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Abstract

A number of excesses (around 3σ) in the proton-proton collision data collected during
Run 1 by the ATLAS and CMS experiments at the Large Hadron Collider point
to the possibility of extensions to the Standard Model Higgs sector. In Run 2,
the excesses are much stronger which confirms the observed Run 1 excesses. Of
particular importance are the excesses in the production of multiple-leptons. While
present in Run 1 data, these have become very significant in Run 2. We introduce
the Madala hypothesis in order to explain the excessess observed in the data. This
hypothesis postulates a heavy boson H (Madala boson) and a lighter scalar S which
can decay into both dark matter and Standard Model particles. To accomodate the
excesses in the data, the dominant decay channel of the heavy boson H is: H → Sh,
where h is the Standard Model Higgs boson.

In this project we study two models which have an extended Higgs sector as com-
pared to the Standard Model. First, we study Left-Right Symmetric Models and
analyze the Higgs spectrum. Flavor Changing Neutral Currents constrain the me-
diating heavy boson to be of O(TeV). We apply global and discrete symmetries to
suppress Flavor Changing Neutral Currents and to constrain the mass of the heavy
boson mediating them to O(GeV). Then we analyzed the mass spectrum of the
neutral boson and place a lower limit on the mass of the heavy boson H. Our anal-
ysis of global and discrete symmetries in Left-Right Symmetric Models constrained
the heavy boson H that mediate Flavor Changing Neutral Currents to O(TeV). We
conclude that Left-Right Symmetric Models cannot accomodate the heavy boson H.

The second model we study is the Two-Higgs Doublet Model Plus a Scalar Singlet.
We will analyze the branching ratios of the heavy boson H and the Z gauge boson
using the program N2HDECAY. Then we discuss the results in the framework of
the Madala hypothesis. Finally, we study the mass spectrum of the neutral heavy
boson in Two-Higgs Doublet Model Plus a Scalar Singlet and determine if we can fit
the heavy boson H in the model. The results obtained in this research indicate that
these models could accomodate the Madala boson. Further studies are required to
perform off-shell decays of the heavy boson H.
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1
Introduction

The Standard Model (SM) is an experimentally established model of elementary
particles and their interactions [1, 2, 3]. In 2012, the Higgs boson [4, 5], the last
missing particle in the SM, was discovered at the ATLAS and CMS experiments at
the large Hadron Collider (LHC) at CERN [6, 7]. We give a brief introduction to the
SM and a short description of the Madala hypothesis and how it can be embedded
in models beyond the SM (BSM).

The structure of this chapter is as follows: In section 1.1 we give a brief overview of
the SM. In section 1.2 we briefly explain the Brout-Englert-Higgs (BEH) mechanism.
In section 1.4 we will introduce the Madala hypothesis. In section 1.5 we discuss
the connection between the Madala hypothesis and theories BSM.

1.1 Overview of the Standard Model

The SM is a model that describes the interactions of high energy particles. It has
been verified by many experiments, such as the LHC and the Tevatron. A new
era for high energy particle physics began when the Higgs boson was discovered by
ATLAS and CMS experiments at the LHC [6, 7]. In June 2012, the LHC announced
the discovery of the last missing piece of the SM, the SM Higgs boson h with a
mass mh ∼ 125 GeV, at the center of mass energy

√
s =7 and 8 TeV. The universe

is composed of few fundamental building blocks called elementary particles. The
interactions of these elementary particles are governed by four fundamental forces.
Our current best physical and mathematical model that describes the interactions
of these elementary particles with three of the fundamental forces is explained in
the SM. It has successfully explained many experimental results and made precise
predictions to a wide variety of phenomena [8]. Even though the SM is the best
description of elementary particle physics we know today, there are several short-
comings in the SM that make us consider it as the low energy limit of a more
fundamental theory. The theory describes only three out of the four fundamental
forces, excluding gravity. If we just add gravity to the SM we will not reproduce the
experimental results without modifying the SM. The SM is considered incompatible
with the successful theory of general relativity.

The SM explains only 5% of the energy present in the universe. It also does not

1
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Figure 1.1: Interactions of particles and gauge bosons in the Standard Model.

answer the nature of dark matter (DM). DM does not (or weakly) interacts with
the SM fields yet it constitutes about 26% of the energy in the universe. In the SM
the Higgs boson gets very large quantum corrections due to the presence of virtual
particles. These corrections are much larger than the actual mass of the Higgs.
Thus, inorder to obtain the observed mass of the Higgs, we have to fine tune the
bare mass parameter to cancel most of the quantum corrections. The fine-tuning
is considered unnatural by many theoretical physicists. It also predicts massless
neutrinos, but experiments have proven that they have very tiny masses and mixing
occurs between them. We can add neutrino mass terms in the SM but this will lead
to new theoretical problems. The SM only contains left-handed neutrinos since no
right-handed neutrinos are observed.

Our current knowledge of the universe is that it’s governed by four fundamental
forces: the gravitational force, the electromagnetic force, the weak force and the
strong force. These forces have varying strengths and different interaction ranges.
Gravity is the weakest force and it has an infinite interaction range. The electromag-
netic force is much stronger than gravity even though it has an infinite interaction
range. The weak and strong forces are much stronger than the gravitational and
electromagnetic forces but dominate only at the level of subatomic particles.

The interactions between particles and three of the fundamental forces are mediated
by particles that act as force-carriers. These particles are called “gauge bosons” and
they are responsible for interactions between the matter particles. Each fundamental
force has its unique gauge bosons. The strong force is mediated by the “gluon”, the
electromagnetic force is mediated by the “photon”, and the “W and Z bosons”
mediate the weak force. The mediating particle for gravity is not included in the
SM, but physicists have postulated the “graviton” as the force mediator. All the
particles occurring in the SM have been experimentally observed including the 125
GeV Higgs boson h. The SM describes how the electromagnetic, weak and strong
forces interact with matter particles via the mediating particles, Fig. 1.1.

The Z and the W are massive, while the photon and the gluons are massless. This
causes weak interactions to be “weak” at low energy O(100 GeV). The SM is an
effective theory which operates at the low energy regime. At the low energy regime
(electroweak scale O(100 GeV)), the weak and electromagnetic interactions become
unified and indistinguishable in the framework of the electroweak interaction. Above
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the electroweak scale (≈ 246 GeV) nature exhibits a higher degree of symmetry. Very
high energy scales (O(TeV) and above) allow the possibility of unifying the strong
force with the weak and electromagnetic forces [8]. The SM is based on the gauge
group:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y . (1.1)

It is a product of the electroweak group SU(2)L ⊗ U(1)Y with the Quantum Chro-
modynamics (QCD) group SU(3)C . There are 8 gluons Gaµ of SU(3)C color, 3 weak
bosons W i

µ of SU(2)L and Bµ boson of U(1)Y hypercharge. The SM Lagrangian is
given by:

LSM = Lkinteic + Lgauge + LHiggs + LY ukawa. (1.2)

The Lkinteic term describes fermion and gauge boson interactions which are invariant
under the SM gauge group. The kinetic term for fermions have the following form:

Lfkinetic = i
∑

Ψ̃γµDµΨ,

where Ψ and Ψ̃ are fermion fields and Dµ is the covariant derivative associated to
SU(2)L ⊗ U(1)Y :

Dµ = ∂µ + igW
1

2
τ i.Wµν

i + igB
1

2
Y Bµν , (1.3)

where gW and gB are the respective couplings for the vector fields Wµν
i and Bµν .

τ i and Y are generators of the SU(2)L and U(1)Y gauge groups, respectively. The
Lgauge term contains the kinetic terms for the gauge fields and the interactions
between them:

Lgauge = −1

4
Wµν
Li W

Li
µν −

1

4
Gµνa Gaµν −

1

4
BµνBµν , (1.4)

where W i, Gaµ and Bµν are the field strength tensors of the SU(2)L, SU(3)C and
U(1)Y gauge fields respectively. They can be defined as follows:

Gµνa = ∂µGνa − ∂νGµa − gGfabcG
µ
bG

ν
c ,

Wµν
Li = ∂µW ν

Li − ∂νW
µ
Li + gLε

ijkWµ
LjW

ν
Lk,

Bµν = ∂µBν − ∂νBµ, (1.5)

where fabc and εijk are the structure constants of the SU(3)C and SU(2) groups,
respectively. The LY ukawa term describes the Yukawa interactions, which consist
of the most general possible couplings of the Higgs scalars to the bilinear fermion
fields:

LY ukawa = −
3∑
i=1

yijΨ̃ΦΨ + h.c,

where Φ = τ2Φ∗τ2 is the Higgs field and yL, yQ, ym, yL, yQ are 3×3 Yukawa matrices
in flavor space. The SM Higgs Lagrangian term LHiggs is given by:

LHiggs = Tr|DµΦ|2 − VHiggs, (1.6)

where VΦ is the potential for the Higgs field:

VΦ = µ2(Φ†Φ) + λ(Φ†Φ)2, µ2 < 0.

There are seventeen named particles in the SM; see Fig. 1.2. They can be categorized
into two groups: the first group consists of building blocks of matter, called fermions,
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while the second group consists of mediators of interactions, called bosons. Both
groups are defined by their mass, their spin and the quantum numbers that determine
their interactions. There are twelve fermions and five gauge bosons in the SM. The
fermion fields are represented as left-handed doublets:

LiL =

(
ν
e

)i
L

, QiL =

(
u
d

)i
L

, (1.7)

where eL and νL are the left-handed electrons and their corresponding neutrinos
while uL and dL are the left-handed up and down quarks, respectively. We also have
the right-handed singlets:

νR, eR, uR, dR, (1.8)

where eR and νR are the right-handed electron and their corresponding neutrino
while uR and dR are the right-handed up and down quarks, respectively. The repre-
sentations of the multiplets with respect to SU(3)C , SU(2)L and U(1)Y , respectively
are:

LL = (1, 2,−1), νR = (1, 1, 0), QL = (3, 2,
1

3
), (1.9)

eR = (1, 1,−2), uR = (3, 1,
4

3
), dR = (3, 1,

−2

3
).

The representations describe how each field transforms under the SM group. For
example LL does not transform under SU(3)C since it is a singlet under SU(3)C
and has a hypercharge value of −1. The fermion particles are classified into three
families with different masses and different electromagnetic charge. Since heavier
particles are unstable, they decay into lighter particles which constitute most of the
ordinary matter we see every day. In each family, the fermions are characterized by
their charges defined under the strong and electromagnetic interactions. Leptons
are neutral under the strong interactions while quarks are charged. Three quarks
carry the electromagnetic charge 2

3 (up, charm, top) while the other three carry
the electromagnetic charge −1

3 (down, strange , bottom). Three leptons carry the
electromagnetic charge -1 (electron, muon, tau) and their corresponding neutrinos
are neutral under the electromagnetic charge. Neutrinos are hard to detect since
they are neutral under both the electromagnetic and strong interactions. They have
a very small mass as compared to other SM fermions. The masses of the SM fermions
cover a wide range from the 170 GeV top quark down to the O(eV) neutrinos.

The concept of chirality describes whether a particle is left-handed or right-handed.
The chirality of a massless particle is equivalent to the helicity which is the dot
product between the spin and momentum of the particle. If a particle travels in
the same direction as its spin, then helicity = 1 and the particle is identified as
right-handed. Conversely, a left-handed particle travels in the opposite direction of
its spin and has helicity = -1. An anti-particle has the opposite sign of helicity when
compared to its corresponding particle.

Chirality for massive particles is more complex, since the dot product between mo-
mentum and spin depends on the reference frame and is not a simple Lorentz-
invariant property. In the SM, left-handed particles are arranged into an isospin
doublet, which can be rotated by three SU(2)L transformations. Since the SU(2)R
doesn’t exist, this means that right-handed particles have a trivial isospin repre-
sentation and don’t transform under isospin rotations. In the SM, the left and
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Figure 1.2: Matter particles and gauge bosons in the Standard Model [9].

right-handed particles have different group representations. Such theories are called
chiral theories.

The SM is a non-Abelian gauge theory where the symmetry group: SU(2)L⊗SU(3)C
is non-commutative. It is based on a gauge principle in which the exchanged gauge
bosons are gauge fields of corresponding symmetry groups. The gauge transforma-
tions of the fields in the SM form a Lie group which refers to the symmetry group
(gauge group) of the theory. For a quantum field theory to be gauge invariant, we
add gauge fields to the Lagrangian to ensure that it is gauge invariant under the lo-
cal group transformations. When the theory is quantized, gauge bosons are created
from the quanta of the gauge fields. A gauge transformation of a general quantum
field Ψ is represented by:

Ψ −→ eiεaT
a
Ψ ' (1 + iεaT

a)Ψ,

where T a are the generators of the gauge group and the parameter εa = εa(x) de-
pends on spacetime. An important consequence of the dependence of the quantum
field Ψ on spacetime is that the derivative of the field is no longer gauge invari-
ant. To obtain a gauge invariant derivative of a field, we introduce gauge covariant
derivatives:

Dµ = ∂µ + igAaµ,

where a vector field Aaµ and a coupling constant g have been introduced (provided

that this new field transforms as: Aaµ −→ Aaµ − 1
g∂µε(x)). This allows the covari-

ant derivative DµΨ to remain invariant under gauge transformations. The vector
fields Aaµ, which were introduced, are known as vector bosons, or gauge bosons. For
each gauge group in the SM we need to introduce a vector field to ensure the gauge
invarince of the whole theory. In addition, each group transformation has an associ-
ated coupling constant, which allows the gauge fields to mediate forces between the
fields. The vector bosons can then be written in terms of the generators (T a) of the
group as: Aaµ = AaµT

a. The SM contains the following vector bosons and coupling
constants:

SU(3)C : Gaµ , a = 1, 2, ........8,

SU(2)L : W a
µ , a = 1, 2, 3,

U(1)Y : Bµ. (1.10)
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Figure 1.3: Spontaneous symmetry breaking in the Standard Model.

The coupling constant for the strong interactions is αS while for the electromag-
netic and weak interactions is given by αEM and αW , respectively. The vector
bosons which mediate the strong interactions are the eight gluons Gaµ. The vector
bosons responsible for electroweak interactions are the three W bosons W a

µ and the
hypercharge boson Bµ.

1.2 BEH Mechanism and symmetry breaking

The BEH mechanism [4, 5] is the process by which all particles acquire mass. It
describes a mechanism where a field with a non-zero ground state becomes the
source for all particles to gain mass. The mechanism assumes that the spin-zero
Higgs field permeates space-time, which is a doublet in SU(2) and with a nonzero
U(1) hypercharge. The BEH mechanism introduces Φ with a non-zero vacuum
expectation value (vev) v. Φ is a complex scalar field which has the form:

Φ =

[
φ+

φ0

]
=

1√
2

[
φ1 + iφ2

φ3 + iφ4

]
. (1.11)

The BEH mechanism describes how the electroweak symmetry in the SM is broken
to the electromagnetic symmetry. This mechanism is known experimentally as Elec-
troweak Symmetry Breaking (EWSB). This mechanism allows the fermions and the
massive gauge bosons to acquire mass. In the SM, the mechanism for electroweak
symmetry breaking postulates the existence of the (spin = 0) Higgs field Φ. The
Higgs field permeates space-time where it has a non-zero value even in it’s ground
state. Before EWSB, the mass terms for leptons, quarks and vector bosons are for-
bidden since they are not invariant under gauge transformations. The SM massive
particles acquire their masses when they interact with the Higgs field.

Both the gauge bosons and fermions can interact with this field, and due to that
interaction, they acquire mass. The mechanism relies on the non-zero ground state
value of the Higgs field which breaks the local gauge invariant SU(2)L ⊗ U(1)Y
symmetry to the electromagnetic gauge group U(1)EM . To retain the symmetries
of the Lagrangian, we can only add SU(2)L⊗U(1)Y multiplets. To ensure that the
hypercharge Y = +1, the upper and lower components of the doublet must have
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specific values for the electric charge. We then add the potential V (Φ) for the Higgs
field so that the symmetry of the Lagrangian will be spontaneously broken; see Fig.
1.3. The Lagrangian for the scalar field is given by:

Lscalar = (DµΦ)†(DµΦ)− V (Φ), (1.12)

The symmetry of the potential V (Φ) results in an infinite number of degenerate

states satisfying Φ†Φ = v2

2 at the minimum energy of the potential [8]. Since V (Φ)
depends only on the term Φ†Φ, we can choose the unitary gauge: φ1 = φ2 = φ4 = 0
and φ3 > 0. In the unitary gauge we set φ3 = h, where h is the physical Higgs
scalar. We shift φ3 by the vev (v) to give us: φ3 = v + h. In the unitary gauge the
scalar doublet can be written as follows:

V acuum = 〈φ0〉 =
1√
2

[
0

v + h

]
. (1.13)

In order to conserve electric charge, only a neutral scalar field can acquire a vev.
The vacuum we defined above conserves electric charge since I = 1

2 , I3 = −1
2 and if

we choose Y = +1, we find Q = I3 + 1
2Y = 0. Choosing this vacuum will break the

SU(2)L ⊗ U(1)Y gauge group but leave U(1)EM invariant. This leads to massive
gauge bosons W± and Z and a massless photon A. The vev of the Higgs field breaks
the electroweak gauge group down to the electromagnetic gauge group:

SU(2)L ⊗ U(1)Y −→ U(1)EM . (1.14)

We can check which symmetries associated to the gauge bosons are broken by
analysing the action of the generators on the SM gauge group SU(2)L:

τ1φ0 =

[
0 1
1 0

]
1√
2

[
0

v + h

]
= +

1√
2

[
v + h

0

]
6= 0 −→ broken,

τ2φ0 =

[
0 −i
i 0

]
1√
2

[
0

v + h

]
=
−i√

2

[
v + h

0

]
6= 0 −→ broken,

τ3φ0 =

[
1 0
0 −1

]
1√
2

[
0

v + h

]
=
−1√

2

[
0

v + h

]
6= 0 −→ broken,

Y φ0 =

[
1 1
1 1

]
1√
2

[
0

v + h

]
=

1√
2

[
0

v + h

]
6= 0 −→ broken. (1.15)

The Goldstone theorem states that the spontaneous breaking of a Lagrangian sym-
metry will produce massless excitations corresponding to the broken symmetry [8].
The invariance of a Lagrangian under a continuous symmetry group O while it’s
vacuum is only invariant under a subgroup of O will result in massless particles (as
many as the number of the broken generators). Each broken generator causes one
degree of freedom to be removed. In the SM, we had in total four generators for
the direct product SU(2)L ⊗ U(1)Y . After EWSB, four degrees of freedom were
removed and we are only left with one unbroken generator. The degrees of freedom
removed become longitudinal components (Goldstone scalars) which are absorbed
by the massless gauge bosons to become massive. This results in all the four gauge
bosons (W1, W2, W3 and Bµν) acquiring mass through the BEH mechanism. After
rotation, the four gauge bosons (W1, W2, W3 and Bµν) become the massive vector
bosons W±, Z and the massless photon A. The requirement of a massless pho-
ton demands the U(1)EM symmetry conserve the invariance of the vacuum. The
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U(1)EM symmetry is conserved because the vacuum is neutral as can be shown:

U(1)EM : Qφ0 =
1

2
(τ3 + Y ) =

[
1 0
0 0

] [
0

v + h

]
= 0 −→ unbroken. (1.16)

The generator of U(1)EM symmetry relates the electric charge of the resulting
U(1)EM group to the third generator of SU(2)L and the charge of U(1)Y .

1.3 Mass terms for the Higgs and gauge bosons

We can derive the gauge bosons masses from the kinetic term of the scalar La-
grangian: Lscalar = (DµΦ)†(DµΦ) − V (Φ). The Higgs boson mass and the Higgs
self-interactions are derived from the potential term: V (Φ). The covariant derivative
of the complex doublet is given by:

DµΦ = [∂µ + igw
1

2
τ iWµν

i + igB
1

2
Y Bµν ]

1√
2

[
0

v + h

]
. (1.17)

The masses of the gauge bosons and their interaction with the Higgs boson are
derived from the (DµΦ)†(DµΦ) terms. Substituting the Higgs field vev into the
kinetic term gives us the masses of the gauge bosons, where

DµΦ =
1√
2

[igW
1

2
τ iWµν

i + igB
1

2
Y Bµν ]

[
0
v

]
,

=
i√
8

[gW (τ1W1 + τ2W2 + τ3W3) + gBY B
µν ]

[
0
v

]
. (1.18)

After simplifying the above expressions, we get:

DµΦ =
iv√

8
(gW (W1 − iW2), (−gWW3 + gBY B

µν)), (1.19)

(DµΦ)† = − iv√
8

(gW (W1 + iW2), (−gWW3 + gBY B
µν)). (1.20)

This gives us the following expression for the kinetic term:

(DµΦ)†(DµΦ) =
1

8
v2[g2

W (W 2
1 +W 2

2 ) + (−gWW3 + gBY B
µν)2]. (1.21)

We now rewrite W1, W2, W3 and Bµν in terms of the physical gauge bosons W±, Z
and the photon A, since these are the gauge bosons that are observed in experiments.
We can rewrite W1 and W2 using W± = 1√

2
(W1 ∓ iW2). If we look at the terms

containing W1 and W2 in the Lagrangian, we find that:

g2
W (W 2

1 +W 2
2 ) = g2

W (W+2
+W−

2
). (1.22)

The vector bosons W3 and Bµν combine to form the neutral gauge bosons Z and
the photon A. Expanding the (−gWW3 + gBY B

µν)2 term, we obtain:

(−gWW3 + gBY B
µν)2 = (W3, B

µν)

(
g2
W −gW gBY

−gW gBY g2
B

)(
W3

Bµν

)
. (1.23)
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In the following calculations we use Y = 1. We can relate the photon and the Z
gauge boson to the vector bosons, W3 and Bµν , by the relations:

A = cos θWB
µν + sin θWW3, (1.24)

Z = − sin θWB
µν + cos θWW3, (1.25)

where θW is the Weinberg angle (which describes the mixing of the W3 and Bµν

gauge fields to produce the Z boson and photon A):

sin θW =
gB√

g2
W + g2

B

, cos θW =
gW√

g2
W + g2

B

.

The mass terms of the gauge bosons can be obtained by rewriting the kinetic term
in terms of the physical fields:

(DµΦ)†(DµΦ) =
1

8
v2[g2

W (W+)2 + g2
W (W−)2 + (g2

W + g2
B)Z2]. (1.26)

Thus, the mass terms for the massive gauge bosons are:

MW± =
1

2
vg, (1.27)

MZ =
1

2
v
√

(g2
W + g2

B),

MA = 0.

We cannot predict the Higgs boson mass in the SM since λ is a free parameter. The
mass term for the Higgs boson is given by:

Mh =
√

2λv2. (1.28)

1.4 The Madala hypothesis

Although the SM particle spectrum is now complete, there are continuous research
efforts for new Higgs bosons at the LHC. The Madala hypothesis extends the SM
Higgs sector by introducing two new scalars that are heavier than the SM Higgs
boson h. A new heavy scalar H (the Madala boson) was proposed to explain several
anomalous features in the LHC Run 1 data [10, 11] and Run 2 data [12, 13]. The
motivation to introduce a new boson stemmed from the four groups of excesses that
included the Higgs boson pT , the limits on the production of hh, the production of
multiple leptons in the search for tth and the V V invariant mass spectrum [10, 11,
12, 13, 14, 15, 16]. The full Lagrangian for the model consists of the SM Lagrangian
LSM in addition to the BSM Lagrangian LBSM :

L = LSM + LBSM , (1.29)

where all of the new interactions and states are described by the BSM Lagrangian:
LBSM = LH + LY + LT + LQ, where LH , LY , LT and LQ are the Higgs, Yukawa,
trilinear and quartic interactions, respectively [10]. The postulated heavy boson, H,
was considered to have couplings to the SM particles. The dominant decay of H is:
H → Sh, where S is a new Higgs-like scalar. Therefore, it was only considered in
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Figure 1.4: Feynman diagrams representing the decay of H. The left diagram is due
to the quartic coupling λhHχχ while the right diagram represents the addition of the
scalar singlet S [11].

the mass range 2mh < mH < 2mt, since if it were heavier it would be dominated by
H → tt̄ decays due to the strong Yukawa coupling and if it was lighter the resonant
di-Higgs decays would be forbidden. In [10, 11, 15], the formalism was expanded
in order to include the phenomenology of an intermediate scalar that would explain
the coupling of the heavy boson to DM and the SM Higgs boson. In this extended
framework, the heavy boson would also decay into the SM Higgs boson and the
intermediate scalar, as well as into two intermediate scalars.

A scalar DM mediator S was introduced to explain the nature of the effective vertex
[11], and the decays of H were such that the dominant channels are H → Sh, hh.
This results in the production of a Higgs boson with missing energy through an
effective vertex Fig. 1.4.

The parameters of the model were constrained further in order to calculate the
minimised χ2 of the anomalous data in the LHC run 1 against χ2 of the postulated
heavy boson model, Fig. 1.5. The best fit to the heavy Higgs boson obtained was
mH = 272+12

−9 GeV [10]. The scalar singlet S has a mass in the range mh < mS <
mH −mh, such that it is more kinematically accessible through the decays of H as
mentioned above. It was also considered that S is allowed to couple with all of the
SM particles as well as a dark matter candidate χ, since it has Higgs-like couplings
to the SM [10, 11, 15]. Since S has Higgs-like decay modes, it would then decay
predominantly to the vector bosons Z and W± if it has a mass of around 150 GeV
or higher.

The Madala hypothesis can investigate, with regards to several ATLAS and CMS
measurements, the di-lepton invariant mass spectra. In [10] an excess in di-lepton
plus jets and missing transverse energy was predicted, see Fig. 1.6. The available
data from the ATLAS and CMS experiments display this excess. In [12], the focus
of the study was the decay of the scalar boson S to di-lepton final states. In order
to understand the excess in the di-lepton results, the BSM di-leptons signal was
compared to the ATLAS and CMS data. The best fit event yield was calculated
by varying the BSM normalisation and fitting the SM+BSM prediction to the data,
using χ2 defined in [12]. The scale factor (the combined production strength of H:
β2
g for different datasets) is used to measure the performance of the BSM signal. The

minimised value of χ2 has the lowest value of 0.72 per degree of freedom in the fit.
The combined β2

g calculated from the di-leptons invariant mass of H → Sh signal,
with ATLAS and CMS data, is found to be β2

g = 1.22±0.38 [12]. A combined fit was
performed with a common value of β2

g . This is done in order to test the ability of
the simplified model to describe the data. This corresponds to a significance of 3.2σ
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Figure 1.5: Plot of the minimised χ2 values as a function of mH [10].

Figure 1.6: Distributions of the ATLAS data and SM background comparing to the
BSM signal for the di-lepton invariant mass with at least one b-tagged jet [12].
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for mH = 270 GeV and mS = 150 GeV [12]. This result is in good agreement with
the scale factor extracted from the collected data so far. In [12], the combined β2

g

values for the Higgs boson signal strength and leptons with b-tagged jets are β2
g =

1.69 ± 0.54 and β2
g = 1.22 ± 0.38, respectively. Combining these results together

corresponds to 6.3σ.

1.5 The Madala hypothesis in theories beyond the Stan-
dard Model

The Madala hypothesis introduces new Higgs bosons that do not exist in the SM.
There are many possible theoretical models which could accomodate additional
scalars. The excesses seen in the ATLAS and CMS data could be explained by
adding a heavier boson H and a scalar singlet S in a model with an extended Higgs
sector. In chapter 2, we will study Left-Right Symmetric Models (LRSMs) and in-
vestigate if they can accomodate the new postulated heavy bosons. We have chosen
this model because it has an attractive left-right symmetry where we have mirror
gauge bosons W±R and ZR, as well as additional Higgs bosons in the Higgs sector.
The next model we will study is the Two-Higgs Doublet Model plus scalar singlet
(2HDM+S). The scalar singlet field is a singlet under the SM gauge group [11]. This
model contains five neutral Higgs bosons, which may include the heavy boson H.



2
Left-Right Symmetric Models

In this chapter we study the roles of global and discrete symmetries to suppress
Flavor Changing Neutral Currents (FCNCs) in LRSMs. We study the roles of global
and discrete symmetries in constraining the mass of the heavy boson H to mH ∼
270 GeV, to fit the Madala hypothesis.

We structure this chapter as follows: In section 2.1 we give an overview of LRSMs.
In section 2.3 we discuss tree-level FCNCs in LRSMs. In section 2.5 we discuss the
role of global symmetries in suppressing FCNCs. In section 2.6 we discuss discrete
symmetries and explain their relation to the FCNC problem. In section 2.7 we
summarise the results of the study.

2.1 Overview of Left-Right Symmetric Models

A good candidate BSM to search for the postulated Higgs bosons H and S is
LRSMs [17]. The LRSMs gauge group is an extension of the SM gauge group by
adding an SU(2) right handed doublet field given as: GLRSMs ≡ SU(3)C⊗SU(2)L⊗
SU(2)R⊗U(1)B−L. The right handed doublet field SU(2)R is introduced to restore
the parity symmetry [18]. This left-right symmetry is then broken spontaneously to
the SM gauge group [19].

A FCNC allows a fermion current to change its flavor without changing its electric
charge. In the SM, FCNCs do not exist at tree-level and are suppressed at loop-level
by the Glashow–Iliopoulos–Maiani (GIM) mechanism [20]. The GIM mechanism ex-
plains why processes that change strangeness by 2 units (∆S = 2 transitions) are
suppressed. Due to the enlarged Higgs sector of LRSMs, neutral Higgs bosons can
mediate FCNCs at tree-level and give contributions to neutral Kaon meson mixings
(neutral Kaon and neutral anti-Kaon oscillation) larger than the observed values [19].
The experimentally observed neutral Kaon meson mixing, 4exp

mk , places a constraint

on neutral Higgs-Kaon meson mixing 4H0
1

mk . This constrains the mediating Higgs
bosons masses to be of the O(TeV) [17]. LRSMs were motivated to address some
of the shortcomings in the SM, such as the asymmetry between left-right repre-
sentations and the source of parity violation in weak interactions. This has led
physicists to introduce a theory that has left-right chiral symmetry. The left-right

13
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chiral symmetry extends the SM gauge group by introducing the right handed dou-
blet SU(2)R [18]. In LRSMs, parity violation occurs when the left-right symmetry is
broken at a very high energy scale, which results in the parity asymmetry observed
at and below the electroweak scale.

LRSMs offer the possibility of restoring left-right symmetry, which is then sponta-
neously broken to the SM gauge group. The extended symmetry in the electroweak
sector introduces new phenomenology and several interesting theoretical features.
The original hypercharge quantum number Y of the SM is modified to the baryon
minus lepton quantum number (B − L), which is conserved at a high energy scale
and breaks down to the SM hypercharge gauge symmetry at the electroweak scale.
The electromagnetic charge Q is described by the Gell-Mann-Nishijima formula:

Q = T3L + T3R +
YB−L

2
, (2.1)

where T3L and T3R are the third generators of SU(2)L and SU(2)R respectively.
The generators of SU(2)L and SU(2)R are given by Ti = 1

2τi, where τi are the
Pauli matrices. The action of the electromagnetic charge matrix (Q) on the LRSMs
multiplets gives the electric charges of the fields. Since fermions have known values
of electric charge, we can use Eq. 2.1 to find the values of YB−L.

Leptons have YB−L = −1 and quarks have YB−L = 1
3 . In LRSMs, the U(1) generator

has a physical interpretation as the B − L quantum number. This introduces an
attractive physical interpretation for the charge as compared to the SM, which lacked
any physical meaning for the hypercharge U(1). The non-zero small neutrino mass
can also have a physical explanation in the framework of LRSMs. In LRSM, the see-
saw mechanism [19] introduces a very heavy right-handed neutrino, which produces
a very light left-handed neutrino.

In order to achieve a left-right symmetry, the LRSMs Lagrangian must be invariant
under the (discrete) left-right symmetry:

ΨL ↔ ΨR, ∆R ↔ ∆L, Φ↔ Φ, (2.2)

where ∆L and ∆R are the left-handed and right-handed triplet fields, respectively.
The LRSMs Lagrangian consists of four parts:

LLRSMs = Lkinteic + Lgauge + LHiggs + LY ukawa. (2.3)

The Lkinteic term describes fermion and gauge boson interactions which are invariant
under the LRSMs gauge group. The kinetic term for fermions have the following
form:

Lkinetic = i
∑

Ψ̃γµDµΨ,

= LLγ
µ(i∂µ + igL

1

2
τ i.Wµν

Li − igB
1

2
Bµν)LL

+ LRγ
µ(i∂µ + igR

1

2
τ i.Wµν

Ri − igB
1

2
Bµν)LR (2.4)

+ QαLγ
µ(i∂µ + igL

1

2
τ i.Wµν

Li + igB
1

6
Bµν)αβ + gG

1

2
Gµνa )QβL

+ QαRγ
µ(i∂µ + igR

1

2
τ i.Wµν

Ri + igB
1

6
Bµν)αβ + gG

1

2
Gµνa )QβR,

(2.5)
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where LL,R and QL,R are the left-handed and right-handed leptons and quarks fields,
respectively. The Lgauge term contains the kinetic terms for the gauge fields and the
interactions between them:

Lgauge = −1

4
Wµν
Li W

Li
µν −

1

4
Wµν
RiW

Ri
µν −

1

4
Gµνa Gaµν −

1

4
BµνBµν , (2.6)

where W i, Gaµ and Bµν are the field strength tensors of the SU(2)L,R, SU(3)C and
U(1)B−L gauge fields respectively. They can be defined as follows:

Gµνa = ∂µGνa − ∂νGµa − gGfabcG
µ
bG

ν
c ,

Wµν
Li = ∂µW ν

Li − ∂νW
µ
Li + gLε

ijkWµ
LjW

ν
Lk,

Wµν
Ri = ∂µW ν

Ri − ∂νW
µ
Ri + gRε

ijkWµ
RjW

ν
Rk,

Bµν = ∂µBν − ∂νBµ, (2.7)

where fabc and εijk are the structure constants of the SU(3)C and SU(2) groups,
respectively. The LY ukawa term describes the Yukawa interactions, which consist
of the most general possible couplings of the Higgs scalars to the bilinear fermion
fields:

LY ukawa = −
3∑
i=1

c(Hiff)yijψ̃fΦiψf + h.c,

= − c(Hiff)
(

[yl1ijLLΦ1LR + yu1
ij QLΦ1Q

u
R + yd1

ij QLΦ1Q
d
R] (2.8)

+ [yl2ijLLΦ2LR + yu2
ij QLΦ2Q

u
R + yd2

ij QLΦ2Q
d
R] + [yl3ijLLiτ2∆RLR]

)
+ h.c,

where Φ = τ2Φ∗τ2 and yli,ui,diij are 3×3 Yukawa matrices in flavor space. The Yukawa
Lagrangian couples the scalar field to a left-handed fermion field and a right-handed
fermion field. If the scalar field acquires a non-zero vev, then when this vev is
substituted into the Yukawa Lagrangian, it results in mass terms for the fermions.
The SM massive particles only have Dirac mass terms, since all the charged fermions
are distinct from their anti-particles. The Higgs Lagrangian term LHiggs contains
the potential term as well as the Higgs kinetic terms of the Higgs fields [21]:

LHiggs =
∑
i

[Tr|DµXi|2]− VLRSMs, (2.9)

where VLRSMs is the LRSMs scalar potential and Xi = Φ,∆L,∆R. It consists of
the covariant derivatives of the three scalar fields, which give the kinetic terms for
the scalars and interactions between the scalar and gauge fields. When the scalar
vevs are substituted into LHiggs, the gauge bosons acquire mass terms. Under the
SU(2)R⊗SU(2)L⊗U(1)B−L symmetry, the covariant derivatives for the Higgs fields
are given by:

DµΦ = ∂µΦ− igL
2

(σ.Wµν
Li )Φ + i

gR
2

Φ(σ.Wµν
Ri ),

Dµ∆L,R = ∂µ∆L,R − i
gL,R

2
Wµν
L,R.[σ,∆L,R]− igBBµν∆L,R. (2.10)

Quarks and leptons are left-right symmetric in LRSMs [22], as they are represented
by left and right handed doublets:

QL =

(
u
d

)
L

∼ [3, 2, 1,
1

3
], QR =

(
u
d

)
R

∼ [3, 1, 2,
1

3
],

LL =

(
ν
e

)
L

∼ [1, 2, 1,−1], LR =

(
ν
e

)
R

∼ [1, 1, 2,−1].



Section 2.2. BEH mechanism and symmetry breaking Page 16

The numbers in the square brackets denote the quantum numbers under the groups
SU(3)C , SU(2)L, SU(2)R and U(1)B−L, respectively. LRSMs have an extended
Higgs sector which consists of the bi-doublet Φ and left and right triplets ∆L,R:

Φ =

[
Φ0

1 Φ+
2

Φ−1 Φ0
2

]
≡ [1, 2, 2, 0], ∆L,R =

 ∆+
L,R√
2

∆++
L,R

∆0
L,R −∆+

L,R√
2

 ≡ [1, 3(1), (1)3, 2].

(2.11)
To spontaneously break the symmetries, we must choose the appropriate vacuum
structure of Φ and ∆L,R. Since our goal is to conserve the electric charge Q of
U(1)EM , the neutral Higgs field’s components must gain the vev of the bi-doublet
and triplet fields given by 〈Φ0

1〉 = v1, 〈Φ0
2〉 = v2 and 〈∆0

L,R〉 = vL,R, respectively:

〈Φ〉 =
1√
2

[
v1 0
0 v2

]
, 〈∆L,R〉 =

1√
2

[
0 0

vL,R 0

]
. (2.12)

When the bidoublet acquires vevs for the neutral fields, the fermions acquire their
masses via their couplings to the fermion bilinears Ψ̃LΨR and Ψ̃RΨL, (Ψ = quarks
and leptons fields):

Lfermions = −mΨ̃Ψ = −m(Ψ̃LΨR + Ψ̃RΨL).

LRSMs include right handed neutrinos, which are added as a result of the parity
symmetry between left and right particles [14].

2.2 BEH mechanism and symmetry breaking

The bidoublet is not sufficient to break the left-right symmetry, as it has the quantum
number B−L = 0. To break the left-right symmetry of LRSMs, we require the two
Higgs triplets ∆L,R (since the B−L quantum number of ∆L,R equals two), to break
the B − L symmetry:

B − L < ∆L,R >= 2 < ∆L,R >6= 0. (2.13)

Unlike the SM, symmetry breaking occurs in two stages. The first stage takes place
at a high energy scale above the electroweak scale, where the LRSMs gauge group
is broken to the SM gauge group by the vev of the neutral component of the Higgs
triplet ∆R. At the second stage of EWSB, the vevs of the bi-doublet Higgs field Φ
breaks the SM electroweak gauge group to U(1)EM :

SU(2)L ⊗ SU(2)R ⊗ U(1)B−L 7−→ SU(2)L ⊗ U(1)Y ,

SU(2)L ⊗ U(1)Y 7−→ U(1)EM . (2.14)



Section 2.2. BEH mechanism and symmetry breaking Page 17

The most general scalar potential which is invariant under the left-right symmetry
∆L ↔ ∆L and Φ↔ Φ† of the Higgs fields is:

VLRSMs = − µ2
1(Tr[Φ†Φ])− µ2

2(Tr[Φ̃Φ†] + Tr[Φ̃†Φ])

− µ2
3(Tr[∆L∆†L] + Tr[∆R∆†R])

+ λ1((Tr[ΦΦ†])2) + λ2((Tr[Φ̃Φ†])2 + (Tr[Φ̃†Φ])2)

+ λ3(Tr[Φ̃Φ†]Tr[Φ̃†Φ])

+ ρ1((Tr[∆L∆†L])2 + (Tr[∆R∆†R)2)

+ ρ2(Tr[∆L∆L]Tr[∆†L∆†L] + Tr[∆R∆R]Tr[∆†R∆†R])

+ ρ3(Tr[∆L∆†L]Tr[∆R∆†R]

+ ρ4(Tr[∆L∆L]Tr[∆†R∆†R] + Tr[∆†L∆†L]Tr[∆R∆R])

+ α1(Tr[ΦΦ†](Tr[∆L∆†L] + Tr[∆R∆†R])

+ α2(Tr[ΦΦ̃†](Tr[∆R∆†R] + Tr[Φ†Φ̃]Tr[∆L∆†L])

+ α∗2(Tr[Φ†Φ̃](Tr[∆R∆†R] + Tr[Φ̃†Φ]Tr[∆L∆†L])

+ α3(Tr[ΦΦ†∆L∆†L] + Tr[Φ†Φ∆R∆†R])

+ β1(Tr[Φ∆RΦ†∆†L] + Tr[Φ†∆LΦ∆†R])

+ β2(Tr[Φ̃∆RΦ†∆†L] + Tr[Φ̃†∆LΦ∆†R])

+ β3(Tr[Φ∆RΦ̃†∆†L] + Tr[Φ†∆LΦ̃∆†R]), (2.15)

where µ2
i are mass parameters and λi, ρi, α,βi are dimensionless couplings. All the

parameters in the LRSMs potential are real due to the left-right symmetry, with
the exception of α2. In our study, we assume that CP is explicitly conserved in
the potential so that α2 is real. In the see-saw picture of neutrino mass, we can
safely ignore vL, which corresponds to β = 0. Small values for vL result in a
light left-handed neutrino (which are proportional to vL) less than O(1)eV. This
results in vR to be at least of the O(108)GeV. A very large vR will result in large
masses for the additional Higgs and gauge bosons of the O(108)GeV. In the limit
vL = 0 (corresponding to β = 0), the potential will have more symmetry, such as
∆L → −∆L. In this case the vev see-saw relation becomes:

(2ρ1ρ3)vLvR = 0. (2.16)

We require vR to be non-zero, since the mass of the additional Higgs and gauge
bosons is proportional to vR. In addition, vR is required to be non-zero in order
to break the SU(2)R gauge symmetry [19]. This leads us to set vL = 0. When
spontaneous symmetry breaking occurs, the potential will be at the minimum when
we evaluate the Higgs fields using their vev. There are six minimization conditions,
where two of the vevs are considered, a priori, to be complex (v2 and vL), see [23]:

∂V

∂v1
=
∂V

∂v2
=
∂V

∂vL
=

∂V

∂vR
=

∂V

∂Imv2
=

∂V

∂ImvL
= 0. (2.17)
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The first derivative constraints for the Φ1,2 are:

∂V

∂φr1
= v3

1λ1 + 3v2
1v2λ4 + v3

2λ4 + v1v
2
2(λ1 + 4λ2 + 2λ3)

+ v1

[
−µ2

1 +
(α1v

2
L)

2
+ β2vLvR +

(α1v
2
R)

2

]
+ v2

[
−2µ2

2 + α2v
2
L +

β1vLvR
2

+ α2v
2
R

]
, (2.18)

∂V

∂φr2
= v3

2λ1 + 3v1v
2
2λ4 + v3

1λ4 + v2
1v2(λ1 + 4λ2 + 2λ3)

+ v1

[
−2µ2

2 + α2v
2
L +

β1vLvR
2

+ α2v
2
R

]
+ v2

[
−µ2

1 +
(α1v

2
L)

2
+

(α3v
2
L)

2
+ β3vLvR +

(α1v
2
R)

2
+

(α3v
2
R)

2

]
,

where φr1,2 are the real components of Φ1,2. Using the relations above, we can solve

for µ2
1 and µ2

2:

µ2
1 =

[2vLvR(β2v
2
1 − β2v

2
2) + (v2

L + v2
R)(α1k− − α3v

2
2)]

2k2
−

+ (k2
+λ1 + 2v1v2λ4),

µ2
2 =

vLvR[β1k
2
− − 2v1v2(β2 − β3)] + (v2

L + v2
R)(2α2k

2
− + α3v1v2)

4k2
−

(2.19)

+ v1v2(2λ3 + λ3) +
λ4k

2
+

2
,

where k2
± = (v2

1 ± v2
2). The first derivative constraints for the triplet fields ∆L,R are:

∂V

∂∆r
R

=
ρ3v

2
LvR
2

+ ρ1v
3
R + vL

[
β2v

2
1

2
+
β1v1v2

2
+
β3v

2
2

2

]
+ vR

[
α1v

2
1

2
+ 2α2v1v2 +

α1v
2
2

2
+
α3v

2
2

2
− µ2

3

]
, (2.20)

∂V

∂∆r
L

=
ρ3vLv

2
R

2
+ ρ1v

3
L + vR

[
β2v

2
1

2
+
β1v1v2

2
+
β3v

2
2

2

]
+ vL

[
α1v

2
1

2
+ 2α2v1v2 +

α1v
2
2

2
+
α3v

2
2

2
− µ2

3

]
,

where ∆r
L,R are the real components of ∆L,R. Using the above relations, we can

solve for µ2
3 and β2 [18]:

µ2
3 =

α1k
2
+ + 4α2v1v2 + α3v

2
2 + 2ρ1(v2

L + v2
R)

2
, (2.21)

β2 =
−β1v1v2 − β3v

2
2 + (2ρ1 − ρ3)vLvR
v2

1

.

We construct the Higgs mass matrices from the bilinear terms obtained from ex-
panding the potential about the vevs of the Higgs fields. We can determine the
Higgs mass matrix Mi,j by:

∂2

∂Φi∂Φj
V
∣∣∣
Φi=Φj=0

= M2
i,j . (2.22)
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First, we evaluate the real mass matrix components in the φr1, φ
r
2,∆

r
L,∆

r
R basis.

Inorder for the Higgs bosons to acquire positive mass, the mass matrices are required
to have positive eigenvalues:

M r
11 = λ1(3v2

1 + v2
2) + 2v2

2(2λ2 + λ3) + 6v1v2λ4 − µ2
1 + α1

(v2
L + v2

R)

2
+ β2vLvR,

M r
12 = M r

21 = 2v1v2(λ1 + 4λ2 + 2λ3) + 3λ4k
2
+ − 2µ2

2 + α2(v2
L + v2

R) +
(β1vL + vR)

2
,

M r
13 = M r

31 =
vL(2β2v1 + β1v2)

2
+ vR(α1v1 + 2α2v2),

M r
14 = M r

41 =
vR(2β2v1 + β1v2)

2
+ vL(α1v1 + 2α2v2),

M r
22 = λ1(v2

1 + 3v2
2) + 2v2

1(2λ2 + λ3) + 6v1v2λ4 − µ2
1 + (α1 + α3)

(v2
L + v2

R)

2
+ β3vLvR,

M r
23 = M r

32 =
vL(β1v1 + 2β3v2)

2
+ vR[2α2v1 + v2(α1 + α3)],

M r
24 = M r

42 =
vR(β1v1 + 2β3v2)

2
+ vL[2α2v1 + v2(α1 + α3)],

M r
33 = α1k

2
+ + 4α2v1v2 +

α3v
2
2

2
− µ2

3 +
ρ3v

2
L

2
+ 3ρ1v

2
R,

M r
34 = M r

43 = β2v
2
1 + β1v1v2 +

β3v
2
2

2
+ ρ3vLvR,

M r
44 = α1k

2
+ + 4α2v1v2 +

α3v
2
2

2
− µ2

3 +
ρ3v

2
R

2
+ 3ρ1v

2
L, (2.23)

where M r
i,j are the real components of Mi,j . We have rotated the mass matrices

into the flavor-diagonal bases to enable us to change from the (φr1, φ
r
2,∆

r
L,∆

r
L) basis

to the (φr−, φ
r
+,∆

r
L,∆

r
L) basis. We can accomplish this change of basis using the

rotation matrix R:

R =


v1
k+

v2
k+

0 0

− v2
k+

v1
k+

0 0

0 0 1 0
0 0 0 1

 .
To compute the real components of the mass matrix in the flavor-diagonal basis
(φr−, φ

r
+,∆

r
L,∆

r
L), we substitute the first-derivative conditions and use the condition:

vL = 0. We rotate the mass matrix to the flavor-diagonal basis as: M̃ r = RM rRT ,
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where M̃ r is in the flavor-diagonal basis.

M̃ r
11 = 2λ1k

2
+

8v2
1v

2
2(2λ2 + λ3)

k2
+

+ 8v1v2λ4,

M̃ r
12 = M̃ r

21 =
4v1v2k

2
−(2λ2 + λ3)

k2
+

+ 2λ4k
2
−,

M̃ r
13 = M̃ r

31 = α1vRk+ + v2vR
(4α2v1 + α3v2)

k+
,

M̃ r
14 = M̃ r

41 = 0,

M̃ r
22 =

(4λ2 + 2λ3)k4
−

k2
+

+
α3v

2
Rk

2
+

2k2
−

,

M̃ r
23 = M̃ r

32 =
vR(2α2k

2
− + α3v1v2)

k+
,

M̃ r
24 = M̃ r

42 =
vRk+(β1v1 + 2β3v2)

2v1
,

M̃ r
33 = 2ρ1v

2
R,

M̃ r
34 = M̃ r

43 = 0,

M̃ r
44 =

−v2
R(2ρ1 − ρ3)

2
. (2.24)

After diagonalizing these matrices, we can obtain the physical Higgs masses. Diag-

onalizing the mass matrix M̃ r2
(which consists of the real parts of the fields) in the

vR � v1, v2 � vL limit, gives four non-zero eigenvalues. The first eigenvalue gives
us the physical mass of the SM Higgs boson h, which is the only Higgs boson that
is not proportional to vR. For the case vR � v1,2, the physical Higgs masses are:

M2
H0

0
≈ 4v2

1v
2
2

v4
(2λ1 + λ3) + 2λ4

2v1v2

v2
, M2

H0
1
≈ 1

2
α3v

2
R

v2

v2
1 − v2

2

,

M2
H0

2
≈ 2ρ1v

2
R, M2

H0
3

=
1

2
v2
R(ρ3 − 2ρ1),

M2
A0

1
=

α3v
2
R

2

v2

v2
1 − v2

2

, M2
A0

2
=

1

2
v2
R(ρ3 − 2ρ1),

M2
H±1

=
1

4
α3(v2

1 − v2
2), M2

H±2
=

1

4
α3[(v2

1 − v2
2) + 2

v2

(v2
1 − v2

2)
v2
R],

M2
H±±1

≈ ρ2v
2
R, M2

H±±2
=
v2
R

2
(ρ3 − 2ρ1), (2.25)

where v is the SM vev. The scalar spectrum in the LRSMs consists of four singly
charged (H±1 , H

±
2 ), four doubly charged bosons (H±±1 , H±±2 ) and six neutral bosons

(H0
0 , H

0
1 , H

0
2 , H

0
3 ) and (A0

1, A
0
2). We consider H0

0 as the SM Higgs boson, while the
other neutral Higgs bosons are heavier bosons found in LRSMs. All the physical
Higgs states, except H0

0 , are proportional to vR [23]. In LRSMs, we have additional
right-handed gauge bosons W±R and ZR:

W i
L =

 W 1

W 2

W 3


L

, W i
R =

 W 1

W 2

W 3


R

.

W i
L transforms as a singlet under SU(2)L,R and vice versa for W i

R. In LRSMs,
Bµν is the gauge boson corresponding to the U(1)B−L gauge group. The left-right
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Figure 2.1: Additional Higgs bosons in LRSMs can mediate tree-level FCNC [25].

Figure 2.2: Neutral B meson mixing [26].

symmetric gauge-covariant derivatives are:

Dµ = ∂µ − igLWµν
Li T

i
L − igRW

µν
Ri T

i
R − igB−L

(B − L)

2
Bµν . (2.26)

The right-handed gauge bosons W±R and Z0
R have masses proportional to vR as they

are much heavier than the SM gauge bosons since they haven’t been observed at
experiments:

M2±
WR
' g2v2

R, M2±
ZR
' 2(g2 + g2

B−L)v2
R. (2.27)

2.3 Tree-level flavor changing neutral currents

In the SM, tree-level FCNCs are absent, since the Z boson exchange is flavor-
conserving. At loop-level, charged gauge bosons can mediate FCNCs in the SM.
In LRSMs, if the two Higgs bi-doublets couple to the same quark field, they can me-
diate tree-level FCNCs. BSM contributions to FCNCs come from the extra gauge
and Higgs bosons, Fig. 2.1. The charged and neutral Higgs bosons contribute to
neutral meson mixings [24]. Neutral mesons such as Kaons and B mesons are known
to oscillate between particle and anti-particle states, Figs. [2.2, 2.3]. Kaons carry
strangeness of unit 1, while anti-Kaons carry strangeness of −1. The oscillations
lead to a difference in strangeness by two units (∆S = 2). These oscillations are
known as neutral meson mixing.

However, in LRSMs, we have a serious problem. Tree-level contributions to neutral
meson mixings can occur via heavy neutral Higgs bosons [19]. These interactions
violate flavor by two units and can bring unacceptably large contributions to Kaon
meson mixing. In this work we will focus our attention on neutral Higgs boson
contributions to Kaon meson mixing in LRSMs. This requires us to study the
Higgs bi-doublet couplings to quarks. The most generic Yukawa interaction that is
invariant separately under the SU(2)L and SU(2)R gauge groups is:

LY ukawa = Ψ̄i
L

(
(Y )ijΦ + (Ỹ )ijΦ̃)

)
Ψj
R + h.c. (2.28)
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Figure 2.3: Neutral Kaon meson mixing [26].

The bi-doublet field Φ, and its conjugate Φ̃, both couple to the quark doubleeft-Right
Symmetric Modelsts. When the second Higgs doublet couples to quark doublets,
it can result in tree-level FCNCs, since its neutral component have off-diagonal
couplings [19]. Substituting the vevs of the Higgs fields in Eq. 2.28, we obtain the
quark mass matrices in the physical basis Mu and Md:

1√
2
ūLV

u
L

(
Y v1 + Ỹ v∗2

)
V u
RuR = ūLM

uuR,

1√
2
d̄LV

d
L

(
Y v2 + Ỹ v∗1

)
V d
RdR = d̄LM

ddR. (2.29)

We define the mass matrices in the physical basis, Mu and Md, by diagonalizing the
quark mass matrices in the weak basis, mu and md using the unitary matrices V u,d

L,R,

where Mu = V u
Lm

uV u
R
† and Md = V d

Lm
dV d

R
†
. We can solve Y1 and Y2 in terms of

the physical masses of the up and down quarks and the unitary matrices V u,d
L,R [27]:

Y =

√
2

v2
−

(
v∗1V

u
LM

uV u
R
† − v∗2V d

LM
dV d

R
†)
, Ỹ =

√
2

v2
−

(
−v2V

u
LM

uV u
R
† + v1V

d
LM

dV d
R
†)
,

(2.30)
where v2

± = |v1|2±|v2|2. To define the flavor changing and flavour conserving terms,
we introduce the orthogonal neutral fields φ0

+ and φ0
−:

φ0
+ =

1

v2
+

(
−v∗2φ0

1 + v1φ
0∗
2

)
, φ0

− =
1

v2
+

(
v1
∗φ0

1 + v2φ
0∗
2

)
. (2.31)

The Higgs bi-doublet field couplings to quarks, and can be written in terms of φ0
+

and φ0
−:
√

2

v2
−
ūL

[
φ0
−
v2
−
v+
Mu + φ0

+(
−2v∗1v2

v+
Mu + v+VL

CKMMdVR
†CKM )

]
uR, (2.32)

√
2

v2
−
d̄L

[
φ0
−
v2
−
v+
Md + φ0

+(
−2v∗1v2

v+
Md + v+VL

†CKMMdVR
CKM )

]
dR. (2.33)

The quark couplings in the second term are non-diagonal since the CKM matrix is
non-diagonal. This leads to flavor mixing effective between the quark families, which
results in tree-level FCNCs. The first term quark couplings are flavor diagonal, since
it is proportional to the diagonalized quark mass matrices Mu and Md. We could
suppress tree-level FCNCs mediated by the φ0

+ couplings by applying Approximate
Global U(1) Symmetries (AGUS) to the Yukawa Lagrangian [28]. AGUS assume
that the off-diagonal terms of Y1 and Y2 have very small values, which results in small
quark mixings. In the next section we calculate the lower bound on the neutral Higgs
boson mass from Kaon meson mixing constraints.
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2.4 Neutral Kaon mass difference

In this section we derive the constraining relation of the mass of the Higgs boson
mediating tree-level FCNCs. We will only study the Higgs bi-doublet field, since
neutral scalars from the triplet fields have weak coupling to the quarks due to B−L
conservation [29]. The neutral Higgs boson contribution to the ∆S = 2 Hamiltonian
is given by [22]:

H∆S=2
H0

1
= − 4GF√

2M2
H0

1

∑
s,s′=d,s,b

s̄′PLss̄′PRs
∑

i,j=u,c,t

λLRi λRLj mimj , (2.34)

where GF is the Fermi constant that describes the interaction strength. λLRi =
V L∗
is V

R
id , λRLi = V R∗

is V L
id and mi,mj are the masses for up, charm and top quarks:

mu ≈ 2.4 MeV, mc ≈ 1.3 GeV and mt ≈ 172 GeV [30]. Os = s̄′PLss̄′PRs is local
4-quark operator. The lower limit on mH0

1
is constrained by the experimental value

for neutral Kaon mass difference 4exp
mk :

4exp
mk

= 2Re(M exp
12 ) ≈ 3.483× 10−12 MeV. (2.35)

The additional neutral Higgs bosons in LRSMs contribute to neutral Kaon meson

mixing 4H0
1

mk . We can calculate 4H0
1

mk using 4H0
1

mk = 2Re(M
H0

1
12 ), where the mixing

matrix element M
H0

1
12 is related to the Hamiltonian H∆S=2

H0
1

by:

M
H0

1
12 =

1

2mK
〈K0|H∆S=2

H0
1
|K̄0〉. (2.36)

We can calculate the right hand side of the above equation by computing the
matrix element of H∆S=2

H0
1

. The matrix elements of the local 4-quark operator

Os = s̄′PLss̄′PRs, is [22]:

〈K0|s̄′PLss̄′PRs|K̄0〉 = 59 MeV. (2.37)

Substituting the value of the Fermi constant and the mass of the neutral Kaon meson
mK ≈ 497 MeV, we obtain the relation:∑

i,j=u,c,t λ
LR
i λRLj mimj

M2
H0

1

< 3.56× 10−9. (2.38)

Since we require 4exp
mk > 4

H0
1

mk , this gives a constraint on 4H0
1

mk . The lower limit on
M2
H0

1
will depend on the term

∑
i,j=u,c,t λ

LR
i λRLj mimj .

2.5 Approximate Global U(1) Symmetries

In this section we study AGUS and their role in suppressing masses of Higgs bosons
that mediate tree-level FCNCs in neutral Kaon system. AGUS assume that the
off-diagonal elements of the Yukawa couplings Y and Ỹ have small values. They can
generally be formulated as:

(ui, di) 7−→ e−iθi(ui, di), (2.39)
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where ui and di are the up and down quark families, respectively, and e−iθi is a
phase factor. The angle θ is taken as a constant, which makes it a global transfor-
mation. The Yukawa couplings are related to the CKM matrices, Eq. 2.29. If we
can approximately diagonalize the Yukawa couplings, then we can suppress tree-level
FCNCs [28]. This can be achieved by fine tuning the off-diagonal terms of the CKM
matrix, Vcd and Vts. To see the fine tuning of the off-diagonal terms in the CKM
matrix, we expand the term:∑

i,j=u,c,t

λLRi λRLj mimj = VusVudVusVudmumu + VusVudVcsVcdmumc

+ VusVudVtsVtdmumt + VcsVcdVusVudmcmu

+ VcsVcdVcsVcdmcmc + VcsVcdVtsVtdmcmt

+ VtsVtdVusVudmtmu + VtsVtdVcdmtmc

+ VtsVtdVtsVtdmtmt.

The experimental CKM matrix elements are [31]:

V CKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 0.9750 0.22 0.0032
0.22 0.974 0.044

0.004− 0.014 0.04 0.999

. (2.40)

In our calculations we assume Vcs = Vud ≈ 1. Using the above CKM matrix elements
and the quark masses, we find that

∑
i,j=u,c,t λ

LR
i λRLj mimj ≈ 86 GeV. To satisfy

experimental constraints on 4H0

mk
, the mass bound on MH0

1
is:

M2
H0

1
>

86000MeV

3.558× 10−9
. (2.41)

The above relation implies that MH0
1
> 4.9 TeV. Using the following fine-tuned

values for Vcd and Vts, we can suppress MH0
1

to about 270 GeV:

V CKM =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 0.9750 0.22 0.0032
0.004 0.974 0.044
0.004 0.016 0.999

. (2.42)

Thus, in LRSMs, if we fine-tune Vcd to 0.004 and Vts to 0.016, we can obtain a heavy
boson around 270 GeV. Unfortunately, this fine-tuning contradicts experimental
results [28] and we conclude that we cannot accomodate a heavy boson ofO(102)GeV
in LRSMs.

2.6 Discrete symmetries

The source of the tree-level FCNCs problem is the presence of two Higgs doublets
in the Higgs bi-doublet field. When the Higgs bi-doublet field couples to the same
quark field, it will result in tree-level FCNCs [19]:

LY = Ψ̄i
L

(
(Y )ijΦ + (Ỹ )ijΦ̃)

)
Ψj
R + h.c.. (2.43)

Our goal is to suppress tree-level FCNCs by forbidding the Ỹ coupling to the quark
fields. We define a Z2 symmetry [19] to forbid simultaneous coupling of Y and Ỹ to
the SM quark fields:

Φ =⇒ iΦ, QR =⇒ −iQR, Φ̃ =⇒ −iΦ̃,
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LL =⇒ −iLL, ∆L =⇒ −∆L, (2.44)

with all other fields unchanged. Under the Z2 symmetry, the Yukawa Lagrangian is
invariant only if the Ỹ coupling is zero:

LY = Ψ̄i
L

(
(Y )ijΦ + (Ỹ )ijΦ̃

)
Ψj
R + h.c −→ Ψ̄i

L

(
(Y )ijiΦ− (Ỹ )ijiΦ̃

)
(−iΨj

R) + h.c..

(2.45)
In this case only the the Y matrix couples to quark fields. This leads to diagonal
mass matrices of the form:

Mu =
1√
2
V u†
L [Y v1]V u

R , Md =
1√
2
V d†
L [eiαv2Y ]V d

R. (2.46)

The proportionality between Md and Mu would not allow presence of a non-trivial
CKM matrix. Furthermore, it does not explain the mass patterns between the up
and down quarks:

Md =
v2

v1
Mu,

v2

v1
� 1. (2.47)

One suggestion to solve the above problems is to add a new bi-doublet field, ρ, with
B − L = 2 [19]:

ρ =

[
ρ+

1 ρ++
2

ρ0
1 ρ+

2

]
, ρ −→ −iρ. (2.48)

For symmetry breaking to occur, we require the vevs of the Higgs bi-doublets:

〈φ0〉 =

[
v1 0
0 v2

]
, 〈ρ0〉 =

[
0 0
vρ 0

]
. (2.49)

The vevs must satisfy the constraint: v2
1 + v2

2 + v2
ρ = v2 = (246GeV)2 [32]. The

heavy boson has a mass mH0
1
∼ √vvR. To determine mH0

1
, we need to know vR.

First, we need to calculate the lower limit on the W±R coupling constant gR. In the
SM, the mass of W±L is proportional to v:

mW±L
=

1

2
vgL. (2.50)

This gives gL ≈ 0.65, where gL is the W±L coupling constant. Now we want to find
the lower limit on gR. It is theoretically required in LRSMs that [29]:

gR
gL
≥ tanθW ≈ 0.55 =⇒ gR ≈ 0.357. (2.51)

The strongest limit on mW±R
comes from the neutral Kaon meson system: mW±R

>

2.5TeV [22]. Using the above result in mW±R
= gRvR gives vR ≈ 7 TeV. This gives

the lower limit mH0
1
≈ 1.3 TeV. If we fine tune vR to about 330 GeV, then we could

have a heavy boson around 270 GeV. This fine tuning contradicts phenomenlogy
which demands that vR be of O(TeV) [29, 33]. Based on the above analysis, we
conclude that the heavy boson in LRSMs lies in the TeV range. In [32], it was
shown that a lower limit can be obtained: mH0

1
= 812 GeV, which is inconsistent

with the Madala hypothesis.
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2.7 Results

In summary, our goal was to consider a neutral heavy boson around 270 GeV in
LRSMs. FCNCs in Kaon meson mixings constrained the heavy boson H to be in
the TeV range. We then studied global and discrete symmetries and their role in
suppressing FCNCs in neutral Kaon meson mixings. AGUS resulted in a heavy bo-
son of about 5 TeV. To obtain a heavy boson in the GeV range, we must fine tune
the CKM matrix elements Vcd to 0.004 and Vts to 0.016 which contradicts exper-
imental observations. Next we analysed discrete symmetries and our calculations
showed that the lowest mass for the heavy boson will be of O(TeV). These results
indicate that the neutral Higgs bosons in LRSMs are heavier than the postulated
heavy boson H.



3
Overview of Two-Higgs-Doublet Models plus scalar

singlet

We propose a model with an extended Higgs sector to accommodate the heavy boson
H and the scalar singlet S. The 2HDM+S is based on the extension of the 2HDM
by a real scalar singlet field [11]. Due to its extended Higgs sector, 2HDM+S could
accommodate the heavy boson decays: H → Sh, hh, SS. We impose the model
constraints and analyze the branching ratios and decay widths of the heavy boson
H.

This chapter is structured as follows: In section 3.1 we give an overview of 2HDM+S.
In section 3.2, we briefly discuss symmetry breaking in the model. In section 3.4 we
discuss the 2HDM+S model constraints. In section 3.5 we explain the methodology
and tools used in the analysis. In section 3.6 we discuss the results.

3.1 Two-Higgs-Doublet Models plus scalar singlet

We introduce 2HDM with an extra real scalar S that is neutral under the SM gauge
group. In this work, we will only study extensions of the type II 2HDM models by
including a scalar gauge-singlet with mass mS . If we choose a complex S, it will
contain both scalar and pseudoscalar fields, whereas a real scalar singlet will only
contain a scalar field [34]. In this work we consider the singlet field ΦS to acquire a
real non-zero vev, which allows mixing between all the CP-even neutral states. The
2HDM+S Higgs sector consists of six Higgs bosons: three are neutral CP-even, one
is a CP-odd and two are singly charged. In this work we will study the branching
ratios of the heavy Higgs H and determine if we can reproduce the branching ratios
predicted by the Madala hypothesis. The possible final decay states of the Higgs
bosons in 2HDM+S are shown in Table. 3.1. If the Madala hypothesis is embedded
into 2HDM+S, it has the potential to explain the excesses observed in the data [14].

The mass eigenstates for the Higgs bosons are constructed from superpositions of
the doublet and singlet fields. The most general CP-conserving 2HDM+S potential

27
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Table 3.1: Decay modes of the Higgs bosons in 2HDM+S [11].

V2HDM+S is given by:

V2HDM+S = V2HDM + VSinglet, (3.1)

V2HDM = m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12(Φ†1Φ2 + h.c)

+
λ1

2
(Φ†1Φ1)2 +

λ1

2
(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+ λ4(Φ†1Φ2)(Φ†2Φ1) +
λ5

2
[(Φ†1Φ2)2 + h.c],

VSinglet =
1

2
m2
SΦ2

S +
λ6

8
m2
SΦ4

S +
λ7

2
(Φ†1Φ1)Φ2

S +
λ8

2
(Φ†2Φ2)Φ2

S ,

where λS is the singlet quartic coupling. We set the term m2
12 6= 0 in the 2HDM+S

potential, which corresponds to a soft breaking of the Z2 symmetry. The 2HDM+S
potential consists of 2HDM terms in addition to terms resulting from contributions
of the singlet field ΦS . We consider the λi to be real, which corresponds to a model
without explicit CP violation. We can obtain this potential by imposing the Z2

symmetry:
Φ1 −→ Φ1, Φ2 −→ −Φ2, ΦS −→ ΦS . (3.2)

To allow mixing among the CP-even neutral particles, we will need another Z∗2
symmetry [35]:

Φ1 −→ Φ1, Φ2 −→ Φ2, ΦS −→ −ΦS . (3.3)

Symmetry breaking occurs when the two Higgs doublet fields and the singlet field
acquire the real vevs: v1, v2 and vS , respectively. They can be formulated as:

Φ1 =

(
φ+

1
1√
2
(v1 +H1 + iη1)

)
,Φ2 =

(
φ+

2
1√
2
(v2 +H2 + iη2),

)
,ΦS = vS+H3, (3.4)

where φ+
1,2 are complex charged fields, H1,2,3 are real neutral CP-even fields and

η1,2 are CP-odd fields, respectively. The two Higgs doublets vevs must satisfy the
relation: v2 = v2

1 + v2
2 where v = 246GeV. Under the 2HDM+S gauge group, the

gauge representations for the scalar fields are:

Φ1 ∼ (1, 2,
1

2
), Φ2 ∼ (1, 2,

1

2
), ΦS ∼ (1, 1, 0), (3.5)

where the quantum numbers represent the gauge groups SU(3), SU(2) and U(1)Y
respectively. The scalar singlet S could be a DM candidate if it doesn’t acquire a
vev [35, 36]. In this work we consider the singlet S to acquire a vev which excludes
it from being a DM candidate. The 2HDM+S Lagrangian consists of four terms:

L = Lkinteic + Lgauge + LHiggs + LY ukawa. (3.6)
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The Lkinteic term contains the interactions between fermions and gauge bosons which
are invariant under the 2HDM+S gauge group. The fermionic kinetic terms have
the following form:

Lkinetic = i
∑

Ψ̃γµDµΨ,

= i
(
LLγ

µ(i∂µ + igL
1

2
σi.Wµν

Li − igB
1

2
Bµν)LL (3.7)

+ QLγ
µ(i∂µ + igL

1

2
σi.Wµν

Li + igB
1

6
Bµν + gGτ

µ.
1

2
Gµνa )QL

)
,

where Ψ = LL,R and Qu,dL,R are the leptons and quarks fields. The term Lgauge
contains the kinetic terms for the gauge fields and the interactions between them.
It is given by:

LGauge = −1

4
Wµν
Li W

Li
µν −

1

4
Gµνa Gaµν −

1

4
BµνBµν , (3.8)

where Wµν
Li , G

µν
a and Bµν are the field strength tensors of the SU(3)C , SU(2)L and

U(1)Y gauge fields, respectively. They are defined as follows:

Gµνa = ∂µGνa − ∂νGµa − gGfabcG
µ
bG

ν
c ,

Wµν
Li = ∂µW ν

Li − ∂νW
µ
Li + gLε

ijkWµ
LjW

ν
Lk,

Bµν = ∂µBν − ∂νBµ, (3.9)

where fabc and εijk are the structure constants of the SU(3)C and SU(2) groups,
respectively. The LY ukawa term consists of the Yukawa interactions, which describe
the most general possible couplings of Ψ and Ψ̃ to the Higgs fields:

LY ukawa = −
3∑

i,j=1

∑
k=1,2,S

c(Hiff)yli,ui,diij Ψ̃ΦkΨ + h.c,

= −c(Hiff)
(

[yl1ijLLΦ1LR + yu1
ij Q

u
LΦ1Q

u
R + yd1

ij Q
d
LΦ1Q

d
R]

+ [yl2ijLLΦ2LR + yu2
ij Q

u
LΦ2Q

u
R + yd2

ij Q
d
LΦ2Q

d
R]

+ [yl3ijLLΦSLR + yu3
ij Q

u
LΦSQ

u
R + yd3

ij Q
d
LΦSQ

d
R]
)

+ h.c., (3.10)

where Φk = Φ1,Φ2,ΦS and yliij , y
ui
ij , y

di
ij are 3×3 Yukawa matrices in flavor space. The

terms c(Hiff), describe the effective coupling between the CP-even Higgs states.
The Higgs Lagrangian term LHiggs consists of the kinetic terms of the Higgs fields
as well as their potential:

LHiggs =
∑
i

|DµΦi|2 − V2HDM+S . (3.11)

Under the SU(2)L ⊗ U(1)Y symmetry, the covariant derivatives for the Higgs fields
are given by:

DµΦ1,2 =
[
∂µ + i

gL
2

(
σi.Wµν

Li + i
gB
2
Bµν

)]
Φ1,2,

DµΦS =
[
∂µ − i

gB
2
Bµν

]
ΦS . (3.12)
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3.2 Symmetry breaking and minimization conditions

Minimizing the potential at the vevs of the three Higgs fields leads to three minimum
conditions:

∂V

∂v1
=
∂V

∂v2
=
∂V

∂vS
= 0. (3.13)

The first derivative conditions for Φi are:

∂V

∂Φ1
= 0→ m2

11 = −1

2
(v2

1λ1 + v2
2λ345 + v2

Sλ7) +
v2

v1
m2

12, (3.14)

∂V

∂Φ2
= 0→ m2

22 = −1

2
(v2

2λ2 + v2
1λ345 + v2

Sλ8) +
v2

v1
m2

12, (3.15)

∂V

∂ΦS
= 0→ m2

S = −1

2
(v2

1λ7 + v2
2λ8 + v2

Sλ6), (3.16)

where λ345 = λ1 + λ2 + λ3. EWSB occurs as in the SM, where the gauge group
SU(2)L⊗U(1)Y is broken by the vevs of the neutral components of the Higgs fields
to U(1)EM . This ensures that the potential is at the global minimum. We can
obtain the global minimum of the potential by using the stationary point that leads
to the lowest value for the scalar potential. The minimizations conditions for the
Higgs fields are:

〈Φ1〉 =
1√
2

(
0
v1

)
, 〈Φ2〉 =

1√
2

(
0
v2

)
, 〈ΦS〉 =

1√
2
vS . (3.17)

We want the global minimum of the potential to conserve both the gauge symmetry
of electromagnetism and CP, as well as to produce three CP-even massive scalars.
To conserve the gauge symmetry of electromagnetism, both of the Higgs bi-doublet
vevs: v1 and v2 must lie in the neutral component. We will assume that v1, v2 and
vS are real, to prevent CP violation in the scalar sector [35]. This results in a global
minimum that allows the singlet field to mix with the CP-even scalars from the
Higgs bi-doublets.

3.3 CP-even neutral Higgs boson masses

The 2HDM+S Higgs sector consists of additional Higgs bosons with respect to
2HDM, due to the addition of the real scalar singlet. The CP-even neutral Higgs
mass matrix is enlarged to a 3×3 matrix. In the interaction basis (χ1, χ2, χ3) it can
be written as:

M2
scalar =

 λ1c
2
βv

2 + tβm
2
12 λ345cβsβv

2 −m2
12 λ7cβvvS

λ345cβsβv
2 −m2

12 λ2s
2
βv

2 +
m2

12
tβ

λ8sβvvS

λ7cβvvS λ8sβvvS λ6v
2
S

 , (3.18)

We can diagonalize the CP-even neutral Higgs mass matrix using the orthogonal
matrix R:

R =

 cα1cα2 sα1cα2 sα2

−(cα1sα2sα3 + sα1cα3) cα1cα3 − sα1sα2sα3 cα2sα3

−cα1sα2cα3 + sα1sα3) −(cα1sα3 + sα1sα2cα3) cα2cα3

 , (3.19)
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where α1,2,3 are the mixing angles for the CP-even Higgs states and β is the mixing
angle for the CP-odd Higgs states. cα1,2,3 = cosα1,2,3 , sα1,2,3 = sinα1,2,3 , cβ = cosβ,
sβ = sinβ and tβ = tanβ. The mixing angles for the CP-even Higgs states can be
chosen in the range [35]:

−π
2 < α1,2,3 <

π
2 .

To rotate the interaction basis (χ1, χ2, χ3) into the physical mass eigenstates: H1, H2

and H3, we use the matrix R: H1

H2

H3

 = R

 χ1

χ2

χ3

 . (3.20)

The mass squared matrix M2
scalar can be diagonalized using the orthogonal matrix

R:
RM2

scalarR
T = diag(m2

H1
,m2

H2
,m2

H3
). (3.21)

The physical mass eigenstates of the CP-even Higgs bosons, obtained after diago-
nalizing the mass matrix, are:

H1 =
√
sα2(sα2v

2
Sλ6 + vcβcα1cα2vSλ7 + vcα2sβsα1vSλS),

H2 =
√

(cα1cα3 − sα1(sα2sα3)(cα2sα1(m2
12ctβ + v2s2

βλ2)

+
√
sβsα2vSλ8 + cα1(cα2(−m2

12 + v2cβsβ(λ1 + λ2 + λ3))), (3.22)

H3 =
√

(−cα1cα3sα2 + sα1sα3)(vcβsα2vSλ7 + cα2sα1(−m2
12 + v2sβcβ)

×
√

(λ1 + λ2 + λ3) + cα1cα2(v2c2
βλ1 +m2

12tβ),

where ctβ = cotanβ. In our study we consider the mass hierarchy: H1 < H2 < H3,
which corresponds to the physical scalars: h < S < H. This mass hierarchy is
introduced in order to explain several anomalous features in the LHC Run 1 and
Run 2 data [16]. Based on the previous studies, see [11], the CP-even neutral Higgs
bosons have the following mass ranges:

h : = 125GeV,

S : mh < mS < mH −mh,

H : 2mh < mH < 2mt. (3.23)

In 2HDM+S, the scalar singlet S will acquire a vev and mix with h and H. We
assume that the mixing of S with h is small enough such that (by varying the
parameters of the potential) it will not spoil any experimental bounds [11].

3.4 Constraints on 2HDM+S

In analysing 2HDM+S there are theoretical and experimental constraints that must
be satisfied. To verify experimental observations, the 2HDM+S must comply with
the Higgs data from the LHC. This requires the Higgs sector of 2HDM+S to include
the observed 125 GeV Higgs boson. The model must also comply with the theoretical
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constraints of tree-level perturbative unitarity and vacuum stability [35]. In addition,
the scalar potential is required to be at the global minimum. The 2HDM+S is
described by the following set of input parameters:

α1, α2, α3, v, vS ,mH1,2,3 ,mHA ,mH± , tβ,m
2
12. (3.24)

For 2HDM+S to be consistent with LHC data, it must comply with the exclu-
sion bounds, especially from the Run 1 data. The experimental constraints on the
charged Higgs bosons m±H in 2HDM imposes a mass of at least 480 GeV [35]. We
choose the following mass for the CP-odd Higgs bosons mA:

480GeV ≤ mA < 1TeV. (3.25)

We also set the following constraints on vS and m2
12 to satisfy the required branching

ratios of H:
1GeV ≤ vS < 1.5TeV,

0 ≤ m2
12 < 500TeV. (3.26)

We choose tβ ≈
√

0.8 in order to scale the SM cross-section to match the data [37].
To satisfy tree-level perturbative unitarity constraints, the eigenvalues of the scalar
scattering matrix must be below the upper value of 8π. The Feynman rules of the
S4 interactions impose λS in the range: 0 < λS ≤ 4π [38]. We require the following
conditions for tree-level perturbativity:

|λ3 − λ4| < 8π, |λ3 + 2λ4 ± 3λ5| < 8π,∣∣∣∣12(λ1 + λ2 +
√

(λ1 − λ2)2 + 4λ2
4)

∣∣∣∣ < 8π, (3.27)∣∣∣∣12(λ1 + λ2 +
√

(λ1 − λ2)2 + 4λ2
5)

∣∣∣∣ < 8π, (λ7, λ8) < 4π.

The vacuum is required to be stable at tree-level. This means that the 2HDM+S
potential has to be bounded from below. In addition, the 2HDM+S potential must
be positive in the limit where the fields go to infinity. The necessary and sufficient
conditions for vacuum stability are [35]:

λ1,2,S > 0, λ3 > −
√
λ1λ2, λ3 + λ4 − |λ5| > −

√
λ1λ2. (3.28)

If λ7 and λ8 are greater than zero:

λ7 > −
√

1

12
λSλ1 and λ8 > −

√
1

12
λSλ2. (3.29)

If λ7 or λ8 is less than zero, we also require:

− 2λ7λ8 +
1

6
λSλ3 > −

√
4

(
1

12
λSλ1 − λ2

7

)(
1

12
λSλ2 − λ2

8

)
,

− 2λ7λ8 +
1

6
λS(λ3 + λ4 − |λ5|) > −

√
4

(
1

12
λSλ1 − λ2

7

)(
1

12
λSλ2 − λ2

8

)
. (3.30)
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Figure 3.1: Madala boson H decays produced by N2HDECAY.

3.5 Methodology and tools

We ran simulations of the 2HDM+S model using 2NHDECAY. This program allowed
us to calculate branching ratios of the neutral Higgs bosons in 2HDM+S. We then
analyzed the branching ratios of the heavy Higgs H and the Z gauge boson. The
N2HDECAY code is the HDECAY program extension of 2HDM+S [35]. It is a
Fortran program used for the calculation of the branching ratios and decay widths
of the Higgs bosons in 2HDM+S. We used the mixing angles and the masses of
the CP-even Higgs bosons as inputs, and imposed the constraints from tree-level
unitarity, vacuum stability and perturbativity. We then performed a parameter
scan in 2HDM+S while satisfying all the experimental and theoretical constraints.
We then studied the heavy Higgs H and the Z gauge boson branching ratios. The
input parameters of 2HDM+S are specified in the n2hdecay.in input file, which is
an extension of the hdecay.in input file [35]. The user can calculate the 2HDM+S
branching ratios and total decay widths by setting the input value N2HDM=1 in
n2hdecay.in input file. In the first block we set PARAM=1, as well as type of the
fermion sector symmetry. In the 2 Higgs Doublet Model block, we set the type of
2HDM used, as well as the parameter basis. We also set the values of tanβ, m2

12

and the masses of the charged and pseudoscalar Higgs bosons, mH± and mA. In the
N2HDM block, we set the masses of the three neutral bosons H1,2,3 in addition to
the the three mixing angles α1,2,3 and the vev of the singlet field vS .
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Figure 3.2: SM Higgs boson h decays produced by N2HDECAY.

Figure 3.3: SM Higgs boson h decays produced at the LHC [39].
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3.6 Results

We performed scans of the 2HDM+S parameter space using N2HDECAY. We then
scanned the 2HDM+S parameters in the range allowed by theoretical and exper-
imental constraints, obtaining branching ratios for the heavy boson H and the Z
gauge boson. There are cutoffs in the H branching ratios, since N2HDECAY does
not include off-shell Higgs-to-Higgs decays, Fig. 3.1. The dominant decays of H are
to hh and Sh. The decay H → SS was suppressed to about 10%, as predicted by
the Madala hypothesis [37]. In order to comply with experimental observations, we
need to reproduce the decays of h at the LHC. We imposed a deviation limit of
<10% on the decays of h produced by N2HDECAY. There were deviations above
10% in some of the h decays produced by N2HDECAY, Fig. 3.2. The decay channel
h → W+W− produced by N2HDECAY was about 20% larger than h → W+W−

produced at the LHC, Fig. 3.3. Nevertheless, the h decays produced by N2HDECAY
comply with the LHC results.

To accommodate the Madala hypothesis in 2HDM+S, we require the following
branching ratios of the heavy boson H: H → Sh � H → hh and H → Sh + H →
hh ≈ 80% [12]. The H decays produced by N2HDECAY agree with the Madala
hypothesis. The decay H → Sh was about 80%, while H → hh was about 50%.
The decay H → SS was suppressed to about 10% since it’s kinematically off-shell.
We obtained parameter points that satisfy the model constraints as well as the de-
cays of H as predicted by the Madala hypothesis. The analysis presented in this
dissertation is considered as a first attempt to investigate the Madala hypothesis in
2HDM+S.



4
Conclusion

4.1 Conclusion

This dissertation discusses the search for new bosons H and S, which are intro-
duced in the Madala hypothesis to explain certain anomalous features in the LHC
Run 1 and Run 2 data. In order to explain the excesses in the data, the heavy
boson H and the scalar singlet S must have masses around 270 GeV and 150 GeV,
respectively [12].

Two different extensions to the SM are discussed in this work. First, we discussed
LRSMs and investigated the CP-even Higgs sector. Models with more than one
Higgs doublet can mediate FCNCs at tree-level. In order to suppress tree-level
FCNCs, we applied global and discrete symmetries to the Yukawa coupling terms.
Next, we studied tree-level FCNCs in Kaon meson mixing and concluded that the
mediating boson has to be at least in the TeV range. Our results indicate that the
Madala hypothesis cannot be accommodated in LRSMs.

We then studied the 2HDM+S and analyzed the Higgs sector. Using N2HDECAY,
we performed scans of the parameter space constrained by the theoretical and ex-
perimental requirements. The results obtained in this work seem to be consistent
with the Madala hypothesis. We could not study the off-shell decays of the heavy
boson H since N2HDECAY doesn’t allow these processes.

This study is considered as a first investigation of the Madala hypothesis in LRSMs
and 2HDM+S. Future work could include performing a full parameter scan in
2HDM+S using SSP (SARAH Scan and Plot) interphased with Spheno (Supersym-
metric Phenomenology) [40]. SSP is a Mathematica package that allows off-shell de-
cays of the heavy boson H which could modify the results obtained by N2HDECAY.
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