss of generality let this be at the state m = 0. With a suitable
choice of ¢,, the representation is decomposable into a highest-weight and a
lowest-weight representation”

P at/2)002 = Poct ® Pa- (9.20)

BOBOEOROHONOEONO (9.21)
The lowest-weight representation is given by (m € Z)

P (T4)|m) = dy(m + 2a)|m + 1),

P (J2)lm) = (m + a)|m),

P (I-)m) = =0, Lymlm — 1). (9.22)
Note that the equivalence between o and a + n does not hold here because the
lowest-weight state |0) is now singled out. Furthermore, there is no equivalence

between a and 1 — . The corresponding highest-weight representation based on
the highest-weight state |—1) reads (m € Z™)

Pt (J1)|m) = 6 (m + 1)m + 1),
pa"(J2)lm) = (m + 1+ a)m),
P (I)|m) = =6, (m + 14 2a)|m — 1). (9.23)

9The representation is decomposable if both §,,(m + o + v + %) for m = —1 and
—5,;1,1(m +a—7y— %) for m = 0 approach zero while taking the limit for the parameters v, a. If
one of them remains finite, i.e. for §o =1 or §o = (m+a—y+1)/(m+a+~v+ 1), the
representation is merely reducible.
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Note that the quadratic Casimir eigenvalues are given by

Py () =ala—1),  p"(J*) =ala+1). (9.24)

Under yet more special conditions, all the representations can be split even further
(n€Zg)

Iw _

P_nj2 = PEI/IQ S5 pil”/m,
P}ﬁ% = PEVZL/2—1 b :021/127
pis(n+1)/27_n/2+z = P}lvyvl,/%l © 021/12 © szﬂ‘ (9.25)

fi
n

BOEONOBONUONE O UGN (9.26)

Here we find the (n + 1)-dimensional representation p,), with spin s = n/2.

Reality and Unitarity. Now we can consider the real form s((2,R) of the
algebra and the constraints due to unitarity of the above three kinds of
representations. The reality conditions can be imposed in different ways
corresponding to the freedom of choice for a metric with a given signature. We
chose them such that the above representations can admit a straight-forward
unitary structure without an additional change of basis!® 1!

z

Jr=+Ja, J, =+Jy, Jr=-1J.. (9.27)
With J, := J, £1J, this implies J} = J; and a unitary representation must obey

p(J) =p0),  p(J2)" = —p(J5). (9.28)

Let us first discuss the principal series representation. The first condition implies
a € R and the equivalence @ = a + Z further allows us to restrict to the
fundamental domain —% <a< % The second condition can be translated to the
statement

m+a+%—7
m+ao+ 147
The obvious solution is v € 7R and d,, some unspecified pure complex phase.
There is also a less obvious solution with v € R where one has to make sure that
|6,n|> > 0 for all m € Z. This holds provided that |y| < 3 — |a| (with |a| < 3) and
the representation is called complementary series representation.'

16| = for all m € Z. (9.29)

The above inequality (with solutions in R and iR)

2 1 2
7 < (3 —lal) (9.30)
19Compared to the compact real form with J; = —J;, we flip two signs for so(1,2).
"The equivalent choice J* = +J,, Jy = —Jy, JZ = +J. would more clearly reflect the real

structure of sl(2,R) formulated in terms of the real basis J, and J4, but it would be harder to
understand the unitarity of the above representations.

12Tt can be viewed as the analytic continuation of the principal series representation to the
range —3 < p(J?) < —|a|(1 — |al) for the eigenvalue of the quadratic Casimir.
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is called the unitarity bound for the principal series. One may wonder what
happens at the unitarity bound? Quite generally, the representation becomes
reducible, as can be verified with the above splitting formula. The reason for this
behaviour is that the signature of the representation space changes when crossing
the unitarity bound. At the unitarity bound the signature must therefore be
indefinite. One can convince oneself that the null subspace admits a
sub-representation.

For the lowest- and highest-weight representations also o € R, but there is no
longer an equivalence for shifts by integers. The unitarity condition for the
lowest-weight representation reduces to

1
6| = % for all m € Zj, (9.31)

which implies that a > 0. The corresponding condition for the highest-weight
representation implies a < 0. Note that at the unitarity bound the representation
is again reducible and splits off a one-dimensional trivial representation.

All non-trivial finite-dimensional representations are not unitary for the real form
s[(2,R) in accordance with a general theorem for non-compact real forms.

9.3 Representations on Functions

In the following we translate the above representations to representations on
spaces of functions and thus make contact to field theory.

Periodic Functions. The above infinite-dimensional representations naturally
act on function spaces.?

A suitable space for the principal series irreps is given by periodic functions and
their Fourier transform

f(0) = flo+2m) = Z fn €™ (9.32)

m=—0o0

The canonical square norm defined on this space reads

1917 i= 5= [dol5@)F = 3 1ful (933

m=—0Q

Now we can map the function to the principal series space VP* by means of the
Fourier coefficients f,,

> fulm). (9.34)

m=—00

BMore precisely, one would typically restrict to square integrable functions in order to control
issues of convergence and topology.
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For the principal series representation we set d,, = 1 for convenience which is
compatible with the unitarity conditions for v € iR.** Then the representation
reads

o0

PN = D (m+a)flm)

m=—0oQ

= |(=i0s + a) ),

o0

PN = D (m+a+y—1) fualm)

m=—0oQ

= [e" (=0 + a+ 7+ 1)),

o0

PN = D (mm—a+y+ ) fu|m)

m=—0oQ

= e (i0p —a + v+ 3)f). (9.35)

We can thus view the principal series representation as a representation on the
function space LLy(S') by differential operators and write

p,(1.) = —idy + v,

PRa(J4) = € (=i + a + 7+ 3),

P2 () = e (i0y — a4+ v + 3). (9.36)
This representation is unitary for a« € R and v € iR due to the hermitian

conjugation property ol = —0y of the derivative operator with respect to the
above square norm.

Functions of Time. Now we want to compare this representation to the
conformal action in terms of the generators H, D, K acting on the time coordinate ¢
as follows

Ht=i,  Dt=it, Kt=1i (9.37)

The sl(2,R) algebra expressed in these (imaginary) generators reads
[D,H] = —H, [D,K] = +iK, [H,K] = D. (9.38)

In order to relate the representations we should match the generators with the J
and the time t with the coordinate ¢. The appropriate transformation is

t = tan(¢/2), (9.39)

and it maps the complete time axis R to one period —7 < ¢ < 7w of ¢. The
relationship between the generators reads

D=il,, H=-J.+i,), K=-3J.-iJ,). (9.40)

!4n order to make the complementary series representations with v € R unitary, one must
choose a different (non-local) square norm for f.
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The transformed representation on functions of time now reads

. 1 .
pgfa(H) =10, — 20 —— — 2i(y + %)

1+ ¢ 142’
ps (D) = itd +i( +1)1—t2
=10, — « 1 2)—
Pra e T Y e
2
. t
P (K) = 120, — « i(y+ % : 9.41
p’y,a( ) 2 t 1+t2+(7+2)1+t2 ( )
Note that this representation is unitary if we impose the following hermitian
conjugation on the derivative operator
2t
of = -0 : 9.42

This relation follows from the transformation d¢ = 2dt /(1 + ¢?) which implies the
following square norm for functions of time'®

2 d 2
117 = [ £ L (9.43)

We can see that the conformal action on the time coordinate is the representation
with v = —% and o = 0. This representation is right on the unitarity bound where
it splits into a pair of highest- and lowest-weight representations. These are
unitary representations, but only for a square norm which is non-local in time.

Our findings in fact also explain how the above representation on periodic
functions is relevant for conformal field theory: The periodic coordinate ¢ becomes
global time 7 when going to the conformal completion of time S' — R. The
representation on functions of global time reads

lob _ o
/0% (JZ) = —ior,
pEP(J4) = €T (=id: + 7 + 3),

pEP(J-) = e T (i0- + v+ 3). (9.44)
In terms of physics, —J, clearly takes the role of the Hamiltonian for global time.
This representation is the direct integral of principal series representations p%{‘&b

over all 0 < a < 1. Namely, the representation of the central element

Z = exp(2miJ.) acts as a shift over a whole period pg°*(Z)f() = f(7 + 27). Then
then functions on the lattice 7 + 277 with 0 < 7 < 27 fixed can be can be
decomposed according to the eigenvalues e of p&°°(Z).

Local Operators. Let us find out the transformation properties of local
operators. Define a state |A) = O(0) as some primary operator O at the origin
t = 0. This state is characterised by the conditions

p(K)[A) =0, p(D)|A) = —iA|A), (9.45)

15The hermitian conjugate 32 follows from integration by parts between the functions f(¢) and
f(t)*, and the additional term is due to the measure factor.
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It is a lowest-weight state with a = A if we were to identify the generators as

K— %J _, D — —1J,, H— J,.. These generators satisfy the algebra relations of
s[(2,C), but they have inconvenient reality conditions for the study of unitarity
because complex conjugation does not interchange the ladder generators K ~ J_
and H ~ J,. For instance, we cannot claim this representation to be unitary for

A>0.

In order to study unitarity, let us first construct the complete representation on
O(t). We reconstruct the local operator by shifting the state |A) to the
appropriate time ¢

O(t) = exp(itp(H))|A). (9.46)
By commuting the generators past the exponential we find the representation'®
p(H)O(t) = —id,0(t),
p(D)O(t) = —itd,O(t) — 1AO(t),
p(K)O(t) = —120,0(t) — iAtO(1). (9.47)
We should now find maximal-weight states w.r.t. the original generators
JZ:—%H—K, Ji = —ED:F(%H—K). (9.48)

It turns out that a lowest-weight state is given by

0y = / dt (£ + 122 20(8). (9.49)
By (formally) applying integration by parts one can convince oneself that the
following properties hold
IO =0, p(1.)[0) = —(A— 1)[0). (9.50)

Moreover, there is also a highest-weight state

-1) = /dt (t— )2-20(1), (0.51)
which satisfies
pI)-1) =0, p(I2)|~1) = +(A— D|-1). (9.52)
Altogether, we find that the local operator representation is a sum of two
representations!”
p=pia® sy (9.53)
This representation is in fact not unitary unless A < 1. Being non-unitary is a
general feature of local operators in a (Lorentzian) conformal field theory.'®

16Note that this is a representation on the operator O(¢) (which happens to be a function of t).
It is not a representation on the function O(t) (which happens to be an operator) even though it
is expressed through derivatives acing on O(t). The difference between these two notions is
important because it implies a different ordering of differential operators. In particular, this
explains the opposite sign for the differential terms which is needed to satisfy the same algebra.

17 According to the logic of Fourier transformations, the positive and negative frequency parts
are separated into the highest- and lowest-weight representations, respectively.

18Perplexingly, the physically relevant local operators should satisfy the would-be unitarity
conditions derived from the lowest-weight representation based on |A) in the above basis H, D, K,
ie. A>0.
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9.4 Correlation Functions

Next we discuss some aspects of conformal correlators in general d dimensions in
order to find out about the conformal properties of various objects.

Scalar Field. Consider first a scalar field @(x). The scalar is a primary field of
conformal dimension A. The conformal correlator of two scalar fields reads

C
O(x1) P(x9)) = —5— -
< A EAE
The scalar fields obey the massless Klein-Gordon equation 0,0#® = 0 (up to

source terms or interactions), and thus the correlation function should do as well.*
One finds

(9.54)

C B 20A(2A + 2 —d)
(13%2)A B (55%2>A+1

On the one hand, the result implies that an elementary scalar field has scaling
dimension A = %d — 1 (which equals A =1 in d = 4 spacetime dimensions).?
Thus the scaling dimension coincides with the usual mass dimension of the field.
On the other hand, any scalar primary operator with A = %d — 1 automatically
obeys the Klein—-Gordon equation, be it fundamental or not. Such a field carries
substantially fewer degrees of freedom than an unconstrained field. We will discuss
the implications of this observation on representation theory further below.

(0,0 (1) P(22)) = 0,0}

(9.55)

Field Strength. Next we consider the field strength F),, of electromagnetism.
The latter is a conformal field theory and the field strength a conformal primary
field,?! but now with non-trivial spin. Based on the general construction of
two-point functions, its correlator reads
C(l,l,e— 11,
<Fuu($1)Fpa(m2)> - ( 1o 2 AM p) . (956)
(12)
Now the homogeneous Maxwell equation dF' = ( within the correlation function
yields

2(2 - A)C(fl?12,,.;77up77ua + .. )
($%2)A+1 '

The inhomogeneous Maxwell equation in the absence of sources reads 0" F),, = 0,

and within the correlation function one finds

Q(A — d —|— 2)0(55127/)[,/0 — 1,'1270],,,0)

(27,) AT '

(dF ey (21) Fpo(22)) = (9.57)

(0MFpu (21) Fpo(22) ) = (9.58)

19We will not be interested in source terms which are localised to coincident points.

20Here we consider a free theory or the free limit of an interacting model. Furthermore, the
fundamental fields are typically not observable on their own if they are charged under some local
symmetry in which case their conformal dimension is not a meaningful quantity.

2lIn quantum field theory one would usually consider it as a descendant of the gauge potential
A,,. However, the latter is not gauge invariant and the correlator not uniquely determined. The
one of the field strength is gauge-invariant and thus well-defined.
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Altogether the equations imply A = 2 and d = 4. This shows immediately that the
electromagnetic field is conformal in four spacetime dimensions only.

Conserved Current. A third example is a conserved current of Noether’s
theorem. Within a conformal field theory this is a primary operator J* with a
vector index which satisfies the conservation equation 9,J*". The correlation
function of a vector primary takes the form

crw

(T"(1) T"(22)) = —5~% (9.59)
(215)
and the correlator of the divergence of the current reads
2(A —d+1)Cx¥,
(0, T"(21) T" (2)) = ( )Caty (9.60)

($%2)A+1

This implies that a conserved current must have conformal dimension A =d —1 in
accordance with its derivation from the Lagrangian density.

One current of central importance for any conformal field theory is the stress
energy tensor 7,, with two symmetric traceless vector indices. It is the current
responsible for conformal symmetry itself, and its conservation implies A = d.

9.5 Representations of so(4, 2)

Finally, we shall discuss the representation theory relevant to a conformal field
theory in d = 4 spacetime dimensions. The conformal algebra is so(4,2) which is
equivalent to the unitary algebra su(2,2). What makes the higher-dimensional
conformal algebras interesting is that while their unitary representations are
infinite-dimensional, they also consist of finite-dimensional components
corresponding to the maximally compact subalgebra s0(4). As usual, we shall
complexify the Lie algebras, e.g. the conformal algebra is s0(6,C) = sl(4, C).

Local Operator Representations. The definition of a conformal primary
operator O(z) is reminiscent of the definition of a highest-weight state?

p(K,)|A, s1,52) =0, p(D)O(0) = —iA|A, s1, $2). (9.61)

A minor difference between the concepts is the following: A primary local operator
O, ,(x) with spin is usually considered to be the whole vector space of its so(4)
representation. Conversely, the highest-weight state is the highest-weight state of
the s0(4) representation evaluated at the origin O, (0). The descendants of this

22Here we assume that the weight decreases with A such that the conformal boost K is a
raising generator and the momentum P a lowering operator. We use this convention so that the
finite-dimensional representations of the Lorentz subalgebra are described as usual by their
highest weight rather than their lowest weight.
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highest-weight state are the so(4) descendants forming the whole multiplet
O,..,(0) as well as the conformal descendants 0...090(0) forming the Taylor
expansion of the field O(z).

From the above considerations one can compute the s[(4) Dynkin labels of a local
operator representation

[p1, 7, pal with  pp =2sp and r = —A — 51 — s9. (9.62)

The Dynkin labels are a concise way to describe the local operator representation.
The outer two labels are non-negative integers describing the spin, whereas the
middle label is a typically negative real number describing the conformal
dimension. For example [0, —1, 0] describes a scalar field with dimension 1. The
Dynkin labels are particularly useful when expressing the unitarity conditions of
representations.

The local operator representation can be summarised by the character polynomial

PA (Q) _ P81 (ql>P52 <QZ> QS
o Hmhmz:ﬂ:l (1 - quInlq;)m) ,
25+1 —2s—1
q —dq
Py(q) = pp=—— (9.63)

where ¢7"™ ¢;"* ¢4 describes a state with so(4) = sl(2) @ sl(2) weights (my,ms) and
conformal dimension A. Here the numerator describes the so(4) representation of
the primary operator and the denominator describes the descendants w.r.t. the 4
derivatives P, which can act any number of times.

Particular Representations. Above, we have discussed particular local
operators and their correlation functions. Let us translate the results to
representation theory of the conformal group. The (free) scalar field ¢ obeys the
equation of motion

p(PH)o(P, ) = 0. (9.64)

In other words, the descendant state p(P?)® is absent from the local operator
representation. We have discussed above that this is consistent only if the
descendant is a highest-weight state itself so that the corresponding
sub-representation can be projected out. Indeed, one finds that the full local
operator representation [0, —1, 0] has a sub-representation [0, —3,0]. One can also
convince oneself that the latter weight is in the orbit of the shifted Weyl group of
the former weight. The character polynomial of the on-shell scalar fields reads

Py = Po,—1,0 — Plo,—3,0- (9.65)

The consideration for the other two examples is similar: The electromagnetic field
strength corresponds splits into chiral and anti-chiral components with
representations [2, —3, 0] and [0, —3,2]. Their Maxwell equations are operators in
the representations [1, —4, 1]. Incidentally, this is the representation of the
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conserved Noether current (for the global gauge transformations). Its divergence is
zero which means that the sub-representation [0, —4, 0] has been projected out.
For the character polynomials one finds

Pr = (P[z,fs,o] — Py 4+ 13[0,74,0])
+ (Po,—32 — P1,—41) + Po,—4,0)):
Pj - 317_471] - 307_470]. (966)

This sequence of representations curiously continues to lower dimensions: The
shifted Weyl orbit of the trivial weight [0, 0, 0] contains virtually all the physical
objects of electromagnetism

[0,0,0] (A=0): global gauge transformation,
[1,—-2,1] (A=1): gauge field / local gauge transformation,
[2,—3,0] (A=2): chiral field strength,
[0,—-3,2] (A =2): anti-chiral field strength,
[1,—4,1] (A=3): conserved electromagnetic current,
[0,—4,0] (A=4): Lagrangian density. (9.67)

The remaining 18 images under Weyl reflections serve as lowest-weight delimiters
of the finite-dimensional representations of sl(2) @ s[(2) for these 6 highest-weights.

Unitarity and Splitting. Finally, let us discuss unitarity of the above
representations for the real form so(4,2) = su(2,2). Unitary representations
correspond to states of a quantum (field) theory on the space R x S* which is the
conformal completion of Minkowski space. The states’ wave functions on the
compact space S? decompose into a tower of spherical harmonics of S* which
transform under the unitary finite-dimensional representations of s0(4).

Note that (as discussed earlier) local operators do not transform in unitary
representation,”® but their representations are nevertheless related to unitary
representations. Effectively, the local operators transform in the very same
representations of the complexified conformal algebra, but the reality conditions
are not the ones needed for proper unitarity.**

Whether or not a given highest-weight representation is unitary mainly depends on
the position of the images of the highest weight under the shifted Weyl reflections.
The crucial point is that the squared norm of states changes sign roughly at the
location of the images in h*. There are two options to avoid a changing sign:
Either the reflected weight is higher than the highest weight and therefore does not
flip the sign within the highest-weight representation. Or the reflected weight is
lower, but it is reachable from the highest weight by an integral combination of the
negative roots. In the latter case, the representation is reducible and there is a

Z3For example, the momentum generator P, is a vector of s0(3, 1) rather than the compact
s0(4).
240r something like this, it is complicated ...
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chance that the unwanted signs are all contained in the sub-representation and can
be projected out. The above words translate to constraints for the highest weight

1
2(n+9,a)

(a, )
For the Dynkin labels [p1, 7, po] of a su(2,2) representation this condition implies
that the six combinations

—-1eR UZS for all a € AY. (9.68)

p17T7p27p1+r+17r+p2+17p1+r+p2+2 (969)

are either negative real numbers or non-negative integers. More concretely, p; and
p2 should be non-negative integers because they determine the highest weights
w.r.t. the compact subgroup su(2) @ su(2); conversely, r should be a non-positive
real number

P2 € Ly, reRy. (9.70)

The concrete conditions for the other three combinations depend on whether some
of the Dynkin labels are zero.

The unitarity conditions for unitary irreducible highest-weight representations of
su(2,2) can be summarised as #°

[p1,7,p2) = umitary if py,py € ZF, r < —py —pa — 2,
[p,7,0] : unitary if pe Z, r < —-2—porr=—1—p,
[0,7,p] : unitaryif pe ZF, r<—-2—porr=—1—p,
[0,7,0] : unitary if r < —-2orr=—1orr=0. (9.71)

The solutions to these constraints yields the following physical objects along with
their representation splitting (at the unitarity bounds):

e The trivial representation
0,0,0]. (9.72)

e The massless scalar particle (A = 1)
0,-1,0]. (9.73)

The equation of motion transforms in the sub-representation [0, —3, 0].
e Massless particle with helicity +p/2, p € ZF (A =1+ p/2)

[p,—p —1,0] or [0, —p — 1, p], respectively. (9.74)

The equation of motion transforms in the sub-representation [p — 1, —p — 2, 1]
or [p—1,—p — 2, 1], respectively (which itself is reducible for p > 1).
e Conserved current with spin (p1/2,p2/2), pr € ZF (A =2+ p1/2+ p2/2)

[p1,7,p2],  pr+r4pe+2=0. (9.75)

The conservation condition transforms in the sub-representation
[pl - 17T7p2 - 1]

25The unitarity conditions for non-compact real forms of other Lie algebras take a similar form.
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e A generic local operator (A > 2+ p1/2 + p2/2)
[p1,7p2),  prATHpa+2<0, (9.76)
or a non-conserved operator at the unitarity bound (A =2+ p/2)
[p,r,0l or [0,7,p], p+r+2=0. (9.77)

This representation has no sub-representations among the conformal
descendants.
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vector, 6.2
weight diagram, 6.3
weight lattice, 6.8
Weyl chamber, 6.10
Weyl character formula, 6.15
Weyl dimension formula, 6.15
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Schedule of Lectures

The following table lists the locations in the text at the beginning of each lecture:

25.02. 1 [45]: 0. Overview

25.02. 2 [45]: 1.1. ... § Group Topology.

03.03. 1 [50]: 1.2. ... § Representation Theory.

03.03. 2 [40]: 2. Three-Dimensional Symmetries
10.03. 1 [45]: 2.1. ... § Parity.

10.03. 2 [40: 2.2. ... § Algebra.

17.03. 1 [45]:  2.3. Representations

17.03. 2 [35]: 2.3. ... § Spin Representations.

24.03. 1 [40]: 2.3. ... § Tensor Product Decomposition.
24.03. 2 [50]: 3. Finite Group Theory

31.03. 1 [45]: 3.2. Complete Reducibility

31.03. 2 [40]: 3.3. ... § Schur’s Lemma.

07.04. 1 [35]: 3.3. ... § Group Algebra and Regular Representation.
07.04. 2 [45]: 4.1. ... § Discrete Subgroups of SO(3).
21.04. 1 [50]: 4.2. Representations

21.04. 2 [40]: 4.3. Crystallographic Groups

28.04. 1 [45]: 5.2. ... § Cartan—Weyl Basis.

28.04. 2 [45]: 5.3. ... § Chevalley—Serre Generators.
05.05. 1 [50): 6.2. Weights

05.05. 2 [40]: 6.3. ... § Multiplicities.

12.05. 1 [50]: 6.4. ... § Discrete Symmetries.

12.05. 2 [45]: 6.4. ... § Character Polynomials.

19.05. 1 [45]: 6.5. ... § Masses.

19.05. 2 [50]: 8. Classification of Simple Lie Algebras
26.05. 1 [50]: 8.2. The Exceptional Algebra gy

26.05. 2 [35]: 8.4. Affine Algebras
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