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Abstract

The aim of this paper is to offer a conceptual analysis of Weinberg’s proof of the spin-

statistics theorem by comparing it with Pauli’s original proof and with the subsequent

textbook tradition, which typically resorts to the dichotomy positive energy for half-integral

spin particles/microcausality for integral-spin particles. In contrast to this tradition,

Weinberg’s proof does not directly invoke the positivity of the energy, but derives the

theorem from the single relativistic requirement of microcausality. This seemingly innocuous

difference marks an important change in the conceptual basis of quantum physics. Its

historical, theoretical, and conceptual roots are here reconstructed. The link between

Weinberg’s proof and Pauli’s original is highlighted: Weinberg’s proof turns out to do justice

to Pauli’s anti-Dirac lines of thought. The work of Furry and Oppenheimer is also surveyed as

a ‘‘third way’’ between the textbook tradition established by Pauli and Weinberg’s approach.
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1. Introduction

The spin-statistics theorem has not ceased to represent a challenge to human
understanding since Pauli (1940) originally presented it. As Richard Feynman (1963)
once said,

Why is it that particles with half-integral spin are Fermi particles (y), whereas
particles with integral spin are Bose particles (y)? We apologize for the fact that
we cannot give you an elementary explanation. An explanation has been worked
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out by Pauli from complicated arguments of quantum field theory and relativity
(Chapter 4, Section 1).

The spin-statistics theorem called for a simple proof, and several attempts have
been made in this direction in the past sixty years as the increasing literature on the
subject testifies. For example, Feynman (1949a, b) derived the theorem from the
Feynman Rules; Schwinger (1951) from strong-reflection symmetry; L .uders and
Zumino (1958) and Burgoyne (1958) resorted to the axioms for quantum field
theory; more recently, Berry (in Berry & Robbins, 1997) and Sudarshan (in Duck &
Sudarshan, 1998) have offered a proof based on topological arguments and
rotational invariance, respectively. A detailed and well-documented account of many
of the alternative proofs of the spin-statistics theorem can be found in Duck and
Sudarshan’s (1997) source book.
The aim of this paper is to focus on a relatively neglected proof, which is not even

discussed in Duck and Sudarshan’s source book: Weinberg’s proof. As we will argue
in this paper, Weinberg’s proof seems to us a good candidate for the ‘‘elementary
explanation’’ of the spin-statistics theorem that Feynman was hoping for. In contrast
to a well-established textbook tradition that typically resorts to the postulate of the
positive energy to get the spin-statistics connection for half-integral spin particles,
Weinberg derived the spin-statistics connection for both bosons and fermions from
the single requirement of microcausality suitably interpreted.
Why has Weinberg’s proof been so far overlooked? Maybe because it was

originally presented within Weinberg’s research programme on a Lorentz-invariant
S matrix: the spin-statistics connection was disparagingly presented as a side result
of this more general programme. Since then, the theoretical elegance and the
conceptual implications of Weinberg’s proof have been widely neglected in the
literature on the spin-statistics theorem: in this paper we hope to do justice to it, and
indirectly to Pauli himself. In fact, the upshot of our paper is to reconcile Weinberg’s
proof with Pauli’s by showing that Weinberg has vindicated Pauli’s original
intentions: a derivation of the spin-statistics connection solely from relativity theory,
in particular from the microcausality condition. As we will see, Pauli’s project failed.
He had to make recourse to the additional postulate of the positivity of the energy,
and accordingly, to his old enemy, Dirac’s hole theory, which warranted this
postulate. In this respect, Weinberg’s proof serves as an admirable foil for Pauli’s
proof and for the subsequent textbook tradition.
In Section 2, we briefly reconstruct the history of Pauli’s proof as a part of his

long-lasting polemic against Dirac’s hole theory from the Pauli–Weisskopf ‘‘anti-
Dirac’’ paper in 1934 to Pauli’s first incomplete proof in 1936 until the final one in
1940. At the same time, we reconstruct the conceptual origins of the postulate of
positive energy as grounded in Dirac’s hole theory.
In Section 3, the persistence of the hole picture behind the postulate of the positive

energy will appear in a recent version of the theorem developed by Greiner and
Reinhardt (1996). Greiner and Reinhardt’s proof will be presented as a paradigmatic
example of the textbook tradition originally established by Pauli. In Section 4,
we finally present Weinberg’s proof, while in Section 5 the requirement of
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microcausality, on which the proof hinges, will be more closely analysed. However,
before any analysis can be undertaken, it is necessary to briefly recall the theorem.
As is well known, in the original semi-classical model (Uhlenbeck & Goudsmit,

1925, 1926), the spin was regarded as the intrinsic angular momentum of a spinning
electron. Later it was realized that the spin has no classical analogue; it is simply the
eigenvalue s of the spin operator S acting in the spin state space ES; and it can be
either integral (s ¼ 1; 2;y), in the case for instance of photons and mesons, or half-

integral (s ¼ 1
2
; 3
2
;y) in the case of electrons, protons, positrons, neutrons, and

muons, among others.
Quantum statistics date back to 1924 and 1926, respectively. First Bose (1924)

and then Einstein (1924, 1925a, b) elaborated the statistics for a photon gas and the
Bose–Einstein distribution for the corresponding ideal gas. In 1926, it was first
Fermi’s (1926) turn, and Dirac’s (1926) shortly afterwards, to formulate the
quantum statistics for an ideal gas of identical particles obeying Pauli’s Exclusion
Principle. According to the Bose–Einstein statistics, indistinguishable particles are
allowed to be in only symmetric states. The Fermi–Dirac statistics, on the other
hand, allows indistinguishable particles to be in only antisymmetric states. Just to
recall briefly, symmetric states for—say—two indistinguishable particles are such
that the state vector of the composite system does not change sign under
permutation of the space and spin coordinates of the two particles:
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where jar
qS is the eigenvector of a 1-particle operator A associated with the

eigenvalue ar for the qth particle (with q ¼ 1; 2).
In antisymmetric states, on the other hand, the state vector does change sign under

permutation of the space and spin coordinates of the two particles:
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To say that the state vector of the composite system is antisymmetric is
mathematically equivalent to saying that the entangled states of the two particles
are different (otherwise the antisymmetric state vector would vanish). This is nothing
but Pauli’s Exclusion Principle forbidding the possibility of any two indistinguish-
able particles being in the same dynamic state (Pauli, 1925).
The two quantum statistics define two different kinds of particles:

* fermions are particles obeying Pauli’s Exclusion Principle and the corresponding
Fermi–Dirac statistics;

* bosons are particles not obeying the Exclusion Principle and following the Bose–
Einstein statistics, which allows more than one particle per state.

The theoretical breakthrough of the spin-statistics theorem consists in proving the
existence of a strict connection between spin and quantum statistics, namely:

* half-integral spin particles follow the Fermi–Dirac statistics (they are fermions);
* integral spin particles follow the Bose–Einstein statistics (they are bosons).
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Prima facie, the theorem seems to imply the following dichotomy: all elementary
particles divide into fermions or bosons. But as a matter of fact, the spin-statistics
theorem does not rely on this dichotomy, which has attained an undeserved status
through the so-called symmetrization postulate1 and has indeed been questioned by
the development of parastatistics since the 1960s (see Messiah & Greenberg, 1964).
The aim and scope of the spin-statistics theorem is only to forge a link between the
kind of spin a particle has and the kind of quantum statistics the particle does not
follow, without ruling out a priori the possibility of intermediate (neither symmetric
nor antisymmetric) states.
But it is now time to turn our attention to the proof of the theorem. In the

following historical interlude, we present the way Pauli arrived at the spin-statistics
theorem through his long-lasting and severe criticism of Dirac’s hole theory.

2. Pauli and the spin-statistics theorem: historical interlude

The spin-statistics connection was originally pursued in the attempt to find a
relativistic theory for particle creation and annihilation alternative to the Dirac hole
theory. The theorem was the conclusion of Pauli’s theoretical fight against Dirac’s
theory; hence, we have to begin our historical reconstruction from it.
In 1928, Dirac announced his equation for the electron (Dirac, 1928), in modern

notation:

i
X
m

gmpm þ mc

" #
c ¼ 0; ð3Þ

where gm are the four Dirac matrices with m ¼ 0; 1; 2; 3 satisfying gmgn þ gngm ¼ 2gmn

where gmn is the contravariant Lorentz metric diag (1, �1, �1, �1), and c is a four-
component vector, the so-called Dirac spinor.
The Dirac equation (see Wightman, 1972) was meant to overcome some

difficulties affecting another relativistic wave equation that Gordon (1926), and
independently Klein (1927), had earlier introduced. The dreamt-of relativistic wave
equation was in fact expected to separate the negative energy solutions from the
positive energy ones, but the Klein–Gordon equation allowed a superposition of
both. Despite its theoretical and empirical successes,2 the Dirac equation fared no
better on the score of the negative energy solutions. As Klein quickly retorted against
Dirac, in the case of time-dependent external fields, transitions from positive to
negative energy states also affected the Dirac equation (the Klein Paradox). The
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1The symmetrization postulate asserts that only certain kets of the state space of a system including

several indistinguishable particles can describe its physical states. Depending on the nature of the particles

(bosons or fermions) physical kets are either completely symmetric or antisymmetric with respect to

permutation of these particles.
2The Dirac equation allowed the derivation of the value 2 of Land!e’s g factor as the electron spin

magnetic moment. Sommerfeld’s formula for the fine structure of the hydrogen spectrum was also derived

from the Dirac equation, and so was the Klein–Nishina formula for the scattering of light by electrons.

M. Massimi, M. Redhead / Studies in History and Philosophy of Modern Physics 34 (2003) 621–650624



existence of negative energy states was a conundrum that beset Dirac for the next few
years.
Shortly after the breakthrough of 1928, Dirac returned to this problem (Dirac,

1930). Remarking that no hard-and-fast distinction between positive and negative
energy solutions was available in quantum theory, Dirac identified the wave packet
constituted by the superposition of the negative energy solutions as describing the
motion of

an electron of charge +e (and positive energy) moving in the
original electromagnetic field. Thus an electron with negative energy moves in an
external field as though it carries a positive charge (1930, p. 361; emphasis in the
original).

Dirac was very close to the introduction of the antiparticle of the electron: the
negative energy solutions of his equation were associated with allegedly positive-
charged electrons. Antiparticles would have been easily available at this point, if
Dirac had not followed Weyl’s (1929) mistaken identification of the negative energy
electrons with protons. This identification violated the conservation of the electric
charge, and—most importantly—it was incompatible with the different masses of
electrons and protons. But as Dirac himself later recalled,3 at that time he was much
more concerned with getting a satisfactory theory of the electron than with bringing
in protons; and indeed, the real upshot of Dirac’s (1930) paper was to bring in the
Fermi–Dirac statistics via the Exclusion Principle. In fact, in the second section of
the paper, Dirac introduced what is known in the literature as the Dirac ‘‘negative
energy sea’’ (Dirac, 1930):

The most stable states for an electron (i.e., the states of lowest energy) are those
with negative energy and very high velocity. All the electrons in the world will
tend to fall into these states with emission of radiation. The Pauli’s Exclusion
Principle, however, will come into play and prevent more than one electron going
into any one state. Let us assume there are so many electrons in the world that all
the most stable states are occupied, or, more accurately, that all the states of

negative energy are occupied except perhaps a few of small velocity. (y) Only the

small departures from exact uniformity, brought about by some of the negative

energy states being unoccupied, can we hope to observe (p. 362; emphasis in the
original).

The few vacant states or ‘‘holes’’—as Dirac called them—in the negative energy
sea were introduced by analogy with X-rays, emitted when an internal vacancy in the
electronic configuration occurs. However, while in the X-ray, the holes count as
states of negative energy because ordinary positive energy electrons are required to
fill them up; in the Dirac negative energy sea, the holes counted as states of positive
energy because negative energy electrons were required to fill them up. Thus, the
holes were supposed to behave like ordinary particles with a positive charge +e.
Whenever an electron jumped from a negative energy state to a positive energy one,
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3See Kuhn’s interview with Dirac (14 May 1963) in Kuhn and Heilbron (1967).
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it left behind a hole (electron–hole creation); vice versa, when it jumped from a
positive energy state to a negative energy one, there was a process of electron–hole
annihilation. The processes of pair creation/annihilation resembled the similar
processes of emission/absorption of radiation that in 1927 Dirac had described in
terms of transitions from an unobservable ‘‘zero state.’’4

The hole theory was a useful heuristic tool to deal with the problem of negative
energy states. However, it faced several difficulties. First, the infinite number of
negative energy states was expected to produce an electric field of infinite divergence
according to Maxwell’s equation

div E ¼ 4pr: ð4Þ

Second, the different masses of electrons and protons had to be explained. A
further difficulty concerned the infinite annihilation probability of electrons and
protons. Oppenheimer (1930) pointed out that electrons and protons would
annihilate each other so that the mean lifetime for matter would be of the order
of 10�10 s. When Weyl (1930) finally proved that the masses of the positive- and
negative-charged electrons had to be identical, Dirac published a paper in which the
identification of the holes with protons was abandoned, and antiparticles were for
the first time explicitly introduced (Dirac, 1931):

A hole, if there were one, would be a new kind of particle unknown to
experimental physics, having the same mass and opposite charge to an electron.
We may call such a particle an anti-electron (p. 61).

With almost prophetic words, Dirac anticipated—via the hole theory—the
discovery of the positron, detected two years later by Anderson (1933) in
the photographs of cosmic-ray tracks in a Wilson cloud chamber. The discovery
of the positron vindicated the hole theory, which in 1931 Dirac himself was about to
give up as a sick idea because of the impossibility of making any further progress
with it.5

Antiparticles were then conceptually introduced as ‘‘holes in a negative energy
sea.’’ Indeed, they were entities negatively defined as absence (holes) with respect to a
plenitude of being (negative energy sea). They were the necessary—until then,
missing—link of a sort of great chain of being (echoing Lovejoy’s famous expression)
going from a lower to an upper bound of a uniformly distributed and
filled continuum of energy states: they were introduced by the principle of plenitude

and continuity (see Lovejoy, 1936) to fill up the few unoccupied links of an infinite
chain.
But the principles of plenitude and continuity were not the only conceptual path to

antiparticles. Physicists who did not have a penchant for Dirac’s hole theory
undertook a different conceptual route to antiparticles; through this same route, the
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4 ‘‘When a light-quantum is absorbed it can be considered to jump into a zero state (i.e., stationary state

of an atom), and when one is emitted it can be considered to jump from the zero state to one in which it is

physically in evidence, so that it appears to have been created.’’ (Dirac, 1927, pp. 260–261).
5See Kuhn’s interview with Dirac (14 May 1963) in Kuhn and Heilbron (1967).
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spin-statistics theorem was introduced. Before reconstructing Pauli’s way
to the theorem, two important theoretical steps against the hole theory
must be mentioned: the first was taken by Fermi, and the second by Furry and
Oppenheimer.
Despite its success in dealing with negative energy states, the hole theory

soon turned out not to be an entertainable method to account for the theory
of b-decay. As Pauli wrote to Heisenberg in 1933, ‘‘the b-decay weighs on the
entire [hole] theory as a big X.’’6 If the hole theory had been correct, one would
expect a neutron to decay into a proton, an electron, and a positron. But this
would violate conservation of charge. Moreover, the decay n-p; e� was forbidden
by the conservation of angular momentum. It was for this latter reason, and also
to accommodate the continuous energy spectrum for the electron, that Pauli
postulated a new kind of particle with mass equal or inferior to the mass of the
electron and with null electric charge: the neutrino.7 But where did the electron and
the neutrino originate? Indeed, as Pauli soon realized, ‘‘the hole-question and
the neutrino-question let themselves be solved only together.’’8 Fermi’s theory
of b-decay (1934) provided an answer to both questions. The hole picture could not
be maintained in the physical scenario of Fermi’s theory. The electrons emitted
in b-decay could not be taken as particles jumping from the negative energy sea
to a positive energy state; i.e., their creation process could not be interpreted
as the creation of an electron–hole pair. Electrons and, indeed, neutrinos were
created in b-decay ‘‘out of nothing’’ so to speak (or, more strictly speaking, out of
the energy released in the nuclear transmutation); i.e., without assuming a
hypothetical negative energy sea from which they would jump by leaving behind a
hole. In fact, if the hole picture had been right, one would have expected the total
number of electrons and neutrinos to remain constant. But this was not the case in
Fermi’s theory.9
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6Pauli to Heisenberg, 14 July 1933 (Pauli, 1985, p. 187).
7Pauli originally postulated the existence of this new particle in 1931 to interpret the spectrum of b-rays.

At that time two rival hypotheses were available to explain this phenomenon: Bohr claimed that in b-
decay, the energy was not strictly conserved; Pauli, on the other hand, contended that the energy was

strictly conserved, and the apparent violation was rather due to the emission of another type of particle,

not yet observed, having null electric charge and spin-1
2
so that the sum of the energies of this new particle

and the electron was constant. The new particle that Pauli originally called ‘‘neutron’’ was later called

‘‘neutrino’’ by Fermi, after Chadwick’s experimental discovery of neutron in 1932.
8Pauli to Heisenberg, 11 November 1933 (Pauli, 1985, p. 226).
9Fermi arrived at this result by following an analogy with a theory of emission of light-quanta very

different from Dirac’s (1927) radiation theory, which—as mentioned in fn. 4—had anticipated the hole

picture in the idea of a zero state from which light-quanta were emitted. And since in this other theory the

total number of light-quanta was not constant because ‘‘light-quanta emerge when they are emitted from

an atom, and disappear when they are absorbed,’’ Fermi claimed that ‘‘analogously, we want here to

ground the theory of the emission of b-rays on the following assumptions: (a) the total number of

electrons, as well as that of neutrinos, is not necessarily constant. Electrons (or neutrinos) can emerge and

disappear. However, this possibility has no analogy with the creation and annihilation of an electron–

positron pair; indeed, if the positron is interpreted as Dirac’s hole, the latter process can easily be

interpreted as an electron jumping from a state with negative energy to one with positive energy with

conservation of the total number of the electrons’’ (Fermi, 1934, pp. 161–162; emphasis added).
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The next theoretical step against the hole theory implied a radical revision
of the picture of positrons as holes. More or less at the same time as Fermi
was elaborating his theory of b-decay, Furry and Oppenheimer (1934)
offered a reinterpretation of the hole theory ‘‘without holes,’’10 which anticipated
Weinberg’s proof of the spin-statistics theorem in some important formal aspects. In
an article published on 15 February 1934, Furry and Oppenheimer announced a
development of Dirac’s theory into a perfectly symmetric theory of electrons and
positrons:

The formal changes that are required in the theory are simple, and correspond
closely to Dirac’s most recent suggestion (1931) for interpreting the negative
kinetic energy states (p. 245).

The formal changes at issue resulted in the second quantization of Dirac’s
theory in its (almost) current standard formalism, in which any reference to the
hole picture has been lost. The second quantization of Dirac’s theory began
with the introduction of the occupation number Nr to describe a system
of N indistinguishable particles satisfying the Exclusion Principle, whose eigenvalues
were Nr ¼ 1 if a particle was present in the state r, or Nr ¼ 0 if no particle was
present. Accordingly, the wave function of the system was given by

cð0?1r1?0?1r2?1rN?Þ ¼ ðN!Þ1=2cðr1?rN Þ; ð5Þ

where the LHS of (5) refers to the occupation number representation (with the
occupied states labelled as r1; r2;y; rN), while the RHS c(r1?rN) specifies the
probability amplitude for particle 1 to be in state r, particle 2 in state r2; etc.
(the states were assumed to be denumerable).
Any dynamical variable of the system expressible as a symmetric sum of 1-particle

operators was introduced as an operator on this wave function:X
r;r0

Or0ra
w
r0ar; ð6Þ

where Or0r is the 1-particle matrix element connecting the rth and r0th states and
with the creation and annihilation operators aw

r0 ; ar; satisfying the following
anticommutation relations:

aras þ asar ¼ 0; aw
r aw

s þ aw
s aw

r ¼ 0; aw
r as þ asa

w
r ¼ drs: ð7Þ

The occupation numbers were expressed as

Nr ¼ aw
r ar; 1� Nr ¼ ara

w
r : ð8Þ

The crucial formal change, whose physical meaning corresponded to Dirac’s holes
without however assuming them any longer, consisted in a radical conceptual
reinterpretation of the unoccupied negative energy states as positive particles in their
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10For a similar theoretical move, see Fock (1933).
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own right. Furry and Oppenheimer restricted the states r into three possible
categories: wholly positive (denoted by the Latin letter r), wholly negative (denoted
by the Greek letter r) and superpositions of positive and negative states (denoted by
the brackets (r)). As a consequence of this restriction, the troublesome transitions of
positive energy states into negative ones, which typically affected Dirac’s theory,
were avoided. Most importantly, any dynamical variable of a system containing Nr

electrons and Mr positrons of diagonal form should now be associated with the
corresponding operatorX

r

OrrNr þ
X
r

ð�OrrÞMr: ð9Þ

Formally, by subtracting
P

�ðOÞ ¼
P
r
Orr from the operator

P
r;r0

Or0ra
w
r0ar; a new

operator *o was introduced

*o ¼
X
ðrÞðsÞ

OðrÞðsÞoðrÞðsÞ

with

orðsÞ ¼ aw
r aðsÞ; oðrÞs ¼ aw

ðrÞas; ors ¼ aw
ras � drs ¼ �asaw

r: ð10Þ

Note the switch of the creation and annihilation operators aw
ras in the field

operator ors of the negative energy states. This switch brought along with it a
redefinition of the Hamiltonian as the sum of the positive kinetic energies of the
electrons and the positive kinetic energies (�Trr) of the positrons.X

r

NrTrr �
X
r

MrTrr: ð11Þ

As a result, the Hamiltonian turned out to be positive semi-definite without
resorting to Dirac’s picture of a fully occupied negative energy sea. From a more
modern perspective, the Furry–Oppenheimer prescription is equivalent to normal
ordering in which creation operators are placed to the left and annihilation operators
to the right, and for Dirac fields the sign is reversed on switching the order of the
creation and annihilation operators.11

The conceptual reinterpretation of antiparticles as positive particles in their own
right and the consequent redefinition of the Hamiltonian with positive energy put in
‘‘by hand’’—so to speak—anticipates in some important aspects Weinberg’s proof of
the spin-statistics theorem. Furry and Oppenheimer unwittingly opened up the
possibility of a uniform proof of the spin-statistics theorem from microcausality
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11Normal ordering was introduced by Wick (1950) (see also Houriet & Kind, 1949; Dyson, 1949).

Normal ordering for the free Dirac Hamiltonian leads from the not positive semi-definite #H ¼R
d3popð #bw #b � #d #dwÞ to the following positive semi-definite #H ¼

R
d3popð #bw #b þ #dw #dÞ (for notation, see

Section 3). Normal ordering is sometimes justified by the fact that it is provably equivalent to

symmetrizing the theory with respect to the Dirac field and its charge conjugate. The Furry–Oppenheimer

prescription was originally justified by their reinterpretation of the hole picture; i.e., by reinterpreting

antiparticles as positive particles in their own right. But the modern point of view regards the Furry–

Oppenheimer prescription as freestanding, so to speak.
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alone, formally analogous to the quite different S-matrix approach that Weinberg
adopted thirty years later.12 Furry and Oppenheimer then occupy an intermediate
position between Dirac’s hole theory and Weinberg’s proof of the spin-statistics
theorem. They used the hole picture as a ladder that can be thrown away once one
has climbed it. Their work constitutes a potential (quantum-field theoretical) ‘‘third
way’’ to the spin-statistics theorem, an alternative to the textbook tradition set forth
by Pauli as well as to Weinberg’s innovative proof.
More or less at the same time, during the winter of 1933–34, Pauli, too, was

working on the hole theory. Despite Anderson’s recent discovery of the positron,
Pauli did not believe in the ‘‘holes.’’ As he wrote to Heisenberg on 6 February 1934
(in Pauli, 1985),

Thus is Dirac’s construal of laws of nature set upon Mount Sinai. All is expressed
mathematically very elegantly. But physically I am not at all convinced (p. 276).

The main problem of Dirac’s hole theory—according to Pauli—was the electron’s
infinite self-energy; i.e., the energy of the electromagnetic field generated by the
electron (electrostatic self-energy) plus the energy of the interaction of the electron
with this field (electrodynamic self-energy). A further problem was the vacuum
polarization, which Dirac (1934) addressed at the Solvay Congress in October 1933,
and whose solution Pauli judged unsatisfactory.
In March, Weisskopf (1934) submitted his contribution on the self-energy of the

electron, while in July, the Pauli–Weisskopf ‘‘anti-Dirac’’ paper was submitted to
Helvetica Physica Acta (Pauli & Weisskopf, 1934).13 Pauli and Weisskopf tried to
force the spin into the quantization of the Klein–Gordon equation on pain of
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12 In fact, the question of the bosonic quantization of the free Dirac field can now be posed as follows:

should the commutator properties be used to control the spectrum of the antiparticle number operator

Mr ¼ awrar; or equivalently, in Greiner’s notation, N ¼ #dw #d (see Section 3)? If we apply the

anticommutation relations for the antiparticle operators ½ #d; #dw	þ ¼ 1; we get the spectrum f0; 1g in

agreement with the Exclusion Principle. On the other hand, if we apply the commutation relations

½ #d; #dw	� ¼ 1; the spectrum is expanded to f0; 1; 2; 3;yg in agreement with the Bose–Einstein statistics that

permits more than one particle per state. As we will see in Section 3, Greiner and Reinhardt use the

commutation relations ½ #d; #dw	� ¼ �1; justified by their roundabout route via the hole theory, but not by

the Furry–Oppenheimer route, in which positive energy is built into the formalism without any appeal to

the hole picture. However, as we will see, Greiner–Reinhardt’s commutation relations do not formally rule

out bosonic quantization for the Dirac fields, and prevent Greiner and Reinhardt from getting a uniform

proof of the spin-statistics theorem from microcausality alone. By contrast, in Section 4 we will see that

Weinberg adopts different commutation relations for the antiparticle operators ½ #d; #dw	� ¼ 1 which reflect

the formal change of putting positive energy in ‘‘by hand’’ without harking back to the hole theory, and

which will play a major role in the derivation of the spin-statistics theorem from the single requirement of

microcausality.
13Weisskopf recalled this crucial episode a few years later as follows (Weisskopf, 1983): ‘‘At that time

(y) the hole theory of the filled vacuum was still the accepted way of dealing with positrons. Pauli called

our work the ‘anti-Dirac paper.’ He considered it a weapon in the fight against the filled vacuum that he

never liked. We thought that this theory only served the purpose of a non-realistic example of a theory that

contained all the advantages of the hole theory without the necessity of filling the vacuum. We had no idea

that the world of particles would abound with spin-zero entities a quarter of a century later. That was the

reason why we published it in the venerable but not widely read Helvetica Physica Acta’’ (p. 70).
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revoking the gauge and relativistic invariance of the theory as well as the positive
semi-definite energy density. This difficulty shed light on the impossibility of
applying the Exclusion Principle to spin-0 particles; as Pauli wrote to Heisenberg on
7 November 1934 (in Pauli, 1985),

Our theory can be implemented only with the Bose–Einstein statistics,
because here a necessary connection begins to dawn between spin and statistics
(p. 361).

The Pauli–Weisskopf ‘‘anti-Dirac’’ paper smoothed the path to the spin-statistics
theorem and yielded an important side result: without resorting to the hole
picture, Pauli and Weisskopf introduced antiparticles as positive particles in
their own right, like Furry and Oppenheimer did. Antiparticles were the symmetric
counterparts of particles, having only a bundle of properties opposite to those
of the particles. They were no longer ‘‘holes’’ with respect to a plenitude of
being (negative energy sea): their existence was not dictated by the principles of
plenitude and continuity, but by the formal symmetry of the quantized
Klein–Gordon theory with respect to positive and negative charges (for details,
see Massimi, 2002). As we will see below, this apparently innocuous difference about
the concept of antiparticle marks one of the most profound divisions in the history of
modern physics, and it is particularly relevant to our analysis of Weinberg’s proof in
Section 5.
The spin-statistics connection for particles obeying the Exclusion Principle was the

main obstacle towards a full-blown proof of the spin-statistics theorem. In 1936,
Pauli announced a first—incomplete—proof: following up on the remarkable results
of the Pauli–Weisskopf paper, in this new paper Pauli (1936) explored ‘‘the
possibility of a formal development of a relativistic scalar theory for particles
without spin obeying the Exclusion Principle’’ (p. 110). But the fermionic
quantization of scalar fields turned out to be impossible as a closer analysis of the
formal apparatus already developed in 1934 easily revealed. Following the same
procedure of second quantization of the Klein–Gordon equation adopted in the
Pauli–Weisskopf paper, Pauli derived the spin-statistics connection for scalar fields
from a crucial property of the electric charge: the charge density r at two space-like
separated points (x and x0) was required to commute

½rðxÞ;rðx0Þ	� ¼ 0: ð12Þ

This fundamental property of the charge density was nothing but the
microcausality condition imposed by special relativity, which will play a main role
in the rest of our story. As a classical locality condition, microcausality forbids that
measurements of a physical quantity at a space-like separation (i.e., measurements
that cannot get into contact through light signals) can influence each other. Pauli
then showed that it was impossible to retain microcausality for r together with the
relativistic invariance of the theory when spin-0 particles were quantized according
to the Exclusion Principle (i.e., using anticommutators). In this way, by appealing to
microcausality, Pauli proved that spin-0 particles could be quantized only with Bose

ARTICLE IN PRESS
M. Massimi, M. Redhead / Studies in History and Philosophy of Modern Physics 34 (2003) 621–650 631



statistics. However, the corresponding case for half-integral spin particles still had to
be proved.
Pauli’s (1936) proof set forth the guidelines for Markus Fierz’s proof (Fierz, 1939).

In fact, Fierz’s proof for integral spin particles was based on the same requirement
of relativistically invariant and local commutation relations (microcausality)
that Pauli had already required for the charge density. The real novelty consisted
in the proof for half-integral spin particles, which Fierz derived by introducing a
further postulate: the positivity of the energy. The fields corresponding to
half-integral spin particles were associated with spinors. Fierz introduced anti-
commutation relations for the quantized Fourier coefficients of the half-integral
spin fields with the consequence that ‘‘the particles described satisfy the
Pauli’s Exclusion Principle; a circumstance which makes it possible, through a ‘hole

theory,’ to make the energy positive’’ (Fierz, 1939, p. 17; emphasis added). The
roundabout route via Dirac’s hole theory seemed to Fierz an inevitable step in order
to make the Hamiltonian positive semi-definite. Thus, the anticommutator turned
out to be necessarily connected with half-integral spin particles because only the
Exclusion Principle—via the hole theory—warranted a positive semi-definite
Hamiltonian. The perennial enemy (Dirac’s hole theory) could not be avoided and
indeed played an essential role in proving the spin-statistics connection for half-
integral spin particles.
Pauli’s final proof of the theorem essentially repeated Fierz’s point. Despite

the emphasis that (Pauli, 1940) ‘‘the connection between spin and statistics is one
of the most important applications of the special relativity theory’’ (p. 722),
Pauli was not able to prove the whole theorem only on the basis of the relativistic
requirement of microcausality, and he fell back on the dichotomy microcausality/
positive energy:

Hence we come to the result: For integral spin, the quantization according to the
Exclusion Principle is not possible. On the other hand, it is formally possible to
quantize the theory for half-integral spins according to Bose–Einstein statistics,
but (y) the energy of the system would not be positive. Since for physical reasons
it is necessary to postulate this, we must apply the Exclusion Principle in
connection with Dirac’s hole theory (1940, p. 722).

By postulating microcausality for the spinors, Pauli concluded that for integral-
spin fields, the commutator between the field and its Hermitian conjugate vanished
at space-like x � x0; giving the right (bosonic) spin-statistics connection. But for
half-integral spin fields, there was no a priori restriction of this type: both the
commutator and the anticommutator were formally permitted. To rule out
the bosonic commutator, Pauli, like Fierz, had to resort to the requirement of
positive energy, which was in turn grounded on the hole theory. Ironically enough,
Pauli ended up with relying on his old enemy to get the right spin-statistics
connection for fermions.
A unified treatment of the two cases (integral and half-integral spin) under the

single requirement of microcausality seemed to be unavailable to Pauli’s generation.
And it has continued to remain such in the eyes of recent generations, if we consider
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the deeply instilled tendency—typical of many current quantum-field
theory textbooks—to present the spin-statistics connection by resorting
to the dichotomy microcausality/positive energy.14 In the next section, we present
Greiner and Reinhardt’s proof as a paradigmatic example of this ongoing textbook
tradition.

3. The textbook tradition: the Greiner–Reinhardt proof and the hole picture

Greiner and his colleagues at the Johann Wolfgang Goethe University in
Frankfurt are famous for producing a series of textbooks covering the whole field of
theoretical physics. In this section, we focus on Greiner and Reinhardt’s (1996) proof
of the spin-statistics theorem as it appears in their book, Field Quantization. We have
chosen it because it provides a paradigmatic example of an ongoing textbook
tradition in relativistic quantum-field theory that follows Pauli’s original proof in
requiring positive energy to get the right spin-statistics connection for half-integral
spin particles. Like Pauli, Greiner and Reinhardt also appeal to two different
postulates:

* Microcausality is used to derive the right (Bose–Einstein) statistics for the Klein–
Gordon fields (spin-0 particles).

* Positive energy is introduced to get the right (Fermi–Dirac) statistics for Dirac
fields (spin-12 particles).

As we will see below, the requirement of positive energy is here regarded as
essential to get the spin-statistics connection for Dirac fields, and it is conceptually
rooted in the hole picture, as in Fierz and Pauli. Of course, the hole picture is
nowadays regarded as devoid of any physical meaning and remains only as a
heuristic device. However, interestingly enough, Greiner and Reinhardt ground the
existence of antiparticles precisely in the hole picture, as Dirac originally did.
Let us flesh out Greiner–Reinhard’s proof, starting with some preliminary

technical remarks. Greiner and Reinhardt take the Dirac wave function cðx; tÞ as a
classical field having four components and satisfying the transformation laws of a
relativistic spinor. They proceed then to quantize the Dirac field by replacing the
spinors cðx; tÞ and cwðx; tÞ by field operators #cðx; tÞ and #cwðx; tÞ: The plane-wave
expansion of the field operator #cðx; tÞ is expressed in terms of the states (1996,
Section 5.3, pp. 124–130):

cðrÞ
p ðx; tÞ ¼ ð2pÞ�3=2

ffiffiffiffiffiffi
m

op

r
wrðpÞ e�ierðopt�p�xÞ: ð13Þ
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14The axiomatic field theory proofs (e.g., Burgoyne, 1958) do give a unified treatment for bosons and

fermions, but both microcausality and positive energy are included among the axioms, making it

impossible to disentangle their individual roles.
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Here wrðpÞ is the Dirac unit spinor, where the index r enumerates the four
solutions:

r ¼ f1; 2g denotes positive energy solutions ðE ¼ þop ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

p
Þ:

r ¼ f3; 4g denotes negative energy solutions ðE ¼ �op ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ m2

p
Þ:

These are expressed by the sign function er, which takes two values: +1 if r ¼
f1; 2g and �1 if r ¼ f3; 4g:
The plane-wave expansion of the field operator #c (x; t) is then written as

#cðx; tÞ ¼
X4
r¼1

Z
d3p #aðp; rÞcr

pðx; tÞ ð14Þ

and the corresponding one for the Hermitian conjugate field operator #cwðx; tÞ as

#cwðx; tÞ ¼
X4
r¼1

Z
d3p #awðp; rÞcr

pðx; tÞ: ð15Þ

The operators #aðp; rÞ and #awðp; rÞ satisfy the anticommutation relations:

½ #aðp; rÞ; #awðp0; r0Þ	þ ¼ d3ðp� p0Þdrr0 ;

½ #aðp; rÞ; #aðp0; r0Þ	þ ¼ ½ #awðp; rÞ; #awðp0; r0Þ	þ ¼ 0: ð16Þ

The operator #aðp; rÞ is the annihilation operator for particles (r ¼ 1; 2) and the
creation operator for antiparticles (r ¼ 3; 4); similarly, the operator #awðp; rÞ is the
creation operator for particles (r ¼ 1; 2) and the annihilation operator for antiparticles

(r ¼ 3; 4). But, as Greiner and Reinhardt (1996) point out,

The double role played by the operators #aðp; rÞ and #awðp; rÞ is a bit confusing.
Therefore, it is customary to introduce separate notations for the particle and the hole

operators. We take this opportunity also to change the notation for the wave functions.
The names uðp; sÞ and vðp; sÞ will be introduced for the unit Dirac spinors of the upper
and lower continuum [where s denotes the spin projection along the Z-axis in units of
_=2 in the rest-frame of the particle]. They are related to the spinors wrðpÞ as follows:

w1ðpÞ ¼ uðp;þ1Þ;

w2ðpÞ ¼ uðp;�1Þ;

w3ðpÞ ¼ vðp;�1Þ;

w4ðpÞ ¼ vðp;þ1Þ;

(y) [Associated with these new] spinors, the following new operators are
introduced:

#aðp; 1Þ ¼ #bðp;þ1Þ;

#aðp; 2Þ ¼ #bðp;�1Þ;

#aðp; 3Þ ¼ #dwðp;�1Þ;

#aðp; 4Þ ¼ #dwðp;þ1Þ ðpp: 1272128; emphasis addedÞ:
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If the total energy is represented as a continuum with a positive upper bound
(r ¼ 1; 2) and a negative lower bound (r ¼ 3; 4), the operators #b correspond to the
solutions of the Dirac equation for the upper continuum and the operators #dw to the
solutions for the lower continuum. The new operators #bw and #b are, respectively,
the creation and annihilation operators for particles, while #dw and #d are the creation
and annihilation operators for antiparticles or holes. The mathematical construction
of the operators—as Greiner and Reinhardt15 explicitly remark—is rooted in Dirac’s
hole picture. The idea of a lower continuum of negative energy is nothing but Dirac’s
idea of a ‘‘negative energy sea’’ in which all the states are filled up by negative energy
particles (one per state as required by the Exclusion Principle), and an unoccupied
state is a hole corresponding to an antiparticle.
The conceptual link with Dirac’s hole picture here is deeper than it might seem at

first sight. It is not just a question of historical curiosity. Nor does it merely provide a
heuristic tool that a time-honoured agenda dictates to quantum-field theory
textbooks.16 Rather, the reference to the hole picture turns out to be crucial to
prove the spin-statistics theorem for spin-1

2
particles via the postulate of positive

energy. In fact, since the hole picture provides the motivation for the aforementioned
mathematical construction of the operators, Greiner and Reinhardt (1996) can
claim,

as the number of particles in the ‘‘lower continuum’’ (r ¼ 3; 4) grows, the total
energy of the system can drop to negative values beyond any bound. To
circumvent this unacceptable conclusion Dirac’s hole picture comes to the rescue
(p. 126).

Dirac’s hole picture would guarantee that the lower continuum is filled up and
would consequently prevent a surplus of negative energy particles leading to a
negative Hamiltonian. In turn, positive energy safeguards the derivation of the spin-
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15 ‘‘According to [Dirac’s hole picture] in the vacuum state all the levels of the lower continuum (energy

Eo�m) are occupied by particles (y). These particles, which fill up the ‘Dirac sea’, are always present

and are distributed homogeneously (in the absence of electromagnetic field) all over space. Therefore, they

cannot be observed in any experiment. Their energy and charge can be removed by a simple subtraction.’’

Greiner and Reinhardt (1996, p. 126). And again at p. 130: ‘‘Dirac’s concept of a fully occupied lower

continuum [y] finds its mathematical expression in [the definition of the new operators #b and #dw]’’.
16Greiner and Reinhardt (1996) seem to regard the hole picture as providing QFT with clear-cut

heuristics: ‘‘This mathematical construction is endowed with physical meaning if the holes are interpreted

as antiparticles, e.g., as positrons’’ (p. 127). Saunders (1991), too, regards the hole picture as providing a

simple and direct physical meaning for Dirac field theory (the standard formalism), but he complains that

‘‘nowadays no one would regard the use of the Fourier expansion or of the normal-ordering as logically

dependent on the Dirac hole theory; they are supposed to stand in their own right’’ (p. 86). Saunders

investigates the logical independence of the standard formalism from Dirac’s hole theory within the

context of a justification for the plane-wave expansion. He considers such a logical independence as a

drawback of the standard formalism precisely because it robs it of a clear-cut physical meaning. And in

order to restore it, he opts for Irving Segal’s geometric quantization (Segal, 1964; see also Woodhouse,

1980), in which Dirac’s ‘‘negative-energy sea is encoded into the mathematical description of the

antiparticle states’’ (Saunders, 1991, p. 66; for details see pp. 91–106). As we will see in the next section,

Weinberg’s proof marks the definitive detachment from the hole picture not only as a heuristic device, but

also as a conceptual framework playing a crucial role in the proof of the spin-statistics theorem.
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statistics connection for spin-1
2
particles:

Dirac’s hole picture

+

Positivity of the energy

+

Spin-1
2
particles obey Fermi2Dirac statistics:

Let us see, then, how Greiner and Reinhardt derive the spin-statistics connection
for bosons and fermions. To do this, let us go back to the operators #b and #d: These
new operators obey the same anticommutation relations as the previous operator
#aðp; rÞ:

½ #bðp; sÞ; #bwðp0; s0Þ	þ ¼ d3ðp� p0Þdss0 ;

½ #dðp; sÞ; #dwðp0; s0Þ	þ ¼ d3ðp� p0Þdss0 : ð17Þ

The Dirac field operator is now expanded as

#cðx; tÞ ¼
X

s

Z
d3p

ð2pÞ3=2

ffiffiffiffiffiffi
m

op

r
ð #bðp; sÞuðp; sÞe�ip�x þ #dwðp; sÞvðp; sÞeþip�xÞ; ð18Þ

where p � x ¼ wpt � p � x is the 4-dimensional scalar product.
Using the Lorentz boost operator the following explicit form of the unit spinors

can be derived:

uðp; sÞ ¼
/p þ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðop þ mÞ
p uð0; sÞ; vðp; sÞ ¼

� /p þ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðop þ mÞ

p vð0; sÞ; ð19Þ

where the slash notation /p denotes pmgm:
Greiner and Reinhardt then compute the anticommutator for the free Dirac field

operator #cðxÞ and its adjoint #%cðyÞ; where #%c ¼ #cwg0; at arbitrary space-time points x

and y; which in the plane-wave expansion becomes

½ #cðxÞ; #%cðyÞ	þ ¼
Z

d3p

ð2pÞ3=2

Z
d3p0

ð2pÞ3=2

ffiffiffiffiffiffi
m

op

r ffiffiffiffiffiffiffi
m

op0

r X
s;s0

½ #bðp; sÞuðp; sÞe�ip�x

þ #dwðp; sÞvðp; sÞeþip�x; #bwðp0; s0Þ %uðp0; s0Þeþip
0 �y

þ #dðp0; s0Þ %vðp0; s0Þe�ip
0 �y	þ: ð20Þ

Only the anticommutators for ½ #b; #bw	þ and ½ #dw; #d	þ contribute:

½ #cðxÞ; #%cðyÞ	þ ¼
Z

d3p

ð2pÞ3
m

op

X
s

ðuðp; sÞ %uðp; sÞ e�ip�ðx�yÞ

þ vðp; sÞ %vðp; sÞeþip�ðx�yÞÞ ð21Þ

The spin summation over the unit spinors u and v leads to the projection operatorsX
s

uðp; sÞ %uðp; sÞ ¼
/p þ m

2m

� �
and

X
s

vðp; sÞ%vðp; sÞ ¼
/p � m

2m

� �
ð22Þ
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so that the anticommutator becomes

½ #cðxÞ; #%cðyÞ	þ ¼
Z

d3p

ð2pÞ3
1

2op

ðð /p þ mÞe�ip�ðx�yÞ � ð� /p þ mÞeþip�ðx�yÞÞ

¼ ði /rþ mÞ
Z

d3p

ð2pÞ3
1

2op

ðe�ip�ðx�yÞ � eþip�ðx�yÞÞ

¼ ði /rþ mÞ iDðx � yÞ; ð23Þ

where D(x � y) is the commutation function that Jordan and Pauli (1928) originally
introduced for the special case of the (massless) electromagnetic field. This function
is Lorentz invariant (LI). A fundamental property of this commutation function is

Dðx � yÞ ¼ 0 for ðx � yÞ2o0:

In other words, if the argument is a space-like four-vector, the Pauli–Jordan
function vanishes outside the light cone; i.e., for space-like separations ðx � yÞ2o0:
As Greiner and Reinhardt (1996) point out,

In our case this implies that measurements at two points that have a space-like
separation (y) do not influence each other. To put it into another way:
disturbances cannot propagate with superluminal velocity. This is one of the most
fundamental demands to be imposed on a physical theory. It is also known as the
condition of microcausality (pp. 102–103. Emphasis in the original).

When some observable quantities like current and charge density are constructed
out of products of field operators, the microcausality condition requires that either
the commutator or the anticommutator (or both) of the field operators vanish at
space-like separations. This is satisfied because physical observables are bilinear
forms in the fields and their adjoints.
Thus, the Pauli–Jordan function obeys microcausality, and using this property,

Greiner and Reinhardt prove that the Klein–Gordon fields (spin-0 particles) do not
satisfy the Fermi–Dirac statistics (because microcausality would otherwise be
violated) (see 1996, p. 104). However, and this is the main point we are concerned
with, Greiner and Reinhardt deny that microcausality can be deployed to rule out
the wrong (bosonic) quantization for Dirac fields (spin-12 particles). They contend
rather that microcausality is not a sufficient condition to establish the right spin-
statistics connection for spin-12 particles. Their reasoning is by reductio (see 1996, pp.
139–140).
Suppose—they say—we quantize Dirac fields according to Bose–Einstein.

The bosonic commutator for the free Dirac field operators #cðxÞ and #%cðyÞ
would read

½ #cðxÞ; #%cðyÞ	� ¼
Z

d3p

ð2pÞ3=2

Z
d3p0

ð2pÞ3=2

ffiffiffiffiffiffi
m

op

r ffiffiffiffiffiffiffi
m

op0

r X
s;s0

ð½ #bðp; sÞ; #bwðp0; s0Þ	�uðp; sÞ

� %uðp0; s0Þ e�ip�xþip
0 �y þ ½ #dwðp; sÞ; #dðp0; s0Þ	�vðp; sÞ %vðp0; s0Þ eþip�x�ip

0 �y

þmixed termsÞ: ð24Þ
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The commutation relations would be ½ #aðp; rÞ; #awðp0; r0Þ	� ¼ d3ðp� p0Þdrr0 with
r; r0 ¼ 1;y; 4; or, reverting to the notation in terms of #b and #d operators, they
would be

½ #bðp; sÞ; #bwðp0; s0Þ	� ¼ ½ #dwðp; sÞ; #dðp0; s0Þ	� ¼ d3ðp� p0Þdss0 : ð25Þ

This implies that the expansion coefficients of the above commutator are both
equal to 1, and then the terms of the commutator reduce to those of the
anticommutator, with the result that the commutator vanishes for space-like
separations x � y just as the anticommutator does.
The moral that Greiner and Reinhardt draw is that microcausality cannot

be invoked to distinguish between fermionic and bosonic quantization of
Dirac fields, and therefore it does not lead to the right spin-statistics connec-
tion for spin-1

2
particles: ‘‘The derivation of the spin-statistics theorem for

Dirac fields therefore can be only based on the positivity condition of the energy’’
(1996, p. 140).
In fact, the Hamiltonian of the hypothetically bosonic-quantized Dirac field would

be

#H ¼
X

s

Z
d3popð #bwðp; sÞ #bðp; sÞ � #dðp; sÞ #dwðp; sÞÞ ð26Þ

with the first term corresponding to the positive energy solution and the second term
corresponding to the negative energy solution. Since the commutation relations for
the hole operators are

½ #dwðp; sÞ; #dðp0; s0Þ	� ¼ d3ðp� p0Þdss0 ;

the reordering of the operators would not invert the sign of the second term
of the Hamiltonian, which would not be positive semi-definite in every case. Greiner
and Reinhardt conclude, ‘‘the Hamiltonian of the Dirac field thus cannot be made
a positive-definite operator if the ‘wrong’ (i.e., bosonic) quantization prescription
is employed’’ (1996, p. 129). But it is at this point that the Dirac hole picture
comes to the rescue: it sets everything right by granting an overall positive
Hamiltonian so that ‘‘the condition of positive energies [can be] used to
derive another special case of the spin-statistics theorem (spin�1

2
-Fermi–Dirac

statistics)’’ (1996, p. 130).
To summarize, Greiner and Reinhardt fall back on the Fierz–Pauli

agenda in blending different postulates to prove the spin-statistics theorem:
microcausality for the Klein–Gordon fields, and positive energy for Dirac
fields. Once again, no unified proof seems to be available under the single
relativistic requirement of microcausality. Weinberg’s proof overturns this
generally accepted textbook tradition. As we will see in the next section,
by dispensing with Dirac’s hole picture in the interpretation of the anti-
particle operators, Weinberg is doing more than simply abandoning a
deeply entrenched heuristic picture. He is elaborating a new proof of the theorem
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that no longer needs to invoke positive energy because microcausality alone can do
the entire job.

4. Weinberg’s proof of the spin-statistics theorem: overturning the textbook tradition

Steven Weinberg has offered a remarkably simple proof of the spin-statistics
theorem (at any rate, for the case of non-interacting fields), whose conceptual
innovation with respect to the textbook tradition has been widely ignored in the
literature. We aim at doing justice to Weinberg’s proof by highlighting its points of
divergence from the traditional proof and, at the same time, by showing its
unexpected conceptual connection with Pauli’s original intent.
Weinberg announced the proof for the first time in an article (1964, B1322–B1323)

and then again in his voluminous monograph on quantum-field theory (1995, pp.
219–224). Henceforth, we will focus mainly on the 1964 proof (the later one differs
only slightly from it). The declared purpose of Weinberg’s (1964) article was to
calculate Feynman rules for particles of any spin, where ‘‘our calculation uses field
theory, but only as a convenient instrument for the construction of a Lorentz-
invariant S matrix’’ (Weinberg, 1964, B1318). The spin-statistics theorem is
presented as a side result of the S matrix approach: the advantage—in Weinberg’s
words—is that while ‘‘Pauli’s proof of the connection between spin and statistics is
straightforward for integer j; but rather indirect for half-integer j;’’ the
microcausality requirement that Weinberg invokes yields the spin-statistics connec-
tion straightforwardly also for half-integer j (1964, B1319).
To get causal Dirac fields, Weinberg introduces particle annihilation and

antiparticle creation fields, respectively (see Weinberg, 1995, p. 219)17

#cþðxÞ ¼ ð2pÞ�3=2
X

s

Z
d3p

ffiffiffiffiffiffi
m

op

r
uðp; sÞe�ip�x #bðp; sÞ; ð27Þ

#c�ðxÞ ¼ ð2pÞ�3=2
X

s

Z
d3p

ffiffiffiffiffiffi
m

op

r
vðp; sÞeip�x #dwðp; sÞ: ð28Þ

In order to make the comparison with Greiner and Reinhardt as close as possible,
we shall assume that the wave functions u and v satisfy the Dirac equations ð /p �
mÞu ¼ 0 and ð /p þ mÞv ¼ 0 (cf. Eq. (19)). In Weinberg’s own treatment, these
equations are actually derived from the group-theoretic analysis of LI supplemented
by the microcausality condition. There is in effect a double use of microcausality in
deriving the spin summation formulae of Eq. (22) as well as the spin-statistics
theorem itself. Our treatment is closer to the ‘‘third way’’ of Furry and Oppenheimer
referred to in Section 2: it has the advantage of avoiding Weinberg’s group-theoretic
analysis and yet bringing out the essential step in Weinberg’s proof involving the
choice of commutation/anticommutation relations for the annihilation/creation
operators.
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17We have adapted Weinberg’s notation to correspond to Greiner–Reinhardt.
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Following Weinberg, we now combine #cþ and #c� in a linear combination:18

#cðxÞ ¼ k #cþðxÞ þ l #c�ðxÞ ð29Þ

with the constants k and l to be determined so that for x � y space-like separations,
the Dirac field anticommutes or commutes with itself and its adjoint (depending on
whether the particles destroyed and the antiparticles created by the components
#cþðxÞ and #c�ðxÞ are fermions or bosons, respectively):

½ #cðxÞ; #cðyÞ	7 ¼ ½ #cðxÞ; #%cðyÞ	7 ¼ 0: ð30Þ

This is the microcausality requirement, which is to be satisfied by Dirac fields as
well as by the Klein–Gordon fields (Weinberg, 1964, B1318; 1995, p. 222) and on
which Weinberg relies to get the right spin-statistics connection for both cases. Let us
see how.
To see the connection with the Greiner–Reinhardt notation, let #b and #bw be the

annihilation and creation operators for particles and #d and #dw those for antiparticles.
These operators satisfy Fermi anticommutation or Bose commutation rules:

½ #bðp; sÞ; #bwðp0; s0Þ	7 ¼ d3ðp� p0Þdss0 ;

½ #dðp; sÞ; #dwðp0; s0Þ	7 ¼ d3ðp� p0Þdss0 : ð31Þ

The microcausality condition for Dirac fields then reads

½ #cðxÞ; #%cðyÞ	7 ¼
Z

d3p

ð2pÞ3
m

op

kj j2
X

s

uðp; sÞ %uðp; sÞ

"
e�ip�ðx�yÞ

7 lj j2
X

s

vðp; sÞ %vðp; sÞeip�ðx�yÞ

#
: ð32Þ

Given the projection operatorsX
s

uðp; sÞ %uðp; sÞ ¼
/p þ m

2m

� �
and

X
s

vðp; sÞ%vðp; sÞ ¼
/p � m

2m

� �
ð22Þ

and putting them outside the squared brackets as ði /rþ mÞ; the above microcausality
condition reduces to

½ #cðxÞ; #%cðyÞ	7 ¼ ði /rþ mÞ
Z

d3p

ð2pÞ3
1

2op

½jkj2e�ip�ðx�yÞ7ð�Þjlj2eip�ðx�yÞ	: ð33Þ

But the quantityZ
d3p

ð2pÞ3
1

2op

½e�ip�ðx�yÞ � eip�ðx�yÞ	 ¼ iDðx � yÞ
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18Following Novozhilov’s reconstruction of Weinberg’s argument (Novozhilov, 1975, p. 77), Saunders

(1991) points out that ‘‘if we want to have a covariant causal field that is complex, but transforms simply

under gauge transformations, then we must introduce a new Fock space (the antiparticle space), and the

linear combination of annihilation operators on the particle space and creation operators on the

antiparticle space (together with its adjoint) is the only possible operator expansion’’ (p. 88).
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is nothing but the Lorentz-invariant Pauli–Jordan function, which vanishes if the
argument is a space-like x � y: Now, in order to meet microcausality, it must be the
case that

½ #cðxÞ; #%cðyÞ	7 ¼ 0 for ðx � yÞ2o0; ð30Þ

and, in turn, this can be obtained if the integrand in (33) vanishes. The necessary and
sufficient condition for the integrand to vanish (given the vanishing Pauli–Jordan
function) reduces then to the coefficients of the exponential functions being equal in
magnitude and opposite in sign; i.e.,

�jkj2 ¼ 7ð�Þjlj2: ð34Þ

This is possible if and only if

* jkj ¼ jlj; and
* between 7, we choose the top sign (+). But this means that we must choose the

Fermi anticommutation rule (+). Hence Dirac fields must obey the Fermi–Dirac
statistics. QED

In sum, in order to meet microcausality, Weinberg has got the right (Fermi–
Dirac) statistics for spin-1

2
particles, contra Greiner–Reinhardt and more generally

counter an entire textbook tradition that contends that microcausality is not
sufficient to arrive at this result. How could Weinberg succeed where everyone else
failed?
At a closer look, the discrepancy between Weinberg’s proof and Greiner–

Reinhardt’s can be traced back to the use of different anticommutation/
commutation relations. In fact, for Greiner and Reinhardt, microcausality is not
sufficient because

½ #bðp; sÞ; #bwðp0; s0Þ	7 ¼ ½ #dwðp; sÞ; #dðp0; s0Þ	7 ¼ d3ðp� p0Þdss0 : ð25Þ

If we plugged these anticommutation/commutation relations for particle
and antiparticle operators into Weinberg’s microcausality formula, we would
get

½ #cðxÞ; #%cðyÞ	7 ¼ ði /rþ mÞ
Z

d3p

ð2pÞ3
1

2op

½jkj2e�ip�ðx�yÞ � jlj2eip�ðx�yÞ	; ð35Þ

that clearly vanishes in both cases (i.e., the anticommutator as well
as the commutator) whenever jkj2 ¼ jlj2; by contrast with Weinberg’s corresponding

formula

½ #cðxÞ; #%cðyÞ	7 ¼ ði /rþ mÞ
Z

d3p

ð2pÞ3
1

2op

½jkj2e�ip�ðx�yÞ7ð�Þjlj2eip�ðx�yÞ	; ð33Þ
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where the crucial (7) sign comes from different anticommutation/commutation
relations for the operators

½ #bðp; sÞ; #bwðp0; s0Þ	7 ¼ d3ðp� p0Þdss0 ;

½ #dðp; sÞ; #dwðp0; s0Þ	7 ¼ d3ðp� p0Þdss0 : ð31Þ

To summarize, while from Weinberg’s formula it is possible to get the right
(Fermi–Dirac) statistics for spin-1

2
particles, it is not from Greiner–Reinhardt’s

because the terms of the commutator coincide with those of the anticommutator
with the result that the commutator vanishes for space-like separations as does the
anticommutator (see the synoptic schema below).

Furthermore, Greiner–Reinhardt’s commutation relations for antiparticles,

½ #dwðp; sÞ; #dðp0; s0Þ	� ¼ d3ðp� p0Þdss0

were responsible for the fact that the reordering of the antiparticle operators left the
hypothetically bosonic-quantized Hamiltonian for Dirac fields not positive semi-
definite: it strengthened the need for introducing positive energy as a necessary
additional assumption. But, as we have just seen, this is no longer required in
Weinberg’s proof.
What makes the comparison interesting is the fact that the discrepancy between

Weinberg and the textbook tradition springs from the deeper level of the
interpretation of microcausality and, consequently, of antiparticles.
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5. Conceptual roots of Weinberg’s proof: the requirement of microcausality

The seemingly innocuous difference between Weinberg’s proof and the traditional
one (paradigmatically exemplified by Greiner and Reinhardt) marks in fact a
profound divergence in the history and philosophy of physics as far as the
interpretation of the classical relativistic requirement of microcausality is concerned.
As we have seen in Section 3, according to Greiner and Reinhardt, microcausality is
a classical locality condition imposed by special relativity and designed to avoid the
risk of superluminal signals. As such, it is a fundamental requirement of any physical
theory and ‘‘nothing indicates that the causality principle might break down at the
scale of atoms or elementary particles’’ (Greiner & Reinhardt, 1996, p. 103).
But Weinberg’s concept of microcausality does not have to do with locality,

properly speaking (Weinberg, 1995):

The condition ½ #cðxÞ; #%cðyÞ	7 ¼ 0 is often described as a causality condition,
because if x2y is space-like then no signal can reach x from y, so that a
measurement of #c at point x should not be able to interfere with a measurement
of #%c at y. Such considerations of causality are plausible for the electromagnetic
field, anyone of whose components may be measured at a given space-time point.
However, we will be dealing here with fields like the Dirac field of the electron that
do not seem in any sense measurable. The point of view taken here is that
½ #cðxÞ; #%cðyÞ	7 ¼ 0 is needed for the Lorentz invariance of the S matrix, without any
ancillary assumptions about measurability or causality (p. 198; emphasis added).

Thus, contra Greiner and Reinhardt, ½ #cðxÞ; #%cðyÞ	7 ¼ 0 for ðx � yÞ2o0 is no
longer interpreted as a real causality condition, nor is the quantum field regarded as
a real field but as ‘‘a mere artifice to be used in the construction of an invariant S

matrix’’ (Weinberg, 1964, B1319). For Weinberg, microcausality is a mere heuristic
device—devoid of any causal or local meaning—useful to guarantee the LI of the S

matrix. This discrepancy sheds light on two different theoretical attitudes:

(a) Greiner and Reinhardt, as quantum-field theorists, have a robust attitude
toward the quantum field: they are committed to Dirac’s picture of a
continuum of positive and possibly negative energy states in the Hilbert space
with operators indexed for all space-time points between any initial and final
state.

(b) Weinberg, as a hybrid field theorist/S-matrix theorist, has a weaker attitude
toward the quantum field: the S matrix describes which in-state evolves into
which out-state, without being committed to the space-time facts intervening
between the in- and the out-state (the S-matrix theorists are the ‘‘behaviour-
ists’’—so to speak—of the quantum field).19
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19 ‘‘The hope of S matrix theory was that, by using the principles of unitarity, analyticity, LI and other

symmetries, it would be possible to calculate the S matrix, and you would never have to think about a

quantum field. In a way, this hope reflected a kind of positivistic Puritanism: we cannot measure the field

of a pion or a nucleon, so we should not talk about it, while we do measure S-matrix elements, so this is

what we should stick to as ingredients of our theories’’ Weinberg (1999, p. 248).
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The spin-statistics theorem is just a corollary of Weinberg’s research programme
on a Lorentz-invariant S matrix. Let us explain this point with a bit more clarity.
As is well known (see Teller, 1995, pp. 117–120), the S-matrix operator allows us

to deal with interacting quantum fields because interactions are regarded as
perturbative refinements of the free field motions. Given the Schr .odinger equation in
the so-called interaction representation

i
q
qt

cðtÞj i ¼ #HI cðtÞj i

where #HI is the interaction Hamiltonian, the time evolution of an interacting field
state is described by a unitary operator #UI

cI ðtÞ
�� �

¼ #UI ðt; t0Þ c
I ðt0Þ

�� �
ð36Þ

so that the time derivative of the interaction state is equivalent to

i
q
qt

#UI ðt; t0Þ ¼ #HI ðtÞ #Uðt; t0Þ: ð37Þ

This can be integrated with the boundary condition #Uðt0; t0Þ ¼ #I:

#Uðt; t0Þ ¼ #I � i

Z t

t0

dt1 #HI ðt1Þ #Uðt1; t0Þ: ð38Þ

Since the unitary operator appears in both sides of this equation, a series of
approximations are used to solve this difficulty:

* The zeroth approximation #Uð0Þðt; t0Þ ¼ #I substituted for #Uðt; t0Þ gives the first
approximation

#Uð1Þðt; t0Þ ¼ #I � i

Z t

t0

dt1 #HI ðt1Þ: ð39Þ

* The first approximation #Uð1Þðt; t0Þ substituted for #Uðt; t0Þ gives the second
approximation

#Uð2Þðt; t0Þ ¼ #I � i

Z t

t0

dt1 #HI ðt1Þ #I � i

Z t1

t0

dt2 #HI ðt2Þ
� �

¼ #I � i

Z t

t0

dt1 #HI ðt1Þ þ ð�iÞ2
Z t

t0

dt1

Z t1

t0

dt2 #HI ðt1Þ #HI ðt2Þ: ð40Þ

Continuing in this way, by taking t0-�N and t-þN; we get the S-matrix

operator expansion

#S ¼
XN
n¼0

ð�iÞn

n!

Z þN

�N

dt1?
Z þN

�N

dtnTf #HI ðt1Þ? #HI ðtnÞg; ð41Þ

where Tf #HI ðt1Þ? #HI ðtnÞg means that the operators #HI ðtiÞ are ordered with time
indexes decreasing from left to right.
For the S matrix to be invariant under proper orthochronous Lorentz

transformations, the interaction Hamiltonian #HI ðtÞ must be rewritten as an
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interaction Hamiltonian density (Weinberg, 1964, B1318)

#HI ðtÞ ¼
Z

d3x #Hðx; tÞ; ð42Þ

where #HðxÞ is a scalar and the variable x denotes a vector in four-dimensional space
time. The S matrix can accordingly be rewritten as

#S ¼
XN
n¼0

ð�iÞn

n!

Z þN

�N

d4x1?d4xnTf #Hðx1Þ? #HðxnÞg: ð43Þ

But in order to guarantee the LI of the S matrix a further condition is necessary.
In fact, the W-functions Wðxi � xjÞ implicit in the definition of the time-
ordered product Tf #Hðx1Þ? #HðxnÞg are not scalars unless their argument (xi � xj)
is time-like.20 Thus, it must be forbidden for any W-function to have a space-like
argument. And this veto is equivalent to imposing the condition that for any
space-like (x � y)

½ #HðxÞ; #HðyÞ	� ¼ 0: ð44Þ

But as Weinberg (1964, B1318) points out, ‘‘the only known way of making sure
that such an #HðxÞ will satisfy the restrictions’’ of (a) being a scalar and (b) vanishing
at space-like separations ‘‘is to form it as a function of one or more fields #cðxÞ; which
are linear combinations of the creation and annihilation operators, and which have
the properties: (y) (b) for (x � y) space-like ½ #cðxÞ; #%cðyÞ	7 ¼ 0:’’
We can now better understand why microcausality is here invoked not as a

causality condition but as a mere prescription on the construction of the Dirac fields
so as to guarantee the LI of the S matrix. As Bain (1998, pp. 7–9) has pointed out,
Weinberg introduces local quantum-field theory as the result of a demonstrative
induction,21 whose phenomenal premise includes empirical evidence about scattering
experiments, and whose major premise says that, ‘‘A physically satisfactory S matrix
satisfies the principles of LI and cluster decomposition (CD).’’ Now for the S matrix
to be LI, it is sufficient that:

(i) The interaction Hamiltonian density #HðxÞ is a Lorentz scalar
(ii) ½ #HðxÞ; #HðyÞ	� ¼ 0 for space-like (x2y).

On the other hand, for the S matrix to satisfy CD, which is another locality
condition requiring that scattering experiments at great distances do not interfere,
the full Hamiltonian #H must be built up as the sum of products of creation and
annihilation operators with coefficients which are smooth functions of the momenta.
On the whole, for the S matrix to satisfy LI and CD, it is sufficient that #HðxÞ is a sum
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20Wðxi � xjÞ ¼ 1 or 0, if ti > tj or tiotj ; respectively.
21Demonstrative induction is a non-ampliative inference in which a conclusion of intermediate

generality is drawn from two premises: a so-called phenomenal premise including experimental evidence

obtained by inductive generalization, and a so-called major premise including theoretical principles of the

background knowledge. On demonstrative induction as a scientific method see Norton (1993; 1994) and

Massimi (forthcoming).
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of products of local quantum fields #cðxÞ; which satisfy microcausality
½ #cðxÞ; #%cðyÞ	7 ¼ 0 for space-like (x2y) and are linear combinations of creation and
annihilation operators with coefficients that are smooth functions of momenta.
Schematically,

ðLI & CD of the S matrixÞ ) ðfield decomposition of #HðxÞ with

microcausality for fieldsÞ

There is however an obstacle to the construction of fields like #cðxÞ ¼ k #cþðxÞ þ
l #c�ðxÞ satisfying microcausality.22 In Weinberg’s words (1995),

yit may be that the particles that are destroyed and created by these fields carry
non-zero values of one or more conserved quantum numbers like the electric
charge. For instance, if particles of species n carry a value qðnÞ for the electric
charge #Q; then

½ #Q; #aðp; s; nÞ	� ¼ �qðnÞ #aðp; s; nÞ;

½ #Q; #awðp; s; nÞ	� ¼ þqðnÞ #awðp; s; nÞ ðp: 199Þ;

where #a and #aw denote generic annihilation and creation operators for particles of
momentum p; spin projection s and species n.
Thus, for the scalar #HðxÞ to commute with the charge operator #Q; #HðxÞ must be

constructed as a sum of products of fields #cnðxÞ and their Hermitian conjugates
#cw

mðxÞ satisfying simple commutation relations with #Q (e.g., ½ #Q; #cnðxÞ	� ¼ �qn
#cnðxÞ)

so that

qn1 þ qn2 þ?� qm1 � qm2 �? ¼ 0:

But the above condition is satisfied if and only if

(1) All particle species n that are destroyed by the annihilation field #cþðxÞ carry the
same charge qðnÞ ¼ q:

(2) All particle species %n that are created by the creation field #c�ðxÞ carry the charge
qð %nÞ ¼ �q:

Hence, in order to conserve the electric charge, there must be a doubling of
particle species carrying non-zero values of #Q (Weinberg, 1995):

If a particular component of the annihilation field destroys a particle of species n,
then the same component of the creation field must create particles of species %n

known as the antiparticles of the particles of species n; which have opposite values
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satisfying LI and CD is really only a ‘‘folk theorem.’’ To begin with, it relies on perturbation theory, a

notoriously unreliable tool in rigorous quantum field theory, but more importantly it achieves necessary

rather than sufficient conditions for an acceptable field theory. A counterexample to sufficiency is the fact

that string theory also satisfies the conditions of the theorem. Weinberg concludes that what he has really

shown is that his conditions are sufficient for an effective field theory; i.e., a field theory that works at low

energies, where examples such as string theories degenerate into field theories anyway.
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of all conserved quantum numbers. This is the reason for antiparticles (p. 199;
emphasis in the original).

So, Weinberg does not introduce antiparticles as holes in a negative energy sea !a la

Dirac, as Greiner and Reinhardt do: the reason for antiparticles does not lie in the
mathematical construction of the Hamiltonian as a continuum of energy states with
a lower and an upper bound. Rather, antiparticles are for Weinberg the necessary
consequence of the conservation of quantum numbers such as the electric charge in
the construction of a Lorentz-invariant S matrix.
The way Weinberg introduces antiparticles reminds us—mutatis mutandis—of

Furry–Oppenheimer’s similar conceptual route. Furry and Oppenheimer introduced
antiparticles from the mathematical constraints of their theory, which was perfectly
symmetric with respect to positive and negative charges. Similarly, Weinberg justifies
antiparticles in the light of the formal constraints of his Lorentz-invariant S matrix,
which also requires symmetry with respect to positive and negative charges. Most
importantly, as in Furry and Oppenheimer, antiparticles are taken here as positive
particles in their own right introduced as symmetric counterparts of particles and
having only a bundle of properties opposite to the properties of particles. No
concession is made to the hole picture.
Through this conceptual shift about antiparticles, not only is Weinberg dispensing

with the idea of holes in a negative energy sea; he is dispensing more generally with a
pictorial representation of the quantum field like the one offered by the hole theory.
The quantum field is only an artifice in the construction of the S matrix: and all that
we know about the quantum field is what the S matrix tells us. No wonder we then
have a fictitious microcausality condition, which does not refer to any real ‘‘causal’’
relation between space-time points x and y; but is only a formal constraint for the
construction of a Lorentz-invariant S matrix. It is no wonder, either, that Weinberg
can rely on microcausality alone to get the spin-statistics theorem: positive energy
needs no longer to be postulated apart and to be warranted by the hole picture.
Positive energy has been built into the formalism, and it stands on its own, as Furry
and Oppenheimer had anticipated in 1934.
Pauli seems to agree with Greiner and Reinhardt in resorting to the hole picture to

grant the requirement of positive energy. But he is surely closer to Weinberg as far as
the concept of antiparticle and the programmatic intent of applying relativity alone
to get the spin-statistics connection is concerned. This contradictory position testifies
to Pauli’s difficulties in finding his own theoretical way independently of his old
enemy: Pauli’s proof of the spin-statistics theorem was only a Pyrrhic victory over
Dirac.

6. Conclusions

The aim of this paper was a clarification of the theoretical and conceptual roots of
Weinberg’s proof of the spin-statistics theorem. In the light of the historical
reconstruction of Pauli’s original proof, and of the subsequent textbook tradition,
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we have argued that Weinberg’s proof constitutes a turning point in this tradition:
the requirement of positive energy is finally dispensed with together with the
underpinning hole picture. Microcausality turns out to be the only postulate for the
proof.
In this respect, Weinberg’s proof vindicates Pauli’s anti-Dirac line of thought and

his intention of getting the spin-statistics connection from relativity theory alone: he
has achieved what Pauli merely declared as a programme.
We can now go back to Feynman’s comment, quoted at the beginning of this

paper (Feynman, 1963).

An explanation [of the spin-statistics connection] has been worked out by Pauli
from complicated arguments of quantum field theory and relativity. He has
shown that the two must necessarily go together, but we have not been able to find
a way of reproducing his arguments on an elementary levelyThis probably
means that we do not have a complete understanding of the fundamental principle
involvedy (Chapter 4, Section 1).

We think that Weinberg’s proof provides an advance in this direction by
combining quantum-field theory and relativity in a long-sought elementary proof,
whose only fundamental principle involved is microcausality.
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