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Chapter 1

Introduction

The Standard Model of particle physics summarizes all we know about the
fundamental forces of electromagnetism, as well as the weak and strong
interactions (but not gravity). It has been tested in great detail up to ener-
gies in the hundred GeV range and has passed all these tests very well. The
Standard Model is a relativistic quantum field theory that incorporates the
basic principles of quantum mechanics and special relativity. Like quantum
electrodynamics (QED) the Standard Model is a gauge theory, however,
with the non-Abelian gauge group SU(3)c ⊗ SU(2)L ⊗ U(1)Y instead of
the simple Abelian U(1)em gauge group of QED. The gauge bosons are the
photons mediating the electromagnetic interactions, the W - and Z-bosons
mediating the weak interactions, as well as the gluons mediating the strong
interactions. Gauge theories can exist in several phases: in the Coulomb
phase with massless gauge bosons (like in QED), in the Higgs phase with
spontaneously broken gauge symmetry and with massive gauge bosons (e.g.
the W - and Z-bosons), and in the confinement phase, in which the gauge
bosons do not appear in the spectrum (like the gluons in quantum chromo-
dynamics (QCD)). All these different phases are indeed realized in Nature
and hence in the Standard Model that describes it.

In particle physics symmetries play a central role. One distinguishes
global and local symmetries. Global symmetries are usually only approxi-
mate. Exact symmetries, on the other hand, are locally realized, and require
the existence of a gauge field. Our world is not quite as symmetric as the
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8 CHAPTER 1. INTRODUCTION

theories we use to describe it. This is because many symmetries are broken.
The simplest form of symmetry breaking is explicit breaking which is due to
non-invariant symmetry breaking terms in the classical Lagrangian of the
theory. On the other hand, the quantization of the theory may also lead to
explicit symmetry breaking, even if the classical Lagrangian is invariant. In
that case one has an anomaly which is due to an explicit symmetry breaking
in the measure of the Feynman path integral. Only global symmetries can
be explicitly broken (either in the Lagrangian or via an anomaly). Theories
with explicitly broken gauge symmetries, on the other hand, are inconsis-
tent (perturbatively and even non-perturbatively non-renormalizable). For
example, in the Standard Model all gauge anomalies are canceled due to
the properly arranged fermion content of each generation.

Another interesting form of symmetry breaking is spontaneous sym-
metry breaking which is a dynamical effect. When a continuous global
symmetry breaks spontaneously, massless Goldstone bosons appear in the
spectrum. If there is, in addition, a weak explicit symmetry breaking, the
Goldstone bosons pick up a small mass. This is the case for the pions,
which arise as a consequence of the spontaneous breaking of the approximate
global chiral symmetry in QCD. When a gauge symmetry is spontaneously
broken one encounters the so-called Higgs mechanism which gives mass to
the gauge bosons. This gives rise to an additional helicity state. This state
has the quantum numbers of a Goldstone boson that would arise if the
symmetry were global. One says that the gauge boson eats the Goldstone
boson and thus becomes massive.

The fermions in the Standard Model are either leptons or quarks. Lep-
tons participate only in the electromagnetic and weak gauge interactions,
while quarks also participate in the strong interactions. Quarks and lep-
tons also pick up their masses through the Higgs mechanism. The values of
these masses are free parameters of the Standard Model that are presently
not understood on the basis of a more fundamental theory. There are six
quarks: up, down, strange, charm, bottom, and top, and six leptons: the
electron, muon, tau, as well as their corresponding neutrinos. The weak
interaction eigenstates are mixed to form the mass eigenstates. The quark
mixing Cabbibo-Kobayashi-Maskawa (CKM) matrix contains several more
free parameters of the Standard Model. There is convincing experimental
evidence for non-zero neutrino masses. This implies that there are not only
additional free mass parameters for the electron-, muon-, and tau-neutrinos,



9

but an entire lepton mixing matrix. Altogether, the fermion sector of the
Standard Model has so many free parameters that it is hard to believe that
there should not be a more fundamental theory that will be able to explain
the values of these parameters.

There is a very interesting parameter in the Standard Model — the CP
violating QCD θ-vacuum angle — which is consistent with zero in the real
world. The strong CP problem is to understand why this is the case. The
θ-angle is related to the topology of the gluon field which manifests itself
e.g. in so-called instanton field configurations. The Standard Model can be
extended by the introduction of a second Higgs field which gives rise to an
additional U(1)PQ symmetry as first suggested by Peccei and Quinn, and
it naturally leads to θ = 0. The spontaneous breaking of the Peccei-Quinn
symmetry leads to an almost massless Goldstone boson — the axion. If this
particle would be found in experimental searches, it could be a first concrete
hint to the physics beyond the Standard Model.

Non-trivial topology also arises for the electroweak gauge field. This
leads to an anomaly in the fermion number — or more precisely in the
U(1)B+L global symmetry of baryon plus lepton number. In particular,
baryon number itself is not strictly conserved in the Standard Model. This
has been discussed as a possible explanation of the baryon asymmetry in the
universe — the fact that there is more matter than anti-matter. It is more
likely that baryon number violating processes beyond the Standard Model
are responsible for the baryon asymmetry. For example, in the SU(5) grand
unified theory (GUT) baryon number violating processes appear naturally
at extremely high energies close to the GUT scale. Although the U(1)B+L

symmetry is explicitly broken by an anomaly, the global U(1)B−L symmetry
remains intact both in the Standard Model and in the SU(5) GUT, at least if
the neutrinos were massless. This would, in fact, be quite strange (an exact
symmetry should be local, not global) and we now know that neutrinos are
indeed massive. A grand unified theory that naturally incorporates massive
neutrinos is based on the symmetry group SO(10). In this model B − L
is also violated and all exact symmetries are locally realized. In addition,
the so-called see-saw mechanism gives a natural explanation for very small
neutrino masses.

Despite these successes of grand unified theories, they suffer from the hi-
erarchy problem — the puzzle how to stabilize the electroweak scale against
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the much higher GUT scale. This may be achieved using supersymmetric
theories which would lead us to questions beyond the scope of this course.
Another attempt to avoid the hierarchy problem is realized in technicolor
models which have their own problems and are hence no longer popular.
Still, they are interesting from a theoretical point of view and will therefore
also be discussed.

In this course we will not put much emphasis on the rich and successful
detailed phenomenology resulting from the Standard Model. Of course,
this is very interesting as well, but would be the subject for another course.
Instead, we will concentrate on the general structure and the symmetries of
the Standard Model and some theories that go beyond it.



Part I

FUNDAMENTAL
CONCEPTS
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Chapter 2

Concepts of Quantum Field
Theory and the Standard
Model

These lectures are an introduction to the Standard Model of elementary par-
ticle physics — the relativistic quantum field theory that summarizes all we
know today about the fundamental structure of matter, forces, and symme-
tries. The Standard Model is a gauge theory that describes the strong, weak,
and electromagnetic interactions of Higgs particles, leptons, and quarks me-
diated by gluons, W - and Z-bosons, and photons. In addition, it describes
the direct (not gauge-boson-mediated) self-couplings of the Higgs field as
well as the Yukawa couplings of the Higgs field to leptons and quarks. In
this Chapter we discuss fundamental concepts and basic principles of field
theory in order to pave the way for a systematic exposition of the subject in
the rest of the lectures. In particular, we emphasize the fundamental roles
of locality, symmetries, and hierarchies of energy scales. We also provide
an overview of the historical development of particle physics and quantum
field theory.

13



14CHAPTER 2. CONCEPTS OF QUANTUMFIELD THEORYANDTHE STANDARDMODEL

2.1 Point Particles versus Fields at the Clas-

sical Level

Theoretical physics in the modern sense was initiated by Sir Isaac New-
ton who published his “Philiosophiae Naturalis Principia Mathematica” in
1687. This spectacular eruption of genius provides us with the description of
classical point particle mechanics, in terms of ordinary differential equations
for the position vectors ~xa(t) of the individual particles (a ∈ {1, 2, . . . , N})
as functions of time t. Classical mechanics is local in time, because New-
ton’s equation contains infinitesimal time-derivatives d~xa(t)/dt

2, but no fi-
nite time-differences t − t′. On the other hand, Newtonian mechanics is
non-local in space, because the finite distances |~xa − ~xb| between differ-
ent particles determine instantaneous forces, including Newtonian gravity.
Hence, in classical mechanics there are fundamental differences between
space and time. In point particle theories the fundamental degrees of free-
dom, which are the particle positions ~xa(t), are mobile: they move around
in space. As a consequence, at almost all points space is empty, i.e. nothing
is happening there, except if a point particle occupies that position.

The fundamental degrees of freedom of a field theory, namely the field
values Φ(~x, t) are immobile, because they are attached to a given space point
~x at all times t. In this case, it is the field value Φ — and not the position
~x — which changes as a function of time. In a field theory, space plays a
very different role than in point particle mechanics. In particular, it is not
empty, because field degrees of freedom exist at all points ~x at all times t.
Fluid dynamics is an example of a nonrelativistic classical field theory in
which the mass density enters as a scalar field Φ(~x, t). The classical field
equations are partial differential equations (involving both space- and time-
derivatives of Φ(~x, t)) which determine the evolution of the fields. Hence,
in contrast to point particle theories, field theories are local in both space
and time.

The most fundamental classical field theory is James Clark Maxwell’s
electrodynamics of electric and magnetic fields ~E(~x, t) and ~B(~x, t), which
was published in 1864. In fact, this theory (in quantized form) is an inte-
gral part of the Standard Model. Although this was not known at the time,
Maxwell’s electrodynamics is a relativistic classical field theory, which is in-
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variant against space-time translations and rotations forming the Poincaré
symmetry group. Newton’s point particle mechanics, on the other hand,
is invariant under Galileian instead of Lorentz boosts. Thus, it is nonrel-
ativistic and hence inconsistent with the relativistic space-time underlying
Maxwell’s electrodynamics.

Albert Einstein’s special theory of relativity from 1905 modified Newton’s
point particle mechanics in such a way that it becomes Poincaré invariant.
Indeed, in the framework of Einstein’s special relativity, charged point parti-
cles can interact with classical electromagnetic fields in a Poincaré invariant
manner. On the other hand, relativistic point particles cannot interact di-
rectly with each other, and thus necessarily remain free in the absence of
a mediating electromagnetic field. This follows from Heinrich Leutwyler’s
non-interaction theorem for relativistic systems of N point particles [?],
which extended an earlier study of the N = 2 case [?]. Indeed, in the rela-
tivistic Standard Model quantum field theory the point particle concept is
completely abandoned and all “particles” are in fact just field excitations,
which Frank Wilczek sometimes calls “wavicles”. This is a very useful dis-
tinction which allows us to avoid confusions that might otherwise arise quite
easily. In particular, while a Newtonian point particle has a completely well-
defined position ~xa, a wavicle does not.

2.2 Particles versus Waves in Quantum The-

ory

Quantum mechanics (as formulated by Werner Heisenberg in 192? and by
Erwin Schrödinger in 192?) applies the basic principles of quantum theory
— namely unitarity which implies the conservation of probability — to New-
ton’s point particles. As a consequence, the particle positions ~xa (which are
still conceptually completely well-defined) are then affected by quantum un-
certainty. This is described in terms of a wave function Ψ(~x1, ~x2, . . . , ~xN , t),
which obeys the nonrelativistic Schrödinger equation — a partial differential
equation containing derivatives with respect to time as well as with respect
to the N particle positions ~xa. It is important to note that (unlike Φ(~x, t))
Ψ(~x1, ~x2, . . . , ~xN , t) is not a field in space-time, but just a time-dependent
complex function over the N -particle configuration space (~x1, ~x2, . . . , ~xN).
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A time-dependent state in a quantum field theory, on the other hand, can be
described by a complex-valued wave functional Ψ[Φ(~x), t], which depends on
the field configuration Φ(~x), and obeys a functional Schrödinger equation.

When one discusses quantum mechanical double-slit experiments, one
says that the resulting interference pattern is a manifestation of the wave
properties of quantum particles. This does not mean that such a particle
is a quantized wave excitation of a field. It is just a point particle with a
conceptually completely well defined position, which is, however, affected by
quantum uncertainty. In particular, as long as the position of the particle is
not measured, it can go through both slits simultaneously, until it hits the
detection screen which registers its (unambiguously defined) position. Only
after repeating this single-particle experiment a large number of times, the
detected positions of the individual particles give rise to an emerging inter-
ference pattern. In the context of quantum mechanics, particle-wave duality
just means that point particles are described by a quantum mechanical wave
function Ψ(~x1, ~x2, . . . , ~xN , t).

When a classical electromagnetic wave is diffracted at a double slit, it
shows an interference pattern for very different reasons. As a field exci-
tation, the wave exists simultaneously at all points in a region of space.
In fact, unlike a point particle, it does not even have a well-defined posi-
tion. In contrast to the experiment with quantum mechanical point par-
ticles, the interference pattern arises immediately as soon as the classical
wave reaches the detection screen. When one repeats this experiment at
the quantum level with individual photons, the interference pattern again
emerges only after the experiment has been repeated a large number of
times. The “particle” character of photons is usually emphasized in the
context of the Compton effect. However, while we may be used to think-
ing of an electron as a point particle with position ~xa (perhaps affected by
quantum uncertainty), we should definitely not think about a photon in a
similar way. As a quantized wave excitation of the electromagnetic field, a
photon does not even have a well-defined position in space. What do we
then mean when we talk about the photon as a “particle”? Unfortunately,
in our casual language the term “particle” is associated with the idea of
a point-like object, which is not what a photon is like. Frank Wilczek’s
term “wavicle” serves its purpose when it prevents us from thinking of a
photon as a tiny billiard ball. At the end, only mathematics provides an
appropriate and accurate description of “particles” like the photon. In the
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mathematics of quantum field theory, particle-wave duality reduces to the
fact that “particles” actually are “wavicles”, i.e. quantized wave excitations
of fields.

When Paul Adrien Maurice Dirac discovered his relativistic equation for
the electron in 1928, the 4-component Dirac spinor was initially interpreted
as the wave function of an electron or positron with spin up or down. How-
ever, due to electron-positron pair creation, it turned out that the Dirac
equation does not have a consistent single-particle interpretation. In fact,
the Dirac spinor is not a wave function at all, but a fermionic field whose
quantized wave excitations manifest themselves as electrons and positrons.
In other words, not only photons but all elementary “particles” are, in
fact, wavicles. When the Dirac field is coupled to the electromagnetic field
one arrives at Quantum Electrodynamics (QED), whose construction was
pioneered by Freeman Dyson, Richard Feynman, Julian Schwinger, and Sin-
Itiro Tomonaga. QED is an integral part of the Standard Model in which all
elementary “particles”, including quarks, leptons, and Higgs particles, are
quantized wave excitations of the corresponding quark, lepton, and Higgs
fields. Unlike point particles, quark, lepton, and Higgs fields can interact
directly in a relativistic manner, even without the mediation by gauge fields.

Although in the Standard Model all “particles” are, in fact, wavicles,
one often reads that quarks or electrons are “point-like” objects. What can
this possibly mean for a wavicle that does not even have a well-defined po-
sition in space? Again, this is a deficiency of our casual language, which is
properly resolved by the unambiguous mathematics of quantum field the-
ory. What the above statement actually means is that even the highest
energy experiments have, at least until now, not revealed any substructure
of quarks or electrons, i.e. they seem truly elementary. The same is not
true for protons or neutrons, which actually consist of quarks and gluons.
Interestingly, while being “point-like” in the above sense, an electron is at
the same time infinitely extended. This is because electrons are charged
“particles” which are surrounded by a Coulomb field that extends to infin-
ity. In reality, this field is usually screened by other positive charges in the
vicinity of the electron.

This discussion should have convinced the reader that particle physics
is not at all concerned with point particles. Perhaps it should better be
called “wavicle physics”. However, as long as we are aware that our ca-
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sual language is not sufficiently precise in this respect, the nomenclature is
secondary. In the mathematics of quantum field theory, all “particles” are
indeed quantized waves.

2.3 Classical and Quantum Gauge Fields

Although it also contains non-gauge-field-mediated couplings between quark,
lepton, and Higgs fields, in the Standard Model gauge fields play a very
important role, because they mediate the fundamental strong, weak, and
electromagnetic interactions. While the classical Maxwell equations can be
expressed entirely in terms of the electromagnetic field strengths ~E and ~B,
which form the field strength tensor Fµν = ∂µAν − ∂νAµ, in relativistic
quantum field theory gauge fields are described by the vector potential Aµ.
Even in the nonrelativistic quantum mechanics of a charged point particle,
an external magnetic field ~B = ~∇× ~A enters the Schrödinger equation via
the vector potential ~A, which forms a covariant derivative together with the
momentum operator. In particular, the Aharonov-Bohm effect is naturally
expressed through a line integral of the vector potential. While the field
strength Fµν is gauge invariant and thus physical, the vector potential can
be gauge transformed to A′µ = Aµ + ∂µϕ, where ϕ(~x, t) is an arbitrary local
gauge transformation function of space and time. When we work with vec-
tor potentials, we use redundant gauge variant variables to describe gauge
invariant physical observables. While this is a matter of choice in classical
theories, it seems unavoidable in quantum theories. In particular, in the
quantum mechanics of a charged point particle, the complex phase ambi-
guity of the wave function turns into a local gauge freedom. Similarly, in
quantum field theory the complex phase of a Dirac spinor is gauge variant,
but it can be combined with the gauge variant vector potential to form the
gauge invariant QED Lagrangian. Gauge invariance is a local symmetry
which must be maintained exactly in order to guarantee that no unphysical
effects can arise due to the redundant gauge variant variables.

Since a local gauge symmetry just reflects a redundancy in our theoreti-
cal description of the gauge invariant physics, it has different physical conse-
quences than a global symmetry. Both for gauge and for global symmetries,
the Hamiltonian of the theory is invariant under symmetry operations. In
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case of a global symmetry (at least in the absence of spontaneous symmetry
breaking), this implies that physical states belong to (in general nontriv-
ial) irreducible representations of the symmetry group. As a consequence,
there are degeneracies in the spectrum whenever an irreducible representa-
tion is more than 1-dimensional. In case of a gauge symmetry, on the other
hand, all physical states are gauge invariant, i.e. they belong to a trivial
1-dimensional representation of the local gauge group. Hence, gauge sym-
metries do not give rise to degeneracies in the spectrum of physical states.
Indeed the gauge variant eigenstates of the gauge invariant Hamiltonian
are exiled from the physical Hilbert space, by imposing the Gauss law as a
constraint on physical states.

2.4 Ultraviolet Divergences, Regularization,

and Renormalization

Field theories have a fixed number of fundamental field degrees of freedom
attached to each point in space. In continuous space, the total number of
field degrees of freedom is thus uncountably large. While this is no problem
in classical field theory, where the solutions of the field equations are smooth
functions of space and time, quantum fields undergo violent fluctuations
which give rise to ultraviolet divergences. In order to obtain meaningful
finite answers for physical quantities, quantum fields must be regularized
by introducing an ultraviolet cut-off. This is necessary because, most likely,
quantum fields in continuous space are ultimately not the correct degrees
of freedom that Nature is built from at ultra-short distances of the order of
the Planck length lPlanck ≈ 10−35 m. The corresponding energy scale is the
Planck scale MPlanck ≈ 1016 TeV, at which gravity, which is extremely weak
at low energies, becomes strongly coupled. Although string theory provides
a promising framework for its formulation, an established non-perturbative
theory of quantum gravity, which is valid all the way up to the Planck scale,
currently does not exist. Fortunately, we need not know the ultimate high-
energy theory of everything before we can address the physics in the TeV
energy regime that is accessible to present day experiments, in which the
Standard Model has been tested with great scrutiny. Whether there are
strings, some tiny wheels turning around at the Planck scale, or some other
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truly fundamental degrees of freedom, the currently accessible low-energy
physics is insensitive to those details.

In order to mimic the effects of the unknown ultimate ultra-short dis-
tance degrees of freedom, one can introduce an ultraviolet cut-off in many
different ways. It is, however, important that the cut-off procedure does not
violate any gauge symmetries, because otherwise unphysical redundant vari-
ables would contaminate physical results. In perturbation theory, the most
efficient way to introduce a gauge invariant cut-off is dimensional regular-
ization, i.e. analytic continuation in the space-time dimension away from 4.
Beyond perturbation theory, the lattice regularization, in which space-time is
replaced by a 4-dimensional hyper-cubic grid of discrete lattice points, pro-
vides a natural cut-off that again allows us to maintain gauge invariance. In
this case, the lattice spacing a, i.e. the distance between nearest-neighbor
lattice points, acts as an ultraviolet cut-off. Unlike in continuous space-
time, in lattice field theory the number of field degrees of freedom becomes
countable, which removes the divergences in physical observables. Still, in
order to obtain meaningful physical results, one must take the continuum
limit a → 0. This is achieved by tuning the coupling constants in the La-
grangian in such a way that the long-distance continuum physics becomes
insensitive to the lattice spacing. This process is known as renormalization.

2.5 The Standard Model: Renormalizabil-

ity, Triviality,

and Incorporation of Gravity

The gauge, Higgs, lepton, and quark fields of the Standard Model all have
specific gauge transformation properties. They also transform appropri-
ately under the space-time transformations of the Poincaré group. The
Lagrangian of the Standard Model comprises all terms that are gauge as
well as Poincaré invariant combinations of fields. It is important to note
that the Standard Model is renormalizable, i.e. a finite number of terms
in the Lagrangian is sufficient to remove the ultraviolet divergences. In
particular, terms with coupling constants of negative mass dimension are
irrelevant and need not be included in the Standard Model. Its renormaliz-
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ability implies that the Standard Model could, at least in principle, be valid
up to arbitrarily high energy scales. However, there is a caveat: the issue
of “triviality”. There is overwhelming evidence, but no rigorous proof, that
the Higgs sector of the Standard Model becomes non-interacting (and thus
trivial) when one removes the cut-off all the way to infinity.

While renormalizability implies that the Standard Model physics is in-
sensitive to the ultraviolet cut-off, it is not necessarily physically meaningful
to send the cut-off to infinity. In particular, one would expect that, at some
energy scale, either near or high above the TeV scale accessible to current
experiments, new physics beyond the Standard Model could be discovered.
In that case, the scale Λ at which new physics arises would provide a physical
cut-off for the Standard Model, which would no longer provide an accurate
description of the physics above that energy scale. The Standard Model
would then still remain a consistent low-energy effective field theory. How-
ever, as one reaches higher and higher energies approaching Λ, more and
more non-renormalizable terms with negative mass dimension (suppressed
by inverse powers of Λ) would have to be added to the effective Lagrangian.

Even in the absence of new physics close to currently accessible en-
ergy scales, the triviality of the Standard Model is a rather academic issue,
because the Planck scale already provides a finite (yet extremely high) en-
ergy scale at which the Standard Model must necessarily be replaced by a
more complete theory that should include non-perturbative quantum grav-
ity. While gravity is usually not considered as belonging to the Standard
Model, it can be incorporated perturbatively as a low-energy effective the-
ory, provided that Poincaré invariance is maintained as an exact symmetry.
This is necessary because in Einstein’s theory of gravity, i.e. in general rela-
tivity, global Poincaré invariance is promoted to a (necessarily exact) gauge
symmetry. In contrast to some claims in the literature, it is not true that
gravity resists quantization in the context of quantum field theory. While
Einstein gravity is not renormalizable, i.e. at higher and higher energies
more and more terms enter the Lagrangian, it can be consistently quan-
tized as a low-energy effective field theory. This theory is expected to break
down at the Planck scale, where gravity becomes strongly coupled.



22CHAPTER 2. CONCEPTS OF QUANTUMFIELD THEORYANDTHE STANDARDMODEL

2.6 Fundamental Standard Model Parame-

ters

The Standard Model Lagrangian contains a large number of free parame-
ters, whose values can only be determined by comparison with experiments.
Remarkably, in the minimal version of the Standard Model there is only one
dimensionful parameter, which determines the vacuum value v = 246 GeV
of the Higgs field as well as the Higgs boson mass. The masses of the heavy
W± and Z0 gauge bosons, which mediate the weak interaction, are given
by MW = gv and MZ =

√
g2 + g′2v, where g and g′ are the dimension-

less gauge coupling constants associated with the Standard Model gauge
groups SU(2)L and U(1)Y , respectively. The strong interactions between
quarks and gluons are described by Quantum Chromodynamics (QCD) —
an SU(3)c color gauge theory — which is another integral part of the Stan-
dard Model. Since scale invariance is broken by quantum effects, by dimen-
sional transmutation the dimensionless SU(3)c gauge coupling gs is traded
for the dimensionful QCD scale ΛQCD = 0.260(40) GeV. Strongly inter-
acting particles, including protons, neutrons, and other hadrons, receive
the dominant portion of their masses from the strong interaction energy of
quarks and gluons, which is proportional to ΛQCD, and only a small fraction
of their masses is due to the non-zero quark masses. The masses of quarks,
mq = yqv, and of leptons, ml = ylv, are products of v with the dimensionless
Yukawa couplings yq and yl. Quarks and leptons arise in three generations
with the same quantum numbers, but with different masses. The mixing
angles between the quark or lepton fields of the different generations are
additional fundamental Standard Model parameters, whose values can only
be determined experimentally.

In the original minimal version of the Standard Model the neutrinos were
massless particles, because only left-handed neutrino fields were considered.
Since the discovery of neutrino oscillations, it is clear that (at least some)
neutrinos must have a non-zero mass. This naturally suggests to extend
the minimal Standard Model by adding right-handed neutrino fields. In
this way further dimensionful parameters, the Majorana masses MνR of
the right-handed neutrinos, enter the Standard Model Lagrangian. A mass
mixing mechanism — also known as the see-saw mechanism — leads to small
neutrino masses, provided that MνR � v. The parameters MνR set the scale
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Λ at which new physics beyond the minimal Standard Model arises. The
low-energy effects of this new physics — in particular, the non-zero neutrino
masses — can also be described correctly by adding non-renormalizable
terms to the minimal Standard Model Lagrangian, which are suppressed by
the inverse of the scale Λ ≈MνR .

In view of the large number (of about 25) free parameters, one may ex-
pect that there could be an even more fundamental structure beyond the
Standard Model that would allow us to understand the origin of its free pa-
rameters. Ultimately, the Standard Model will definitely break down at the
Planck scale, when non-perturbative quantum gravity comes into play. The
minimal Standard Model has already been extended by new physics associ-
ated with the Majorana neutrino mass scale MνR , and there is no reason to
believe that no further extensions will be necessary before we reach MPlanck.
The extensions might include techni-color theories, supersymmetric theo-
ries, grand unified theories (GUT), or other structures that have been a
subject of intense theoretical investigation. At the time of the writing of
these notes, there is no conclusive experimental evidence for physics beyond
the Standard Model. There is evidence for dark matter, which might be of
supersymmetric origin, but could also simply be related to right-handed
Majorana neutrinos. The idea of cosmic inflation suggests that there could
be an inflaton field. Then there is evidence for dark energy — i.e. vac-
uum energy — which might arise as dynamical quintessence or as a static
cosmological constant Λc. The latter is just a free low-energy parameter of
Einstein gravity, another being Newton’s constant G, which determines the
Planck scale MPlanck =

√
~c/G. When we include perturbative quantum

gravity as well as right-handed neutrino fields in the Standard Model, we
can currently not exclude that it might be valid all the way up to the Planck
scale.

2.7 Hierarchies of Scales and Approximate

Global Symmetries

In the minimal Standard Model extended by perturbative quantum gravity
we encounter four dimensionful parameters: the Planck scale, MPlanck ≈
1019 GeV, derived from Newton’s constant, which determines the strength
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of gravity, the vacuum expectation value v ≈ 10−17MPlanck of the Higgs field,
the QCD scale ΛQCD ≈ 10−20MPlanck, and the cosmological constant Λ

1/4
c ≈

10−30MPlanck. Why are these scales so vastly different, or, in other words,
what is the origin of these hierarchies of energy scales? Since, according
to our present understanding, these scales are free parameters, answering
these questions requires to go beyond the Standard Model or perturbative
quantum gravity. Staying within the framework of these theories, one can
at least ask whether the hierarchies may arise naturally. At first glance,
it may seem unnatural that the QCD scale is so much smaller than the
Planck scale. However, QCD’s property of asymptotic freedom provides an
explanation for this hierarchy, because, without unnatural fine-tuning of the
strong coupling constant gs, ΛQCD is exponentially suppressed with respect
to the ultraviolet cut-off, which we may identify with MPlanck.

The same is not true for the hierarchy between the electroweak scale and
the Planck scale. The puzzle to understand why v � MPlanck is known as
the hierarchy problem, which has no natural solution within the Standard
Model because the self-coupling of the Higgs field is not asymptotically free.
Potential solutions of the hierarchy problem may be associated with new
physics beyond the Standard Model, such as, for example, supersymmetric
or techni-color models. Despite intensive investigations, at the time of the
writing of these notes there is no experimental evidence for these ideas.
In a non-perturbative context supersymmetry may, in fact, be unnatural,
because the construction of the symmetry itself may require fine-tuning.

The fact that Λc � MPlanck confronts us with the cosmological con-
stant problem — the most severe hierarchy problem in all of physics. If the
correct theory of non-perturbative quantum gravity would have a property
like asymptotic freedom, one may speculate that the cosmological constant
problem might find a natural explanation. Alternatively, one may invoke
the anthropic principle. One then relates the value of Λc to the fact of our
own existence. Alternative Universes with a larger negative or positive cos-
mological constant would either collapse or expand very quickly. In these
cases, it seems unlikely that intelligent life could evolve. The idea of eternal
cosmic inflation actually provides us with an incredible number of different
Universes, forming a very large Multiverse. If the Multiverse indeed exists,
which is a matter of speculation, we can only evolve in a pocket Universe
with hospitable hierarchies of energy scales. The anthropic principle should,
however, be invoked only as a last resort, when all alternative explanations
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fail. In particular, the somewhat cheap anthropic-principle-based explana-
tions of various hierarchies should not prevent us from thinking hard about
everything that can possibly be understood without invoking this principle.

The Standard Model provides us with even more hierarchy puzzles.
While the dimensionless Yukawa coupling yt of the heavy top quark is of
order 1, such that the mass of the top quark mt = ytv = 174 GeV is near the
electroweak scale v, the Yukawa couplings of the light up and down quarks
are much smaller, yu, yd ≈ 10−5, such that mu,md � ΛQCD. The hierarchy
between the masses of the light quarks and the QCD scale gives rise to
an approximate global SU(2)L × SU(2)R chiral symmetry. Its SU(2)L=R

isospin subgroup manifests itself in the hadron spectrum and “explains” why
proton and neutron have almost the same mass. However, this is a proper
explanation only if we take the hierarchy mu,md � ΛQCD for granted.
However, since we don’t understand the origin of the experimental values of
the quark masses, we should admit that the approximate isospin symmetry
and thus the almost degenerate proton and neutron masses appear just as
an “accident”. As intelligent beings, we recognize the symmetry (although
we may not understand its origin) and utilize it to simplify our theoretical
investigations.

2.8 Local and Global Symmetries

As we have discussed in Section 2.3, local symmetries — i.e. gauge symme-
tries — must be exact in order to prevent unphysical effects of the redun-
dant gauge variables. This includes Poincaré symmetry, which is promoted
to a gauge symmetry in the context of general relativity. Gauge invari-
ance is very restrictive and, in combination with renormalizability, implies
large predictive power, with only one free parameter — the gauge coupling
constant associated with the corresponding gauge group. Other non-gauge-
mediated interactions, as, for example, the Yukawa couplings between Higgs
and quark or lepton fields, give rise to a much larger number of free param-
eters and thus restrict the predictive power of the theory.

In contrast to gauge symmetries, global symmetries such as isospin are
in general only approximate and result from an (often not understood) hi-
erarchy of energy scales. For example, the discrete symmetries of charge
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conjugation C and parity P are broken by the weak but not by the electro-
magnetic and strong interactions. Due to the hierarchy ΛQCD � v, which
“explains” the weakness of the W- and Z-boson-mediated interactions (but
whose origin is again not understood), C- or P-violating processes are rela-
tively rare. In the Standard Model the origin of C- and P-violation is the
chiral nature of the theory — the fact that left- and right-handed quark or
lepton fields transform differently under SU(2)L × U(1)Y gauge transfor-
mations. This is characteristic of a chiral gauge theory. While interactions
between gauge and matter fields may break C and P, they leave the com-
bined symmetry CP intact.

In the Standard Model, CP-violating processes arise only due to mixing
between the three generations of quarks and leptons, and they are hence
even rarer. It is an open question whether these sources of CP violation
are sufficiently strong to explain the observed baryon asymmetry between
matter and anti-matter in the Universe. It is still a puzzle — known as the
strong CP problem — why the self-interactions of the gluons respect CP
symmetry, i.e. why the experimental value of the QCD vacuum angle θ is
compatible with zero. A potential explanation beyond the Standard Model
(which still awaits experimental confirmation) is related to an approximate
U(1)PQ Peccei-Quinn symmetry, which would be associated with a new light
particle — the axion.

Remarkably, as a result of the CPT theorem, the combination CPT of
CP with time-reversal T is an exact symmetry of any relativistic field theory.
In fact, the CPT symmetry is indirectly protected by the necessarily exact
Poincaré symmetry, which acts as the gauge symmetry of general relativity.

Exact global symmetries other than CPT are, however, suspicious. In
fact, they should either be gauged or explicitly broken. In the minimal
version of the Standard Model without right-handed neutrino fields, the
difference between baryon and lepton number B − L is an exact global
symmetry. In the SO(10) GUT extension of the Standard Model, U(1)B−L
is indeed gauged and appears as a subgroup of the SO(10) gauge group. In
the extended Standard Model with additional right-handed neutrino fields
only, on the other hand, the global U(1)B−L symmetry is explicitly broken
by Majorana mass terms. Fermion number conservation modulo 2 then still
remains as an exact global symmetry. However, just as CPT, this symmetry
automatically follows from Poincaré invariance.
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2.9 Explicit versus Spontaneous Symmetry

Breaking

As we just discussed, gauge symmetries must be exact, while global sym-
metries are in general only approximate. A simple source of explicit global
symmetry breaking are non-invariant terms in the Lagrangian. A typical
example is the SU(2)L × SU(2)R chiral symmetry of QCD, which is ex-
plicitly broken by the non-zero Yukawa couplings between the light up and
down quarks and the Higgs field.

QCD with massless up and down quarks, on the other hand, has an exact
chiral symmetry. Interestingly, this symmetry does not manifest itself di-
rectly in the QCD spectrum, because it is spontaneously broken. This means
that, despite the fact that the Hamiltonian of massless QCD is invariant
against SU(2)L×SU(2)R chiral symmetry transformations, its ground state
is not. In fact, there is a continuous family of degenerate vacuum states of
massless QCD, which are related to each other by chiral transformations. In
the process of spontaneous symmetry breaking, one of these ground states is
selected spontaneously. This state is still invariant against transformations
in the unbroken SU(2)L=R isospin subgroup of SU(2)L × SU(2)R. Small
fluctuations around the spontaneously chosen vacuum state cost energy in
proportion to the magnitude of their momentum, and thus manifest them-
selves as massless particles — known as Goldstone bosons. As a consequence
of spontaneous chiral symmetry breaking, which reduces SU(2)L× SU(2)R
to its unbroken SU(2)L=R isospin subgroup, there are three massless Gold-
stone bosons — the charged and neutral pions π+, π0, and π−. In the real
world with non-zero up and down quark masses, chiral symmetry is not
only spontaneously but, in addition, also explicitly broken. As a result,
the pions turn into light (but no longer massless) pseudo-Goldstone bosons,
whose squared masses are proportional to the product of the quark masses
and the chiral order parameter, which is proportional to Λ3

QCD.

The Higgs sector of the Standard Model also has an SU(2)L × SU(2)R
symmetry. However, unlike in QCD, its SU(2)L×U(1)Y subgroup is gauged
and must hence be an exact symmetry. Since a gauge symmetry just reflects
a redundancy in our theoretical description, it cannot break spontaneously
in the same way as a global symmetry. When one gauges a spontaneously
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broken global symmetry, one induces the Higgs mechanism in which the
gauge field picks up a mass. The previously massless Goldstone degrees
of freedom are then incorporated as longitudinal degrees of freedom of the
massive gauge bosons. One says that the gauge bosons “eat” the Goldstone
bosons and become massive. This is indeed how the electroweak gauge
bosons W± and Z0 pick up their masses. Techni-color extensions of the
Standard Model mimic QCD at the electroweak scale. The W± and Z0

then become massive because they “eat” the massless techni-pions Π± and
Π0. This would indeed solve the hierarchy problem v � MPlanck, because
the techni-chiral order parameter, which replaces v, is proportional to ΛTC

(the techni-color analog of ΛQCD) which is naturally much smaller than
MPlanck due to asymptotic freedom.

2.10 Anomalies in Local and Global Symme-

tries

A more subtle form of explicit symmetry breaking does not manifest it-
self in the Lagrangian, because it affects only the quantum but not the
classical theory. Whenever quantum effects destroy a symmetry that is ex-
act at the classical level, one speaks of an anomaly. Theories affected by
gauge anomalies are mathematically and physically inconsistent, because
unphysical redundant gauge variables then contaminate physical observ-
ables via quantum effects. Gauge anomalies must therefore be canceled.
Gauge anomaly cancellation imposes severe constraints on chiral gauge the-
ories including the Standard Model. For example, as a consequence of the
cancellation of Witten’s so-called global anomaly, which would destroy the
SU(2)L gauge symmetry of the Standard model, the number of quark col-
ors Nc (which is 3 in the real world) must be an odd number. In addition,
anomaly cancellation has important consequences for electric charge quan-
tization.

In contrast to gauge anomalies, anomalies in global symmetries need not
be canceled but lead to observable consequences. An important example is
scale invariance. In the absence of quark mass terms, the QCD Lagrangian
has only one parameter — the dimensionless gauge coupling gs. Hence,
the Lagrangian of massless QCD is exactly scale invariant. This global
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symmetry is affected by an anomaly, because the quantization of the theory
requires the introduction of a dimensionful cut-off — for example, the lattice
spacing a in the lattice regularization. Remarkably, even when the cut-off is
removed in the continuum limit a→ 0, the dimensionful scale ΛQCD emerges
via the process of dimensional transmutation.

Another anomaly affects the flavor-singlet axial U(1)A symmetry of
massless QCD. This quantum effect gives a large mass to the η′ meson.
Only in the large Nc limit, in which the U(1)A anomaly is suppressed, the
η′ meson would become a massless Goldstone boson. Yet another anomaly
affects the discrete global G-parity symmetry of QCD, which conserves the
number of pions modulo 2. Remarkably, via electromagnetic interactions a
single neutral pion can decay into two photons. This quantum effect changes
the number of pions from one to zero and thus breaks G-parity anomalously.
In contrast to many textbooks, we will point out that in a gauge-anomaly-
free Standard Model with Nc quark colors, the width of the neutral pion,
associated with the decay into two photons, is not proportional to N2

c but
actually Nc-independent.

2.11 Euclidean Quantum Field Theory ver-

sus Classical Statistical Mechanics

The quantization of field theories, in particular, gauge theories, is a subtle
mathematical problem. The functional integral approach (i.e. Feynman’s
path integral applied to quantum field theory) offers a very attractive al-
ternative to canonical quantization. When real Minkowski time is analyt-
ically continued to purely imaginary Euclidean time, the functional inte-
gral becomes mathematically particularly well-behaved. As an extra bonus,
Euclidean quantum field theory, in particular, when it is regularized on
a 4-dimensional Euclidean space-time lattice, is analogous to a system of
classical statistical mechanics. The Euclidean fields then correspond to gen-
eralized spin variables and the classical Hamilton function is analogous to
the Euclidean lattice action of the quantum field theory. The temperature
T , which controls the thermal fluctuations in classical statistical mechanics,
is analogous to ~, which controls the strength of quantum fluctuations. A
spin correlation function is analogous to a Euclidean 2-point function, whose
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decay determines a correlation length ξ = 1/M , where M is a particle mass.

The analogy between classical statistical mechanics and Euclidean field
theory has far-reaching consequences, because the theory of critical phenom-
ena can then be applied to field theory. In particular, a critical point, where
a correlation length diverges in units of the lattice spacing, i.e. ξ/a → 0,
corresponds to the continuum limit of a Euclidean lattice field theory in
which Ma → 0. The insensitivity of the low-energy physics to the details
of the regularization of quantum field theory follows from universality. Rel-
evant, marginal, and irrelevant couplings follow from considerations of the
renormalization group. Furthermore, Monte Carlo methods, which were
originally developed for classical statistical mechanics, can be applied to
lattice QCD in order to quantitatively address non-perturbative problems,
which arise due to the strong interaction between quarks and gluons.
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Chapter 3

From Cooper Pairs to Higgs
Bosons

In this chapter we introduce the scalar sector of the Standard Model. Even
without gauge fields or fermions (leptons and quarks), there is interesting
physics of Higgs bosons alone. In the Higgs sector of the Standard Model
a global SU(2)L × SU(2)R ' O(4) symmetry breaks spontaneously down
to the subgroup SU(2)L=R ' O(3).1 According to the Goldstone theorem,
this gives rise to three massless Nambu-Goldstone bosons. Once electroweak
gauge fields are included (which will be done in the next chapter), the gauge
bosons W and Z become massive due to the Higgs mechanism. The photon,
on the other hand, remains massless, as a consequence of the unbroken
U(1)em gauge symmetry of electromagnetism.

The analogies between the Higgs mechanism and the physics of super-
conductors have been pointed out, e.g., by Philip Anderson. In particular,
the scalar field describing the Cooper pairs of electrons in a superconductor
is a condensed matter analogue of the Higgs field in particle physics. When
Cooper pairs condense, even the U(1)em symmetry breaks spontaneously
and, consequently, the photon then also becomes massive. However, in this
chapter we do not yet include gauge fields. Instead we concentrate on the
dynamics of the scalar fields alone.

1The symbol ' denotes a local isomorphism between two manifolds, which may still
differ in their global topology.
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Experiments before the LHC had excluded a Higgs particle lighter than
110 GeV. Precision tests of the Standard Model had favored a Higgs mass
slightly above this limit, and indeed LHC experiments have found the Higgs
particle at a mass of 126 GeV. Theoretically, obtaining an elementary Higgs
particle with a renormalized mass much smaller than the Planck scale re-
quires an unnatural fine-tuning of the bare mass. This is known as the
gauge hierarchy problem. A similar problem does not arise for the com-
posite Cooper pairs in condensed matter physics. Hence, one may wonder
whether the physical Higgs particle is also composite. This scenario has
been suggested by theoretical approaches beyond the Standard Model, in
particular by technicolor models.

Another feature of the scalar sector of the Standard Model is its triviality.
If one insists on removing the cut-off in the scalar quantum field theory
describing the Higgs sector of the Standard Model, the theory becomes
non-interacting. As a result, the Standard Model can only be a low-energy
effective field theory, which is expected to break down at sufficiently high
energy scales.

3.1 A Charged Scalar Field for Cooper Pairs

The prototype of a gauge theory is Quantum Electrodynamics (QED), the
theory of the electromagnetic interaction between charged particles (e.g.
electrons and positrons) via photon exchange. Here we consider electrically
charged scalar particles (without spin). For example, we can think of the
Cooper pairs in a superconductor. In ordinary superconductors, at tem-
peratures of a few Kelvin (K), the Coulomb repulsion between electrons is
overcome by an attractive interaction mediated by phonon-exchange (i.e.
by couplings to the vibrations of the crystal lattice of ions). The resulting
Cooper pairs form in the s-wave channel and have spin 0.2 Hence, at energy
scales well below the binding energy of a Cooper pair (i.e. below the energy
gap of the superconductor), they can effectively be described by a scalar
field.

2The mechanism for binding Cooper pairs in high-temperature superconductors,
which also have spin 0 but form in the d-wave channel, is not yet understood.
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Since we do not yet couple the scalar particle to a gauge field, strictly
speaking, the analogous condensed matter systems are superfluids (with a
spontaneously broken global U(1) symmetry) rather than superconductors
(with a spontaneously broken U(1)em gauge symmetry of electromagnetism).
In superfluid 4He, the relevant atomic objects are bosons, consisting of
an α-particle (two protons and two neutrons forming the atomic nucleus)
as well as two electrons. When these bosons condense at temperatures
around 2 K, the global U(1) symmetry that describes the conserved boson
number breaks spontaneously. Superfluid 3He, on the other hand, consists
of fermions: a helium nucleus with two protons but only one neutron, and
two electrons. Before the fermionic 3He atoms can Bose condense, they
must form bosonic bound states which we also denote as Cooper pairs.
This happens at very low temperatures around 2 mK. The Cooper pairs
of superfluid 3He form a spin triplet in the p-wave channel. Unlike in a
superconductor, the Cooper pairs in superfluid 3He are electrically neutral.
Hence their Bose condensation leads to the spontaneous breaking of the
global U(1) symmetry corresponding to particle number conservation, but
not of the local U(1)em symmetry of electromagnetism.

A charged scalar particle is described by a complex field Φ(x) ∈ C. In
fact, it takes two real degrees of freedom to describe both, a scalar and an
anti-scalar. As we have discussed before, a quantum field theory can be
defined by a Euclidean path integral over all field configurations

Z =

∫
DΦ exp (−S[Φ]) . (3.1.1)

Here

S[Φ] =

∫
d4x L(Φ, ∂µΦ) (3.1.2)

is the Euclidean action of the field Φ(x) = φ1(x) + iφ2(x) (φi(x) ∈ R), with
the Lagrangian

L(Φ, ∂µΦ) =
1

2
∂µΦ∗∂µΦ + V (Φ) =

1

2
∂µφ1∂µφ1 +

1

2
∂µφ2∂µφ2 + V (φ1, φ2) .

(3.1.3)
A simple form for the potential is that of the λΦ4-model,

V (Φ) =
m2

2
|Φ|2 +

λ

4!
|Φ|4 , |Φ|2 = Φ∗Φ = φ2

1 + φ2
2 . (3.1.4)
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In the free case, λ = 0, the classical Euclidean field equations take the form

∂µ
δL
δ∂µΦ

− δL
δΦ

= (∂µ∂µ −m2)Φ = 0 . (3.1.5)

This is the 2-component Euclidean Klein-Gordon equation for a free charged
scalar field. The Lagrangian of eqs. (3.1.3) and (3.1.4) has a global symme-
try: it is invariant under U(1) transformations

Φ′(x) = exp(ieϕ)Φ(x) ⇔ Φ′(x)∗ = exp(−ieϕ)Φ(x)∗ , (3.1.6)

where ϕ ∈ R is a phase. Once the U(1) symmetry is gauged, the parameter
e will be identified as the electric charge of the field Φ.

We assume the coupling constant λ to be strictly positive to make sure
that the potential is bounded from below. One can, however, choose m2 < 0.
The following discussion of spontaneous symmetry breaking is essentially
classical and does not necessarily reveal the true nature of the quantum
ground state. We distinguish two cases:

• For m2 ≥ 0 the potential has a single minimum at Φ = 0. The classi-
cal solution of lowest energy (the classical vacuum) is simply the constant
field Φ(x) = 0. This vacuum configuration is invariant against the U(1)
transformations of eq. (3.1.6). Hence, in this case, the U(1) symmetry is
unbroken.

• For m2 < 0, the trivial configuration Φ(x) = 0 is unstable because
it corresponds to a (local) maximum of the potential. The condition for a
minimum now reads

∂V

∂Φ
= m2Φ +

λ

3!
|Φ|2Φ = 0 ⇒ |Φ|2 = −6m2

λ
. (3.1.7)

In this case the vacuum is no longer unique. Instead, there is a whole class
of degenerate vacua

Φ(x) = v exp(iα) , v =

√
−6m2

λ
, (3.1.8)

parametrized by an angle α ∈ [0, 2π). The quantity v is the vacuum ex-
pectation value of the field Φ. Let us choose the vacuum state with α = 0.
Of course, such a choice breaks the U(1) symmetry. Hence, in this case the
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global symmetry is spontaneously broken. In particular, there is not even a
non-trivial subgroup of the U(1) symmetry that leaves the vacuum configu-
ration invariant. Hence, the U(1) symmetry is spontaneously broken down
to the trivial subgroup {1}. Expanding around the spontaneously selected
minimum of the potential, one obtains

Φ(x) = v + σ(x) + iπ(x) ⇒ Φ(x)∗ = v + σ(x)− iπ(x) ,

|Φ(x)|2 = [v + σ(x)]2 + π(x)2 ,

∂µΦ(x) = ∂µσ(x) + i∂µπ(x) , ∂µΦ(x)∗ = ∂µσ(x)− i∂µπ(x) . (3.1.9)

We now want to express the Lagrangian in terms of the new, real-valued
fields σ and π, which describe fluctuations around the vacuum configuration
Φ(x) = v that we selected. We capture the low-energy physics — i.e. the
dominant contributions to the path integral — by expanding up to second
order in σ(x) and π(x),

1

2
∂µΦ∗∂µΦ =

1

2
∂µσ∂µσ +

1

2
∂µπ∂µπ

V (Φ) =
m2

2
(v + σ)2 +

m2

2
π2 +

λ

4!

[
(v + σ)2 + π2

]2
≈ m2

2
v2 +m2vσ +

m2

2
σ2 +

m2

2
π2 +

λ

4!

(
v4 + 4v3σ + 6v2σ2 + 2v2π2

)
=

1

2

(
m2 +

λ

2
v2

)
σ2 + c . (3.1.10)

Here c is an irrelevant additive constant. We interpret the term proportional
to σ2 as a mass term for the σ-field. The corresponding σ-particle has a
mass squared

m2
σ = m2 +

λ

2
v2 =

λ

3
v2 = −2m2 > 0 . (3.1.11)

Since there is no term proportional to π2, the corresponding π-particle is
massless (i.e. mπ = 0). This massless particle is a Nambu-Goldstone boson.
Its presence is characteristic for the spontaneous breaking of a global, con-
tinuous symmetry. The Goldstone theorem, which determines the number
of Nambu-Goldstone bosons (one in case of a spontaneously broken U(1)
symmetry), will be discussed in Section 3.3. Once the U(1) symmetry is
gauged, which will be done in Chapter 4, the Nambu-Goldstone boson turns
into the longitudinal polarization state of the gauge boson, which then be-
comes massive. For example, in a superconductor the spontaneously broken
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symmetry is the U(1)em gauge symmetry of electromagnetism. In that case,
the photon becomes massive.

3.2 The Higgs Doublet

We now leave the condensed matter analogue behind and proceed to the
Higgs sector of the Standard Model. Again a scalar field Φ plays a central
rôle. However, the field Φ now has two complex components, it is a complex
doublet. We deal with the Higgs field 3

Φ(x) =

(
Φ+(x)
Φ0(x)

)
, Φ+(x), Φ0(x) ∈ C . (3.2.1)

We follow the structure of the previous section and first discuss a model
with only a global symmetry,

L(Φ, ∂µΦ) =
1

2
∂µΦ†∂µΦ + V (Φ) ,

V (Φ) =
m2

2
|Φ|2 +

λ

4!
|Φ|4 , |Φ|2 = Φ†Φ = Φ+∗Φ+ + Φ0∗Φ0 .(3.2.2)

This Lagrangian is invariant under a class of SU(2) transformations, which
we denote as SU(2)L,

Φ′(x) = LΦ(x) , L ∈ SU(2)L . (3.2.3)

We recall that SU(2) is the group of unitary 2×2 matrices with determinant
1,

L† = LT ∗ = L−1 , detL = 1 . (3.2.4)

A general SU(2) matrix L can be written in terms of complex numbers z1

and z2 with detL = |z1|2 + |z2|2 = 1,

L =

(
z1 −z∗2
z2 z∗1

)
⇒ L† =

(
z∗1 z∗2
−z2 z1

)
, L†L = 11 . (3.2.5)

3The subscripts + and 0 will later turn out to correspond to electric charges.
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This representation shows that the space of SU(2) matrices is isomorphic
to the 3-dimensional sphere S3. The global SU(2)L invariance of the La-
grangian follows from

|Φ′(x)|2 = Φ′(x)†Φ′(x) = [LΦ(x)]†LΦ(x) = Φ(x)†L†LΦ(x) = |Φ(x)|2 ,
∂µΦ′(x)†∂µΦ′(x) = ∂µΦ(x)†L†L∂µΦ(x) = ∂µΦ(x)†∂µΦ(x) . (3.2.6)

In addition to the SU(2)L symmetry, there is the so-called U(1)Y hyper-
charge symmetry which acts as

Φ′(x) = exp

(
−i
g′

2
ϕ

)
Φ(x) . (3.2.7)

Just like the SU(2)L symmetry, for the moment, we treat the U(1)Y hyper-
charge as a global symmetry. Once these symmetries will be gauged, i.e.
made local, the constant g′ will be identified as the gauge coupling strength
of the U(1)Y gauge field. Interestingly, the global symmetry is actually even
larger than the group SU(2)L×U(1)Y identified so far: the action is indeed
invariant under an extended group SU(2)L × SU(2)R, with U(1)Y being
an Abelian subgroup of SU(2)R. In order to make the additional SU(2)R
symmetry manifest, we introduce another notation for the same Higgs field
by re-writing it as a matrix,

Φ(x) =

(
Φ0(x)∗ Φ+(x)
−Φ+(x)∗ Φ0(x)

)
. (3.2.8)

We see that the matrix field Φ belongs to SU(2), up to a scale factor
(provided Φ is non-zero). In this notation, the Lagrangian (3.2.2) takes the
form

L(Φ, ∂µΦ) =
1

4
Tr
[
∂µΦ

†∂µΦ
]
+
m2

4
Tr
[
Φ†Φ

]
+
λ

4!

(
1

2
Tr
[
Φ†Φ

])2

, (3.2.9)

which is manifestly invariant under the global transformations

Φ(x)′ = LΦ(x)R† , L ∈ SU(2)L , R ∈ SU(2)R . (3.2.10)

The SU(2)R symmetry is known as the custodial symmetry. By writing

R =

 exp
(
−ig

′

2
ϕ
)

0

0 exp
(

ig
′

2
ϕ
)  , (3.2.11)
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we can now identify U(1)Y as a subgroup of SU(2)R.

As a further alternative we introduce the 4-component vector notation

~φ(x) = (φ1(x), φ2(x), φ3(x), φ4(x)) ,

Φ+(x) = φ2(x) + i φ1(x) , Φ0(x) = φ4(x)− i φ3(x) ,

Φ(x) = φ4(x)1I + i
[
φ1(x)σ1 + φ2(x)σ2 + φ3(x)σ3

]
. (3.2.12)

Here σ1, σ2, and σ3 are the Pauli matrices. In vector notation, the La-
grangian takes the form

L(φ, ∂µφ) =
1

2
∂µ~φ · ∂µ~φ+

m2

2
~φ · ~φ+

λ

4!

(
~φ · ~φ

)2

. (3.2.13)

This Lagrangian is manifestly O(4)-invariant under orthogonal rotations of

the 4-component vector ~φ. This is precisely in agreement with the local iso-
morphism SU(2)L×SU(2)R ' O(4). We also see now from two perspectives
that the global symmetry group has in total six generators.

As before, we distinguish between the symmetric and the broken phase.

• At the classical level, for m2 ≥ 0 there is a unique vacuum field
configuration

Φ(x) =

(
0
0

)
. (3.2.14)

In this case, the SU(2)L × SU(2)R ' O(4) symmetry is unbroken.

• For m2 < 0 the vacuum is degenerate and we make the choice

Φ(x) =

(
0
v

)
, v =

√
−6m2

λ
∈ R+ , (3.2.15)

which implies

Φ(x) = v1I , ~φ(x) = (0, 0, 0, v) . (3.2.16)

This vacuum configuration is not invariant under general SU(2)L×SU(2)R

transformations. However, it is invariant under such transformations that
obey L = R, which belong to the so-called vector subgroup SU(2)L=R.
Hence, in this case the SU(2)L×SU(2)R ' O(4) symmetry is spontaneously
broken down to the diagonal subgroup SU(2)L=R ' O(3) which remains
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unbroken. The U(1)em symmetry of electromagnetism will later be identified
as a subgroup of SU(2)L=R.

Let us again expand around the vacuum configuration,

Φ(x) =

(
π1(x) + iπ2(x)

v + σ(x) + iπ3(x)

)
. (3.2.17)

To second order in the fluctuation fields σ and ~π = (π1, π2, π3) we obtain

1

2
∂µΦ†∂µΦ =

1

2
∂µσ∂µσ +

1

2
∂µ~π · ∂µ~π ,

V (Φ) =
m2

2

[
(v + σ)2 + ~π 2

]
+
λ

4!

[
(v + σ)2 + ~π 2

]2
≈ m2

2

[
v2 + 2vσ + σ2 + ~π 2

]
+
λ

4!

[
v4 + 4v3σ + 6v2σ2 + 2v2~π 2

]
=

1

2

(
m2 +

λ

2
v2

)
σ2 + c , (3.2.18)

where c is again an irrelevant additive constant. Once more we find a
massive σ-particle with

m2
σ = m2 +

λ

2
v2 =

λ

3
v2 , (3.2.19)

and in this case three massless Nambu-Goldstone bosons, π1, π2, and π3.
The massive σ-particle — a quantized fluctuation of the σ field — is known
as the Higgs particle. While the Higgs particle is a singlet, the three Nambu-
Goldstone bosons transform as a triplet under the unbroken SU(2)L=R '
O(3) symmetry.

3.3 The Goldstone Theorem

In this chapter we have encountered a number of Nambu-Goldstone bosons.
Let us now take a more general point of view and discuss the Goldstone
theorem, which predicts the number of these massless particles for a general
pattern of spontaneous breakdown of a continuous global symmetry.

As a prototype model, we consider an N -component real scalar field

~φ = (φ1, φ2, . . . , φN) (3.3.1)
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with a potential V (~φ) that is invariant under transformations of a symmetry
group G. We further assume that this group has nG generators T a, with
a ∈ {1, 2, . . . , nG}, which are anti-symmetric N × N matrices. A general,
infinitesimal symmetry transformation of the field takes the form

~φ′ = exp(ωaT
a)~φ ≈ (1 + ωaT

a)~φ , (3.3.2)

for small angles ωa. Let us assume that the potential has a set of degenerate
vacua. We pick one spontaneously, ~φ = ~v, and ask about the masses of
fluctuations around this vacuum. First of all, since ~v is a minimum of the
potential, we know that

∂V

∂φi

∣∣∣∣
~φ=~v

= 0 , i ∈ {1, 2, . . . , N} . (3.3.3)

The matrix of second derivatives of the potential defines the masses,

Mij =
∂2V

∂φi∂φj

∣∣∣∣
~φ=~v

. (3.3.4)

The eigenvalues of the matrix M are the squared masses of the physical
particle fluctuations around the vacuum ~v.

Let us now assume the vacuum to be invariant under the transfor-
mations in a subgroup H of G, H ⊂ G, which is generated by T b with
b ∈ {1, 2, . . . , nH} and nH ≤ nG, i.e.

(1 + ωbT
b)~v = ~v ⇒ T b~v = 0 . (3.3.5)

Invariance of the potential under the transformation group G implies for
any vector ~φ

0 = V (~φ′)− V (~φ) =
∂V

∂φi
ωaT

a
ij φj . (3.3.6)

We differentiate this equation with respect to φk and evaluate it at ~φ = ~v,

0 =
∂2V

∂φk∂φi

∣∣∣∣
~φ=~v

ωaT
a
ij vj +

∂V

∂φi

∣∣∣∣
~φ=~v

ωaT
a
ki ⇒ Mki(T

a~v)i = 0 . (3.3.7)

Here we have used eq. (3.3.3). For the unbroken subgroupH, i.e. for a ≤ nH ,
this is trivially satisfied because T a~v = 0, according to eq. (3.3.5). For
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the remaining generators with a ∈ {nH + 1, nH + 2, . . . , nG}, however, the
equation implies that T a~v is an eigenvector of the matrix M with eigenvalue
zero. Hence the difference nG − nH is the degeneracy of the eigenvalue 0,
i.e. the dimension of the manifold of vacuum states. Therefore, there are
nG−nH massless modes in a vacuum ~v. Upon quantization, in a relativistic
quantum field theory in more than two space-time dimensions, these modes
turn into nG − nH massless Nambu-Goldstone bosons.

For example, when Cooper pairs condense, the symmetry G = U(1) that
breaks spontaneously down to the trivial subgroup H = {1} gives rise to
nG − nH = 1 − 0 = 1 Nambu-Goldstone bosons. In the Higgs sector of
the Standard Model, the symmetry G = SU(2)L × SU(2)R ' O(4) breaks
spontaneously to the subgroup H = SU(2)L=R ' O(3). Hence, in this case
there are nG − nH = 6− 3 = 3 Nambu-Goldstone bosons. In general, when
a symmetry G = O(N) breaks to H = O(N − 1) the number of broken
generators is

nG − nH =
1

2
N(N − 1)− 1

2
(N − 1)(N − 2) = N − 1 , (3.3.8)

such that there are N − 1 Nambu-Goldstone bosons.

In non-relativistic theories the number of massless modes does not neces-
sarily coincide with the number of Nambu-Goldstone bosons. For example,
a quantum ferromagnet with a global symmetry G = O(3) that is sponta-
neously broken down to the subgroup H = O(2) has nG − nH = 3− 1 = 2
massless modes, but only one Nambu-Goldstone particle — a magnetic spin-
wave or magnon. Ferromagnetic magnons have a non-relativistic dispersion
relation E ∝ |~p |2.4 This results from the fact that the order parameter of
the ferromagnet — the uniform magnetization, i.e. the total spin — is a
conserved quantity. Quantum antiferromagnets also have an O(3) symme-
try that is spontaneously broken down to O(2). However, other than in a
ferromagnet, the staggered magnetization order parameter of an antiferro-
magnet is not a conserved quantity. As a consequence, antiferromagnetic
magnons have a relativistic dispersion relation, E ∝ |~p|, and in this case
there are indeed two massless Nambu-Goldstone bosons.

4Despite the fact that these particles are massless, they do not obey the relativistic
dispersion relation E ∝ |~p |.
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3.4 The Mermin-Wagner Theorem

It should be noted that Nambu-Goldstone bosons can only exist in more
than two space-time dimensions. In the context of condensed matter physics
David Mermin and Herbert Wagner, as well as Pierre Hohenberg were first
to prove that the spontaneous breakdown of a continuous global symmetry
cannot occur in two space-time dimensions. In the context of relativistic
quantum field theories a corresponding theorem was proved by Sidney Cole-
man. The Mermin-Wagner theorem states that in two space-time dimen-
sions an order parameter corresponding to a continuous global symmetry
necessarily has a vanishing vacuum expectation value. Therefore massless
Nambu-Goldstone bosons — which appear as a consequence of spontaneous
symmetry breaking — cannot exist is this case. This behavior is due to
infrared quantum fluctuations, which are particularly strong in lower di-
mensions. In more than two space-time dimensions, quantum fluctuations
are more restricted because the field variables (e.g. on a lattice) are then
coupled to a larger number of neighboring sites. The Mermin-Wagner the-
orem even applies to theories in (2 + 1) dimensions, at least at non-zero
temperature T > 0. In that case, the extent β = 1/T of the Euclidean
time dimension is finite, and thus there are only two infinitely extended
dimensions. Consequently, in (2 + 1) dimensions a continuous global sym-
metry can break spontaneously only at zero temperature T = 0. As first
discussed by Sudip Chakravarty, Bertrand Halperin, and David Nelson, and
studied in great detail by Peter Hasenfratz and Ferenc Niedermayer, due to
non-perturbative effects, at small non-zero temperatures T > 0 the Nambu-
Goldstone modes of a (2 + 1)-dimensional antiferromagnet obtain a finite
correlation length, which is exponentially large in the inverse temperature,
and thus diverges in the T → 0 limit.

It should be noted that the Mermin-Wagner theorem does not exclude
the existence of massless bosons in two dimensions, it just states that such
particles cannot result from spontaneous symmetry breaking. For exam-
ple, as first understood by Vadim Berezinskii, and independently by John
Kosterlitz and David Thouless, at sufficiently low (but still non-zero) tem-
peratures the 2-dimensional XY-model contains a massless boson. This
boson exists, despite the fact that the Abelian continuous global O(2) sym-
metry of the model is not spontaneously broken. In the XY-model, the low-
and the high-temperature phase are separated by a so-called Berezinskii-
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Kosterlitz-Thouless phase transition. Massless bosons can even arise in
2-dimensional systems with a non-Abelian O(3) symmetry. For example,
as was first derived by Hans Bethe, (1 + 1)-dimensional antiferromagnetic
quantum spin chains with spin 1

2
are gap-less. Duncan Haldane has pointed

out that the low-energy effective field theory, which describes spin chains
with half-integer spin, is a 2-dimensional O(3)-model with non-trivial vac-
uum angle θ = π.5 As was understood in detail by Ian Affleck, this system
is a conformal field theory which contains massless bosons, despite the fact
that the O(3) symmetry is not spontaneously broken. Quantum spin chains
with integer spins, on the other hand, correspond to θ = 0. These systems
have a gap and thus do not contain massless particles

The Mermin-Wagner theorem does not exclude either the spontaneous
breakdown of a discrete symmetry in two dimensions. For example, at
sufficiently low (but again non-zero) temperature the 2-dimensional Ising
model has a spontaneously broken discrete ZZ(2) symmetry. Just as contin-
uous symmetries cannot break spontaneously in two dimensions, discrete
symmetries cannot break in one dimension. In a single space-time dimen-
sion there is just time and quantum field theory thus reduces to quantum
mechanics of a finite number of degrees of freedom. Since spontaneous
symmetry breaking is a collective phenomenon that necessarily involves an
infinite number of degrees of freedom, it cannot arise in quantum mechanics
(except for discrete symmetries at zero temperature).

3.5 Low-Energy Effective Field Theory

Since they are massless, Nambu-Goldstone bosons dominate the low-energy
physics of any system with a spontaneously broken continuous global sym-
metry in more than two space-time dimensions. There is a general effective
Lagrangian technique that describes the low-energy dynamics of the Nambu-
Goldstone bosons. This approach was pioneered by Steven Weinberg and
extended to a systematic method by Jürg Gasser and Heinrich Leutwyler
for the pions — which represent the Nambu-Goldstone bosons of the spon-
taneously broken chiral symmetry of QCD. Hence, this method is known as

5In the framework of QCD, the vacuum angle θ will be discussed in detail in Chapter
10.
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chiral perturbation theory. It is, however, generally applicable to any system
of Nambu-Goldstone bosons.

We will now illustrate this technique for the Nambu-Goldstone bosons
that arise in the Higgs sector of the Standard Model (before gauging the
symmetry). As we have seen, the global symmetry of the Higgs sector is
G = SU(2)L×SU(2)R ' O(4), which then breaks spontaneously down to a
singleH = SU(2)L=R ' O(3) symmetry. Generally, in a low-energy effective
theory the Nambu-Goldstone bosons are described by fields in the coset
space G/H — the manifold of the group G with points being identified if
they are connected by a symmetry transformation in the unbroken subgroup
H. We saw that the dimension of the coset space, nG − nH , corresponds
to the number of Nambu-Goldstone bosons. In the Higgs sector of the
Standard Model, this coset space is

G/H = SU(2)L × SU(2)R/SU(2)L=R = SU(2) , (3.5.1)

or equivalentlyG/H = O(4)/O(3) = S3. Hence, the three Nambu-Goldstone
bosons can be described by a matrix-valued field U(x) ∈ SU(2). It should
be noted that the SU(2) group manifold is isomorphic to a 3-dimensional
sphere S3. One may think of the field U(x) as the “angular” degree of
freedom of the Higgs field matrix of eq. (3.2.8), i.e.

Φ(x) =

(
Φ0(x)∗ Φ+(x)
−Φ+(x)∗ Φ0(x)

)
= |Φ(x)|U(x) , |Φ(x)|2 = |Φ+(x)|2+|Φ0(x)|2.

(3.5.2)
Indeed, we have seen that the “radial” fluctuations of the magnitude |Φ|2
give rise to the massive Higgs particle, while the angular fluctuations along
the vacuum manifold give rise to three massless Nambu-Goldstone bosons.
From the SU(2)L×SU(2)R transformation rule of the Higgs field Φ(x), eq.
(4.3.2), one obtains

U ′(x) = LU(x)R† , L ∈ SU(2)L , R ∈ SU(2)R . (3.5.3)

The effective field theory is formulated as a systematic low-energy expan-
sion. The low-energy physics of the Nambu-Goldstone bosons is dominated
by those terms in the effective Lagrangian that contain a small number of
derivatives. In Fourier space, a spatial derivative corresponds to a momen-
tum and a temporal derivative corresponds to an energy. Hence, multiple-
derivative terms are suppressed at low energies. All terms of the effective
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Lagrangian must be invariant under all symmetries of the underlying mi-
croscopic system — in this case, of the Higgs sector of the Standard Model.
In particular, the effective Lagrangian must be invariant under Lorentz
transformations, and under the SU(2)L × SU(2)R transformations of eq.
(3.5.3). The effective Lagrangian is constructed, order by order, by writing
down all terms that are consistent with the symmetries. In the systematic
derivative expansion, one starts with terms containing no derivatives. For
example, the term Tr[U †U ] is both Lorentz-invariant and SU(2)L×SU(2)R-
invariant. However, since U ∈ SU(2) implies U †U = 1I, this term is just a
trivial constant. Indeed, there are no non-trivial terms without derivatives.
Furthermore, there are no terms with just a single derivative, because its
uncontracted Lorentz index would violate Lorentz invariance. The leading
term of the effective Lagrangian therefore has two derivatives and is given
by

L(∂µU) =
F 2

4
Tr
[
∂µU

†∂µU
]

+ . . . (3.5.4)

Higher order terms with four or six derivatives (represented by the dots)
contribute less at low energies. Each term appears with a coefficient (F 2 in
eq. (3.5.4)). These coefficients are called low-energy constants. They enter
the effective theory as free parameters whose values cannot be deduced from
symmetry considerations. Hence a theoretical prediction for them must
be based on the underlying, fundamental theory. Comparing eq. (3.5.4)
with eq. (3.2.9), using eq. (3.5.2), and setting |Φ|2 to its vacuum value v2,
one obtains a classical estimate of the low-energy parameter F = v. This
estimate gives the correct order of magnitude but should not be taken too
seriously. In order to properly identify the correct value of F based on
the parameters of the Standard Model, one must take quantum effects into
account.

The Higgs sector of the Standard Model — expressed as anN -component
λφ4-model (with N = 4) — is known as a linear σ-model. It is characterized
by the Lagrangian

L(~φ, ∂µ~φ) =
1

2
∂µ~φ · ∂µ~φ+

m2

2
|~φ|2 +

λ

4!
|~φ|4

=
1

2
∂µ~φ · ∂µ~φ+

λ

4!

(
|~φ|2 +

6m2

λ

)2

+ c

=
1

2
∂µ~φ · ∂µ~φ+

λ

4!

(
|~φ|2 − v2

)2

+ c , (3.5.5)
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where c is an irrelevant constant. In the limit λ → ∞, the action diverges
unless |~φ(x)| = v. Introducing the N -component unit-vector field ~s(x) =
~φ(x)/v (with |~s(x)| = 1 at any x), we arrive at the non-linear σ-model,6

L(∂µ~s) =
v2

2
∂µ~s · ∂µ~s . (3.5.6)

The non-linear constraint, |~s(x)| = 1, can be implemented in the measure
of the path integral . Identifying

U(x) = s4(x)1I + i
[
s1(x)σ1 + s2(x)σ2 + s3(x)σ3

]
(3.5.7)

for N = 4, eq. (3.5.6) has just the structure of L(∂µU) in eq. (3.5.4). Hence,
the low-energy effective theory for the Higgs sector is in fact a non-linear
σ-model.

It is also interesting to anticipate that the very same effective Lagrangian
describes the low-energy dynamics of the pions in QCD with two mass-
less quarks. Only the value of the coupling constant F , which then cor-
responds to the pion decay constant, is different. The structure of the
effective Lagrangian L(∂µU) solely depends on the symmetry and how it
breaks spontaneously. Indeed, the chiral symmetry of two flavor QCD is
again SU(2)L × SU(2)R, which breaks spontaneously to SU(2)L=R.

Finally, we remark that the effective Lagrangian technique is still ap-
plicable if the spontaneous symmetry breaking is supplemented by a small
amount of explicit breaking. If one adds a symmetry breaking term to the
underlying microscopic Lagrangian, the Nambu-Goldstone bosons pick up
a small mass. In that case, also the effective Lagrangian L(∂µU) contains
symmetry breaking terms. It is then expanded in powers of the momenta
and of the symmetry breaking parameter, according to some suitable count-
ing rule. In the description of a classical ferromagnet, an explicit symmetry
breaking term could represent a small external magnetic field. In two flavor
QCD it corresponds to the small but finite quark masses of the flavors u
and d, which then result in a small, non-zero mass for the pions (the pion is
the lightest quark and gluon bound state). Chiral perturbation theory will
be discussed further in Chapter ??.

6For the special case N = 1, i.e. for a one-component scalar field on the lattice, this
limit leads to the Ising model.
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3.6 The Hierarchy Problem

Since λ is dimensionless7, the parameter m2 is the only dimensionful param-
eter in the Higgs sector of the Standard Model. We saw that this parameter
determines the vacuum expectation value of the Higgs field

v =

√
−6m2

λ
, (3.6.1)

which sets the energy scale for the breaking of the SU(2)L × SU(2)R sym-
metry. In fact, even after gauge and fermion fields have been added to the
Standard Model, there will still only be this single dimensionful parameter.
At the classical level, one could simply take the point of view that v is
a truly fundamental energy scale in units of which all other dimensionful
physical quantities can be expressed. The experimental value v ≈ 245 GeV
has been derived from the observed masses of the W - and Z-bosons.

At the quantum level, however, the situation is more complicated. Quan-
tum field theories must be regularized and renormalized. Indeed, the ultra-
violet cut-off Λ represents another energy scale that enters the quantum
theory through the process of regularization. When one renormalizes the
theory, one attempts to move the cut-off to infinity, keeping the physical
masses and thus v fixed. As we will discuss in the next section, this is prob-
lematic in the Standard Model, because the Higgs sector is “trivial”, i.e. it
becomes a non-interacting theory in the Λ→∞ limit.

We know already that the Standard Model cannot be the “Theory of
Everything” because it does not include gravity. The natural energy scale
of gravity is the Planck scale

MPlanck =
1√
G
≈ 1019 GeV , (3.6.2)

where G is Newton’s constant. Even if we would assume (most likely quite
unrealistically) that the Standard Model describes the physics correctly all
the way up to the Planck scale, it would necessarily have to break down at
that scale. In this sense, we can think of MPlanck as an ultimate ultra-violet
cut-off of the Standard Model.

7Note that in d space-time dimensions the self-coupling constant λ has the dimension
Massd−4. Hence, d = 4 is a special case with respect to its dimension.
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Once we have appreciated the existence of the two fundamental scales v
of the Standard Model and MPlanck of gravity with

v

MPlanck

≈ 10−17, (3.6.3)

we are confronted with the hierarchy problem:

Why is the ratio of the electroweak scale and the Planck scale so small?

Although it does not extend over 120 orders of magnitude, this hierarchy
problem represents a similar puzzle as the cosmological constant problem .
One wonders whether there may be a dynamical mechanism that makes v
naturally very much smaller than MPlanck or any other relevant ultra-violet
cut-off scale Λ.

Let us discuss the hierarchy problem in the context of the lattice reg-
ularized scalar field theory. Nature must have found a concrete way to
regularize the Higgs physics at ultra-short distances. Due to renormaliz-
ability and universality, only the symmetries, but not the details of this
regularization should matter at low energies. For simplicity, we will use
the regularization on a space-time lattice with spacing a as an admittedly
oversimplified model of Nature at ultra-short distances. In other words, in
this context we identify the lattice cut-off Λ = 1/a with the Planck scale
MPlanck. In the lattice regularization, the scalar field theory is characterized
by the partition function

Z =
∏
x

∫
d~φx exp(−SE[~φ]) , (3.6.4)

with the Euclidean lattice action given by

SE[~φ] =
∑
x

a4

1

2

∑
µ

(
~φx − ~φx+µ̂

a

)2

+ V (~φx)

 . (3.6.5)

Here ~φx is the scalar field at the lattice point x, and µ̂ is a vector of length
a along the µ-direction. The first term is the finite difference analogue of
the continuum expression 1

2
∂µ~φ · ∂µ~φ and the potential

V (~φx) =
m2

2
|~φx|2 +

λ

4!
|~φx|4 (3.6.6)
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is the same as in the continuum theory. Just as the continuum theory
(which is defined perturbatively), the lattice theory exists in two phases, one
with and one without spontaneous symmetry breaking. The two phases are
separated by a phase transition line m2

c(λ). For m2 < m2
c(λ) the model is in

the broken phase with three massless Nambu-Goldstone bosons, while for
m2 > m2

c(λ) it is in the massive symmetric phase. As intensive Monte Carlo
simulations have shown, the phase transition is of second order. This implies
that the correlation length in units of the lattice spacing a, ξσ/a = 1/(mσa),
corresponding to the inverse Higgs particle mass, diverges at the phase
transition line. The Higgs mass (and thus the vacuum value v of the scalar
field) behaves as

mσa =
mσ

Λ
∼ |m2 −m2

c(λ)|ν . (3.6.7)

Here ν is a critical exponent which takes the mean field theory value 1/2.
If we want to identify the lattice cut-off Λ with the Planck scale MPlanck we
must realize the hierarchy mσ/MPlanck ≈ 10−16. To achieve this, for a given
value of λ, one has to fine-tune the bare parameter m2 to the critical value
m2
c(λ) to many digits accuracy. This appears very unnatural. Explaining

the hierarchy between the electroweak and the Planck scale without a need
for fine-tuning is the challenge of the hierarchy problem.

For gauge fields a similar hierarchy problem does not exist. For example,
the photon is naturally massless as a consequence of the unbroken gauge
symmetry in the Coulomb phase of QED. Gluons, which are confined in-
side hadrons, also naturally exist at low energy scales, as a consequence
of the property of asymptotic freedom of QCD. From a perturbative point
of view, there is no hierarchy problem for fermions either, because fermion
mass terms are forbidden by chiral symmetry. However, when considered
beyond perturbation theory, fermions do suffer from a severe hierarchy prob-
lem. In particular, when regularized naively on a 4-dimensional space-time
lattice, fermions suffer from species doubling. When the fermion doublers
are removed by breaking chiral symmetry explicitly, without unnatural fine-
tuning of the bare fermion mass, the renormalized mass flows to the cut-off
scale. Remarkably, the non-perturbative hierarchy problem of fermions has
been solved very elegantly by formulating the theory with an additional
spatial dimension of finite extent. In five dimensions fermions may get lo-
calized on a 4-dimensional domain wall. Indeed, domain wall fermions are
naturally light without any fine-tuning. Domain wall fermions provide a
(4 + 1)-dimensional particle physics analogue of the chiral edge states of a
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(2 + 1)-dimensional quantum Hall sample.

There have been attempts to solve the hierarchy problem of the Higgs
sector of the Standard Model by postulating supersymmetry — a symmetry
between bosons and fermions. In supersymmetric extensions of the Stan-
dard Model, each known particle has a superpartner. For example, the
electron has a scalar superpartner — the so-called selectron — and the
photon has a fermionic superpartner — the photino. Similarly, the Higgs
particle has a fermionic Higgsino partner. By supersymmetry the Higgs
mass (and thus the scale v) is then tied to the Higgsino mass, which is pro-
tected from running to the cut-off scale by chiral symmetry. Hence, with
supersymmetry, elementary scalar particles (such as the Higgs particle) can
be light without unnatural fine-tuning. At present supersymmetry is under-
stood mostly perturbatively. Beyond perturbation theory, in particular on
a lattice, it is highly non-trivial to construct supersymmetric theories. Since
supersymmetry is intimately related to infinitesimal space-time translations,
it is not surprising that discretizing space-time breaks supersymmetry ex-
plicitly. Indeed, obtaining supersymmetry in lattice theories often requires
an unnatural fine-tuning of bare mass parameters, such that the hierarchy
problem would remain unsolved.

Moreover, until now no superpartners have been observed. Hence, we do
not know whether supersymmetry is realized in Nature. While the status
of supersymmetry is yet unclear, ultimately the LHC will decide whether
supersymmetry exists at the TeV scale. If supersymmetry is realized in
Nature, it must be explicitly or spontaneously broken, otherwise superpart-
ners should be degenerate with the known particles and should have long
been detected. Since supersymmetry itself is not well understood beyond
perturbation theory, it does not fit well into the concepts of this book. The
same is true for other ideas for solving the hierarchy problem, e.g., using
extra dimensions.

An interesting non-perturbative approach to the hierarchy problem, which
does fit well into the concepts of this book, is technicolor. In analogy to
Cooper-pair condensation, in technicolor models the electroweak symme-
try is spontaneously broken by the condensation of fermion pairs. Just as
quarks are bound by strong color forces, the so-called techni-fermions are
bound by very strong technicolor forces. In technicolor models the Higgs
particle is a composite of two techni-fermions. While technicolor has its
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own problems, it remains to be seen whether the LHC will find evidence for
this intriguing idea.

3.7 Triviality of the Standard Model

As we have seen, the Higgs sector of the Standard Model is a 4-component
λφ4-model. The Lagrangian contains the dimensionful parameter m2, as
well as the dimensionless scalar self-coupling λ. These parameters determine
the vacuum expectation value

v =

√
−6m2

λ
(3.7.1)

of the scalar field, as well as the Higgs mass

mσ =
√
−2m2 =

√
λ

3
v . (3.7.2)

Hence, a heavy Higgs particle requires a strongly coupled scalar field (with a
large value of λ). We have obtained these results essentially by considering
the model just at the level of classical field theory. When the theory is
quantized using perturbation theory, the bare parameters are renormalized,
but remain free parameters. Thus the Higgs mass mσ still appears arbitrary.

However, when a λφ4-model is fully quantized beyond perturbation the-
ory, a new feature arises. In the lattice regularization there is overwhelming
evidence (albeit no rigorous proof) that the λφ4-model — and hence the
Standard Model — is trivial in d ≥ 4. This means that the renormalized
self-coupling λ goes to zero if one insists on sending the ultra-violet cut-off
to infinity. In other words, the continuum limit a→ 0 of a lattice λφ4-model
is just a free field theory. How can we then use it to define the Standard
Model as an interacting field theory beyond perturbation theory?

Indeed, one should not insist on completely removing the ultra-violet cut-
off. This means that the Standard Model cannot possibly make sense at
arbitrarily high energies (beyond the finite cut-off). Hence, it must be con-
sidered a low-energy effective theory, which must necessarily be replaced by
something more fundamental at sufficiently high energies. In other words,
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the Standard Model could not even in principle be the “Theory of Every-
thing”. This is actually a remarkable property of the Standard Model: it
kindly informs us about its own limitations and tells us that it will even-
tually break down. Non-trivial theories (like QCD), on the other hand,
remain interacting even when the cut-off is removed completely. These the-
ories could, in principle, be valid at arbitrarily high energy scales.

The triviality of the Standard Model leads to an estimate for an upper
bound on the Higgs mass. A heavy Higgs boson corresponds to a large
value of λ. On the other hand, we just pointed out that we get a free
theory, λ = 0, when we remove the cut-off completely. Only when we leave
the cut-off finite, we can get a heavy Higgs particle. However, the theory
would clearly not make sense if it led to a Higgs mass similar to — or even
larger than the ultra-violet cut-off. In the lattice regularization this puts an
upper limit on the Higgs mass of around 600 GeV. Although this limit is not
universal (it depends on the details of the regularization that one chooses),
the triviality bound suggests that the (standard) Higgs particle should have
a mass below about 600 GeV — or that the Standard Model is replaced
by some new physics at that energy scale. Before the LHC, a systematic
experimental search for the Higgs particle was performed up to around 110
GeV. Based on experimental data which were influenced by virtual Higgs
effects, one expected to find the Higgs particle at energies between about
110 and 200 GeV. Indeed the LHC has found the Higgs partice at a mass
of 126 GeV.

A (non-perturbatively renormalized) Higgs mass ofmσ ≈ 100 GeV trans-
lates into a cut-off Λ ≈ 1036 GeV. This is far above the Planck scale (of
about 1019 GeV), i.e. in a regime where physics is not understood at all.
Hence a finite cut-off in this range is completely unproblematical. However,
if we would move up to a Higgs mass of mσ ≈ 600 GeV, we would find the
corresponding cut-off at about 6 TeV, i.e. at Λ ≈ 10mσ. An even heavier
Higgs particle would come too close to the cut-off scale to make any sense.
Therefore 600 GeV appears as a reasonable magnitude for the theoretical
upper bound. We note again that the upper bound is not universal, e.g. it
depends on the short-distance details of the lattice action. In practice, using
different regularizations that seem reasonable, this ambiguity has about a
10 % effect on the upper bound.
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3.8 Electroweak Symmetry Restauration at

High Temperature

Since the hot big bang, the Universe has undergone a dramatic evolution.
The big bang itself represents a mathematical singularity in the solutions
of classical general relativity, indicating our incomplete understanding of
gravity. In the moment of the big bang, the energy density of the Universe
was at the Planck scale where quantum effects of gravity are strong, and
one would expect that the classical singularity is eliminated by quantum
fluctuations of the space-time metric. Since we presently don’t have an
established theory of quantum gravity, we can only speculate about the
time at and immediately after the big bang. However, since the Universe
is expanding and thus cooling down, it soon reaches the energy scales of
the Standard Model. Indeed, only about 10−14 sec after the big bang, the
Universe has cooled down to temperatures in the TeV range, and its further
evolution can then be understood based on the Standard Model combined
with classical general relativity.

To a good approximation, the early Universe undergoes an adiabatic
expansion (i.e. the total entropy is conserved), in which it remains in ther-
mal equilibrium. When the Universe had a temperature of about 1 TeV,
it contained an extremely hot gas of quarks, leptons, gauge bosons, Higgs
particles, and perhaps other yet undetected particles, e.g. those forming the
dark matter component of the Universe. At temperatures T � v = 246
GeV thermal fluctuations are so violent that the very early Universe was in
an unbroken, symmetric phase. Just as the spontaneous magnetization of
a ferromagnet is destroyed at high temperatures, the spontaneous order of
the Higgs field cannot be maintained in the presence of strong thermal fluc-
tuations. One often says that the SU(2)L × SU(2)R symmetry is restored
in the early Universe. Of course, it would be more precise to say that it
was not yet spontaneously broken. The high-temperature SU(2)L×SU(2)R

symmetric phase that was realized in the early Universe should not be con-
fused with the unbroken vacuum state (with v = 0) that would exist at zero
temperature for m2 > 0. As the Universe expands an cools, it eventually
ends up in the broken symmetry vacuum (with v 6= 0) that we live in today.

It is interesting to ask how the expectation value v(T ) of the Higgs field
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depends on the temperature T . In particular, one expects a phase transition
at some critical temperature Tc. For temperatures T > Tc the early Universe
is in the symmetric phase with v(T ) = 0. When it expands and cools it goes
through the phase transition and enters the broken phase in which v(T ) 6= 0.
The order of this so-called electroweak phase transition has an impact on
the dynamics of the early Universe. In particular, a strong first order phase
transition would have drastic consequences. Just like boiling water forms
expanding bubbles of steam inside the liquid phase, a first order electroweak
phase transition would also proceed via bubble nucleation. In this case,
bubbles of broken phase would form inside the early symmetric phase. Since
the bubble wall costs a finite amount of surface energy, the formation of
these bubbles would be delayed by supercooling. Once the Universe has
cooled sufficiently, bubbles of broken phase would suddenly nucleate and
expand quickly, soon filling all of the Universe. The dynamics of a first order
phase transition takes the system out of thermal equilibrium. As discussed
by Andrei Sakharov in 1967, besides C and CP violation and the existence
of baryon number violating processes, deviation from thermal equilibrium is
a necessary prerequisite for dynamically generating the baryon asymmetry
— the observed surplus of matter over anti-matter. As we will discuss in
later chapters, the Standard Model indeed violates both C and CP as well
as baryon number (at least at sufficiently high temperatures). In order to
decide whether Standard Model physics alone might be able to explain the
origin of the baryon asymmetry, it is thus vital to understand the nature of
the electroweak phase transition.

3.9 Extended Model with Two Higgs Dou-

blets

This section discusses physics beyond the Standard Model and may be
skipped in a first reading.

Although the Higgs particle has been identified at the LHC at a mass
of 126 GeV, the Higgs sector, which holds the key to the understanding of
electroweak SU(2)L × SU(2)R symmetry breaking, is still the experimen-
tally least well tested aspect of the Standard Model. The LHC has already
produced the Higgs particle. Hopefully, it will also reveal exciting physics
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beyond the Standard Model, perhaps including supersymmetry, technicolor,
or additional spatial dimensions.

Some theories beyond the Standard Model have an extended Higgs sec-
tor. For example, the minimal supersymmetric extension of the Standard
Model (the so-called MSSM) contains two Higgs doublets. Also the Peccei-
Quinn solution of the strong CP problem, which will be addressed in Chap-
ter 11, relies on an extension of the Standard Model with two Higgs doublets.
At present, it is not at all clear how many Higgs particles there are, and
whether they are elementary or composite. All we know for sure is that
there is a source of electroweak symmetry breaking. Without experimental
guidance, it seems impossible to deduce the correct structure of the Higgs
sector. The Standard Model assumes a minimal Higgs sector with just a
single Higgs doublet.

In this section we consider an extension of the Standard Model by adding
a second Higgs doublet Φ̃. We parameterize the two complex Higgs doublets
as

Φ(x) =

(
Φ+(x)
Φ0(x)

)
, Φ̃(x) =

(
Φ̃0(x)

Φ̃−(x)

)
. (3.9.1)

Under the SU(2)L symmetry they transform as

Φ′(x) = LΦ(x) , Φ̃′(x) = LΦ̃(x) , (3.9.2)

and under U(1)Y as

Φ′(x) = exp

(
−i
g′

2
ϕ

)
Φ(x) , Φ̃′(x) = exp

(
i
g′

2
ϕ

)
Φ̃(x) . (3.9.3)

In addition to these symmetries, the extension of the Standard Model that
we consider here has an additional U(1)PQ symmetry — a so-called Peccei-
Quinn symmetry — which acts as

Φ′(x) = exp (iα) Φ(x) , Φ̃′(x) = exp (iα) Φ̃(x) . (3.9.4)

The corresponding Lagrangian of the two Higgs doublet model takes the
form

L(Φ, ∂µΦ, Φ̃, ∂µΦ̃) =
1

2
∂µΦ†∂µΦ +

1

2
∂µΦ̃†∂µΦ̃ + V (Φ, Φ̃) . (3.9.5)
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There is no need to consider kinetic terms that mix the two scalar fields. If
such terms were present, one could eliminate them by a field redefinition.
However, in the potential V (Φ, Φ̃) mixing terms may be present. The most
general renormalizable potential invariant under SU(2)L, U(1)Y , as well as
U(1)PQ is given by

V (Φ, Φ̃) =
m2

2
|Φ|2 +

λ

4!
|Φ|4 +

m̃2

2
|Φ̃|2 +

λ̃

4!
|Φ̃|4 +

κ

2
|Φ†Φ̃|2 ,

|Φ|2 = Φ+∗Φ+ + Φ0∗Φ0 , |Φ̃|2 = Φ̃0∗Φ̃0 + Φ̃−∗Φ̃− . (3.9.6)

In contrast to the Standard Model, the extended model does not have an
additional SU(2)R symmetry.

For κ > 0 the classical vacuum configurations obey Φ†Φ̃ = 0. For
m2 < 0, m̃2 < 0, one possible choice is

Φ(x) =

(
0
v

)
, v =

√
−6m2

λ
, Φ̃(x) =

(
ṽ
0

)
, ṽ =

√
−6m̃2

λ̃
.

(3.9.7)
This vacuum configuration is not invariant under either SU(2)L, U(1)Y , or
U(1)PQ. However, it is invariant against the U(1)em subgroup of SU(2)L ×
U(1)Y , which acts as

Φ′(x) =

(
exp (iϕ) 0

0 0

)
Φ(x) , Φ̃′(x) =

(
0 0
0 exp (−iϕ)

)
Φ̃(x) ,

(3.9.8)
and will soon be identified as the symmetry of electromagnetism. Hence,
the symmetry group G = SU(2)L×U(1)Y ×U(1)PQ is spontaneously broken
down to the subgroup H = U(1)em. According to the Goldstone theorem,
in this case, there are nG − nH = 3 + 1 + 1 − 1 = 4 Nambu-Goldstone
bosons. The additional fourth Nambu-Goldstone boson, which results from
the spontaneous breakdown of the U(1)PQ Peccei-Quinn symmetry, is known
as the axion.

Let us again expand around the vacuum configuration by writing

Φ(x) =

(
π1(x) + iπ2(x)

v + σ(x) + iπ3(x)

)
, Φ̃(x) =

(
ṽ + σ̃(x)− iπ̃3(x)
−π̃1(x) + iπ̃2(x)

)
.

(3.9.9)
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Up to quadratic order in the fluctuations, the potential then takes the form

V (Φ, Φ̃) =
m2

2

[
(v + σ)2 + π2

1 + π2
2 + π2

3

]
+
λ

4!

[
(v + σ)2 + π2

1 + π2
2 + π2

3

]2
+

m̃2

2

[
(ṽ + σ̃)2 + π̃2

1 + π̃2
2 + π̃2

3

]
+
λ̃

4!

[
(ṽ + σ̃)2 + π̃2

1 + π̃2
2 + π̃2

3

]2
+

κ

2
|(π1 − iπ2)(ṽ + σ̃ − iπ̃3) + (v + σ − iπ3)(−π̃1 + iπ̃2)|2

≈ 1

2

(
m2 +

λ

2
v2

)
σ2 +

1

2

(
m̃2 +

λ̃

2
ṽ 2

)
σ̃ 2

+
κ

2
(v2 + ṽ 2)

[(
ṽπ1 − vπ̃1√
v2 + ṽ 2

)2

+

(
ṽπ2 − vπ̃2√
v2 + ṽ 2

)2
]

+ c , (3.9.10)

where c is once again an irrelevant constant. Indeed, there are four massive
modes, i.e. four Higgs particles, σ, σ̃, and

ρ1 =
ṽπ1 − vπ̃1√
v2 + ṽ 2

, ρ2 =
ṽπ2 − vπ̃2√
v2 + ṽ 2

, (3.9.11)

with the corresponding mass squares

m2
σ =

λ

3
v2 , m2

σ̃ =
λ̃

3
ṽ 2 , m2

ρ1
= m2

ρ2
= κ(v2 + ṽ 2) , (3.9.12)

as well as four massless Nambu-Goldstone modes π3, π̃3, and

ζ1 =
ṽπ1 + vπ̃1√
v2 + ṽ 2

, ζ2 =
ṽπ2 + vπ̃2√
v2 + ṽ 2

. (3.9.13)

The modes σ, σ̃, π3, and π̃3 are neutral, whereas the modes ρ1± iρ2 and ζ1±
iζ2 are charged under the unbroken subgroup H = U(1)em of the symmetry
G = SU(2)L × U(1)Y × U(1)PQ.

Finally, let us construct the leading terms in the low-energy effective
theory for the two Higgs doublet model. Following the general scheme, the
fields describing the Nambu-Goldstone bosons parameterize the coset space
G/H = SU(2)L×U(1)Y ×U(1)PQ/U(1)em = SU(2)×U(1), and hence take
the form U(x) ∈ SU(2) and exp(iθ(x)) ∈ U(1). The leading terms of the
effective Lagrangian are given by

L(∂µV, ∂µθ) =
F 2

4
Tr
[
∂µV

†∂µV
]

+KTr
[
∂µV

†∂µV σ
3
]

+
F̃ 2

2
∂µθ∂µθ
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=
F 2

4
Tr
[
∂µV

†∂µV
]

+
F̃ 2

2
∂µθ∂µθ . (3.9.14)

The term proportional to K seems to explicitly break the SU(2)R symmetry
down to U(1)Y . However, this term simply vanishes. Consequently, despite
the fact that there is no SU(2)R symmetry in the two Higgs doublet model,
at leading order the Lagrangian of the corresponding low-energy effective
theory still has an SU(2)R custodial symmetry. At higher order, on the other
hand, SU(2)R breaking terms do arise. Hence, the custodial symmetry is an
accidental global symmetry. It arises only because no symmetry breaking
terms exist in the leading low-energy Lagrangian.

The two Higgs doublet extension of the Standard Model was introduced
by Roberto Peccei and Helen Quinn in 1977, in an attempt to solve the
so-called strong CP-problem, which we will investigate in more detail in
Chapter 11. In 1978 Steven Weinberg and Frank Wilczek realized indepen-
dently that the spontaneous breakdown of the U(1)PQ symmetry gives rise
to a Nambu-Goldstone boson — the axion. Experimental axion searches
have thus far been unsuccessful. Hence, it is still unclear whether the two
Higgs doublet extension of the Standard Model is realized in Nature.



Chapter 4

From Superconductivity to
Electroweak Gauge Bosons

In this chapter we introduce gauge fields mediating the electromagnetic
and weak interactions. The weak interactions are responsible, for exam-
ple, for the processes of radioactive decays. When electroweak gauge fields
are included, the SU(2)L symmetry — as well as the U(1)Y subgroup of
SU(2)R — turn into local symmetries. The electroweak SU(2)L × U(1)Y
gauge symmetry breaks spontaneously down to U(1)em — the gauge group
of electromagnetism. Due to the Higgs mechanism the W and Z gauge
bosons become massive. The additional logitudinal polarization states of
the three massive vector bosons, W+, W−, and Z are provided by three
Nambu-Goldstone modes. One says that “the gauge bosons eat the Nambu-
Goldstone bosons” and thus pick up a mass. The photon, on the other hand,
remains massless as a consequence of the unbroken U(1)em gauge symme-
try of electromagnetism. The full gauge symmetry of the Standard Model
is SU(3)c × SU(2)L × U(1)Y , where the color gauge group SU(3)c is as-
sociated with the strong interaction between quarks which is mediated by
gluons. Since Higgs fields are color-neutral, before quarks are added, the
gluons do not interact with Higgs bosons, W - and Z-bosons, or photons.
We will add the gluons only later when we discuss the strong interaction.

To illustrate the basic ideas behind the Higgs mechanism, we first turn
to a simpler model motivated by the condensed matter physics of supercon-

61
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ductors — namely electrodynamics with a charged scalar field representing
Cooper pairs. When Cooper pairs condense inside a superconductor, the
U(1)em gauge symmetry of electromagnetism undergoes the Higgs mecha-
nism and the photon becomes massive.

4.1 Scalar Quantum Electrodynamics

We want to promote the global U(1) symmetry discussed in Section 5.1 to a
local one. This is a substantial enlargement of symmetry, since we proceed
from one single symmetry parameter to one parameter at each space-time
point. What we demand is a U(1) invariance of the form

Φ′(x) = exp(ieϕ(x))Φ(x) , (4.1.1)

where ϕ(x) is now a space-time dependent transformation parameter (which
we assume to be differentiable). The potential is invariant already, V (Φ′) =
V (Φ). The kinetic term, on the other hand, is not invariant as it stands,
because

∂µΦ′(x) = exp(ieϕ(x)) [∂µΦ(x) + ie∂µϕ(x)Φ(x)] . (4.1.2)

In order to render it locally invariant, we must modify the derivative. To
this end, we introduce a gauge field Aµ(x) and build a “covariant derivative”

DµΦ(x) = [∂µ − ieAµ(x)] Φ(x) ,

DµΦ∗(x) = [∂µ + ieAµ(x)] Φ∗(x) . (4.1.3)

It should be noted that the covariant derivative Dµ takes different forms
depending on the transformation properties of the field it acts on. For
example, when Dµ acts on the complex conjugated field Φ∗ the gauge field
contribution in it also gets complex conjugated. The gauge field transforms
such that the term ∂µϕ in the covariant derivative is eliminated,

A′µ(x) = Aµ(x) + ∂µϕ(x) ⇒
DµΦ′(x) =

[
∂µ − ieA′µ(x)

]
Φ′(x) = exp(ieϕ(x))DµΦ(x) ,

DµΦ∗′(x) = exp(−ieϕ(x))DµΦ∗(x) . (4.1.4)

Hence the operator Dµ is indeed gauge covariant. It can therefore be used
to formulate a gauge invariant Lagrangian

L(Φ, ∂µΦ, Aµ) =
1

2
DµΦ∗DµΦ + V (Φ) . (4.1.5)
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The parameter e represents the electric charge of the scalar field, i.e. the
strength of its coupling to Aµ. The anti-scalar, represented by the field Φ∗,
has the opposite charge −e.

Up to now, the gauge field Aµ appeared only as an external field. We
have not yet introduced a kinetic term for it. From classical electrodynamics
we indeed know such a term. We construct the field strength tensor

Fµν(x) = ∂µAν(x)− ∂νAµ(x) , (4.1.6)

which is the obvious gauge invariant quantity to be built from first deriva-
tives of Aµ(x),

F ′µν(x) = ∂µA
′
ν(x)− ∂νA′µ(x) = ∂µAν(x) + ∂µ∂νϕ(x)− ∂νAµ(x)− ∂ν∂µϕ(x)

= Fµν(x) . (4.1.7)

The Lagrangian of the free electromagnetic field reads

L(∂µAν) =
1

4
FµνFµν =

1

2

∑
µ>ν

FµνFµν . (4.1.8)

In the classical limit this Lagrangian leads to the inhomogeneous Maxwell
equations1

∂µFµν = 0 , (4.1.9)

while the homogeneous Maxwell equations are automatically implied by the
use of the 4-vector potential Aµ.

Thus the total Lagrangian of scalar QED takes the form

L(Φ, ∂µΦ, Aµ, ∂µAν) =
1

2
DµΦ∗DµΦ + V (Φ) +

1

4
FµνFµν . (4.1.10)

It is not allowed to add an explicit mass term
m2
γ

2
AµAµ, because such a term

would violate gauge invariance.

As in the case of the global U(1) symmetry, we distinguish two cases:

• For m2 ≥ 0 the symmetry is unbroken, and we have a Coulomb phase
with scalar particles of charge e and massless photons. In such a phase the

1In the general case this represents a current ∂µFµν = jν , which — due to the anti-
symmetry of Fµν — obeys the continuity equation ∂νjν = 0.
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electric charge is a conserved quantity. Indeed, in the vacuum of QED (and
even of the full Standard Model) the U(1)em symmetry of electrodynamics
is realized in a Coulomb phase.

• Again, the broken phase (which corresponds to m2 < 0 at the clas-
sical level) is particularly interesting. Inside a superconductor, the U(1)em

symmetry is spontaneously broken as a consequence of Cooper pair con-
densation. Since Cooper pairs are charged (they carry the charge −2e of
two electrons), their condensation implies that the vacuum itself contains
an undetermined number of charges. As a consequence, electric charge is no
longer locally conserved.2 Once again, there are degenerate vacuum config-
urations, but they are now related by gauge transformations, as we see from
Eqs. (4.1.1) and (4.1.4). Therefore they represent the same physical state.
As a result, in contrast to systems with a spontaneously broken global sym-
metry, in a gauge theory “spontaneous symmetry breaking” does not lead
to vacuum degeneracy. Strictly speaking, gauge symmetries cannot break
spontaneously. In fact, they are not even symmetries of the physical world
but merely redundancies in our theoretical description. Still, it is common
practice to speak of “spontaneous gauge symmetry breaking”. As we just
did, in order to remind the reader of the subtleties related to this notion,
also later we will always put “spontaneous gauge symmetry breaking” in
inverted commas.

To take a closer look at this phase, it is helpful to fix the gauge, so
that we obtain a reference point for an expansion. We choose the “unitary
gauge”

Re Φ(x) = φ1(x) ≥ 0 , Im Φ(x) = φ2(x) = 0 . (4.1.11)

Let us again investigate the fluctuations around the vacuum configuration
φ1(x) = v. Due to gauge fixing, in this case we only deal with physical
fluctuations, i.e.

Φ(x) = v + σ(x) , (4.1.12)

and thus there is no π-excitation. To O(σ2) we obtain

V (Φ) =
m2

2
(v + σ)2 +

λ

4!
(v + σ)4

2Of course, any real superconductor is a finite piece of material embedded in the
Coulomb phase of the QED vacuum. Hence, the total charge of the whole superconductor
still remains conserved.
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≈ m2

2
v2 +m2vσ +

m2

2
σ2 +

λ

4!
(v4 + 4v3σ + 6v2σ2)

=
1

2
(m2 +

λ

2
v2)σ2 + c =

λ

6
v2σ2 + c . (4.1.13)

There is again a σ-particle with the same mass as in the case of the sponta-
neously broken global symmetry. However, the massless Nambu-Goldstone
boson π has disappeared, since — as we mentioned above — the degeneracy
of vacua is not physical any more.

What happened to the π degree of freedom? Let us consider the covari-
ant kinetic term and expand it to second order in σ and Aµ,

1

2
DµΦ∗DµΦ =

1

2

[
(∂µ + ieAµ)(v + σ)

] [
(∂µ − ieAµ)(v + σ)

]
=

1

2
(∂µσ + ieAµv + ieAµσ)(∂µσ − ieAµv − ieAµσ)

≈ 1

2
∂µσ∂µσ +

1

2
e2v2AµAµ . (4.1.14)

Amazingly, we have obtained a massive photon with

mγ = ev . (4.1.15)

Therefore the missing degree of freedom (which was formerly identified as
the π particle) has turned into an additional longitudinal polarization state
of the photon.

This mechanism of mass generation is known as the Higgs mechanism.
It is based on the “spontaneous breakdown” of a gauge symmetry. A phase
in which the gauge symmetry is “spontaneously broken”, so that the gauge
bosons are massive, is called a Higgs phase. While the QED vacuum is in
a Coulomb phase, inside a superconductor the U(1)em gauge symmetry is
“spontaneously broken”, and the photon becomes massive. This mass can
be measured, because it is related to the penetration depth of magnetic
fields in the superconductor. This penetration falls off exponentially in
proportion to exp(−mγr). One then identifies 1/mγ as the range of the
electromagnetic interaction. In the Coulomb phase, on the other hand, the
electromagnetic interaction has an infinite range.
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4.2 The Higgs Mechanism in the Electroweak

Theory

Let us now turn to the electroweak gauge interactions in the Standard
Model. Here we must promote the SU(2)L symmetry as well as the U(1)Y
subgroup of SU(2)R to local symmetries. To begin with, we turn SU(2)L

into a gauge symmetry, i.e. we demand invariance of the Lagrangian against
the gauge transformation

Φ′(x) = L(x) Φ(x) . (4.2.1)

The potential V (Φ) is already invariant, but the kinetic term is not, because

∂µΦ′(x) = L(x)∂µΦ(x) + ∂µL(x)Φ(x)

= L(x)
[
∂µΦ(x) + L(x)†∂µL(x)Φ(x)

]
. (4.2.2)

As before, we want to compensate the additional term. For this purpose,
we introduce a gauge field Wµ(x) and construct a covariant derivative of
the form

DµΦ(x) = [∂µ +Wµ(x)] Φ(x) . (4.2.3)

The gauge field Wµ is a complex 2 × 2 matrix. In the kinetic term, the
above covariant derivative is multiplied by

DµΦ(x)† = ∂µΦ(x)† + Φ(x)†W †
µ(x) = ∂µΦ(x)† − Φ(x)†Wµ (4.2.4)

In the last step, we have taken Wµ to be anti-Hermitian, W †
µ = −Wµ. In

this way we make sure that the kinetic term in the Lagrangian is real. In this
form, Wµ is also a natural generalization of the term ieAµ, which entered
the covariant derivative in the gauging of a single complex scalar field (in
the previous Section). Hence this gauge field can be written as

Wµ(x) = igW a
µ (x)

σa

2
, a = 1, 2, 3 , (4.2.5)

where σa are the Pauli matrices given in eq. (??) (which are Hermitian),
and the factor 1/2 is a convention. The parameter g is the gauge coupling
constant; it characterises the strength of the coupling between the Higgs
field and the gauge field Wµ.
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For the behavior of the new matrix-valued gauge field under a gauge
transformation we make the ansatz

W ′
µ(x) = L(x) [Wµ(x) + ∂µ]L(x)† . (4.2.6)

The virtue of this ansatz is that it leads to the simple relation

DµΦ′(x) =
[
∂µ +W ′

µ(x)
]

Φ′(x)

= L(x)
[
∂µΦ(x) + L(x)†∂µL(x)Φ(x)

+ Wµ(x)L(x)†L(x)Φ(x) + ∂µL(x)†L(x)Φ(x)
]

= L(x) [∂µ +Wµ(x)] Φ(x) = L(x)DµΦ(x) . (4.2.7)

Similarly we obtain

DµΦ′(x)† = DµΦ(x)†L(x)† . (4.2.8)

Thus we arrive at the desired gauge invariant Lagrangian

L(Φ, ∂µΦ,Wµ) =
1

2
DµΦ†DµΦ + V (Φ) . (4.2.9)

So far the gauge field is external. We still have to add its own kinetic term.
The field strength tensor of a non-Abelian gauge field is given by

Wµν = DµWν −DνWµ = ∂µWν − ∂νWµ + [Wµ,Wν ] , (4.2.10)

and it transforms as

W ′
µν(x) = L(x)Wµν(x)L(x)† . (4.2.11)

We see that it is natural to add the commutator term to Wµν , since it
transforms in the same way as the other terms. Moreover, it is consistent
to use the covariant derivative also for the formulation of the field strength.
Hence we may consider this as the general form of a field strength. The
case of a U(1) gauge field that we discussed before in eq.(4.1.6) was just the
special situation where the commutator vanishes. The presence of a com-
mutator term in Wµν has important consequences: in contrast to Abelian
gauge fields, non-Abelian gauge fields are charged themselves; hence they
interact among each other, even without other charged fields present.
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In analogy to the Abelian gauge theory, eq. (4.1.8), we write

L(Wµν) =
1

4g2
W a
µνW

a
µν = − 1

2g2
TrWµνWµν , (4.2.12)

which is indeed gauge invariant, and Wµν(x) = igW a
µν(x)σ

a

2
. The structure

of non-Abelian gauge fields was first described in an unpublished letter of
Wolfgang Pauli to Abraham Pais in 1953. The first paper introducing SU(2)
gauge theories is the ground-breaking work of Chen-Ning Yang and Richard
Mills in 1954.

Thus far, we have limited the gauging to the SU(2)L transformations,
and therefore to transformations with the determinant 1. Now we want to
gauge the extra U(1) transformations related to the determinant. The group
of these transformations is again U(1)Y . The Higgs field then transforms as

Φ′(x) = exp
(
− i

g′

2
ϕ(x)

)
Φ(x) . (4.2.13)

Here g′ is a new coupling constant — the weak hypercharge (and the factor
−1

2
is purely conventional as in eq.(4.2.5)). As we discussed in Section 5.2,

the U(1)Y symmetry is actually a subgroup of SU(2)R with

R(x) =

(
exp(−ig

′

2
ϕ(x)) 0

0 exp(ig
′

2
ϕ(x))

)
. (4.2.14)

It should be emphasized again that only the U(1)Y subgroup and not the
whole SU(2)R symmetry is gauged. Gauging solely the U(1)Y subgroup
implies an explicit breaking of the global SU(2)R symmetry. Therefore we
are not going to consider the remaining two generators of SU(2)R. The
U(1)Y gauge field transforms as

B′µ(x) = Bµ(x) + ∂µϕ(x) . (4.2.15)

This new gauge field contributes an additional term to the covariant deriva-
tive,

DµΦ(x) =

[
∂µ +Wµ(x) + i

g′

2
Bµ(x)

]
Φ(x)

=

[
∂µ + iW a

µ (x)
σa

2
+ i

g′

2
Bµ(x)

](
Φ+(x)
Φ0(x)

)
, (4.2.16)
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which is anti-Hermitian as well. We use again the Abelian gauge invariant
field strength

Bµν = ∂µBν − ∂νBµ , (4.2.17)

to add another pure gauge term, and we arrive at the total Lagrangian

L(Φ,Wµ, Bµ) =
1

2
DµΦ†DµΦ + V (Φ)− 1

2g2
Tr(WµνWµν) +

1

4
BµνBµν .

(4.2.18)
Let us consider the symmetry breaking case m2 < 0, again in the unitary
gauge

Φ(x) =

(
0
v

)
, v ∈ IR+ . (4.2.19)

The vacuum state (4.2.19) is invariant under U(1) gauge transformations of
the type

Φ′(x) =

(
exp(ieϕ(x)) 0

0 1

)
Φ(x) , (4.2.20)

which have a U(1)Y hypercharge part, along with a diagonal SU(2)L part,(
exp(ieϕ) 0

0 1

)
=

(
exp(ieϕ/2) 0

0 exp(ieϕ/2)

) (
exp(ieϕ/2) 0

0 exp(−ieϕ/2)

)
.

(4.2.21)
Hence the choice of the vacuum state does not “break” the SU(2)L×U(1)Y
symmetry completely. Instead, there is a remaining U(1) symmetry, which
we denote as U(1)em, because we will soon identify it with the electromag-
netic gauge group. Since that symmetry remains unbroken, despite the
Higgs mechanism, there will be one massless gauge boson — the photon.
All other gauge bosons “eat up” a Nambu-Goldstone boson and become
massive. To see this, we consider again the fluctuations in the unitary
gauge,

Φ(x) =

(
0

v + σ(x)

)
. (4.2.22)

Expanding in powers of the real field σ(x), we obtain

1

2
DµΦ†DµΦ =

1

2

∣∣∣∣(∂µ + igW a
µ

σa

2
+ i

g′

2
Bµ

)(
0

v + σ

)∣∣∣∣2
=

1

2
∂µσ∂µσ +

(v + σ)2

2
(0, 1)

[(
gW a

µ

σa

2
+
g′

2
Bµ

)(
gW b

µ

σb

2
+
g′

2
Bµ

)]( 0
1

)
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=
1

2
∂µσ∂µσ +

1

8
(v + σ)2

[
g2W 1

µW
1
µ + g2W 2

µW
2
µ

+ (gW 3
µ − g′Bµ)(gW 3

µ − g′Bµ)
]
. (4.2.23)

In addition, we have the usual potential term

V (Φ) =
m2

2
(v + σ)2 +

λ

4
(v + σ)4 = −m2σ2 + . . . , (4.2.24)

hence there is once more a Higgs particle with

m2
σ = −2m2 . (4.2.25)

Moreover, there are two W -bosons of mass

mW =
1

2
gv . (4.2.26)

Furthermore, we introduce the linear combination3

Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

, (4.2.27)

which represents the Z-boson with the mass

mZ =
1

2

√
g2 + g′2 v . (4.2.28)

The remaining orthonormal linear combination

Aµ =
g′W 3

µ + gBµ√
g2 + g′2

(4.2.29)

remains massless and describes the photon.

We introduce the Weinberg angle (or weak mixing angle) θW to write
down these linear combinations as(

Aµ
Zµ

)
=

(
cos θW sin θW

− sin θW cos θW

)(
Bµ

W 3
µ

)
, (4.2.30)

3In the space spanned by the basis vectors W 3
µ and Bµ we observe in eq. (4.2.23) the

doublet (g,−g′), which we still normalise.
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such that

g√
g2 + g′2

= cos θW ,
g′√

g2 + g′2
= sin θW , (4.2.31)

and therefore
mW

mZ

=
g√

g2 + g′2
= cos θW . (4.2.32)

The W - and Z-bosons have indeed been discovered in the UA1 and UA2
high energy experiments at the Super Proton Synchrotron (SPS) accelerator
at CERN in 1983. The experimental values for the masses are

mW ' 80.399(23) GeV , mZ ' 91.1876(21) GeV ⇒ sin2 θW ' 0.23116(13) .
(4.2.33)

There are a number of ways to measure sin2 θW in high energy experiments,
and the results based on different methods agree with the value obtained
from the ratio mW/mZ within the errors. This is a nice confirmation of
the consistency of the Standard Model. On the down-side, θW is one of the
parameters which are completely free in the Standard Model — a prediction
for its value would require a superior theory.4

The coupling constant of the photon is the charge e. On the other hand,
the corresponding covariant derivative of the scalar field reads

DµΦ =
[
∂µ + igW 1

µ

σ1

2
+ igW 2

µ

σ2

2
+ igW 3

µ

σ3

2
+ i

g′

2
Bµ

]( Φ+

Φ0

)
=

[
∂µ + igW 1

µ

σ1

2
+ igW 2

µ

σ2

2

+
i

2

(
gW 3

µ + g′Bµ 0
0 −gW 3

µ + g′Bµ

)]( Φ+

Φ0

)
=

[
∂µ + igW 1

µ

σ1

2
+ igW 2

µ

σ2

2

+ i

(
g2−g′2

2
√
g2+g′2

Zµ + gg′√
g2+g′2

Aµ 0

0
√
g2 + g′2Zµ

)]( Φ+

Φ0

)
.

(4.2.34)

4The same holds for the individual values of mW and mZ .
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We can now read off the electric charge as

e =
gg′√
g2 + g′2

. (4.2.35)

We see that indeed only Φ+ couples to the electromagnetic field Aµ. It has
charge e, while Φ0 is neutral (as we anticipated in footnote 3 of Chapter 5).
At the same time, we see that the Z-boson is electrically neutral, hence it
is often denoted as Z0.5 The rôle of the W -bosons in this respect will be
illuminated in the next Chapter, when we introduce electroweak couplings
between fermions.

4.3 Accidental Custodial Symmetry

Let us again consider the matrix representation of the Higgs field

Φ(x) =

(
Φ0(x)∗ Φ+(x)
−Φ+(x)∗ Φ0(x)

)
, (4.3.1)

which would transforms as

Φ′(x) = L(x)Φ(x)R(x)† , L(x) ∈ SU(2)L , R(x) ∈ SU(2)R (4.3.2)

under SU(2)L × SU(2)R gauge transformations. As we have seen in Setion
6.2, only the U(1)Y subgroup of SU(2)R is gauged in the Standard Model.
Still, one could also imagine to turn the full SU(2)R symmetry into a gauge
symmetry. In that case, the corresponding covariant derivative would take
the form

DµΦ(x) = ∂µΦ(x) +Wµ(x)Φ(x)−Φ(x)Xµ(x) . (4.3.3)

Here Xµ(x) = ig′Xa
µ(x)σ

a

2
is a hypothetical non-Abelian gauge field that

transforms as
X ′µ(x) = R(x) [Xµ + ∂µ]R(x)† (4.3.4)

under SU(2)R gauge transformations. Since only the U(1)Y subgroup of
SU(2)R is gauged in the Standard Model, the hypothetical non-Abelian

5Flipping the sign of either g or g′ changes the sign of the electric charge e of Φ+.
However, such sign flips do not affect the coupling of the Higgs field to Zµ, which suggests
that the Z-boson is electrically neutral.
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gauge field Xµ is then reduced to the Abelian Standard Model gauge field
Bµ, i.e.

Xµ(x) = ig′Bµ(x)
σ3

2
. (4.3.5)

Before the U(1)Y subgroup of SU(2)R is gauged (or equivalently when
one puts g′ = 0), SU(2)R is an exact global symmetry, known as the custo-
dial symmetry. Once U(1)Y is gauged, the custodial symmetry is explicitly
violated and thus turns into an approximate global symmetry.

Gauge theories contain redundant unphysical degrees of freedom which
do not affect the physics due to gauge invariance. Hence, in order to main-
tain only the physically relevant degrees of freedom, gauge symmetries must
not be broken explicitly. Global symmetries, on the other hand, are usually
only approximate and arise due to some hierarchy of energies scales, whose
origin may or may not be understood. Let us now ask whether we under-
stand the origin of the approximate custodial symmetry. In particular, we
can ask whether there may be other sources of custodial symmetry breaking
besides the weak U(1)Y gauge interactions. While such symmetry breaking
terms can always be constructed using sufficiently many derivatives or field
values, here we limit ourselves to perturbatively renormalizable interactions,
which are the ones that dominate the physics at low energies. Since

Φ†Φ = ΦΦ† = |Φ0|2 + |Φ+|2 (4.3.6)

is proportional to the unit-matrix, one cannot construct any SU(2)L ×
U(1)Y -invariant terms without derivatives that explicitly break the custo-
dial SU(2)R symmetry. For example, the terms Tr

[
Φ†Φσ3

]
and Tr

[
Φ†ΦΦ†Φσ3

]
simply vanish, and

Tr
[
Φ†Φσ3Φ†Φσ3

]
= 2

(
|Φ0|2 + |Φ+|2

)2
(4.3.7)

just reduces to the standard SU(2)L×SU(2)R-invariant quartic self-coupling.
Using two covariant derivatives one can also construct the term Tr

[
DµΦ

†DµΦσ
3
]
,

which may seem to explicitly break SU(2)L × SU(2)R down to SU(2)L ×
U(1)Y . If this were indeed the case, this term should also be included in the
Standard Model Lagrangian with an adjustable prefactor. If this prefactor
would not be unnaturally small, the custodial symmetry should be strongly
explicitly broken and would not even remain a useful approximate symme-
try. Only if the prefactor of such a term would be small (perhaps due to
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some not yet understood hierarchy of energy scales), the symmetry would
remain only weakly broken. It would then be puzzling why the symmetry
is not more strongly broken. Interestingly, no such puzzle exists for the
custodial symmetry of the Standard Model. In particular, although this
may not be obvious, one can show that the term Tr

[
DµΦ

†DµΦσ
3
]

again
simply vanishes. Indeed, besides the gauge coupling g′, in the gauge-Higgs
sector there is no other renormalizable interaction that explicitly breaks the
custodial symmetry.6. One says that the custodial symmetry is accidental.
It simply arises because g′ is relatively small and no other renormalizable
symmetry breaking terms exist.

4.4 Lattice Gauge-Higgs Models

The previous discussion of gauge theories was essentially at a classical level.
The quantization of gauge theories is a delicate issue. In Appendix B the
simplest gauge theory — an Abelian theory of free photons — is quantized
canonically. However, in order to avoid subtleties related to Dirac’s quan-
tization with “first and second class constraints”, we have already slightly
simplified the presentation. When non-Abelian gauge fields are concerned,
canonical quantization becomes even more complicated. Our method of
choice, instead, is the quantization using the functional integral. In per-
turbation theory, the quantization of non-Abelian gauge fields using the
functional integral requires gauge fixing, which leads to the introduction
of “Faddeev-Popov ghost fields”. This is a non-trivial procedure, which is
well explained in the textbook literature. Here we follow a non-perturbative
approach to the problem by regularizing the theory on a space-time lattice.
Lattice gauge theories were introduced by Franz Wegner in the context of
classical statistical mechanics and by Kenneth Wilson, as well as indepen-
dently by Jan Smit, in the context of quantum field theory. Non-Abelian
lattice gauge theories do not require gauge fixing and are thus conceptu-
ally simpler than their continuum counterparts, usually treated with di-
mensional regularization. As was shown analytically by Thomas Reisz, in
perturbation theory lattice gauge theories define the same continuum limit
as the dimensional regularization. In contrast to perturbative approaches,

6In Chapter 9 we will couple the Higgs field to leptons and quarks, which gives rise
to additional terms that also break the custodial symmetry
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lattice gauge theory can address physics at finite and even strong coupling.
In particular, when we will discuss the strong interaction in Chapters 9 and
10, we will make use of the lattice regularization. Lattice QCD has become
a quantitative tool that allows us to compute the properties of strongly
interacting particles using Monte Carlo simulations. In this section, we
use the lattice regularization to investigate the phase structure of Abelian
and non-Abelian gauge theories. We will encounter a Coulomb phase with
massless photons, as well as Higgs phases with massive gauge bosons. In
addition, there are confined phases which may or may not be distinguishable
from Higgs phases. In particular, in the Standard Model, the weakly cou-
pled Higgs phase is analytically connected with a strongly coupled confined
phase. Hence, in this case Higgs and confined phases are indistinguishable.

Let us first discuss the lattice version of scalar electrodynamics; we con-
sidered its continuum version before in Section 6.1. Then there is a complex
scalar field Φx ∈ CC defined at the sites x of a 4-dimensional hyper-cubic lat-
tice with spacing a. In addition, there is an Abelian lattice gauge field
Ax,µ ∈ IR, which is naturally defined on the links (x, µ) connecting neighbor-
ing lattice sites x and x+ µ̂ (where µ̂ is a vector of length a pointing in the
µ-direction). The gauge transformations ϕx are defined at the lattice sites
x and act as

Φ′x = exp(ieϕx)Φx , A′µ,x = Aµ,x −
ϕx+µ̂ − ϕx

a
. (4.4.1)

In the continuum limit a→ 0 the second equation turns into the continuum
relation A′µ(x) = Aµ(x)− ∂µϕ(x). The corresponding field strength

Fµν,x =
Aν,x+µ̂ − Aν,x

a
− Aµ,x+ν̂ − Aµ,x

a
, (4.4.2)

is naturally associated with the elementary lattice plaquettes. Just as in
the continuum, on the lattice the Abelian field strength is gauge invariant,
i.e. F ′µν,x = Fµν,x. In the continuum limit one recovers Fµν,x → ∂µAν(x) −
∂νAµ(x) = Fµν(x). Let us also define a parallel transporter link variable

Uµ,x = exp(ieAµ,xa) , (4.4.3)

which transforms as

U ′µ,x = exp(ieϕx)Uµ,x exp(−ieϕx+µ̂) . (4.4.4)
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On the lattice, we distinguish left- and right-handed covariant derivatives,
which are defined as

DL
µΦx =

Uµ,xΦx+µ̂ − Φx

a
, DR

µΦx+µ̂ =
Φx+µ̂ − U∗µ,xΦx

a
. (4.4.5)

Under gauge transformations they transform as

DL
µΦ′x = exp(ieϕx)D

L
µΦx , DR

µΦ′x+µ̂ = exp(ieϕx+µ̂)DR
µΦx+µ̂ . (4.4.6)

The two derivatives are related by

DL
µΦx = Uµ,xD

R
µΦx+µ̂ , (4.4.7)

such that

DL
µΦ∗xD

L
µΦx = DR

µΦ∗x+µ̂D
R
µΦx+µ̂ =

1

a2

[
|Φx+µ̂|2 + |Φx|2 − 2Re (Φ∗xUµ,xΦx+µ̂)

]
.

(4.4.8)
The Euclidean lattice action of scalar QED is given by

S[Φ, Aµ] =
∑
x

a4

[
1

2
DL
µΦ∗xD

L
µΦx +

m2

2
|Φx|2 +

λ

4!
|Φx|4 +

1

4
Fµν,xFµν,x

]
.

(4.4.9)
In order to make the regularized functional integral finite, in this so-called
non-compact formulation of scalar lattice QED, one must fix the gauge.7

Here we choose the Lorenz gauge ∂µAµ(x) = 0, whose lattice version takes
the form

δAx =
∑
µ

1

a
(Aµ,x+µ̂ − Aµ,x) = 0 . (4.4.10)

The resulting functional integral is then given by

Z =

∫
DΦ

∫
DAµ exp(−S[Φ, Aµ])

∏
x

δ(δAx) , (4.4.11)

where the δ-function enforces the Lorenz gauge condition. The measures of
the functional integration over the scalar and gauge field configurations are
given by ∫

DΦ =
∏
x

∫
CC

dΦx ,

∫
DAµ =

∏
x,µ

∫
IR

dAµ,x . (4.4.12)

7Gauge fixing is unnecessary in the compact formulation in terms of link variables
Uµ,x which is also used in non-Abelian gauge theories. This will be discussed below.
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The phase diagram of the lattice model, which has been obtained us-
ing both analytic (cite Florian Nill) and numerical methods, is illustrated
schematically in Figure ??? for a fixed value of λ. At sufficiently negative
values of m2 and sufficiently small values of e, there is a Higgs phase with
a massive photon which is separated from a Coulomb phase in which the
photon is massless. The two phases are separated by a first order phase
transition (cf. Appendix ???) which becomes second order at e → 0. Near
this critical point one can take a continuum limit of scalar QED, which is
likely to be a trivial (i.e. non-interacting) theory.

Let us now turn to non-Abelian lattice gauge theories applied to the
gauge-Higgs sector of the Standard Model. For simplicity, we gauge only
the SU(2)L and not also the U(1)Y symmetry. On the lattice, the Higgs
field is again a complex doublet

Φx =

(
Φ+,x

Φ0,x

)
, (4.4.13)

which is associated with the lattice sites x. The non-Abelian lattice gauge
field is defined in terms of parallel transporter link variables Uµ,x which are
2× 2 matrices taking values in the gauge group SU(2)L. Unlike in the non-
compact lattice formulation of scalar QED, one does not introduce a lattice
variant of the non-Abelian vector potential Wµ(x). Still, in the classical
continuum limit a→ 0 one can identify

Uµ,x = exp(Wµ(x)a) = exp

(
igW a

µ (x)
σa

2
a

)
. (4.4.14)

Under non-Abelian lattice gauge transformations Lx ∈ SU(2)L the fields
transform as

Φ′x = LxΦx , U ′µ,x = LxUµ,xL
†
x+µ̂ . (4.4.15)

Just as in the Abelian theory, the covariant left- and right-derivatives are
given by

DL
µΦx =

Uµ,xΦx+µ̂ − Φx

a
, DR

µΦx+µ̂ =
Φx+µ̂ − U †µ,xΦx

a
, (4.4.16)

which now transform as

DL
µΦ′x = LxD

L
µΦx , DR

µΦ′x+µ̂ = LxD
R
µΦx+µ̂ . (4.4.17)
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In analogy to eq.(4.4.7), one obtains

DL
µΦx = Uµ,xD

R
µΦx+µ̂ , (4.4.18)

such that

DL
µΦ†xD

L
µΦx = DR

µΦ†x+µ̂D
R
µΦx+µ̂ =

1

a2

[
Φ†x+µ̂Φx+µ̂ + Φ†xΦx − Φ†xUµ,xΦx+µ̂ − Φ†x+µ̂U

†
µ,xΦx

]
. (4.4.19)

The lattice action of the SU(2)L-invariant gauge-Higgs model takes the form

S[Φ, Uµ] =
∑
x

a4

[
1

2
DL
µΦ†xD

L
µΦx +

m2

2
Φ†xΦx +

λ

4!
|Φ†xΦx|2

+
1

4g2a2

(
2− Tr

(
Uµ,xUν,x+µ̂U

†
µ,x+ν̂U

†
ν,x

))]
. (4.4.20)

The last term is the kinetic and self-interaction term of the W -bosons. It
is built from a product of link parallel transporters around an elementary
lattice plaquette. It is instructive to show that this term is gauge invari-
ant and that it turns into Tr(WµνWµν)/4g

2 in the continuum limit. The
functional integral describing the SU(2)L gauge-Higgs model is given by

Z =

∫
DΦ

∫
DUµ exp(−S[Φ, Uµ]) . (4.4.21)

In this case the measures of the functional integrations are given by∫
DΦ =

∏
x

∫
CC2

dΦx ,

∫
DUµ =

∏
x,µ

∫
SU(2)

dUµ,x exp(−S[Φ, Uµ]) .

(4.4.22)
Here dUµ,x is the so-called Haar measure, which is invariant under gauge
transformations both on the left and on the right end of the link, i.e.

dU ′µ,x = LxdUµ,xL
†
x+µ̂ . (4.4.23)

The group manifold of SU(2) is a sphere S3 with a 3-dimensional surface.
The Haar measure of SU(2) is just the natural isotropic measure on S3.

The phase diagram of the lattice gauge-Higgs model, which has been
obtained using numerical simulations, is illustrated schematically in Figure
??? for a fixed value of λ. For sufficiently negative m2 and sufficiently
small g, there is a Higgs phase with a massive W -boson. However, unlike
in scalar QED, there is no massless Coulomb phase. Instead, 4-dimensional
non-Abelian gauge theories have a confined phase.
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4.5 From Electroweak to Grand Unification

This section discusses physics beyond the Standard Model and may be
skipped in a first reading. At this point we return to continuum notation.

As we have seen, the gauge groups SU(2)L and U(1)Y give rise to two
distinct gauge couplings g and g′. Hence, in the Standard Model the elec-
troweak interactions are not truly unified. In the next chapter we will also
include the strong interaction with the gauge group SU(3)c which is associ-
ated with yet another gauge coupling gs. Hence, the full gauge group of the
Standard Model SU(3)c × SU(2)L × U(1)Y has three gauge couplings. In
the framework of Grand Unified Theories (GUT), which are an extension
of the Standard Model, one embeds the electroweak and strong interactions
in one simple gauge group (e.g. SU(5), SO(10)), or the exceptional group
E(6), which leads to a relation between g, g′, and gs.

The symmetries SU(5) or SO(10) are too large to be realized at low tem-
peratures. They must be spontaneously broken to the SU(3)c × SU(2)L ×
U(1)Y symmetry of the Standard Model. In Grand Unified Theories this
happens at temperatures about 1014 GeV, which were realized in the Uni-
verse about 10−34 sec after the Big Bang. At present (and in the foreseeable
future) these energy scales cannot be probed experimentally. Hence, we
now rely on theoretical arguments, and sometimes on speculation.

To illustrate the idea behind GUTs, let us first unify the electroweak
gauge interactions by embedding SU(2)L × U(1)Y into one single gauge
group. Since the group SU(2)L × U(1)Y has two commuting generators,
i.e. its rank is 1 + 1 = 2, the embedding unified group must also have a
rank of at least 2. There are two so-called “simple” Lie groups of rank 2
— the special unitary group SU(3) and the exceptional group G(2), which
contains SU(3) as a subgroup. Hence, the minimal unifying group that
contains SU(2)L×U(1)Y is SU(3) (not to be confused with the color gauge
group SU(3)c), which has 8 generators. When the electroweak interactions
of the Standard Model are embedded in SU(3), half of the gauge bosons can
be identified with known particles: SU(2)L has 3 W -bosons, and U(1)Y has
one B-boson which, together with W 3, forms the Z-boson and the photon.
The remaining 4 gauge bosons of SU(3) are new hypothetical particles,
which we call X and Y . In order to make these particles heavy, the SU(3)
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symmetry must be spontaneously broken to SU(2)L×U(1)Y . Again, this is
achieved via the Higgs mechanism, in this case using an 8-component scalar
field transforming under the adjoint representation of SU(3). We write

Φ(x) = Φa(x)λa , a ∈ {1, 2, . . . , 8} . (4.5.1)

The λa are the eight Gell-Mann matrices — generators of SU(3) — de-
scribed in Appendix E. They are Hermitean, traceless 3× 3 matrices, anal-
ogous to the 3 Pauli matrices which generate SU(2). Under gauge transfor-
mations Ω ∈ SU(3) the scalar field transforms as

Φ′(x) = Ω(x)Φ(x)Ω(x)† . (4.5.2)

We introduce a potential of the form

V (Φ) =
m2

4
Tr
(
Φ2
)

+
µ

3!
Tr
(
Φ3
)

+ +
λ

4!
Tr
(
Φ4
)
. (4.5.3)

The potential is gauge invariant due to the cyclic nature of the trace. It is
interesting to note (and straightforward to check) that(

Tr
(
Φ2
))2

= 2Tr
(
Φ4
)
,

detΦ = −1

3
Tr
(
Φ3
)
, (4.5.4)

which implies that the quartic potential of eq. (4.5.3 represents the most
general SU(3)-invariant and renormalizable form. Since the term (Tr (Φ2))
is actually SO(8) rather than just SU(3) invariant, eq. (4.5.4) also implies
that, for µ = 0, the potential V (Φ) has an enlarged SO(8) symmetry. For
m2 < 0, this symmetry breaks spontaneously down to SO(7), thus leading
to 7 massless Nambu-Goldstone bosons. When µ 6= 0, on the other hand,
the symmetry of the potential is just SU(3), which can break spontaneously
to SU(2)×U(1) or to U(1)×U(1), leading to 8− 3− 1 = 4 or 8− 1− 1 = 6
massless Nambu-Goldstone bosons, respectively. To investigate the pattern
of symmetry breaking, we choose a unitary gauge, in which the scalar field
is diagonal (one uses the unitary transformation Ω(x) to diagonalize the
Hermitean matrix Φ(x))

Φ(x) = Φ3(x)λ3+Φ8(x)λ8 =

 Φ3(x) + 1√
3
Φ8(x) 0 0

0 −Φ3(x) + 1√
3
Φ8(x) 0

0 0 − 1√
3
Φ8(x)

 .

(4.5.5)
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The potential then takes the form

V (Φ) =
m2

2

∑
i

Φ2
i +

λ1

4!

(∑
i

Φ2
i

)2

+
λ2

4!

∑
i

Φ4
i . (4.5.6)

The potential then takes the form

V (Φ) =
m2

2

∑
i

Φ2
i +

λ1

4!

(∑
i

Φ2
i

)2

+
λ2

4!

∑
i

Φ4
i . (4.5.7)

The minima of the potential are characterized by

∂V

∂Φi

= m2Φi + Φi
λ1

6

∑
j

Φ2
j +

λ2

6
Φ3
i = c . (4.5.8)

Here c is a Lagrange multiplier that implements the constraint
∑

i Φi = 0.
We are interested in minima with an unbroken SU(2)L × U(1)Y symmetry,
for which Φ1 = Φ2. Hence, we can write

Φ(x) = v

 1 0 0
0 1 0
0 0 −2

 , (4.5.9)

such that

m2v + 4λ1v
2(3 + 2

9

4
)v + 4λ2v

3 = C,

−3

2
m2v − 4λ1v

2(3 + 2
9

4
)
3

2
v − 4λ2v

3 27

8
= C ⇒

C =
4

5
λ2v

3(3− 27

4
) = −3λ2v

3 ⇒

m2v + λ130v3 + λ27v3 = 0 ⇒ v =

√
− m2

30λ1 + 7λ2

. (4.5.10)

The value of the potential at the minimum is given by

V (Φ) =
1

2
m2v2(3 + 2

9

4
) + λ1v

4(3 + 2
9

4
)2 + λ2v

4(3 + 2
81

16
)

=
1

2
m2v2 15

2
+ λ1v

4 225

4
+ λ2v

4 105

8
)

= −15

4
v4(30λ1 + 7λ2) + λ1v

4 225

4
+ λ2v

4 105

8
)

= v4(−225

4
λ1 −

105

8
λ2) = −m4 15

8

1

30λ1 + 7λ2

. (4.5.11)
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For λ1, λ2 > 0 the value of the potential is negative, indicating that the
SU(3) symmetric phase at Φ = 0 with V (Φ) = 0 is not the true vacuum. It
is instructive to convince oneself that other symmetry breaking patterns —
for example to U(1)×U(1) — are not dynamically preferred over SU(2)L×
U(1)Y breaking.

Let us now consider the SU(3) unified gauge field

Vµ(x) = ig3V
a
µ (x)λa . (4.5.12)

Under non-Abelian gauge transformations we have

V ′µ(x) = Ω(x)(Vµ(x) + ∂µ)Ω(x)† . (4.5.13)

For an adjoint Higgs field the covariant derivative takes the form

DµΦ(x) = ∂µΦ(x) + [Vµ(x),Φ(x)] . (4.5.14)

It is instructive to show that this indeed transforms covariantly. Introducing
the field strength tensor

Vµν(x) = ∂µVν(x)− ∂νVµ(x) + [Vµ(x), Vν(x)] , (4.5.15)

the bosonic part of the SU(3) GUT Lagrangian takes the form

L(Φ, ∂µΦ, Vµ, ∂µVν) =
1

2
Tr (DµΦDµΦ) + V (Φ) +

1

4
Tr (VµνVµν) . (4.5.16)

We now insert the vacuum value of the scalar field to obtain the mass terms
for the gauge field

1

2
Tr (DµΦDµΦ) = Tr ([V µ,Φ][Vµ,Φ]) . (4.5.17)

We introduce the X- and Y -bosons via

Vµ(x) =


Xr
µ Y r

µ

Gµ Xg
µ Y g

µ

Xb
µ Y b

µ

Xr∗
µ Xg∗

µ Xb∗
µ

Y r∗
µ Y g∗

µ Y b∗
µ Wµ

 . (4.5.18)
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The X- and Y -boson form an electroweak doublet. They are the fields
that become massive after the spontaneous breakdown of SU(3) down to
SU(2)L × U(1)Y , because one obtains

[Vµ,Φ] = v


−3

2
Xr
µ −3

2
Y r
µ

Gµ1I −3
2
Xg
µ −3

2
Y g
µ

−3
2
Xb
µ −3

2
Y b
µ

Xr∗
µ Xg∗

µ Xb∗
µ

Y r∗
µ Y g∗

µ Y b∗
µ −3

2
Wµ1I



− v


Xr
µ Y r

µ

Gµ1I Xg
µ Y g

µ

Xb
µ Y b

µ

−3
2
Xr∗
µ −3

2
Xg∗
µ −3

2
Xb∗
µ

−3
2
Y r∗
µ −3

2
Y g∗
µ −3

2
Y b∗
µ −3

2
Wµ1I



= v


−5

2
Xr
µ −5

2
Y r
µ

0 −5
2
Xg
µ −5

2
Y g
µ

−5
2
Xb
µ −5

2
Y b
µ

−5
2
Xr∗
µ −5

2
Xg∗
µ −5

2
Xb∗
µ

−5
2
Y r∗
µ −5

2
Y g∗
µ −5

2
Y b∗
µ 0

 ,

(4.5.19)

and hence

Tr ([Vµ,Φ][Vµ,Φ]) = −9

2
v2(X∗µXµ + Y ∗µ Yµ) . (4.5.20)

The X- and Y -bosons thus pick up the mass

m2
X = m2

Y =
9

2
g2

3v
2 . (4.5.21)

These 4 gauge bosons become massive by eating 4 Nambu-Goldstone bosons.
Indeed, when the grand unified group G = SU(3) breaks spontaneously
down to the subgroup H = SU(2)L × U(1)Y , according to the Goldstone
theorem, there are 8− 3− 1 = 4 Nambu-Goldstone bosons.

The full Standard Model gauge group is SU(3)c×SU(2)L×U(1)Y . The
group SU(n) has rank n−1, i.e. n−1 of the n2−1 generators commute with
each other. The rank of the group U(1) is 1. Thus, the rank of the Standard
Model group is 2 + 1 + 1 = 4. Hence, if we want to embed that group in
a simple Lie group, its rank must be at least 4. The smallest Lie group
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(i.e. the one with the smallest number of generators) with that property
is SU(5), which has rank 4 and 52 − 1 = 24 generators. Consequently, in
an SU(5) gauge theory there are 24 gauge bosons. When the Standard
Model is embedded in SU(5), half of the gauge bosons can be identified
with known particles: SU(3)c has 32− 1 = 8 gluons, SU(2)L has 22− 1 = 3
W -bosons, and U(1)Y has one B-boson. The remaining 12 gauge bosons of
SU(5) are hypothetical particles, again called X and Y . In order to make
these unobserved particles sufficiently heavy, the SU(5) symmetry must be
spontaneously broken down to SU(3)c×SU(2)L×U(1)Y . Again, this can be
achieved using the Higgs mechanism, now with a scalar field transforming
under the 24-dimensional adjoint representation of SU(5). The X- and Y -
bosons are color triplets and electroweak doublets. These 12 gauge bosons
become massive by eating 12 Nambu-Goldstone bosons. Indeed when G =
SU(5) breaks spontaneously down to the subgroup H = SU(3)c×SU(2)L×
U(1)Y , according to the Goldstone theorem there are nG − nH = 24− 8 −
3− 1 = 12 Nambu-Goldstone bosons.

In the SU(5) GUT there is only one gauge coupling g5 to which the
three standard model gauge couplings g, g′, and gs are related. In an SU(5)
symmetric phase one has

g = gs = g5, g′ =

√
3

5
g5 . (4.5.22)

Hence, the Weinberg angle would then take the form

sin2 θW =
g′2

g2 + g′2
=

3g2
5

5g2
5 + 3g2

5

=
3

8
. (4.5.23)

This is not in agreement with the experimental value sin2 θW = 0.23119(14).
However, we do not live in an SU(5) symmetric world. One can use the
renormalization group to run the above relations from the GUT scale, where
they apply, down to our low energy scales. One obtains realistic values for
the coupling constants when one puts the GUT scale at about v = 1015 GeV.
The masses of the X- and Y -bosons are also in that range. The GUT scale
is significantly below the Planck scale 1019 GeV, which justifies neglecting
gravity in the above considerations. In order to achieve simultaneous unifi-
cation of all three couplings g, g′, and gs at the GUT scale, one must add
further matter degrees of freedom beyond the quarks and leptons of the
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Standard Model. For example, the minimal supersymmetric extension of
the Standard Model achieves this property.

As we will discuss in Chapter 15, Grand Unified Theories predict the
decay of the proton at least at some rate. Despite numerous experimental
efforts, proton decay has never been observed, i.e. as far as we know today,
the proton is a stable particle. To be explicit, its life-time exceeds 2.1×1029

years (with 90 percent confidence level). Indeed, the minimal SU(5) model
has been ruled out experimentally, because the proton lives longer than this
model predicts. Other GUTs based on the orthogonal group SO(10) or the
exceptional group E(6) predict proton decay at a slower rates, which are
not ruled out experimentally.
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Chapter 5

One Generation of Leptons
and Quarks

In this chapter we add the fermions to the Lagrangian of the Standard
Model. The fermions are leptons and quarks. The leptons participate in the
electroweak gauge interactions, whereas the quarks are affected by both,
electroweak and strong interactions. It is interesting that we need to add
leptons and quarks at the same time; a simplification of the Standard Model
without quarks would be mathematically inconsistent. This is because the
quarks cancel anomalies, which would explicitly break the gauge symmetry
in a purely leptonic model at the quantum level. Cancellation of anomalies
in gauge symmetries is absolutely necessary, both perturbatively and beyond
perturbation theory. Anomalies in global symmetries, on the other hand,
are a perfectly acceptable form of explicit symmetry breaking. In fact,
they are necessary to correctly describe some aspects of the physics. In
this chapter, we will limit ourselves to one single generation of fermions.
Until recently, the corresponding lepton fields would have included only
left-handed electrons and neutrinos as well as right-handed electrons, but
no right-handed neutrinos. By now we know that neutrinos have a small
mass, which motivates the addition of a right-handed neutrino field. Still,
we will follow our strategy of adding fields step by step, and so we will first
work with left-handed neutrinos only. In this chapter, we will also limit
ourselves to one single generation of fermions.
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5.1 Weyl and Dirac Spinors

The 4-dimensional Euclidean space-time is invariant against translations by
4-vectors as well as against SO(4) space-time rotations. Together this con-
stitutes Euclidean Poincaré invariance. Ihe internal O(4) symmetry of the
Higgs sector contains an SO(4) subgroup which factorizes into the two inter-
nal symmetries SU(2)L and SU(2)R, as we have seen in Section 5.2. Since
the group theory is identical, the same is true for the space-time rotation
symmetry SO(4) = SU(2)L × SU(2)R. The fields of the Standard Model
must transform appropriately under space-time rotations. Their transfor-
mation behavior can be characterized by specifying the representation of
SO(4), or equivalently of SU(2)L and SU(2)R. Since SU(2) representations
are characterized by a “spin” S = 0, 1

2
, 1, . . ., the transformation behavior

of the Standard Model fields under SO(4) space-time rotations can be char-
acterized by a pair (SL, SR). Scalar fields are invariant under space-time
rotations and thus transform in the (0, 0) representation of SO(4). Vector
fields, on the other hand, are 4-vectors and transform as (1

2
, 1

2
).

We will soon introduce the fermion fields of the Standard Model. The
fundamental fermion fields of the Standard Model are left- or right-handed
Weyl fermions, which transform as (1

2
, 0) or (0, 1

2
), respectively. A Dirac

fermion, on the other hand, is described by two Weyl fermion fields, one left-
and one right-handed, and thus transforms in the reducible representation
(1

2
, 0)⊕(0, 1

2
). In Euclidean space-time, the Dirac matrices γµ are Hermitean

and obey the anti-commutation relation

{γµ, γν} = 2δµν , γ
†
µ = γµ . (5.1.1)

In addition, we define
γ5 = γ1γ2γ3γ4 , (5.1.2)

which implies
{γµ, γ5} = 0 , γ†5 = γ5 , γ

2
5 = 1 . (5.1.3)

In the chiral basis (also known as the Weyl basis), in which γ5 is diagonal,
the Dirac matrices take the form

γi = σ2⊗σi =

(
0 −iσi

iσi 0

)
, γ4 = σ1⊗1I =

(
0 1I
1I 0

)
, γ5 = σ3⊗1I =

(
1I 0
0 −1I

)
,

(5.1.4)
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where σi with i ∈ {1, 2, 3} are the Pauli matrices and 1I is the 2 × 2 unit-
matrix. It is convenient to introduce projection operators on the left- and
right-handed components of a Dirac spinor

PR =
1

2
(1 + γ5) =

(
1I 0
0 0

)
, PL =

1

2
(1− γ5) =

(
0 0
0 1I

)
, (5.1.5)

which obey

P 2
R = PR , P 2

L = PL , PR + PL = 1 , PRPL = PLPR = 0 . (5.1.6)

In the Euclidean functional integral, fermions are described by anti-
commuting Grassmann variables, which are discussed in Appendix E. A
right-handed (or left-handed) Weyl spinor ψR(x) (or ψL(x)) consists of two
Grassmann numbers ψ1

R(x) and ψ2
R(x) (or ψ1

L(x) and ψ2
L(x)). Two Weyl

spinors can be combined to form a 4-component Dirac spinor

ψ(x) =


ψ1

R(x)
ψ2

R(x)
ψ1

L(x)
ψ2

L(x)

 . (5.1.7)

By applying the projection operators, we recover the Weyl spinors

ψR(x) = PRψ(x) =


ψ1

R(x)
ψ2

R(x)
0
0

 , ψL(x) = PLψ(x) =


0
0

ψ1
L(x)
ψ2

L(x)

 .

(5.1.8)
In order to account for fermions and anti-fermions, we also introduce the
spinors ψ̄L(x) and ψ̄R(x), which consist of additional independent Grass-
mann numbers ψ̄1

L(x), ψ̄2
L(x) and ψ̄1

R(x), ψ̄2
R(x).1 Again these can be com-

bined to form the Dirac spinor

ψ̄(x) =
(
ψ̄1

L(x), ψ̄2
L(x), ψ̄1

R(x), ψ̄2
R(x)

)
. (5.1.9)

1In the Hamiltonian formalism, the field operators ψ̂(x) and ˆ̄ψ(x) = ψ̂†(x)γ0 are
related, while the corresponding Grassmann-valued fields ψ(x) and ψ̄(x) in the functional
integral are independent variables.
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By applying the chiral projection operators we recover the Weyl spinors

ψ̄R(x) = ψ̄(x)PL =
(
0, 0, ψ̄1

R(x), ψ̄2
R(x)

)
,

ψ̄L(x) = ψ̄(x)PR =
(
ψ̄1

L(x), ψ̄2
L(x), 0, 0

)
. (5.1.10)

One can now construct separate Lorentz-invariant Lagrangians for free
massless left- or right-handed Weyl fermions

L0R(ψ̄R, ψR) = ψ̄Rγµ∂µψR , L0L(ψ̄L, ψL) = ψ̄Lγµ∂µψL . (5.1.11)

A massive free Dirac fermion, on the other hand, requires both left- and
right-handed components and is described by the Lagrangian

L0(ψ̄, ψ) = ψ̄γµ∂µψ +mψ̄ψ = ψ̄Rγµ∂µψR + ψ̄Lγµ∂µψL +m(ψ̄RψL + ψ̄LψR) .
(5.1.12)

In particular, the mass term couples left- and right-handed fields. In the
free theory these fields decouple only in the chiral limit, m = 0.

5.2 Parity, Charge Conjugation, and Time-

Reversal

Parity and charge conjugation are important discrete symmetries that ex-
change left- and right-handed Weyl fermions. In Euclidean space-time, par-
ity acts as a spatial inversion, which replaces x = (~x, x4) with (−~x, x4),
combined with multiplication by a matrix P in Dirac space, i.e.

Pψ(~x, x4) = Pψ(−~x, x4) , Pψ̄(~x, x4) = ψ̄(−~x, x4)P−1 . (5.2.1)

The matrix P obeys

P−1γiP = −γi , P−1γ4P = γ4 , (5.2.2)

and in the chiral basis it takes the form

P = P−1 = γ4 = σ1 ⊗ 1I =

(
0 1I
1I 0

)
. (5.2.3)
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As a consequence, parity exchanges left- and right-handed fields, i.e.

PψR(~x, x4) = PRγ4ψ(−~x, x4) = γ4PLψ(−~x, x4) = PψL(−~x, x4) ,
PψL(~x, x4) = PLγ4ψ(−~x, x4) = γ4PRψ(−~x, x4) = PψR(−~x, x4) ,
Pψ̄R(~x, x4) = ψ̄(−~x, x4)γ4PL = ψ̄(−~x, x4)PRγ4 = ψ̄L(−~x, x4)P−1 ,
Pψ̄L(~x, x4) = ψ̄(−~x, x4)γ4PR = ψ̄(−~x, x4)PLγ4 = ψ̄R(−~x, x4)P−1 ,(5.2.4)

which implies that a theory with fermions of just one chirality explicitly
violates parity.

The Lagrangian depends on fields which are functions of x. Since under
parity x = (~x, x4) turns into (−~x, x4), the Lagrangian itself can not be P-
invariant. What may be invariant, however, is the action. Let us hence
apply parity to the action of a free right-handed fermion

S0R[Pψ̄R,
P ψR] =

∫
d4x L0R(Pψ̄R,

P ψR) =

∫
d4x Pψ̄R(~x, x4)γµ∂µ

PψL(~x, x4)

=

∫
d4x ψ̄L(−~x, x4)P−1γµ∂µPψL(−~x, x4)

=

∫
d4x ψ̄L(−~x, x4)(−γi∂i + γ4∂4)ψL(−~x, x4)

=

∫
d4x ψ̄L(~x, x4)γµ∂µψL(~x, x4) = S0L[ψ̄L, ψL] . (5.2.5)

In the last step we have made a change of variables from −~x to ~x. As we
see, under parity the action of a right-handed fermion turns into the one of
a left-handed fermion. In particular, each individual action is not invariant
against P.

Let us now consider charge conjugation, which exchanges particles and
anti-particles. In the Euclidean functional integral, charge conjugation acts
as

Cψ(x) = Cψ̄(x)T , Cψ̄(x) = −ψ(x)TC−1 , (5.2.6)

where T denotes transpose and the charge conjugation matrix in Dirac space
satisfies

C−1γµC = −γTµ . (5.2.7)

In the chiral basis it is given by

C = C−1 = iγ2γ4 = σ3 ⊗ σ2 =

(
σ2 0
0 −σ2

)
. (5.2.8)
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This implies that also charge conjugation exchanges left- and right-handed
fermions

CψR(x) = PRCψ̄(x)T = CPRψ̄(x)T = C[ψ̄(x)PR]T = Cψ̄L(x)T ,
CψL(x) = PLCψ̄(x)T = CPLψ̄(x)T = C[ψ̄(x)PL]T = Cψ̄R(x)T ,
Cψ̄R(x) = −ψ(x)TC−1PL = −ψ(x)TPLC

−1 = −[PLψ(x)]TC−1 = −ψL(x)TC−1 ,
Cψ̄L(x) = −ψ(x)TC−1PR = −ψ(x)TPRC

−1 = −[PRψ(x)]TC−1 = −ψR(x)TC−1 .

(5.2.9)

Hence, a theory that contains only right- or only left-handed fermions also
explicitly breaks charge conjugation.

We now apply charge conjugation to the action of a right-handed free
fermion

S0R[Cψ̄R,
C ψR] =

∫
d4x Cψ̄R(x)γµ∂µ

CψL(x)

= −
∫
d4x ψL(x)TC−1γµ∂µCψ̄L(x)T

=

∫
d4x ψL(x)TγTµ∂µψ̄L(x)T = −

∫
d4x [∂µψ̄L(x)γµψL(x)]T

=

∫
d4x ψ̄L(x)γµ∂µψL(x) = S0L[ψ̄L, ψL] . (5.2.10)

In the last two steps we have used the anti-commutation rules of Grass-
mann variables and we have performed a partial integration. Also charge
conjugation exchanges the actions of left- and right-handed fermions.

Let us also consider the combination of charge conjugation and parity
CP. We then have

CPψ(~x, x4) = C[ψ̄(−~x, x4)P−1]T = CPψ̄(−~x, x4)T ,
CPψ̄(~x, x4) = −[Pψ(−~x, x4)]TC−1 = −ψ(−~x, x4)TPTC−1 ,(5.2.11)

which implies

CPψR(~x, x4) = CPψ̄R(−~x, x4)T , CPψL(~x, x4) = CPψ̄L(−~x, x4)T ,
CPψ̄R(~x, x4) = −ψR(−~x, x4)TPTC−1 , CPψ̄L(~x, x4) = −ψL(−~x, x4)TPTC−1 .(5.2.12)
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Since both C and P exchange the actions of left- and right-handed fermions,
CP leaves these actions invariant, i.e.

S0R[CPψ̄R,
CP ψR] = S0R[ψ̄R, ψR] , S0L[CPψ̄L,

CP ψL] = S0L[ψ̄L, ψL] .
(5.2.13)

Finally, let us consider Euclidean time-reversal which acts as

Tψ(~x, x4) = T ψ̄(~x,−x4)T , Tψ̄(~x, x4) = −ψ(~x,−x4)TT−1 . (5.2.14)

Here the superscript T on the left refers to time-reversal and the superscript
T on the right denotes transpose, while the prefactor T is a matrix in Dirac
space that obeys

T−1γiT = −γTi , T−1γ4T = γT4 . (5.2.15)

In the chiral basis, it takes the form

T = γ2γ5 = iσ1 ⊗ σ2 =

(
0 iσ2

iσ2 0

)
. (5.2.16)

This implies

TψR(~x, x4) = T ψ̄R(~x,−x4)T , TψL(~x, x4) = T ψ̄L(~x,−x4)T ,
Tψ̄R(~x, x4) = −ψR(~x,−x4)TT−1 , Tψ̄L(~x, x4) = −ψL(~x,−x4)TT−1 . (5.2.17)

Under T, the action of a free right-handed fermion then transforms as

S0R[Tψ̄R,
T ψR] =

∫
d4x Tψ̄R(~x, x4)γµ∂µ

TψR(~x, x4)

= −
∫
d4x ψR(~x,−x4)TT−1γµ∂µT ψ̄R(~x,−x4)T

=

∫
d4x ψR(~x,−x4)T(γi∂i − γ4∂4)Tψ̄R(~x,−x4)T

= −
∫
d4x [(γi∂i − γ4∂4)ψ̄R(~x,−x4)ψR(~x,−x4)]T

= −
∫
d4x (γi∂i + γ4∂4)ψ̄R(~x, x4)ψR(~x, x4)

=

∫
d4x ψ̄R(~x, x4)γµ∂µψR(~x, x4) = S0R[ψ̄R, ψR] .(5.2.18)
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In the last three steps we have used the anti-commutation rules of Grass-
mann variables, we have substituted −x4 by x4, and we have performed a
partial integration. Similarly, for left-handed fermions one obtains S0L[Tψ̄L,

T ψL] =
S0L[ψ̄L, ψL].

As was first shown by Wolfgang Pauli, the combination CPT is a sym-
metry of any relativistic quantum field theory. This is the CPT theorem
[?].2 On a fermion field, the CPT symmetry acts as

CPTψ(x) = −iγ5ψ(−x) , CPTψ̄(x) = iψ̄(−x)γ5 , (5.2.19)

which implies

CPTψR(x) = −iψR(−x) , CPTψL(x) = iψL(−x) ,
CPTψ̄R(x) = −iψ̄R(−x) , CPTψ̄L(x) = iψ̄L(−x) . (5.2.20)

It is interesting to note that, as one would expect, parity, charge conjuga-
tion, and time-reversal square to the identity, i.e.

P2 = C2 = T2 = 1 , (5.2.21)

while they do not all commute with one another. In particular, in the chiral
basis one obtains

P C = −C P , C T = −T C , T P = P T . (5.2.22)

5.3 Electrons and Left-handed Neutrinos

The leptons of the first generation are electrons and their neutrinos. We
start with left-handed neutrinos and right-handed anti-neutrinos only. We
denote the spinor fields of these leptons as νL(x), ν̄L(x), eL(x), eR(x), ēL(x),
and ēR(x). Before we introduce right-handed neutrino fields, the neutrinos
are massless, while the electrons will pick up a mass through the Higgs
mechanism. However, before we introduce couplings between the lepton
fields and the Higgs field, even the electrons are massless.

2While the CPT theorem applies to all relativistic local quantum field theories, it
does not always apply beyond this framework, e.g. in string theory which violates strict
locality.
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At this point — without mass or interaction terms — the free lepton
Lagrangian

L0(ν̄, ν, ē, e) = ν̄Lγµ∂µνL + ēLγµ∂µeL + ēRγµ∂µeR (5.3.1)

has several global symmetries. First of all, all lepton fields can be multiplied
by the same phase χ ∈ IR

ν ′L(x) = exp(iχ)νL(x) , ν̄ ′L(x) = ν̄L(x) exp(−iχ) ,

e′L(x) = exp(iχ)eL(x) , ē′L(x) = ēL(x) exp(−iχ) ,

e′R(x) = exp(iχ)eR(x) , ē′R(x) = ēR(x) exp(−iχ) . (5.3.2)

The corresponding global symmetry U(1)L is associated with lepton number
conservation.3 This symmetry is vector-like because it affects left- and right-
handed lepton fields in the same way.

The free lepton Lagrangian also has another global Abelian symmetry,
which is promoted to the local U(1)Y symmetry in the Standard Model

ν ′L(x) = exp (iYlLg
′ϕ(x)) νL(x) , ν̄ ′L(x) = ν̄L(x) exp (−iYlLg

′ϕ(x)) ,

e′L(x) = exp (iYlLg
′ϕ(x)) eL(x) , ē′L(x) = ēL(x) exp (−iYlLg

′ϕ(x)) ,

e′R(x) = exp (iYeRg
′ϕ(x)) eR(x) , ē′R(x) = ēR(x) exp (−iYeRg

′ϕ(x)) .(5.3.3)

Here we assign weak hypercharges YlL and YeR to the left-handed leptons and
the right-handed electron, respectively. Later, we will adjust the values of
YlL and YeR such that the observed electric charges of electrons and neutrinos
are reproduced correctly.

The left-handed neutrino and electron fields form an SU(2)L doublet

lL(x) =

(
νL(x)
eL(x)

)
, l̄L(x) = (ν̄L(x), ēL(x)) . (5.3.4)

The free lepton Lagrangian has another global symmetry which rotates the
left-handed neutrino and electron fields into each other. In the Standard
Model, this symmetry is again promoted to a local one

l′L(x) =

(
ν ′L(x)
e′L(x)

)
= L(x)

(
νL(x)
eL(x)

)
= L(x)lL(x) ,

l̄′L(x) = (ν̄ ′L(x), ē′L(x)) = (ν̄L(x), ēL(x))L(x)† = l̄L(x)L(x)† ,(5.3.5)

3It should be noted that the subscript L on νL and eL refers to left, while in U(1)L it
refers to the lepton number L.
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with L(x) ∈ SU(2)L. The right-handed component of the electron field,
eR(x), on the other hand, is an SU(2)L singlet, i.e. it remains invariant
under SU(2)L transformations

e′R(x) = eR(x) . (5.3.6)

Since left- and right-handed fields transform differently under SU(2)L, also
the SU(2)L gauge symmetry is chiral.

In analogy to spin, one introduces a “weak isospin” which acts on the left-
handed doublet as T 3

L = 1
2
σ3. The leptons have the following 3-components

of the weak isospin

T 3
LνL

=
1

2
, T 3

LeL
= −1

2
, T 3

LeR
= 0 . (5.3.7)

Analogously, we introduce a generator T 3
R which takes the values

T 3
RνL

= 0 , T 3
ReL

= 0 , T 3
ReR

= −1

2
. (5.3.8)

This operator generates an Abelian subgroup of SU(2)R. Later we will also
introduce a right-handed neutrino field νR(x) for which

T 3
LνR

= 0 , T 3
RνR

=
1

2
. (5.3.9)

In the Standard model the SU(2)L and U(1)Y (but not the full SU(2)R)
symmetries are promoted to gauge symmetries. Just as in the gauge-Higgs
Lagrangian of the Standard Model, this is achieved by substituting ordi-
nary derivatives ∂µ by covariant derivatives Dµ. For the left-handed lepton
doublet the covariant derivative takes the form

Dµ

(
νL(x)
eL(x)

)
=

[
∂µ + iYlLg

′Bµ(x) + igW a
µ (x)

σa

2

](
νL(x)
eL(x)

)
. (5.3.10)

It should be noted that the derivative ∂µ — as well as the gauge field term
containing Bµ — act as unit 2 × 2 matrices in the flavor space. Using
Wµ(x) = igW a

µ (x)σa/2, the previous equation can also be written as

DµlL(x) = [∂µ + iYlLg
′Bµ(x) +Wµ(x)] lL(x) . (5.3.11)
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For the right-handed electron singlet the covariant derivative takes the form

DµeR(x) = [∂µ + iYeRg
′Bµ(x)] eR(x) . (5.3.12)

The Lagrangian describing the propagation of the leptons as well as their
interactions with the U(1)Y and SU(2)L gauge fields then takes the form

L(ν̄, ν, ē, e, Bµ,Wµ) = l̄LγµDµlL + ēRγµDµeR

= (ν̄L, ēL)γµDµ

(
νL(x)
eL(x)

)
+ ēRγµDµeR .(5.3.13)

In order to ensure gauge invariance, the SU(2)L gauge coupling g has to take
the same universal value as in the gauge-Higgs sector, which was discussed
in Chapter 6.

It is important to note that a direct mass term me(ēLeR + ēReL) is not
gauge invariant, because the left- and right-handed electron fields trans-
form differently under both SU(2)L and U(1)Y gauge transformation. Con-
sequently, direct mass terms are forbidden in the Standard Model. This
is a nice feature of chiral gauge theories, because it protects the fermions
from additive mass renormalization. Thus, in contrast to the scalar Higgs
field, there is no hierarchy problem for chiral fermions, at least at the level
of perturbation theory. Later we will construct Yukawa interaction terms
between the fermions and the Higgs field. After spontaneous symmetry
breaking, i.e. when the Higgs field picks up a non-zero vacuum expectation
value v, such terms give rise to dynamically generated fermion masses. In
this way, in the Standard Model with massless neutrinos all fermion masses
are tied to the electroweak symmetry breaking scale v.

5.4 CP and T Invariance of Gauge Interac-

tions

As we have seen, left-handed electrons and neutrinos are SU(2)L doublets
while right-handed electrons are singlets. Right-handed neutrino fields are
not even introduced in the minimal version of the Standard Model. Conse-
quently, left- and right-handed particles have different physical properties,
which makes the Standard Model a chiral gauge theory. As a result of this
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asymmetric treatment of left- and right-handed degrees of freedom, parity
P and charge conjugation C are explicitly broken in the Standard Model.
Parity violation was predicted by Tsung-Dao Lee and Chen-Ning Yang in
1956 and indeed observed in weak interaction processes by Madame Chien-
Shiung Wu in 1957. As we will now discuss, the gauge interactions still
respect the combined discrete symmetry CP as well as the time-reversal T.4

Let us introduce the transformation behavior of the gauge fields under
the discrete symmetries P, C, and T. The Abelian gauge field Bµ transforms
as

PBi(~x, x4) = −Bi(−~x, x4) , PB4(~x, x4) = B4(−~x, x4) ,
CBµ(x) = −Bµ(x) ,
TBi(~x, x4) = −Bi(~x,−x4) , TB4(~x, x4) = B4(~x,−x4) . (5.4.1)

Consequently, the combined transformations CP and CPT take the form

CPBi(~x, x4) = Bi(−~x, x4) , CPB4(~x, x4) = −B4(−~x, x4) ,
CPTBµ(x) = −Bµ(−x) . (5.4.2)

Similarly, the non-Abelian gauge field Wµ transforms as

PWi(~x, x4) = −Wi(−~x, x4) , PW4(~x, x4) = W4(−~x, x4) ,
CWµ(x) = Wµ(x)∗ ,
TWi(~x, x4) = Wi(~x,−x4)∗ , TW4(~x, x4) = −W4(~x,−x4)∗ ,(5.4.3)

which implies

CPWi(~x, x4) = −Wi(−~x, x4)∗ , CPW4(~x, x4) = W4(−~x, x4)∗ ,
CPTWµ(x) = −Wµ(−x) . (5.4.4)

Let us now investigate the CP transformation properties of the interac-
tion terms that couple the right-handed electron to the U(1)Y gauge field.

4As we will discuss in Chapter 10, with three or more generations of fermions, the
fermion-Higgs couplings explicitly violate CP and T. Furthermore, as we will discuss in
Chapter ???, the QCD vacuum angle θ is another source of explicit CP and T breaking.
However, in Nature this parameter is consistent with zero.
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Using the CP transformation rules for the fermions of Eq.(E.6.5), we obtain

S[CPēR,
CP eR,

CPBµ] =

∫
d4x CPēR(~x, x4)γµiYlLg

′ CPBµ(~x, x4)CPeR(~x, x4)

= −
∫
d4x eR(−~x, x4)TPTC−1 [−γiiYlLg′Bi(−~x, x4)

+ γ4iYlLg
′B4(−~x, x4)]CP ēR(−~x, x4)T

=

∫
d4x eR(−~x, x4)T

[
γTi iYlLg

′Bi(−~x, x4)

+ γT4 iYlLg
′B4(−~x, x4)

]
ēR(−~x, x4)T

=

∫
d4x ēR(−~x, x4)γµiYlLg

′Bµ(−~x, x4)eR(−~x, x4)

= S[ēR, eR, Bµ] . (5.4.5)

In the same manner, one can show that the couplings of the left-handed
leptons are also CP-invariant. Due to the CPT theorem, the interaction
terms are automatically CPT- and thus (due to CP invariance) also T-
invariant.

Finally, we list the C, P, and T transformation properties of the Higgs
field

PΦ(~x, x4) = Φ(−~x, x4) ,
CΦ(x) = Φ(x)∗ ,
TΦ(~x, x4) = Φ(~x,−x4)∗ , (5.4.6)

which then implies

CPΦ(~x, x4) = Φ(−~x, x4)∗ ,
CPTΦ(x) = Φ(−x) . (5.4.7)

Using these transformation rules, it is straightforward to return to the
gauge-Higgs sector and show that the action

S[Φ,Wµ, Bµ] =

∫
d4x

[
1

2
DµΦ†DµΦ + V (Φ)− 1

2g2
Tr(WµνWµν) +

1

4
BµνBµν

]
(5.4.8)

is invariant separately under C, P, and T.
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5.5 Fixing the Lepton Weak Hypercharges

We know that the electron carries electric charge −e, while the neutrino
is electrically neutral. In the Lagrangian (5.3.13) we recognize off-diagonal
terms that couple leptons of different electric charge, associated with W 1

and W 2. In order to preserve the electric charge under interactions, these
gauge bosons must be charged themselves. In particular, we find a positive
and a negative W -boson given by

W±
µ (x) =

1√
2

(
W 1
µ(x)∓ iW 2

µ(x)
)
, (5.5.1)

which implies

W 1
µ(x)

σ1

2
+W 2

µ(x)
σ2

2
=

1√
2

(
0 W+

µ (x)
W−
µ (x) 0

)
=

1√
2

(W+
µ (x)σ++W−

µ (x)σ−) ,

(5.5.2)
where σ± = 1

2
(σ1 ± iσ2).

We observed before (in the Higgs sector) that the electrically neutral
gauge fields, i.e. the flavor diagonal fields, split physically into a massless
photon and a massive Z-boson

Aµ(x) =
g′W 3

µ(x) + gBµ(x)√
g2 + g′2

, Zµ(x) =
gW 3

µ(x)− g′Bµ(x)√
g2 + g′2

. (5.5.3)

They are natural to consider after spontaneous symmetry breaking. Insert-
ing the inverse relations

W 3
µ(x) =

g′Aµ(x) + gZµ(x)√
g2 + g′2

, Bµ(x) =
gAµ(x)− g′Zµ(x)√

g2 + g′2
, (5.5.4)

we can write the lepton-gauge coupling terms in the Lagrangian (5.3.13) as

L(ν̄, ν, ē, e, Aµ, Zµ) = (ν̄L, ēL)γµ

[
∂µ + i

(
X1
µ

g√
2
W+
µ

g√
2
W−
µ X2

µ

)]( νL

eL

)
+ ēRγµ

[
∂µ + i

YeRg
′√

g2 + g′2
(gAµ − g′Zµ)

]
eR , (5.5.5)
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where

X1
µ(x) =

1√
g2 + g′ 2

[
gg′
(

1

2
+ YlL

)
Aµ(x) +

(
1

2
g2 − YlLg′ 2

)
Zµ(x)

]
,

X2
µ(x) =

1√
g2 + g′ 2

[
gg′
(
−1

2
+ YlL

)
Aµ(x) +

(
−1

2
g2 − YlLg′ 2

)
Zµ(x)

]
.

(5.5.6)

Since the neutrino does not couple to the photon field Aµ, the term X1
µ must

not contain a contribution from Aµ. This implies YlL = −1/2, and therefore

X1
µ(x) =

√
g2 + g′ 2

2
Zµ(x) ,

X2
µ(x) =

1√
g2 + g′ 2

[g′ 2 − g2

2
Zµ(x)− gg′Aµ(x)

]
= −

√
g2 + g′ 2

2

[
cos(2θW)Zµ(x) + sin(2θW)Aµ(x)

]
. (5.5.7)

Here θW is the Weinberg angle introduced in Eq. (4.2.31). Again, we identify

e =
gg′√
g2 + g′ 2

(5.5.8)

as the unit of electric charge, in exact agreement with Eq. (4.2.35). Indeed,
−e is the correct electric charge of the left-handed electron. In order to
obtain the same value −e also for the right-handed electron, we now adjust
its weak hypercharge to YeR = −1. We now see that YlL and YeR are different.
Consequently, not only the SU(2)L but also the U(1)Y gauge couplings are
chiral.

At this point, we observe a simple relation between the weak hypercharge
Y , (i.e. the coupling to Bµ in units of g′), the generator T 3

R, which was
introduced in Eq. (5.3.8), and the lepton number L,

Y = T 3
R −

1

2
L . (5.5.9)

For the left-handed neutrino and the left-handed electron, which both have
lepton number L = 1, this equation takes the form

YlL = 0− 1

2
= −1

2
, (5.5.10)
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and for the right-handed electron, which again has L = 1, it reads

YeR = −1

2
− 1

2
= −1 . (5.5.11)

Furthermore, the electric charge Q (in units of e) is related to Y and the
third component of the weak isospin T 3

L , which was introduced in Eq. (5.3.7)

Q = T 3
L + Y = T 3

L + T 3
R −

1

2
L . (5.5.12)

For the left-handed neutrino this equation takes the form

QνL
= T 3

LνL
+ YlL =

1

2
− 1

2
= 0 , (5.5.13)

for the left-handed electron it reads

QeL = T 3
LeL

+ YlL = −1

2
− 1

2
= −1 , (5.5.14)

and at last for the right-handed electron

QeR = T 3
LeR

+ YeR = 0− 1 = −1 . (5.5.15)

In the following, relation (5.5.12) will be given a prominent status. We
remark here that its validity is also a consequence of the parameter choice
YlL = −1/2 that we made in order to decouple the neutrino from Aµ.

We can also interpret these expressions in terms of gauge couplings to
fermionic currents. Generally, currents are 4-vectors jµ(x) obeying the con-
tinuity equation ∂µjµ = 0, at least at the classical level. From the La-
grangian of a free fermion, we obtain the Noether current ψ̄γµψ. Its conti-
nuity can also be derived from the free Dirac equation (??) and its adjoint,
Eq. (??). According to the interpretation elaborated by Wolfgang Pauli and
Victor Weisskopf, we should consider currents of charge instead of proba-
bility. The electromagnetic current of the electron with charge −e amounts
to

jem
µ = −e (ēLγµeL + ēRγµeR) . (5.5.16)

In these terms, the photon field couples to the electromagnetic current via
the term iAµj

em
µ in the Lagrangian. It should be noted that this current is

neutral. This means that there is no change in the charge between the initial
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and the final fermion states, i.e. the state before and after the scattering
on the photon. Clearly, the charge cannot change because the photon is
neutral.

Besides the couplings to the photon, we also have weak current interac-
tions. The weak neutral current j0

µ couples to the Z-boson field,

j0
µ =

√
g2 + g′ 2

2
ν̄LγµνL +

g′ 2 − g2

2
√
g2 + g′ 2

ēLγµeL +
g′ 2√
g2 + g′ 2

ēRγµeR

=

√
g2 + g′ 2

2

(
ν̄LγµνL − cos(2θW)ēLγµeL + sin2 θWēRγµeR

)
.(5.5.17)

The charged currents, on the other hand, couple to the charged gauge bosons
W± and take the form

j+
µ =

g

2
ν̄LγµeL , j−µ =

g

2
ēLγµνL . (5.5.18)

For the current j+
µ (or j−µ ) the charge increases (or decreases) in the tran-

sition from the initial to the final state. Note that the neutral currents
contain both left- and right-handed contributions, while the charged cur-
rents are purely left-handed.

This set of charged and neutral currents enables a number of physical
transitions, such as the decays W− → eL + ν̄L, Z → νL + ν̄L, or Z → eL + ēL.
As a general principle, particles tend to decay into lighter particles if there is
no conservation law preventing such a decay. Nevertheless, for instance the
decay Z → eL + ēL can also be inverted: an electron-positron pair collides at
very high energy and generates a Z-boson, which will very soon again decay
into leptons. In the electron-positron scattering amplitude this channel is
then visible as a resonance at the energy that is needed for the Z-mass. The
coupling of Z to the weak neutral current j0

µ also describes the scattering
of a neutrino or an electron off a Z-boson.

5.6 Gauge Anomalies in the Lepton Sector

As it stands, the Standard Model with just electrons and neutrinos is incon-
sistent because it suffers from anomalies in its gauge interactions. Anoma-
lies represent a form of explicit symmetry breaking due to quantum effects,
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while at the classical level the corresponding symmetry is exact. Anoma-
lies usually arise from a non-invariance of the functional measure, while the
action of the theory is invariant. Gauge anomalies represent an explicit
violation of gauge invariance. Since gauge invariance is vital for eliminating
redundant gauge-dependent degrees of freedom, theories with an explicitly
broken gauge symmetry are mathematically and physically inconsistent. In
order to render the Standard Model consistent, the gauge anomalies of the
leptons must be cancelled by other fields. The quarks, which participate
in both the electroweak and the strong interactions, serve this purpose. As
we will see later, in contrast to gauge anomalies, anomalies in global sym-
metries are perfectly acceptable and even necessary to describe the physics
correctly.

In the Standard Model, there are different types of gauge anomalies
that must be cancelled. First, there is a triangle anomaly in the U(1)Y
gauge interaction which manifests itself already within (but also beyond)
perturbation theory. One considers the interaction with a triangle built
from fermion propagators; each corner is a vertex with a coupling to an
external gauge field Bµ. The interaction at each vertex is proportional to
the weak hypercharge Y of the fermion that propagates around the triangle.
Hence the total contribution is proportional to Y 3. The full amplitude of
these triangle diagrams must be symmetric if we perform an overall flip
from left- to right-handedness, i.e. the antisymmetric quantity

A =
∑

L

Y 3 −
∑

R

Y 3 , (5.6.1)

which is proportional to the anomaly, is supposed to vanish. The sums
extend over the left- and right-handed degrees of freedom, respectively.5

Since the left-handed neutrino and electron carry the weak hypercharge
YlL = −1/2, while the right-handed electron has YeR = −1, the U(1)Y
triangle anomaly in the lepton sector is given by

Al = 2Y 3
lL
− Y 3

eR
= 2

(
−1

2

)3

− (−1)3 =
3

4
6= 0 . (5.6.2)

As we will see later, this non-zero anomaly in the lepton sector will be
cancelled by a corresponding anomaly in the quark sector.

5We do not present an evaluation of this triangle diagram. A detailed explanation of
this calculation can be found e.g. in [?].
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The general expression for SU(2)L × U(1)Y triangle anomalies is given
by

Aabc = TrL

[
(T aT b + T bT a)T c

]
− TrR

[
(T aT b + T bT a)T c

]
. (5.6.3)

The T a with a ∈ {1, 2, 3} refer to the generators of SU(2)L and T 4 = Y . If
all three indices a, b, and c are equal to 4, we recover the U(1)Y anomaly
discussed above, i.e. A444 = 2A. If one index belongs to {1, 2, 3} and the
other two are equal to 4, the tracelessness of the SU(2)L generators leads
to a vanishing anomaly. Similarly, if all three indices belong to {1, 2, 3}, the
Pauli matrix identity,

Tr
[
(σaσb + σbσa)σc

]
= 2δabTrσc = 0 , (5.6.4)

again leads to a vanishing anomaly. However, if two indices belong to
{1, 2, 3} while the third one, say c, is equal to 4, the anomaly takes the
form

Aab4 = TrL

[
1

4
(σaσb + σbσa)Y

]
= δabTrLY . (5.6.5)

Here, we have used the fact that in the Standard Model the left-handed
fermions are SU(2)L doublets (i.e. T a = 1

2
σa), while the right-handed

fermions are SU(2)L singlets (i.e. T a = 0). In the lepton sector, the corre-
sponding anomaly is given by

Aab4l = δab2YlL = −δab 6= 0 , (5.6.6)

which thus gives rise to another inconsistency.

In addition to the triangle anomalies there is a “global gauge anomaly”
in the SU(2)L gauge interactions, which was discovered by Edward Wit-
ten [?]. It should be stressed that here “global” does not refer to a global
symmetry. Instead it refers to the global topological properties of SU(2)L

gauge transformation. Two gauge transformations are considered topologi-
cally equivalent if they can be deformed continuously into one another. The
corresponding equivalence classes are known as homotopy groups.6 In four
space-time dimensions the homotopy group of SU(2)L gauge transforma-
tions is

Π4[SU(2)] = Π4[S3] = ZZ(2) , (5.6.7)

6Homotopy groups are discussed in some detail in Appendix ???.
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i.e. these gauge transformations fall into two distinct topological classes.
The topologically trivial class contains all gauge transformations that can
be continuously deformed into the gauge transformation L(x) = 1I. The
topologically non-trivial class contains all other gauge transformations. As
Edward Witten first realized, the fermionic measure of each doublet in an
SU(2)L gauge theory changes sign under topologically non-trivial SU(2)L

gauge transformations. Hence, in order to be gauge invariant, the theory
must contain an even number of doublets. Since the lepton sector of the
first generation of the Standard Model contains a single SU(2)L doublet
(consisting of the left-handed electron and neutrino), it suffers from Witten’s
global gauge anomaly. In order to cancel this anomaly, we must add an
odd number of SU(2)L doublets. Since it is associated with “large” gauge
transformations, which are not located in the neighborhood of the identity,
the global gauge anomaly manifests itself only beyond perturbation theory.
In particular, it is not visible in perturbative triangle diagrams.

5.7 Up and Down Quarks

In the first fermion generation there are also the up and down quarks which
will come to our rescue and cancel both, the triangle anomalies and the
global gauge anomaly. The quarks are massive and thus require the in-
troduction of left- and right-handed fields.7 In addition to the electroweak
interaction, the quarks participate in the strong interactions and thus they
carry an SU(Nc) color charge. The color index on a quark field then takes
values c ∈ {1, 2, . . . , Nc}. In the real world the number of colors is Nc = 3.
However, as we will see, a consistent variant of the Standard Model can be
formulated with any odd number of colors. There are some misconceptions
about this issue in most of the textbook literature. In order to illuminate
this point, we keep Nc general in this and some other chapters. The left-
handed up and down quark fields (with color index c ∈ {1, 2, . . . , Nc}) then

7For some time there was a controversy whether the up quark mass might vanish.
However, this turned out to be inconsistent with experiment. Still, even if some quarks
were massless, one would need to introduce both, left- and right-handed quark fields, in
order to achieve anomaly cancellation.
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form Nc different SU(2)L doublets

qcL(x) =

(
ucL(x)
dcL(x)

)
, q̄cL(x) =

(
ūcL(x), d̄cL(x)

)
, (5.7.1)

or equivalently two SU(Nc) color Nc-plets. The right-handed quarks ucR and
dcR form again two SU(Nc) color Nc-plets, but they are SU(2)L singlets.
Since we have added Nc left-handed SU(2)L quark doublets, in order to
cancel the global gauge anomaly of the lepton sector, the number of colors
Nc must be odd in the Standard Model.8 In complete analogy to the lepton
sector, in the quark sector the generators T 3

L and T 3
R take the values

T 3
LuL

=
1

2
, T 3

LdL
= −1

2
, T 3

LuR
= 0 , T 3

LdR
= 0 ,

T 3
RuL

= 0 , T 3
RdL

= 0 , T 3
RuR

=
1

2
, T 3

RdR
= −1

2
. (5.7.2)

Using an Einstein summation convention for the color index c, the La-
grangian for free massless quarks,

L0(ū, u, d̄, d) = ūcLγµ∂µu
c
L + ūcRγµ∂µu

c
R + d̄cLγµ∂µd

c
L + d̄cRγµ∂µd

c
R , (5.7.3)

has a global U(1)B symmetry which acts by multiplying all quark fields by
the same phase

ucL
′(x) = exp(iρ/Nc)u

c
L(x) , ūcL

′(x) = ūcL(x) exp(−iρ/Nc) ,

ucR
′(x) = exp(iρ/Nc)u

c
R(x) , ūcR

′(x) = ūcR(x) exp(−iρ/Nc) ,

dcL
′(x) = exp(iρ/Nc)d

c
L(x) , d̄cL

′(x) = d̄cL(x) exp(−iρ/Nc) ,

dcR
′(x) = exp(iρ/Nc)d

c
R(x) , d̄cR

′(x) = d̄cR(x) exp(−iρ/Nc) .(5.7.4)

Analogous to lepton number, the corresponding conserved charge is the
quark number, or equivalently the baryon number B. Each baryon contains
Nc confined quarks, and hence the baryon number of a quark is B = 1/Nc.

We still need to assign weak hypercharges to the quark fields. SU(2)L

gauge invariance requires that the left-handed up and down quarks carry

8Here we assume that the anomalies are cancelled within a single generation of
fermions. If the number of generations would be even, the global gauge anomaly would
also cancel for even Nc. However, since baryons (which consist of Nc quarks) would then
be bosons, the resulting physics would be drastically different from the real world.
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the same charge YqL . On the other hand, since the right-handed quarks are
SU(2)L singlets, up and down may then carry different hypercharges YuR

and YuR
. The U(1)Y gauge transformations then act as

ucL
′(x) = exp(iYqLg

′ϕ(x))ucL(x) , ūcL
′(x) = ūL(x)c exp(−iYqLg

′ϕ(x)) ,

ucR
′(x) = exp(iYuR

g′ϕ(x))ucR(x) , ūcR
′(x) = ūcR(x) exp(−iYuR

g′ϕ(x)) ,

dcL
′(x) = exp(iYqLg

′ϕ(x))dcL(x) , d̄cL
′(x) = d̄cL(x) exp(−iYqLg

′ϕ(x)) ,

dcR
′(x) = exp(iYdR

g′ϕ(x))dcR(x) , d̄cR
′(x) = d̄cR(x) exp(−iYdR

g′ϕ(x)) .(5.7.5)

Under SU(2)L gauge transformations the quark fields transform as

qcL
′(x) =

(
ucL
′(x)

dcL
′(x)

)
= L(x)

(
ucL(x)
dcL(x)

)
= L(x)qcL(x) ,

q̄cL
′(x) =

(
ūcL
′(x), d̄cL

′(x)
)

=
(
ūcL(x), d̄cL(x)

)
L(x)† = q̄cL(x)L(x)† ,

ucR
′(x) = ucR(x) , dcR

′(x) = dcR(x) ,

ūcR
′(x) = ūcR(x) , d̄cR

′(x) = d̄cR(x) . (5.7.6)

Before the quarks are coupled to the gluons, they do not yet participate
in the strong interaction. The gluons are then still strongly interacting
among each other, and are confined inside glueballs, but they decouple
from the other fields.9 Without quark-gluon couplings, the quarks are not
confined inside hadrons but represent physical states. Such a world may
be considered a theorist’s paradise, because the physics would be mostly
perturbative and thus analytically calculable.

We will now switch on the quark-gluon coupling. While the real world,
in which quarks are confined, is much more interesting than the theorist’s
paradise, it will also turn out to be much more difficult to understand.
In particular, since strong non-perturbative effects then dominate at low
energies, perturbation theory breaks down, and quantitative results can
often be obtained only by means of numerical Monte Carlo calculations.
Suppressing color indices, under gauge transformations Ω(x) ∈ SU(Nc) the
quark fields transform as

q′L(x) = Ω(x)qL(x) , q̄′L(x) = q̄L(x)Ω(x)† ,

u′R(x) = Ω(x)uR(x) , ū′R(x) = ūR(x)Ω(x)† ,

d′R(x) = Ω(x)dR(x) , d̄′R(x) = d̄R(x)Ω(x)† , (5.7.7)

9In the absence of quark-gluon couplings, only gravity would establish communication
between gluons and the rest of the world.
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i.e. the quark fields q transform in the fundamental {Nc} representation
of SU(Nc), while the anti-quarks q̄ transform in the anti-fundamental {Nc}
representation. Making the color indices c explicit, for the left-handed quark
doublet the covariant derivative takes the form

Dµq
c
L(x) =

[(
∂µ + iYqLg

′Bµ(x) + igW a
µ (x)

σa

2

)
δcc′ + igsG

a
µ

λacc′

2

]
qc
′

L (x) .

(5.7.8)
Here λa with a ∈ {1, 2, . . . , N2

c − 1} are the generators of SU(Nc) (the
eight Gell-Mann matrices for Nc = 3 displayed in Appendix ???). Using
Wµ(x) = igsW

a
µ (x)σa/2 and Gµ(x) = igsG

a
µ(x)λa/2 one can also write

DµqL(x) = [∂µ + iYqLg
′Bµ(x) +Wµ(x) +Gµ(x)] qL(x) . (5.7.9)

For the right-handed quark singlets the covariant derivatives are given by

Dµu
c
R(x) =

[
(∂µ + iYuR

g′Bµ(x)) δcc′ + igsG
a
µ(x)

λacc′

2

]
uc
′

R(x) ,

Dµd
c
R(x) =

[
(∂µ + iYdR

g′Bµ(x)) δcc′ + igsG
a
µ(x)

λacc′

2

]
dc
′

R(x) ,(5.7.10)

or alternatively, suppressing the color indices,

DµuR(x) = [∂µ + iYuR
g′Bµ(x) +Gµ(x)]uR(x) ,

DµdR(x) = [∂µ + iYdR
g′Bµ(x) +Gµ(x)] dR(x) . (5.7.11)

The Lagrangian describing the propagation of the quarks as well as their
interactions with the U(1)Y , SU(2)L, and SU(Nc) gauge fields then takes
the form

L(ū, u, d̄, d, Bµ,Wµ, Gµ) = q̄LγµDµqL + ūRγµDµuR + d̄RγµDµdR

= (ūL, d̄L)γµDµ

(
uL(x)
dL(x)

)
+ ūRγµDµuR + d̄RγµDµdR .

(5.7.12)

5.8 Anomaly Cancellation

In complete analogy to the leptons, the quarks also contribute to the various
triangle anomalies. First of all, the quark triangle diagram with external
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U(1)Y bosons attached to all three vertices contributes

A444
q = Nc

(
2Y 3

qL
− Y 3

uR
− Y 3

dR

)
. (5.8.1)

For the same reasons as in the lepton sector, the triangle diagrams with
one or three external SU(2)L gauge bosons vanish. The diagram with two
external SU(2)L and one external U(1)Y boson, on the other hand, is non-
zero and contributes

Aab4q = δab2NcYqL , a, b ∈ {1, 2, 3} . (5.8.2)

In order to cancel the triangle anomalies in the lepton sector we now demand

Aab4l + Aab4q = 0 ⇒ YqL =
1

2Nc

,

A444
l + A444

q = 0 ⇒ 2Y 3
qL
− Y 3

uR
− Y 3

dR
= − 3

4Nc

⇒ Y 3
uR

+ Y 3
dR

=
1

4N3
c

+
3

4Nc

.

(5.8.3)

Since the quarks also couple to the gluons, there are additional triangle
anomalies which are absent in the lepton sector. In particular, the range of
the indices a, b, c now extends from 1, 2, 3 for SU(2)L and 4 for U(1)Y to
a−4, b−4, c−4 ∈ {1, 2, . . . , N2

c −1}. Since there is the same number of left-
and right-handed color Nc-plets, the pure QCD part of the Standard Model
is a non-chiral vector-like theory, in which the corresponding pure SU(Nc)
anomaly cancels trivially. As a consequence, the triangle diagram with three
external gluons vanishes. Triangle diagrams with a single external gluon
vanish due to the tracelessness of λa, while those with two external gluons
and one external SU(2)L gauge boson vanish due to the tracelessness of
σa. The triangle diagram with two external gluons and one external U(1)Y
boson, on the other hand, is proportional to

Aab4q = δabNc(2YqL − YuR
− YdR

) , a− 4, b− 4 ∈ {1, 2, . . . , Nc} . (5.8.4)

The cancellation of this anomaly, which does not receive a contribution from
the lepton sector, thus requires

YuR
+ YdR

= 2YqL =
1

Nc

. (5.8.5)
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Combined with Eq. (5.8.3) this relation implies

YqL =
1

2Nc

, YuR
=

1

2

(
1

Nc

+ 1

)
, YdR

=
1

2

(
1

Nc

− 1

)
, (5.8.6)

i.e. anomaly cancellation completely fixes the weak hypercharges of the
quarks. Interestingly, the resulting values are related to the generator T 3

R

and the baryon number B = 1/Nc by

Y = T 3
R +

1

2
B . (5.8.7)

In the real world with Nc = 3 the baryon number of a quark is B = 1/3
and the weak hypercharges are then given by

YqL =
1

6
, YuR

=
2

3
, YdR

= −1

3
. (5.8.8)

It is often argued that in the Standard Model the number of colors must
be exactly Nc = 3 in order to achieve anomaly cancellation. In contrast
to this claim, we have just seen that the Standard Model would indeed be
consistent for any odd number Nc. cite Rudas, Abbas, Baer, Wiese. As
we will discuss in Chapter ???, there is sufficient experimental evidence to
single out Nc = 3. However, we would like to point out that the reasons for
this are more subtle than it is often assumed. In particular, Nc = 3 does
not follow from the requirement of mathematical consistency (i.e. anomaly
cancellation) of the Standard Model.

5.9 Electric Charges of Quarks and Baryons

In complete analogy to the lepton sector, one identifies the electric charge
of the quarks as

Q = T 3
L + Y = T 3

L + T 3
R +

1

2
B . (5.9.1)

For the left-handed up and down quark this equation takes the form

QuL
= T 3

LuL
+ YqL =

1

2
+

1

2Nc

=
1

2

(
1

Nc

+ 1

)
,

QdL
= T 3

LdL
+ YqL = −1

2
+

1

2Nc

=
1

2

(
1

Nc

− 1

)
. (5.9.2)
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For the right-handed quark fields one finds the same values of the electric
charges,

QuR
= T 3

LuR
+ YuR

= 0 +
1

2

(
1

Nc

+ 1

)
,

QdR
= T 3

LdR
+ YdR

= 0 +
1

2

(
1

Nc

− 1

)
. (5.9.3)

In the real world with Nc = 3 the electric charges of the quarks are thus
given by

Qu =
2

3
, Qd = −1

3
. (5.9.4)

Since quarks have lepton number L = 0 and leptons have baryon number
B = 0, the electric charges of the fermionic matter fields in the Standard
Model are given by

Q = T 3
L + Y = T 3

L + T 3
R +

1

2
(B − L) . (5.9.5)

As we will see in Section 8.9, the difference between baryon and lepton
number, B−L, generates an exact global symmetry of the Standard Model,
while B and L individually are explicitly broken by anomalies. Once we will
introduce Majorana mass terms for the neutrinos, also B − L conservation
will be explicitly broken.

As we will discuss in Chapter 12, just like gluons, quarks are confined
inside hadrons. Hadrons containing Nc more quarks than anti-quarks are
known as baryons (with baryon number B = 1). The most important
baryons in the real world are the proton and the neutron, each containing
three quarks, as well as a fluctuating number of quark–anti-quark pairs and
gluons. In a constituent quark picture, the proton consists of two up quarks
and one down quark, while the neutron contains one up quark and two down
quarks. Indeed, the resulting electric charges,

Qp = 2Qu +Qd = 2
2

3
− 1

3
= 1 ,

Qn = Qu + 2Qd =
2

3
− 2

1

3
= 0 , (5.9.6)

are the familiar ones of proton and neutron, which are integer multiples
of the charge −e of an electron. Despite numerous experimental studies,



5.10. ANOMALY MATCHING 113

including Milikan-type experiments, fundamental fractional electric charges
have never been observed in Nature.10 This is a consequence of quark
confinement combined with anomaly cancellation.

In a hypothetical, but mathematically fully consistent world with an ar-
bitrary odd number of colors Nc, there would still be protons and neutrons.
However, as we will discuss in more detail in Chapter 12, a proton would
then contain (Nc + 1)/2 up quarks and (Nc − 1)/2 down quarks, while a
neutron would contain (Nc − 1)/2 up quarks and (Nc + 1)/2 down quarks.
Hence, just as in the real world, we would still obtain

Qp =
Nc + 1

2
Qu +

Nc − 1

2
Qd =

Nc + 1

4

(
1

Nc

+ 1

)
+
Nc − 1

4

(
1

Nc

− 1

)
= 1 ,

Qn =
Nc − 1

2
Qu +

Nc + 1

2
Qd =

Nc − 1

4

(
1

Nc

+ 1

)
+
Nc + 1

4

(
1

Nc

− 1

)
= 0 .

(5.9.7)

Consequently, confinement combined with anomaly cancellation is responsi-
ble for charge quantization in integer units even for an arbitrary odd number
Nc of colors.11

5.10 Anomaly Matching

Gerard ’t Hooft has argued that anomaly cancellation should take place
even if one considers only the low-energy limit of a given theory. Anomalies
must therefore be cancelled properly also in a low-energy effective theory
for the Standard Model. This anomaly matching condition puts non-trivial
constraints on the possible dynamics of such effective theories. For example,
at low energies quarks are confined inside protons and neutrons, also known
as nucleons, and so the anomalies should also cancel between leptons and
nucleons. To convince ourselves that this is indeed the case, let us reconsider

10Fractional charges carried by Laughlin quasi-particles emerge as a collective phe-
nomenon in the condensed matter physics of the fractional quantum Hall effect.

11When the number of fermion generations were even, Nc could as well be even. In
that case, baryons would be bosons with half-integer electric charges. This would change
the physics drastically.
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the first generation now expressed in terms of nucleon (rather than quark)
degrees of freedom,(

νL

eL

)
, eR ,

(
pL

nL

)
, pR , nR . (5.10.1)

Indeed, the global gauge anomaly is still cancelled because the left-handed
nucleons form one SU(2)L doublet. The weak hypercharge assignments for
the nucleons are

YNL
=

1

2
, YpR

= 1 , YnR
= 0 . (5.10.2)

Here the index N refers to nucleons. The electric charges of the left-handed
nucleons then result as

QpL
= T 3

LpL
+ YNL

=
1

2
+

1

2
= 1 ,

QnL
= T 3

LnL
+ YNL

= −1

2
+

1

2
= 0 . (5.10.3)

Similarly, for the right-handed proton and neutron we obtain the same
values

QpR
= T 3

LpR
+ YpR

= 0 + 1 ,

QnR
= T 3

LnR
+ YnR

= 0 + 0 . (5.10.4)

The corresponding contributions to the SU(2)L×U(1)Y triangle anoma-
lies in the nucleon sector are then given by

A444
N = 2Y 3

NL
− Y 3

pR
− Y 3

nR
= 2

(
1

2

)3

− 13 − 03 = −3

4
,

Aab4N = δab2YNL
= δab , (5.10.5)

which again cancels the anomalies A444
l and Aab4l of the leptons.

In view of our analysis for a general odd number Nc, this nucleon con-
sideration corresponds exactly to the case Nc = 1, provided we identify the
proton with the up “quark” and the neutron with the down “quark”. In
this respect, the discussion of a possible generalization is not just academic.
In fact, as early as 1949 Jack Steinberger was first to calculate a triangle
diagram with nucleons propagating around the loop. It is sometimes stated
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that he accidentally got the right answer although he neglected the quark
content of protons and neutrons, and thus the color factor Nc. Of course,
in 1949 Steinberger did not know about quarks or color, but he was still
using a consistent low-energy description of our world. Indeed, thanks to
anomaly matching, Steinberger’s result is the correct answer irrespective of
the value of Nc.

5.11 Right-handed Neutrinos

The minimal version of the Standard Model, which we have presented until
now, does not contain right-handed neutrino fields. If one insists on pertur-
bative renormalizability, the absence of right-handed neutrino fields implies
that neutrinos are massless, which may thus be viewed as a prediction of the
Standard Model. However, since the observation of neutrino oscillations in
1998, it is known that (at least some) neutrinos must have mass.12 One may
then conclude that the minimal Standard Model is indeed in conflict with
experiment and must thus be extended. One may do this in two alterna-
tive ways. First, one may view the Standard Model as an effective theory,
formulated only in terms of the relevant low-energy degrees of freedom.
The leading terms in the effective Lagrangian are indeed the renormalizable
interactions that we have considered until now. However, in an effective the-
ory framework there are additional higher-order corrections to the effective
Lagrangian which need not be renormalizable. As we will discuss in more
detail in Chapter 9, one can indeed construct non-renormalizable neutrino
mass terms by using just the left-handed neutrino fields introduced until
now.

An alternative way to proceed, which reflects a drastically different point
of view, is to assume that the Standard Model is an integral part of a renor-
malizable theory with a larger field content that extends to much higher
energies beyond the TeV range. This approach is pursued, for example, in
the framework of grand unified theories (GUT), which will be discussed in
detail in Chapter 18. If one insists on perturbative renormalizability, the in-
corporation of neutrino mass terms requires the introduction of right-handed

12The values of the neutrino masses are presently not known experimentally. Neutrino
oscillations only imply non-zero neutrino mass differences.
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neutrino fields νR and ν̄R. As we will now discuss, the Standard Model can
be extended by right-handed neutrinos in a straightforward manner.

Right-handed neutrinos are leptons (with lepton number L = 1), i.e.
under global U(1)L transformations they transform as

ν ′R(x) = exp(iχ)νR(x) , ν̄ ′R(x) = ν̄R(x) exp(−iχ) . (5.11.1)

Just like right-handed electrons, right-handed neutrinos are both SU(Nc)
color and SU(2)L singlets, and one has

T 3
LνR

= 0 , T 3
RνR

=
1

2
. (5.11.2)

Using Y = T 3
R − L/2 and Q = T 3

L + Y , we then obtain

YνR
= T 3

RνR
− 1

2
= 0 , QνR

= T 3
LνR

+ YνR
= 0 . (5.11.3)

This implies that the right-handed neutrino is neutral, not only electri-
cally, but under all gauge interaction in the Standard Model. Consequently,
right-handed neutrinos are “sterile”, i.e. they do not participate in the elec-
tromagnetic, weak, or strong interaction. Since right-handed neutrinos do
not couple to the gauge fields of the Standard Model, they do not contribute
to the gauge anomalies. Hence, these anomalies remain properly cancelled.

As we will see in Chapter 9, left- and right-handed neutrino fields can
be combined in a Yukawa coupling term to the Higgs field. When the
Higgs field picks up a vacuum expectation value v, this term gives rise to
a non-zero neutrino mass proportional to v. We will also see that right-
handed neutrino fields alone can be used to form additional Majorana mass
terms, which are not tied to the electroweak symmetry breaking scale v. In
fact, besides v, the Majorana mass M will appear as a second dimensionful
parameter in this extended Standard Model.

5.12 Lepton and Baryon Number Anomalies

As we discussed before, the lepton-gauge field Lagrangian L(ν̄, ν, ē, e,Wµ, Bµ)
of Eq. (5.3.13) as well as the quark-gauge field Lagrangian L(ū, u, d̄, d,Gµ,Wµ, Bµ)
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of Eq. (5.7.12) are invariant against global U(1)L lepton number and U(1)B
baryon number transformations. Hence, at the classical level, lepton and
baryon number are conserved quantities. As we discussed in the Preface,
usually global symmetries are only approximate, while exact symmetries
are local. Would it be possible to gauge the U(1)L and U(1)B symmetries
in the Standard Model? As we will see, this is not possible, because both
symmetries are explicitly broken by anomalies, and are thus indeed only
approximate. Still, we will find that the combination B − L is conserved
exactly.

Let us imagine that there is a hypothetical U(1)L gauge boson that
couples to lepton number. Such a particle would mediate a fifth force, be-
yond gravity, electromagnetism, as well as the weak and strong interactions.
There is no experimental evidence for such a force, and we will now see that
gauging U(1)L is, in fact, impossible in the Standard Model because this
symmetry suffers from triangle anomalies. After the introduction of right-
handed neutrinos, U(1)L is a vector-like symmetry, i.e. both left- and right-
handed leptons carry the same lepton number L = 1. As a consequence, the
pure U(1)L triangle anomaly with three external hypothetical U(1)L gauge
boson vanishes trivially. Still, there may be mixed anomalies. First of all,
triangle diagrams containing external gluons vanish because leptons do not
participate in the strong interaction. Triangle diagrams with two external
U(1)L and one external SU(2)L gauge boson vanish due the tracelessness
of σa. The mixed anomaly with two U(1)L and one U(1)Y gauge boson is
proportional to

A4LL = 2
[
TrLL

2Y − TrRL
2Y
]

= 2 [2YlL − YνR
− YeR ]

= 2

[
2

(
−1

2

)
− 0− (−1)

]
= 0 , (5.12.1)

and thus vanishes. We still need to consider the triangle diagrams with
just one external hypothetical U(1)L gauge boson. The diagram with two
external U(1)Y gauge bosons contributes

A44L = 2
[
TrLY

2L− TrRY
2L
]

= 2
[
2Y 2

lL
− Y 2

νR
− Y 2

eR

]
= 2

[
2

(
−1

2

)2

− 02 − (−1)2

]
= −1 6= 0 , (5.12.2)

and thus leads to an inconsistency when the U(1)L lepton number symmetry
is gauged. The diagram with one external U(1)Y and one external SU(2)L
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gauge boson vanishes due to the tracelessness of σa. On the other hand,
the triangle diagram with two external SU(2)L gauge bosons (with a, b ∈
{1, 2, 3}) contributes

AabL = TrL

[
(T aT b + T bT a)L

]
− TrR

[
(T aT b + T bT a)L

]
= TrL

[
1

4
(σaσb + σbσa)L

]
= δabTrLL = 2δab 6= 0 , (5.12.3)

and thus gives rise to another anomaly.

Let us now investigate potential anomalies in the U(1)B baryon number
symmetry. In that case, only quarks propagate around the triangle dia-
grams. In complete analogy to the lepton case, one may convince oneself
that the only non-vanishing anomalies are

A44B = 2
[
TrLY

2B − TrRY
2B
]

= 2Nc

[
2Y 2

qL
− Y 2

uR
− Y 2

dR

] 1

Nc

= 2

[
2

(
1

2Nc

)2

− 1

4

(
1

Nc

+ 1

)2

− 1

4

(
1

Nc

− 1

)2
]

= −1

AabB = TrL

[
(T aT b + T bT a)B

]
− TrR

[
(T aT b + T bT a)B

]
= TrL

[
1

4
(σaσb + σbσa)B

]
= δabTrLB = 2Ncδab

1

Nc

= 2δab 6= 0 .(5.12.4)

Remarkably, for any number of colors,

A44B = A44L , AabB = AabL , a, b ∈ {1, 2, 3} , (5.12.5)

such that the anomalies cancel in the combination B−L. Hence, although B
and L are individually broken at the quantum level, the difference between
baryon and lepton number is an exactly conserved quantum number in the
gauge interactions of the Standard Model. This raises the question why
the corresponding U(1)B−L symmetry is not gauged. Indeed, there are
GUT extensions of the Standard Model with an SO(10) gauge group which
contains the U(1)B−L subgroup as a local symmetry. Alternatively, when
U(1)B−L remains a global symmetry, Majorana mass terms involving the
right-handed neutrino field νR explicitly break L even at the classical level,
and thus turn U(1)B−L into an approximate symmetry. Similarly, if one
views the Standard Model as a low-energy effective theory, U(1)B−L is an
accidental global symmetry which will be violated by non-renormalizable
higher-order corrections to the Lagrangian.
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5.13 An Anomaly-Free Technicolor Model

This section addresses physics beyond the Standard Model and can be
skipped at a first reading.

Why is the electroweak scale v = 246 GeV so much smaller than the
Planck scale MPlanck ≈ 1019GeV? This is the hierarchy problem that we
have discussed in Section 5.6. A possible solution of this problem is based on
the idea of “techni-color” — a hypothetical gauge interaction even stronger
than the strong force — which confines new fundamental fermions — the
so-called “techni-quarks” — to form the Higgs particle as a composite ob-
ject. This is analogous to the binding of electrons that form Cooper pairs in
a superconductor. In that case, the condensation of Cooper pairs leads to
the spontaneous breaking of U(1)em. Similarly, in techni-color models the
condensation of techni-quark-techni-anti-quark pairs leads to the sponta-
neous breaking of SU(2)L×U(1)Y down to U(1)em. Thanks to the property
of asymptotic freedom, which techni-color models share with QCD, one can
explain the large hierarchy between v and MPlanck in a natural manner,
i.e. without fine-tuning any parameters. In fact, techni-color models mimic
the dynamics of QCD at the electroweak scale. Since we will discuss the
QCD dynamics only in Chapter 11 and 12, we will postpone the discussion
of the techni-color dynamics until Chapter 14. However, in this section
we already introduce the basic ingredients of a minimal techni-color exten-
sion of the Standard Model, and we show that the extended model is still
anomaly-free. It should be mentioned that, at present, there is no exper-
imental evidence supporting the idea of techni-color models. Instead, in
these models there are severe problems due to flavor-changing neutral cur-
rents. Hence, it remains to seen whether techni-color is the right way to go
beyond the Standard Model.

Let us construct a concrete techni-color model, in particular, to show
explicitly that such constructions are at all possible. In addition to the
Standard Model fermions, we want to add a techni-up and a techni-down
quark U and D whose left-handed components form an SU(2)L doublet
and whose right-handed components are SU(2)L singlets. The techni-color
gauge group is chosen to be SU(Nt) and both the left- and the right-handed
techni-quarks transform in the fundamental representation of SU(Nt). All
the Standard Model fermions are assumed to be techni-color singlets. We
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will not introduce any techni-leptons. Hence, anomaly cancellation works
differently than in the Standard Model. For simplicity, we choose the techni-
quarks to be SU(Nc) color singlets. However, they are still confined by
techni-color interactions. Let us denote the U(1)Y quantum numbers of the
techni-quarks by YQL

, YUR
, and YDR

. These parameters will be determined
by anomaly cancellation conditions.

The gauge group of our techni-color model is given by SU(Nt)×SU(Nc)×
SU(2)L × U(1)Y . Let us now demand anomaly cancellation. Since, like
SU(Nc) color, the techni-color gauge group SU(Nt) is a vector-like symme-
try, the triangle diagram with three external techni-gauge bosons automat-
ically vanishes. Triangle diagrams with external techni-gauge bosons and
external gluons only also vanish. Triangle diagrams with only one external
techni-gauge boson vanish because the generators of SU(Nt) are traceless.
The triangle diagram with two techni-gauge bosons and one SU(2)L bo-
son vanishes due to the tracelessness of σa. The triangle diagram with two
external techni-gauge bosons and one external U(1)Y boson vanishes only
if

2YQL
= YUR

+ YDR
. (5.13.1)

The techni-quarks also contribute to the anomalies of the Standard Model
gauge symmetries. For example, the triangle diagram with two SU(2)L

bosons and one U(1)Y boson still vanishes only if

YQL
= 0 , (5.13.2)

while the diagram with three external U(1)Y bosons vanishes only if

2Y 3
QL

= Y 3
UR

+ Y 3
DR

. (5.13.3)

Anomaly cancellation hence implies

YQL
= 0 , YUR

+ YDR
= 0 . (5.13.4)

We still want to be able to couple our new theory to gravity, which is possible
only if we cancel the gravitational anomaly. This again requires

2YQL
= YUR

+ YDR
, (5.13.5)

which is hence already satisfied.
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In order to reproduce the physics of the Standard Model, we must main-
tain U(1)em as an unbroken gauge symmetry. This requires the electric
charges of the left- and right-handed techni-quarks to be equal.13 Since we
have Q = T 3

L + Y , we obtain

QUL
=

1

2
, QDL

= −1

2
, QUR

= YUR
, QDR

= YDR
. (5.13.6)

Hence, in order to have equal charges for left- and right-handed techni-
quarks we demand

YUR
= −YDR

=
1

2
. (5.13.7)

In order to also cancel Witten’s global gauge anomaly, the total num-
ber of SU(2)L doublets must be even and hence Nt must also be even.
The naive simplest choice Nt = 2 is not analogous to QCD. Due to the
pseudo-real nature of SU(2), techni-quarks and techni-anti-quarks would
then be indistinguishable and the chiral symmetry would be Sp(4) instead
of SU(2)L × SU(2)R. The actual simplest choice therefore is Nt = 4. The
gauge symmetry of the Standard Model extended by our simple version of
techni-color then is SU(4)t × SU(3)c × SU(2)L × U(1)Y .

13As we will discuss in Chapter 14, if the left- and right-handed techni-quarks have the
same electric charges, the breaking of the techni-chiral SU(2)L×SU(2)R symmetry leaves
U(1)em intact. Otherwise, the techni-chiral condensate 〈ŪLUR+ŪLUR+D̄LDR+D̄LDR〉
would carry an electric charge and would turn the vacuum into a superconductor.



122 CHAPTER 5. ONE GENERATION OF LEPTONS AND QUARKS



Chapter 6

Fermion Masses

At this point, we have introduced all fields in the Standard Model with one
generation of fermions. Gauge invariance and anomaly cancellation have
led to severe limitations on the terms that can enter the Lagrangian. Alto-
gether, until now, we have introduced five adjustable fundamental parame-
ters: only one dimensionful parameter — the vacuum expectation value v of
the Higgs field — as well as the dimensionless Higgs self-coupling λ and the
three dimensionless gauge couplings g, g′ (or alternatively e and θW), and
gs. In addition, we have made several choices for the fermion representa-
tions. For example, in the way we have presented the Standard Model, one
may consider the number of colors Nc another (integer-valued) parameter
to be determined by experiment. In any case, the number of parameters is
still moderate at this stage.

Usually, it is emphasized that the Standard Model describes the elec-
tromagnetic, weak, and strong interactions, and that there are thus four
fundamental forces, including gravity. In this chapter, we will see that
the Standard Model also contains so-called Yukawa interactions between
the Higgs field and the fermions, whose strengths are controlled by a large
number of additional adjustable parameters. When the Higgs field picks
up its vacuum expectation value v, the Yukawa interactions lead to fermion
masses as well as to mixing between different fermion generations. Since
they are not mediated by gauge fields, the Yukawa interactions are not
very restricted and thus lead to a proliferation of adjustable parameters in

123
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the Standard Model. Even with only one generation of fermions, we will
now have the Dirac masses of the up and down quarks, and of the electron
and the neutrino, as well as an additional Majorana mass for the neutrino.
In the next chapter, we will add two more fermion generations which will
increase the number of parameters much further. While it is possible to de-
termine the values of the Standard Model parameters by comparison with
experiment, their theoretical understanding is a very challenging unsolved
problem beyond the Standard Model.

One may expect that the large hadron collider (LHC) at CERN will
shed light on the Higgs phenomenon and thus on the dynamical mechanism
responsible for electroweak symmetry breaking. It is possible that an ex-
tended version of the Standard Model will replace the fundamental Higgs
field and the many parameters associated with its Yukawa interactions by
a more fundamental and more constrained dynamics, perhaps driven by yet
unknown gauge forces. However, other ideas beyond the Standard Model,
e.g. those relying on supersymmetry — a symmetry that pairs fermions
with bosons — could still increase the number of adjustable parameters
even further.

6.1 Electron and Down Quark Masses

So far we have not introduced any mass terms for the fermions. An electron
mass term would have the form me[ēReL + ēLeR]. As we mentioned before,
since left- and right-handed fermions transform differently under SU(2)L

and U(1)Y gauge transformations, this term violates the chiral gauge sym-
metry and is thus forbidden. We remember that we encountered a similar
situation before for the weak gauge bosons: we know experimentally that
they are massive, but explicit mass terms for them are forbidden by gauge
invariance. The way out was the Higgs mechanism. By picking up a vac-
uum expectation value, the Higgs field Φ gave mass to the gauge bosons
via spontaneous symmetry breaking. Similarly, Φ can also give mass to
fermions. Let us write down a Yukawa interaction term with the Yukawa
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coupling fe
1

L(ν̄, ν, ē, e,Φ) = fe (ν̄L, ēL)

(
Φ+

Φ0

)
eR + f ∗e ēR(Φ+∗,Φ0∗)

(
νL

eL

)
= fe l̄LΦeR + f ∗e ēRΦ†lL . (6.1.1)

The second term is multiplied by f ∗e , in order to ensure Hermiticity of the
corresponding Hamiltonian.2 The above Lagrangian is SU(2)L gauge in-
variant because both the left-handed leptons and the Higgs are SU(2)L

doublets, while the right-handed electron is an SU(2)L singlet. Moreover,
the Lagrangian is also U(1)Y invariant. To see this, we sum up the hyper-
charges of the fields in the first term in Eq. (6.1.1),

−YlL + YΦ + YeR =
1

2
+

1

2
− 1 = 0 . (6.1.2)

Since the hypercharges add up to zero, the corresponding U(1)Y gauge
transformations exp(iY ϕ(x)) cancel each other, and the term is thus U(1)Y
gauge invariant. In the second term, the signs of all hypercharges are flipped,
and hence its total hypercharge vanishes as well.)

Since charge conjugation as well as parity turn left- into right-handed
neutrinos, and since there are no right-handed neutrino fields in the La-
grangian of Eq. (6.1.1), it is clear that it explicitly breaks P and C. Let us
now perform a combined CP transformation in the corresponding action,
i.e.

S[CPl̄L,
CP lL,

CP ēR,
CP eR,

CP Φ]

=

∫
d4x

[
−fe lL(−~x, x4)TPTC−1Φ(−~x, x4)∗CP ēR(−~x, x4)T

−f ∗e eR(−~x, x4)TPTC−1Φ(−~x, x4)TCP l̄L(−~x, x4)T
]

=

∫
d4x

[
fe ēR(−~x, x4)Φ(−~x, x4)†l̄L(−~x, x4)

+f ∗e l̄L(−~x, x4)Φ(−~x, x4)eR(−~x, x4)
]
. (6.1.3)

1Generally, a Yukawa interaction term has the structure ψ̄φψ, where φ is a scalar field
and ψ̄ and ψ are fermion fields.

2Note that choosing a Yukawa coupling like fe to be complex does not yield any
problem for the convergence of the path integral. This is in contrast to the scalar self-
coupling λ, which must be non-negative. The integrals

∫
Dl̄LDlLDēRDeR converge in

any case because they are Grassmannian.
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Hence, it seems that the action is CP-invariant only if the Yukawa coupling
fe is real. However, as we will now discuss, fe can always be made real
by a field redefinition. Let us assume that fe = |fe| exp(iθ). One can then
redefine

e′R(x) = eR(x) exp(iθ) , ē′R(x) = ēR(x) exp(−iθ) , (6.1.4)

which absorbs the complex phase exp(iθ) into the right-handed electron
field. Expressed in terms of the redefined fields, the Lagrangian then con-
tains the real-valued Yukawa coupling |fe|. It is important to note that the
field redefinition leaves the gauge-fermion terms of the Lagrangian invari-
ant. As we will discuss in Chapter ???, such field redefinitions may have
subtle effects on the fermionic measure. In any case, from now on we may
assume that fe is real.

Inserting again the vacuum configuration of the Higgs field that we se-
lected before, we obtain

L(ν̄, ν, ē, e,Φ) = fe

[
(ν̄L, ēL)

(
0
v

)
eR + ēR(0, v)

(
νL

eL

)]
= fev [ēLeR + ēReL] . (6.1.5)

Indeed, we have arrived at mass term for the electron with the mass given
by

me = fev , (6.1.6)

while the neutrino remains massless. Via the Yukawa coupling fe, we have
just introduced another free parameter into the theory which determines the
electron mass. The Standard Model itself does not make any predictions
about this parameter. If we want to understand the value of the electron
mass, we need to go beyond the Standard Model. In fact, at present nobody
understands why the electron has its particular mass of 0.511 MeV. As we
continue to add mass terms, the number of adjustable parameters in the
Standard Model will increase rapidly.

We see that the Standard Model contains more than just electroweak
and strong interactions. Every Yukawa coupling parameterises a funda-
mental force that is not often emphasised on the same level as the gauge
forces. There is reason to believe that the Yukawa couplings are not as
fundamental as the gauge interactions. For example, in a future theory
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beyond the Standard Model the Yukawa couplings may ultimately be re-
placed by some gauge force of a new kind. In this way, we would perhaps
gain predictive power and finally understand the value of the electron mass.
This underscores that the true origin of mass is not at all well understood.
The often celebrated Higgs mechanism leaves many fundamental questions
unanswered.

Since the down quark appears in the same position of an SU(2) doublet
as the electron, and since

−YqL + YΦ + YdR
=

1

2Nc

+
1

2
+

1

2

(
1

Nc

− 1

)
= 0 , (6.1.7)

we can give the down quark a mass md = fdv by adding a further term

L(ū, u, d̄, d,Φ) = fd

[
(ūL, d̄L)

(
Φ+

Φ0

)
dR + d̄R(Φ+∗,Φ0∗)

(
uL

dL

)]
.

(6.1.8)
to the Standard Model Lagrangian. On the other hand, we cannot give
mass to the up quark in the same way, just as we did not obtain a massive
neutrino.3

6.2 Up Quark Mass

We could easily construct a mass term for the up quark if we had another
Higgs field

Φ̃(x) =

(
Φ̃0(x)

Φ̃−(x)

)
, (6.2.1)

which would be an SU(2)L doublet that takes a vacuum value

Φ̃(x) =

(
ṽ
0

)
. (6.2.2)

3For some time, it was not clear whether the up quark might be massless, which is
by now excluded experimentally. However, even if we were ready to accept mu = 0
this wouldn’t really help. In the next chapter, we will add two generations of heavier
fermions, and the charm and top quarks — which take the position of the up quark in
the second and third generation — clearly have a non-zero mass.
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Then we could just add another Yukawa term

L(ū, u, d̄, d, Φ̃) = fu

[
(ūL, d̄L)

(
Φ̃0

Φ̃−

)
uR + ūR(Φ0∗,Φ−∗)

(
uL

dL

)]
= fu

[
q̄LΦ̃uR + ūRΦ̃qL

]
. (6.2.3)

To render this term gauge invariant, the weak hypercharge of the field Φ̃
must obey

−YqL + YΦ̃ + YuR
= − 1

2Nc

+ YΦ̃ +
1

2

(
1

Nc

− 1

)
= 0 ⇒ YΦ̃ = −1

2
. (6.2.4)

At this point, we could just add a new Higgs field Φ̃ with the desired features.
In fact, as we have discuused in Section 5.9, this is exactly what Peccei and
Quinn have proposed in order to solve the strong CP problem, which we
will address in Chapter 17.

However, here we restrict ourselves to the Standard Model, which does
not proceed in this manner: in fact, there is more economic way to proceed
by “recycling” the Higgs field introduced previously. It may come as a
surprise that a field Φ̃ with the desired properties can be constructed directly
from the known Higgs field Φ as

Φ̃(x) =

(
Φ̃0(x)

Φ̃−(x)

)
=

(
−Φ0∗(x)
Φ+∗(x)

)
. (6.2.5)

While it is clear that this field indeed has YΦ̃ = −1/2, it may be less clear
that it also transforms as an SU(2)L doublet. To see this, it is useful to
return to the matrix form

Φ(x) =

(
Φ0∗(x) Φ+(x)
−Φ+∗(x) Φ0(x)

)
. (6.2.6)

As we have seen in Section 5.2, under SU(2)L gauge transformations L(x)

the matrix field transforms as Φ′(x) = L(x)Φ(x). Since the field Φ̃ is
nothing but the first column vector of the matrix Φ, it is clear that it
transforms indeed as an SU(2)L doublet. Using the matrix field Φ, the
quark Yukawa coupling terms can be written as

L(ū, u, d̄, d,Φ) = (ūL, d̄L)ΦF
(
uR

dR

)
+ (ūR, d̄R)F †Φ†

(
uL

dL

)
, (6.2.7)
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where the Yukawa couplings are contained in the diagonal matrix

F =

(
fu 0
0 fd

)
. (6.2.8)

The above construction implies ṽ = v and hence the up quark mass is given
by mu = fuv. Inserting the vacuum value of the Higgs field, the quark mass
matrix then results as

M = ΦF =

(
v 0
0 v

)(
fu 0
0 fd

)
=

(
mu 0
0 md

)
. (6.2.9)

6.3 Massive Neutrinos

As we will discuss in more detail in Chapter 10, in 1998 oscillations between
different neutrino species were observed by the ... collaboration. This im-
plies that (at least some) neutrinos must be massive. Since the Standard
Model does not contain right-handed neutrino fields, one cannot even write
down a neutrino mass term, at least as long as one restricts oneself to
renormalizable interactions. As we have discussed in Section 5.7, already
due to its triviality, the Standard Model is at best a low-energy effective the-
ory, which cannot be valid at arbitrarily high energy scales. If one accepts
that the Standard Model is a low-energy effective theory, there is, however,
no good reason to exclude non-renormalizable interaction. Instead, those
should be added as higher-order corrections to the leading renormalizable
Standard Model interactions.

Once we have introduced a right-handed neutrino field, we can give
mass to the neutrino in the same way as we just gave mass to the up quark.
It has been argued that adding neutrino masses is already “beyond the
Standard Model”. While this is clearly a matter of semantics, we do not
adapt this point of view. First, it is an addition to the former version of the
Standard Model, which does not involve a conceptual extension. Second, in
some sense the Standard Model without right-handed neutrinos has always
looked unnatural, because with massless neutrinos it has an exact global
symmetry. As we have claimed already in Chapter 1, exact symmetries
should be locally realised, or alternatively, global symmetries should be
only approximate.



130 CHAPTER 6. FERMION MASSES

There is an internal quantum number called lepton number L which tends
to be conserved in Nature. More precisely, it is the difference B − L which
would be conserved exactly, without the existence of right-handed neutrinos.
B is the baryon number, and the assignments of L and B are simple:

L =


1 leptons
−1 anti− leptons

0 all other particles
B =


1/3 quarks
−1/3 anti− quarks

0 all other particles
(6.3.1)

With right-handed neutrinos present, one can construct a Majorana mass
term, which violates explicitly the conservation of L, and — since no quarks
are involved in that term — also of the difference B − L.

6.4 The Majorana mass term

Let us start with an addition to the discussion of the Dirac equation in Section 1.7.
If a fermion spinor obeys (i∂/−eA/−m)Ψ = 0 (where Aµ may represent any gauge
field), the spinor for the corresponding anti-fermion fulfils (i∂/+ eA/−m)Ψc = 0.
For a symmetric representation of γ0 we relate the spinors as

Ψc = Cγ0Ψ∗ = CΨ̄T , (6.4.1)

where the matrix C has to be chosen such that

γµCγ0 = −Cγ0γµ ∗ . (6.4.2)

With this connection between the two spinors, the above Dirac equations for Ψ
and Ψc are in fact equivalent. In both common representations, named after
Pauli-Dirac and Weyl, the matrix

Cγ0 =


1

−1
−1

1

 (6.4.3)

is a solution to the condition (6.4.2).

A Majorana spinor can be constructed from the right-handed neutrino
as

νM = νR + Cν̄TR . (6.4.4)
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The charge conjugate of a Majorana neutrino is identical with itself,

Cν̄TM = Cν̄TR + νR = νM , (6.4.5)

and hence it is its own anti-particle. This is possible only for a neutral
gauge singlet, i.e. a particle which is neutral with respect to all gauge fields.
The Majorana condition (6.4.5) also implies that the corresponding spinor
has only two degrees of freedom. 4 A Majorana mass term takes the form

LM(νR) = Mν̄MνM (6.4.6)

and changes the lepton number L by two. It is automatically gauge in-
variant. This mass term does not require the inclusion of the Higgs field.
Consequently, the Majorana mass M is not tied to the electroweak scale v.
In fact, M is the second dimensional parameter that enters the Standard
Model once we introduce right-handed neutrino fields. 5

A renormalisable Majorana mass term cannot be constructed from the
left-handed neutrino field because it would not be gauge invariant. However,
as described above, we can construct Dirac mass terms that couple left- and
right-handed neutrino fields through a Yukawa coupling to the Higgs field.
Altogether we can write a neutrino mass matrix of the form

(ν̄L, Cν
T
R)

(
0 fνv
fνv M

)(
Cν̄TL
νR

)
. (6.4.7)

For M � fνv the eigenvalues of the mass matrix are

m1 'M , m2 '
f 2
ν v

2

M
, (6.4.8)

i.e. there is a large mass m1 and a much smaller mass m2. 6 When we discuss
Grand Unified Theories (GUT), we will see that the assumption fνv �M ∼

4This is in contrast to the unconstrained Dirac spinor, which has 4 degrees of freedom,
describing a spin-1/2 particle and its independent anti-particle.

5Note that all other free parameters that we introduced in the Standard Model up to
now, such as the Yukawa couplings, the Higgs self-coupling λ and the weak mixing angle
θw are in fact dimensionless. The vacuum Higgs value v — or equivalently the Higgs
mass — contributed the dimension for all the particle masses that we found.

6Actually the sign of m2 comes out negative, but this negative sign can be absorbed
by a phase transformation of the spinor field.



132 CHAPTER 6. FERMION MASSES

1010 GeV . . . 1015 GeV is in fact reasonable. Then m2 naturally describes
light neutrinos. In GUT theories this is called the “seesaw mechanism”.
Seesaw (in German “Schaukel”) describes the process that one heavy mass (m1)

arranges for another mass (m2) to become very light. The latter then agrees with

observations, while the former is so heavy that it escapes observations.



Chapter 7

Three Generations of Quarks
and Leptons

Once we will add the two remaining generations, an interesting additional
effect emerges — the explicit breaking of CP invariance, i.e. the combined
charge conjugation and parity transformation.

7.1 The CKM Quark Mixing Matrix

Let us now add the remaining two generations of fermions. We first return
to the case of massless neutrinos. Then we don’t need to introduce fields
for the right-handed neutrinos. For the first generation we have(

νeL
eL

)
, eR ;

(
u′L
d′L

)
, u′R , d

′
R . (7.1.1)

Here we have modified the notation in two respects:

• The neutrino that we dealt with so far is now denoted as the electron-
neutrino νe, so it can be distinguished from the further neutrinos that
we are about to add.

• We now write the weak interaction eigenstates for the up and down
quarks as u′ and d′ (so far we called them simply u and d). Once we

133
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add the other generations, u′ and d′ mix with the other quarks to form
the mass eigenstates u and d.

In the second generation, we have the muon µ (as a heavier copy of the
electron) and its neutrino νµ, as well as charm and strange quarks (as the
heavier copies of up and down quarks). The lepton and quark multiplets of
the second generation then take the form(

νµL
µL

)
, µR ;

(
c′L
s′L

)
, c′R , s

′
R . (7.1.2)

The charge assignments (Q, Y and T3) are exactly the same as in the first
generation. The heavy fermions tend to decay into the light ones. The
heavier they are, the faster this happens, and it is more difficult to generate
such particles at all. Based on the concept of one generation, “strange”
effects were sometimes observed and related to the s quark, which was then
completed to a generation by the subsequent discovery of the c quark.

Later on, yet an other generation was revealed step by step. In the third
generation we have the tauon τ , its neutrino ντ , as well as top and bottom
(or truth and beauty) quarks(

ντL
τL

)
, τR ;

(
t′L
b′L

)
, t′R , b

′
R . (7.1.3)

As a last ingredient, the top quark was found experimentally in the Teva-
tron proton–anti-proton collider at Fermilab (near Chicago) in 1995. Its
existence had been expected long before on theoretical grounds. The Stan-
dard Model only works if generations are complete, and the b quark had
been observed already in 1977. However, the Standard Model could not
predict the top mass, which was found around 180 GeV.

Let us be more precise now about the lepton number, which we in-
troduced before in eq. (6.3.1). Actually, each lepton carries a generation
specific lepton number, we call them Le, Lµ and Lτ . For (anti-)fermions
this number is 1 (−1) in the corresponding generation, and zero otherwise.
Usually, even the generation specific lepton number is conserved. A typical
example is the decay

µ→ e+ ν̄e + νµ , (7.1.4)
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which sets in after a muon life time of 2.2 · 10−6 sec. The tauon is still
significantly heavier than the muon (mτ ' 1.8 GeV vs. mµ ' 106 MeV)
hence its life-time is much shorter (about 3 · 10−13 sec). It can decay either
into e+ ν̄e + ντ , or into µ+ ν̄µ + ντ (where the muon will soon decay again),
or even into hadrons built from the first quark generation.

The conservation of the lepton number in each generation also restricts
the possible Z decays, in addition to charge conservation. Therefore, the
leptonic decay of the Z-boson can only lead to a lepton and its own anti-
lepton. The decay width of Z allows us to sum up the leptonic decay
channels, and thus to identify the number of generations. The result —
found in particular in LEP experiments at CERN — implies that there are
no further leptons beyond these three generations.
A conceivable objection is, however, a lepton generation which is so heavy
that the Z-boson cannot decay into any of its members. However, given
the sequence of masses found so far, this scenario seems unlikely; it would
require a new neutrino with mass mν > mZ/2 ' 45.6 GeV.

Up, charm, and top quarks are indistinguishable from the point of view
of the electroweak and strong interactions. Therefore their mass eigenstates
can mix to build the states appearing in the gauge interaction terms. The
down, strange and bottom quarks can do the same. On the other hand, a
mixing between up and strange quarks, for example, is forbidden because
they sit in different positions of SU(2)L doublets.
After spontaneous symmetry breaking, the most general quark mass term
— expressed in the gauge eigenstates — takes the form

(d̄′L, s̄
′
L, b̄

′
L)MD

 d′R
s′R
b′R

+ (ū′L, c̄
′
L, t̄

′
L)MU

 u′R
c′R
t′R

 . (7.1.5)

The mass matrices MD and MU are (general) complex 3×3 matrices whose
elements are products of Yukawa couplings and the vacuum value v of the
Higgs field. A general complex matrix can be diagonalised by a bi-unitary
transformation

UD†
L MDUD

R = diag(md,ms,mb) , U
U†
L MUUU

R = diag(mu,mc,mt) , (7.1.6)

where the four matrices UD
L,R , U

U
L,R are all unitary, and physics tells us that

quark masses mu,md, . . . ,mt are real and positive. These bi-unitary trans-
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formations relate the weak interaction eigenstates to the mass eigenstates d′L
s′L
b′L

 = UD
L

 dL
sL
bL

 ,

 d′R
s′R
b′R

 = UD
R

 dR
sR
bR

 ,

 u′L
c′L
t′L

 = UU
L

 uL
cL
tL

 ,

 u′R
c′R
t′R

 = UU
R

 uR
cR
tR

 . (7.1.7)

Let us now express the weak interaction currents in the basis of mass eigen-
states. The neutral quark current contains terms such as

ū′Lγµu
′
L + c̄′Lγµc

′
L + t̄′Lγµt

′
L or d̄′Rγµd

′
R + s̄′Rγµs

′
R + b̄′Rγµb

′
R .

When we rotate these terms into the basis of mass eigenstates, we can
simply drop the primes, because UU†

L UU
L = 11, UD†

R UD
R = 11. Hence, the

neutral current interactions do not lead to changes among different quark
flavours: the Standard Model is free of flavour-changing neutral currents.
This is a characteristic of the Standard Model, which does not hold for
a number of different approaches to describe particle physics. Hence this
property has been verified to a high precision in numerous experiments.
The charged currents, on the other hand, take the form

j+
µ = ū′Lγµd

′
L + c̄′Lγµs

′
L + t̄′Lγµb

′
L = (ūL, c̄L, t̄L)γµU

U†
L UD

L

 dL
sL
bL


= (ūL, c̄L, t̄L)γµV

 dL
sL
bL

 , j−µ = (d̄L, s̄L, b̄L)γµV
†

 uL
cL
tL

 . (7.1.8)

Here we have introduced the Cabbibo-Kobayashi-Maskawa (CKM) quark
mixing matrix

V = UU†
L UD

L ∈ U(3) . (7.1.9)

This matrix describes the extent of flavour-changing in the charged current
interactions of the Standard Model.

Let us count the number of physical parameters in the mixing matrix V
for the case of N generations. We proceed in three steps:

• Since V is unitary, one would naively expect N2 parameters.
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• However, one can change the matrices UU
L and UD

L by multiplying
them with diagonal unitary matrices — we call them DU and DD —
from the right,

U ′UL = UU
LD

U , U ′DL = UD
L D

D . (7.1.10)

This still leaves the resulting mass matrices diagonal, and it turns the
matrix V into

V ′ = U ′U†L U ′DL = DU†V DD . (7.1.11)

Our requirement was the diagonalisation of the mass matrices; now
we see that this can be achieved in different ways. The corresponding
ambiguity should be subtracted from the set of physical parameters.
To be more explicit: the matrices DU and DD have 2N parameters
(the complex phases on their diagonals), which should not be counted
as physical parameters in V . These phases are fixed by the condition
that the quark masses have to be real positive.

• However, an overall phase factor common to both, DU and DD, would
not affect V ′ at all. This means that in the preceding step we wanted
to subtract one parameter, which does not actually exist. The correct
number of parameters to be subtracted is therefore 2N − 1.

Hence the proper counting of physical parameters in the CKM matrix is

N2 − (2N − 1) = (N − 1)2 . (7.1.12)

With a single generation there is no mixing and hence no free parameter.

With two generations there is one physical parameter. This situation
was assumed for some time, and the allowed quark mixing was described
by the so-called Cabbibo angle θC .
It is instructive to take a closer look at the case of N = 2 generations: a
general unitary 2× 2 matrix can be written as

V =

(
Aeiϕ Beiϕ

−B∗ A∗

)
=

(
|A|eiαeiϕ |B|eiβeiϕ
−|B|e−iβ |A|e−iα

)
, (7.1.13)

where A and B are arbitrary complex numbers with phases α and β, and
|A|2 + |B|2 = 1. (ϕ is the phase of Det V , which generalises our former
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representation of SU(2) matrices.) We can now use the freedom to introduce
DU and DD in order to change any given V to

V ′ = DU†V DD =

(
cos θC sin θC
− sin θC cos θC

)
. (7.1.14)

Choosing

DU = diag(ei(ϕ+β), e−iα) , DD = diag(ei(β−α), 1) , (7.1.15)

one indeed turns the general U(2) matrix V (which seems to have four
parameters) into the special form V ′ ∈ SO(2), which only depends on the
Cabbibo angle. Experiments led to a Cabbibo angle of θc ' 130. Since it is
non-zero, flavour-changing weak decays do occur, but their transition rate
is slowed down by the relatively modest mixing angle.

As we have seen, for a general number of generations N the number of
physical parameters in the matrix V is (N − 1)2. For N > 2 the matrix V ′

will in general not belong to SO(N) (which has onlyN(N−1)/2 parameters)
because

(N − 1)2 − N(N − 1)

2
=

(N − 1)(N − 2)

2
> 0 . (7.1.16)

For example, for the physical case of N = 3 generations, the CKM matrix
contains (N−1)(N−2)/2 = 1 complex phase, in addition to N(N−1)/2 = 3
Cabbibo-type Euler angles. In the quark sector alone the Yukawa couplings
give rise to ten free parameters of the Standard Model — the six quark
masses, three mixing angles, and one complex phase. Experimentalists are
working hard on the identification of these parameters and there are con-
straints for them based on a variety of processes.
For instance, one considers the interaction between two leptonic currents
trough a gauge boson W±. Such a scattering amplitude is proportional to
the product of two CKM matrix elements — one for each flavour changing
transition in the two currents. If we invert the directions of the scattering
and replace the particles involved by their anti-particles (and vice versa),
we obtain the complex conjugate of the above product of matrix elements,
c.f. eq. (7.1.8). In total this means that a CP transformation changes V to
V †. Therefore, the complex phase in the CKM matrix implies a violation
of CP invariance (if this phase is non-zero).
The breaking of CP invariance was in fact observed already in 1966 at CERN
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in the decay of neutral kaons. For a long period, this remained the only
process where CP violation could be detected. Recently it was reported
that this has also been achieved in decay of neutral mesons which include
the b quark.

As long as we consider massless neutrinos, we don’t need to worry about
lepton mixing. The lepton analog of the CKM matrix would be given by

W = Uν†
L U

E
L . (7.1.17)

However, if all neutrinos are massless one can replace Uν
L by U ′νL = Uν

LD
ν —

now with any unitary matrix Dν (not necessarily diagonal) — and still keep
the neutrino mass matrix unchanged. Choosing Dν = Uν†

L U
E
L one simply

obtains W = 11.
Once we do introduce neutrino mass terms, we have an analog of the CKM
matrix in the lepton sector. Without Majorana mass terms constructed
from the right-handed neutrinos, there are simply (N−1)2 additional lepton
mixing parameters, including another CP violating phase parameter. With
Majorana mass terms present, the situation is more complicated.
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Chapter 8

The Structure of the Strong
Interactions

In this chapter we add the gluons as the last ingredient to the standard
model. Without the gluons present, we had created a world of Higgs par-
ticles, W and Z bosons, photons, as well as charged leptons and quarks.
In particular, in this world there would be particles with fractional electric
charges (the quarks). Single quarks have never been observed despite nu-
merous experimental efforts (people have even looked inside oyster shells).
In fact, the strong interactions are so strong that quarks are permanently
confined. The confining force is mediated by the gluons, whose presence thus
totally changes the low-energy physics. As a consequence of confinement
colored quarks and gluons form color-neutral hadrons which have integer
electric charges. Hadrons are baryons (three quark states), mesons (quark-
anti-quark states), or more exotic creatures like glueballs. Confinement is
a complicated dynamical phenomenon that is presently only poorly under-
stood. We are far from a satisfactory quantitative understanding of the
properties of hadrons. Fortunately, when we want to understand hadrons,
we need not consider the entire standard model. At low energies, the strong
interactions are much stronger than the electroweak forces which can be
neglected to a first approximation. Still, leptons can be used as electromag-
netic or weak probes to investigate the complex interior of hadrons. The
part of the standard model that is most relevant at low energies is just
quantum chromodynamics (QCD), the SU(3)c gauge theory of quarks and
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gluons. The original Yukawa couplings of the standard model enter QCD
in the form of quark mass parameters. However, due to confinement, these
parameters no longer represent the masses of physical observable particles.
The light quarks up, down and strange have mass terms below the typical
QCD energy scale ΛQCD ≈ 0.2 GeV, while the quarks charm, bottom and
top are much heavier. These quarks do not play a role in QCD at low
energies.

In general, quark mass terms do not play a dominant role in the QCD
dynamics. In particular, the masses of hadrons are not at all the sum of the
masses of the quarks within them. Even with exactly massless quarks, due
to confinement the hadrons (except for the Goldstone bosons among them)
would still have masses of the order of ΛQCD. The strong binding energy
of quarks and gluons manifests itself as the mass of hadrons. Often one
can read that the origin of mass in the universe is the Higgs mechanism,
and indeed we have seen that the quark masses would be zero if the Higgs
potential would not have the Mexican hat shape. However, the dominant
contribution to the mass of the matter that surrounds us is due to protons
and neutrons, and thus due to QCD binding energy.

Despite the fact that quarks do not exist as free particles, there is a lot of
indirect experimental evidence for quarks, thanks to another fundamental
property of the strong interactions. At high energies QCD is asymptotically
free, i.e. quarks and gluons behave more like free particles, which can be
observed in deep inelastic lepton-hadron scattering processes. The high-
energy physics of QCD is accessible to perturbative calculations. Lattice
gauge theory allows us to perform nonperturbative QCD calculations from
first principles. In practice, these calculations require a very large compu-
tational effort and suffer from numerous technical problems. Still, there is
little doubt that QCD will eventually be solved quantitatively using lattice
methods. Even without deriving hadron properties using lattice methods,
one can deduce some aspects just by using group theoretical arguments.

When the mass terms of the light u and d quarks are neglected, the
QCD Lagrangian has a global SU(2)L ⊗ SU(2)R chiral symmetry. Hence,
one would at first expect corresponding degeneracies in the hadron spec-
trum. Since this is not what is actually observed, one concludes that chiral
symmetry is spontaneously broken. After spontaneous symmetry break-
ing only a SU(2)L=R symmetry remains intact. When a global, continuous
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symmetry breaks spontaneously, the Goldstone phenomenon gives rise to a
number of massless particles. In QCD these Goldstone bosons are the three
pions π+, π0 and π−. Due to the small but nonzero quark masses chiral
symmetry is also explicitly broken, and the pions are not exactly massless.
Chiral symmetry leads to interesting predictions about the low energy dy-
namics of QCD. A systematic method to investigate this is provided by
chiral perturbation theory, which is based on low energy pion effective La-
grangians.

8.1 Quantum Chromodynamics

We introduce the gluons via an algebra-valued gauge potential

Gµ(x) = iGa
µ(x)λa, a ∈ {1, 2, ..., 8}. (8.1.1)

The gluon field strength is

Gµν(x) = ∂µGν(x)− ∂νGµ(x) + gs[Gµ(x), Gν(x)]. (8.1.2)

where gs is the dimensionless gauge coupling constant of the strong inter-
actions. We postulate the usual behavior under gauge transformations

G′µ(x) = g(x)(Gµ(x) +
1

gs
∂µ)g+(x). (8.1.3)

In contrast to an Abelian gauge theory the field strength is not gauge in-
variant. It transforms as

G′µν(x) = g(x)Gµν(x)g+(x). (8.1.4)

The QCD Lagrange function takes the gauge invariant form

LQCD(Ψ̄,Ψ, Gµ) =
∑
f

Ψ̄f (x)(iγµ(∂µ + gsGµ(x))−mf )Ψf (x)

− 1

4
TrGµν(x)Gµν(x). (8.1.5)

The quark field Ψf = ΨfL + ΨfR with the flavor index f ∈ {u, d, s} is just
a collection of the quark fields we had already introduced in the previous
chapter. For example, Ψu = uL + uR.
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An important difference between Abelian and non-Abelian gauge theo-
ries is that in a non-Abelian gauge theory the gauge fields are themselves
charged. The non-Abelian charge of the gluons leads to a self interaction,
that is not present for the Abelian photons. The interaction results from
the commutator term in the gluon field strength. It gives rise to three and
four gluon vertices in the QCD Feynman rules. We will not derive the QCD
Feynman rules here, we discuss them only qualitatively. The terms in the
Lagrange function that are quadratic in Gµ give rise to the free gluon prop-
agator. Due to the commutator term, however, there are also terms cubic
and quartic in Gµ, that lead to the gluon self interaction vertices. Cor-
respondingly, there is a free quark propagator and a quark-gluon vertex.
The perturbative quantization of a non-Abelian gauge theory requires to
fix the gauge. In the Landau gauge ∂µGµ = 0 this leads to so-called ghost
fields, which are scalars, but still anticommute. Correspondingly, there is
a ghost propagator and a ghost-gluon vertex. In QCD the ghost fields are
also color octets. They are only a mathematical tool arising in the loops
of a Feynman diagram, not in external legs. Strictly speaking one could
say the same about quarks and gluons, because they also cannot exist as
asymptotic states.

The objects in the classical QCD Lagrange function do not directly
correspond to observable quantities. Both fields and coupling constants get
renormalized. In particular, the formal expression

Z =

∫
DΨ̄DΨDG exp(−i

∫
d4x LQCD(Ψ̄,Ψ, Gµ)) (8.1.6)

for the QCD path integral is undefined, i.e. divergent, until it is regular-
ized and appropriately renormalized. In gauge theories it is essential that
gauge invariance is maintained in the regularized theory. A regularization
scheme that allows nonperturbative calculations defines the path integral
on a space-time lattice with spacing ε. The renormalization of the theory
corresponds to performing the continuum limit ε → 0 in a controlled way,
such that ratios of particle masses — i.e. the physics — remains constant.
A perturbative regularization scheme works with single Feynman diagrams.
The loop integrations in the corresponding mathematical expressions can
be divergent in four dimensions. In dimensional regularization one works
in d dimensions (by analytic continuation in d) and one performs the limit
ε = 4− d→ 0 again such that the physics remains constant. To absorb the
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divergences, quark and gluon fields are renormalized

Ψ(x) = ZΨ(ε)1/2ΨR(x), Gµ(x) = ZG(ε)1/2GR
µ (x), (8.1.7)

and also the coupling constant is renormalized via

gs =
Z(ε)

ZΨ(ε)ZG(ε)1/2
gRs . (8.1.8)

Here the unrenormalized quantities as well as the Z-factors are divergent,
but the renormalized quantities are finite in the limit ε → 0. Correspond-
ingly, one renormalizes the n-point Green’s functions and the resulting ver-
tex functions

ΓRnΨ,nG
(ki, pj) = lim

ε→0
ZΨ(ε)nΨ/2ZG(ε)nG/2ΓnΨ,nG(ki, pj, ε). (8.1.9)

Demanding convergence of the renormalized vertex function fixes the diver-
gent part of the Z-factors. To fix the finite part as well one must specify
renormalization conditions. In QCD this can be done using the vertex func-
tions Γ0,2, Γ2,0 and Γ2,1, i.e. the inverse gluon and quark propagators and
the quark-gluon vertex. As opposed to QED, where mass and charge of the
electron are directly observable, in QCD one chooses an arbitrary scale M
to formulate the renormalization conditions

ΓR0,2(p,−p)µνab |p2=−M2 = i(−gµνp2 + pµpν)δab,

ΓR2,0(k, k)|k2=−M2 = iγµkµ,

ΓR2,1(k, k, k)µa |k2=−M2 = −igRs
λa
2
γµ. (8.1.10)

The renormalized vertex functions are functions of the renormalized cou-
pling constant gRs and of the renormalization scale M, while the unrenor-
malized vertex functions depend on the bare coupling gs and on the regu-
larization parameter ε (the cut-off). Hence, there is a hidden relation

gRs = gRs (g, ε,M). (8.1.11)

This relation defines the β-function

β(gRs ) = lim
ε→0
M ∂

∂M
gRs (g, ε,M). (8.1.12)
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The β-function can be computed in QCD perturbation theory. To leading
order in the coupling constant one obtains

β(gRs ) = −(gRs )3

16π2
(11− 2

3
Nf ). (8.1.13)

Here Nf is the number of quark flavors. Fixed points g∗s of the renormal-
ization group are of special interest. They are invariant under a change of
the arbitrarily chosen renormalization scaleM, and hence they correspond
to zeros of the β-function. In QCD there is a single fixed point at g∗s = 0.
For

11− 2

3
Nf > 0 ⇒ Nf ≤ 16, (8.1.14)

i.e. for not too many flavors, the β-function is negative close to the fixed
point. This behavior is known as asymptotic freedom. It is typical for
non-Abelian gauge theories in four dimensions, as long as there are not too
many fermions or scalars. Asymptotic freedom is due to the self interaction
of the gauge field, that is not present in an Abelian theory. We now use

β(gRs ) =M ∂

∂M
gRs = −(gRs )3

16π2
(11− 2

3
Nf ) ⇒

∂gRs
∂M

/(gRs )3 =
1

2

∂(gRs )2

∂M
/(gRs )4 = −

11− 2
3
Nf

16π2

1

M
⇒

∂(gRs )2

(gRs )4
= −33− 2Nf

24π2

∂M
M

⇒ 1

(gRs )2
=

33− 2Nf

24π2
log

M
ΛQCD

.

(8.1.15)

Here ΛQCD is an integration constant. Introducing the renormalized strong
fine structure constant

αRs =
(gRs )2

4π
, (8.1.16)

we obtain

αRs (M) =
6π

33− 2Nf

1

log(M/ΛQCD)
. (8.1.17)

At high energy scales M the renormalized coupling constant slowly (i.e.
logarithmically) goes to zero. Hence the quarks then behave like free parti-
cles.

The classical Lagrange function for QCD with massless fermions has
no dimensionful parameter. Hence the classical theory is scale invariant,
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i.e. to each solution with energy E correspond other solutions with scaled
energy λE for any arbitrary scale parameter λ. Scale invariance, however,
is anomalous. It does not survive the quantization of the theory. This
explains why there is a proton with a very specific mass E = Mp, but no
scaled version of it with mass λMp. We now understand better why this
is the case. In the process of quantization the dimensionful scale M (and
related to this ΛQCD) emerged, leading to an explicit breaking of the scale
invariance of the classical theory. Scale transformations are therefore no
symmetry of QCD.

8.2 Chiral Symmetry

Chiral symmetry is an approximate global symmetry of the QCD Lagrange
density that results from the fact that the u and d quark masses are small
compared to the typical QCD scale ΛQCD. Neglecting the quark masses, the
QCD Lagrange density is invariant against separate U(2) transformations
of the left- and right-handed quarks, such that we have a U(2)L ⊗ U(2)R
symmetry. We can decompose each U(2) symmetry into an SU(2) and
a U(1) part, and hence we obtain SU(2)L ⊗ SU(2)R ⊗ U(1)L ⊗ U(1)R.
The U(1)B symmetry related to baryon number conservation corresponds
to simultaneous rotations of left- and right-handed quarks, i.e. U(1)B =
U(1)L=R. The remaining so-called axial U(1) is affected by the Adler-Bell-
Jackiw anomaly. It is explicitly broken by quantum effects, and hence it is
not a symmetry of QCD. Later we will return to the U(1) problem related
to this symmetry. Here we are interested in the ordinary (non-anomalous)
symmetries of QCD — the SU(2)L ⊗ SU(2)R ⊗ U(1)B chiral symmetry.
Based on this symmetry one would expect corresponding degeneracies in the
QCD spectrum. Indeed we saw that the hadrons can be classified as isospin
multiplets. The isospin transformations are SU(2)I rotations, that act on
left- and right-handed fermions simultaneously, i.e. SU(2)I = SU(2)L=R.
The symmetry that is manifest in the spectrum is hence SU(2)I ⊗ U(1)B,
but not the full chiral symmetry SU(2)L⊗SU(2)R⊗U(1)B. One concludes
that chiral symmetry must be spontaneously broken. The order parameter
of chiral symmetry breaking is the so-called chiral condensate 〈Ψ̄Ψ〉. When a
continuous global symmetry breaks spontaneously, massless particles — the
Goldstone bosons — appear in the spectrum. According to the Goldstone
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theorem the number of Goldstone bosons is the difference of the number
of generators of the full symmetry group and the subgroup remaining after
spontaneous breaking. In our case we hence expect 3 + 3 + 1 − 3 − 1 = 3
Goldstone bosons. In QCD they are identified as the pions π+, π0 and π−.
Of course, the pions are light, but they are not massless. This is due to
a small explicit chiral symmetry breaking related to the small but nonzero
masses of the u and d quarks. Chiral symmetry is only an approximate
symmetry, and the pions are only pseudo-Goldstone bosons. It turns out
that the pion mass squared is proportional to the quark mass. When we
also consider the s quark as being light, chiral symmetry can be extended to
SU(3)L ⊗ SU(3)R ⊗ U(1)B, which then breaks spontaneously to SU(3)F ⊗
U(1)B. Then one expects 8 + 8 + 1 − 8 − 1 = 8 Goldstone bosons. The
five additional bosons are identified as the four kaons K+, K0, K̄0, K− and
the η-meson. Since the s quark mass is not really negligible, these pseudo
Goldstone bosons are heavier than the pion.

The Goldstone bosons are the lightest particles in QCD. Therefore they
determine the dynamics at small energies. One can construct effective the-
ories that are applicable in the low energy regime, and that are formulated
in terms of Goldstone boson fields. At low energies the Goldstone bosons
interact only weakly and can hence be treated perturbatively. This is done
systematically in chiral perturbation theory.

Let us consider the quark part of the QCD Lagrange density

L(Ψ̄,Ψ, Gµ) = Ψ̄(x)(iγµ(∂µ + gsGµ(x))−M)Ψ(x). (8.2.1)

We now decompose the quark fields in right- and left-handed components

ΨR(x) =
1

2
(1 + γ5)Ψ(x), ΨL(x) =

1

2
(1− γ5)Ψ(x), Ψ(x) = ΨR(x) + ΨL(x).

(8.2.2)
Here we have used

γ5 = iγ0γ1γ2γ3, {γµ, γν} = 2gµν , {γµ, γ5} = 0. (8.2.3)

Next we consider the adjoint spinors

Ψ̄R(x) = ΨR(x)+γ0 = Ψ(x)+ 1

2
(1 + γ+

5 )γ0 = Ψ(x)+γ0 1

2
(1− γ5)

= Ψ̄(x)
1

2
(1− γ5),
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Ψ̄L(x) = ΨL(x)+γ0 = Ψ(x)+ 1

2
(1− γ+

5 )γ0 = Ψ(x)+γ0 1

2
(1 + γ5)

= Ψ̄(x)
1

2
(1 + γ5). (8.2.4)

Here we used

γ0γ+
5 γ

0 = −γ5. (8.2.5)

Inserting the decomposed spinors in the Lagrange density we obtain

L(Ψ̄,Ψ, Gµ) = (Ψ̄R(x) + Ψ̄L(x))(iγµ(∂µ + gsGµ(x))−M)(ΨR(x) + ΨL(x)).
(8.2.6)

First, we investigate the γµ term

Ψ̄R(x)iγµ(∂µ + gsGµ(x))ΨL(x)

= Ψ̄(x)
1

2
(1− γ5)iγµ(∂µ + gsGµ(x))

1

2
(1− γ5)Ψ(x)

= Ψ̄(x)
1

4
(1− γ5)(1 + γ5)iγµ(∂µ + gsGµ(x))Ψ(x) = 0. (8.2.7)

On the other hand, for the mass term one finds

Ψ̄R(x)MΨR(x) = Ψ̄(x)
1

2
(1− γ5)M1

2
(1 + γ5)Ψ(x)

= Ψ̄(x)
1

4
(1− γ5)(1 + γ5)MΨ(x) = 0. (8.2.8)

Hence, we can write

L(Ψ̄,Ψ, Gµ) = Ψ̄R(x)iγµ(∂µ + gsGµ(x))ΨR(x)

+ Ψ̄L(x)iγµ(∂µ + gsGµ(x))ΨL(x)

− Ψ̄R(x)MΨL(x)− Ψ̄L(x)MΨR(x). (8.2.9)

The γµ term decomposes into two decoupled contributions from right- and
left-handed quarks. This part of the Lagrange density is invariant against
separate U(Nf ) transformations of the right- and left-handed components
in flavor space

Ψ′R(x) = RΨR(x), Ψ̄′(x) = Ψ̄R(x)R+, R ∈ U(Nf )R,

Ψ′L(x) = LΨL(x), Ψ̄′(x) = Ψ̄L(x)L+, L ∈ U(Nf )L. (8.2.10)
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Without the mass term the classical QCD Lagrange density hence has a
U(Nf )L ⊗ U(Nf )R symmetry. Due to the anomaly in the axial U(1) sym-
metry the symmetry of the quantum theory is reduced to

SU(Nf )L⊗SU(Nf )R⊗U(1)L=R = SU(Nf )L⊗SU(Nf )R⊗U(1)B. (8.2.11)

Of course, the chiral symmetry is only approximate, because the mass term
couples right- and left-handed fermions. In addition, the mass matrix does
not commute withR and L. If all quarks had the same mass, i.e. ifM = m1I,
one would have

Ψ̄′R(x)MΨ′L(x) = Ψ̄R(x)R+m1ILΨL(x) = Ψ̄R(x)R+LMΨL(x). (8.2.12)

Then the mass term is invariant only against simultaneous transformations
R = L such thatR+L = R+R = 1I. Hence, chiral symmetry is then explicitly
broken to

SU(Nf )L=R ⊗ U(1)L=R = SU(Nf )F ⊗ U(1)B, (8.2.13)

which corresponds to the flavor and baryon number symmetry. In reality
the quark masses are different, and the symmetry is in fact explicitly broken
to

⊗fU(1)f = U(1)u ⊗ U(1)d ⊗ U(1)s. (8.2.14)

It is, however, much more important that the u and d quark masses are
small, and can hence almost be neglected. Therefore, in reality the chiral
SU(2)L⊗SU(2)R⊗U(1)B⊗U(1)s symmetry is almost unbroken explicitly.
Since the s quark is heavier, SU(3)L⊗SU(3)R⊗U(1)B is a more approximate
chiral symmetry, because it is explicitly more strongly broken.

Since the masses of the u and d quarks are so small, the SU(2)L⊗SU(2)R
chiral symmetry should work very well. Hence, one would expect that the
hadron spectrum shows corresponding degeneracies. Let us neglect quark
masses and consider the then conserved currents

JLaµ (x) = Ψ̄L(x)γµ
σa

2
ΨL(x),

JRaµ (x) = Ψ̄R(x)γµ
σa

2
ΨR(x), (8.2.15)

where a ∈ {1, 2, 3}. From the right- and left-handed currents we now con-
struct vector and axial currents

V a
µ (x) = JLaµ (x) + JRaµ (x)
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= Ψ̄(x)
1

2
(1 + γ5)γµ

σa

2

1

2
(1− γ5)Ψ(x)

+ Ψ̄(x)
1

2
(1− γ5)γµ

σa

2

1

2
(1 + γ5)Ψ(x)

= Ψ̄(x)
1

2
(1 + γ5)γµ

σa

2
Ψ(x) + Ψ̄(x)

1

2
(1− γ5)γµ

σa

2
Ψ(x)

= Ψ̄(x)γµ
σa

2
Ψ(x),

Aaµ(x) = JLaµ (x)− JRaµ (x) = Ψ̄(x)γ5γµ
σa

2
Ψ(x). (8.2.16)

Let us consider an SU(2)L ⊗ SU(2)R invariant state |Φ〉 as a candidate for
the QCD vacuum. Then

〈Φ|JLaµ (x)JRbν (y)|Φ〉 = 〈Φ|JRaµ (x)JLbν (y)|Φ〉 = 0, (8.2.17)

and hence
〈Φ|V a

µ (x)V b
ν (y)|Φ〉 = 〈Φ|Aaµ(x)Abν(y)|Φ〉. (8.2.18)

On both sides of the equation one can insert complete sets of states between
the two operators. On the left hand side states with quantum numbers JP =
0+, 1− contribute, while on the right hand side the nonzero contributions
come from states 0−, 1+. The two expressions can be equal only if the
corresponding parity partners are energetically degenerate. In the observed
hadron spectrum there is no degeneracy of particles with even and odd
parity, not even approximately. We conclude that the SU(2)L ⊗ SU(2)R
invariant state |Φ〉 is not the real QCD vacuum. The true vacuum |0〉 cannot
be chirally invariant. The same is true for all other eigenstates of the QCD
Hamiltonian. This means that chiral symmetry must be spontaneously
broken.

Let us now consider the states

Qa
V |0〉 =

∫
d3xV a

0 (~x, 0)|0〉,

Qa
A|0〉 =

∫
d3xAa0(~x, 0)|0〉, (8.2.19)

constructed from the vacuum by acting with the vector and axial charge
densities. If the vacuum were chirally symmetric we would have

Qa
V |Φ〉 = Qa

A|Φ〉 = 0. (8.2.20)
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The real QCD vacuum is not chirally invariant because

Qa
A|0〉 6= 0. (8.2.21)

Since the axial current is conserved (for massless quarks ∂µAaµ(x) = 0) we
have

[HQCD, Q
a
A] = 0. (8.2.22)

Hence the new state Qa
A|0〉 is again an eigenstate of the QCD Hamilton

operator
HQCDQ

a
A|0〉 = Qa

AHQCD|0〉 = 0 (8.2.23)

with zero energy. This state corresponds to a massless Goldstone boson with
quantum numbers JP = 0−. These pseudoscalar particles are identified with
the pions of QCD.

If one would also have Qa
V |0〉 6= 0, the vector flavor symmetry would

also be spontaneously broken, and there would be another set of scalar
Goldstone bosons with JP = 0+. Such particles do not exist in the hadron
spectrum, and we conclude that the isospin symmetry SU(2)I = SU(2)L=R

is not spontaneously broken. As we have seen before, the isospin symmetry
is indeed manifest in the hadron spectrum.

One can also detect spontaneous chiral symmetry breaking by investi-
gating the chiral order parameter

〈Ψ̄Ψ〉 = 〈0|Ψ̄(x)Ψ(x)|0〉 = 〈0|Ψ̄R(x)ΨL(x) + Ψ̄L(x)ΨR(x)|0〉. (8.2.24)

The order parameter is invariant against simultaneous transformations R =
L, but not against general chiral rotations. If chiral symmetry would be
intact the chiral condensate would vanish. When the symmetry is sponta-
neously broken, on the other hand, 〈Ψ̄Ψ〉 6= 0.
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Chapter 9

Phenomenology of the Strong
Interactions

In this chapter we address the non-perturbative dynamics of quarks and
gluons, based on the rather naive constituent quark model. Without the
gluons present, we had created a world of Higgs particles, W and Z bosons,
photons, as well as charged leptons and quarks. In particular, in this world
there would be particles with fractional electric charges (the quarks). Sin-
gle quarks have never been observed despite numerous experimental efforts
(people have even looked inside oyster shells). In fact, the strong inter-
actions are so strong that quarks are permanently confined. The confin-
ing force is mediated by the gluons, whose presence thus totally changes
the low-energy physics. As a consequence of confinement colored quarks
and gluons form color-neutral hadrons which have integer electric charges.
Hadrons are baryons (three quark states), mesons (quark-anti-quark states),
or more exotic creatures like glueballs. Confinement is a complicated dy-
namical phenomenon that is presently only poorly understood analytically.
We are far from a satisfactory quantitative understanding of the properties
of hadrons. Fortunately, when we want to understand hadrons, we need
not consider the entire standard model. At low energies, the strong interac-
tions are much stronger than the electroweak forces which can be neglected
to a first approximation. Still, leptons can be used as electromagnetic or
weak probes to investigate the complex interior of hadrons. The part of the
standard model that is most relevant at low energies is just quantum chro-
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modynamics (QCD), the SU(3)c gauge theory of quarks and gluons. The
original Yukawa couplings of the standard model enter QCD in the form
of quark mass parameters. However, due to confinement, these parameters
no longer represent the masses of physical observable particles. The light
quarks up, down and strange have mass terms below the typical QCD en-
ergy scale ΛQCD ≈ 0.2 GeV, while the quarks charm, bottom and top are
much heavier. These quarks do not play a role in QCD at low energies.

In general, quark mass terms do not play a dominant role in the QCD
dynamics. In particular, the masses of hadrons are not at all the sum of the
masses of the quarks within them. Even with exactly massless quarks, due
to confinement the hadrons (except for the Goldstone bosons among them)
would still have masses of the order of ΛQCD. The strong binding energy
of quarks and gluons manifests itself as the mass of hadrons. Often one
can read that the origin of mass in the universe is the Higgs mechanism,
and indeed we have seen that the quark masses would be zero if the Higgs
potential would not have the Mexican hat shape. However, the dominant
contribution to the mass of the matter that surrounds us is due to protons
and neutrons, and thus due to QCD binding energy.

Despite the fact that quarks do not exist as free particles, there is a lot of
indirect experimental evidence for quarks, thanks to another fundamental
property of the strong interactions. At high energies QCD is asymptotically
free, i.e. quarks and gluons behave more like free particles, which can be
observed in deep inelastic lepton-hadron scattering processes. The high-
energy physics of QCD is accessible to perturbative calculations. Lattice
gauge theory allows us to perform nonperturbative QCD calculations from
first principles. In practice, these calculations require a very large compu-
tational effort and suffer from numerous technical problems. Still, there is
little doubt that QCD will eventually be solved quantitatively using lattice
methods. Even without deriving hadron properties using lattice methods,
one can deduce some aspects just by using group theoretical arguments.

When the mass terms of the light u and d quarks are neglected, the
QCD Lagrangian has a global SU(2)L ⊗ SU(2)R chiral symmetry. Hence,
one would at first expect corresponding degeneracies in the hadron spec-
trum. Since this is not what is actually observed, one concludes that chiral
symmetry is spontaneously broken. After spontaneous symmetry break-
ing only a SU(2)L=R symmetry remains intact. When a global, continuous
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symmetry breaks spontaneously, the Goldstone phenomenon gives rise to a
number of massless particles. In QCD these Goldstone bosons are the three
pions π+, π0 and π−. Due to the small but nonzero quark masses chiral
symmetry is also explicitly broken, and the pions are not exactly massless.
Chiral symmetry leads to interesting predictions about the low energy dy-
namics of QCD. A systematic method to investigate this is provided by
chiral perturbation theory, which is based on low energy pion effective La-
grangians.

9.1 Isospin Symmetry

Proton and neutron have almost the same masses

Mp = 0.938 GeV, Mn = 0.940 GeV. (9.1.1)

While the proton seems to be absolutely stable, a free neutron decays ra-
dioactively into a proton, an electron and an electron-anti-neutrino n →
p + e + ν̄e. Protons and neutrons (the nucleons) are the constituents of
atomic nuclei. Originally, Yukawa postulated a light particle mediating the
interaction between protons and neutrons. This π-meson or pion is a bo-
son with spin 0, which exist in three charge states π+, π0 and π−. The
corresponding masses are

Mπ+ = Mπ− = 0.140 GeV, Mπ0 = 0.135 GeV. (9.1.2)

In pion-nucleon scattering a resonance occurs in the total cross section as a
function of the pion-nucleon center of mass energy. The resonance energy
is interpreted as the mass of an unstable particle — the so-called ∆-isobar.
One may view the ∆-particle as an excited state of the nucleon. It exists
in four charge states ∆++, ∆+, ∆0 and ∆− with masses

M∆++ ≈M∆+ ≈M∆0 ≈M∆− ≈ 1.232 GeV (9.1.3)

Similar to pion-nucleon scattering there is also a resonance in pion-pion
scattering. This so-called ρ-meson comes in three charge states ρ+, ρ0 and
ρ− with masses

Mρ+ ≈Mρ0 ≈Mρ− ≈ 0.768 GeV. (9.1.4)
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Hadron Representation I I3 Q S
p, n {2} 1

2
1
2
, −1

2
1, 0 1

2

∆++, ∆+, ∆0, ∆− {4} 3
2

3
2
, 1

2
, −1

2
, −3

2
2, 1, 0, -1 3

2

π+, π0, π− {3} 1 1, 0, -1 1, 0, -1 0
ρ+, ρ0, ρ− {3} 1 1, 0, -1 1, 0, -1 1

Table 9.1: The isospin classification of hadrons.

Particles with different electric charges have (almost) degenerate masses,
and it is natural to associate this with an (approximate) symmetry. This
so-called isospin symmetry is similar to the ordinary spin SU(2) rotational
symmetry. Isospin is, however, not related to space-time transformations, it
is an intrinsic symmetry. As we know each total spin S = 0, 1/2, 1, 3/2, ... is
associated with an irreducible representation of the SU(2)S rotation group
containing 2S + 1 states distinguished by their spin projection

Sz = −S,−S + 1, ..., S − 1, S. (9.1.5)

In complete analogy the representations of the SU(2)I isospin symmetry
group are characterized by their total isospin I = 0, 1/2, 1, 3/2, .... The
states of an isospin representation are distinguished by their isospin projec-
tion

I3 = −I,−I + 1, ..., I − 1, I. (9.1.6)

A representation with isospin I contains 2I + 1 states and is denoted by
{2I+1}. We can classify the hadrons by their isospin. This is done in table
9.1. For the baryons (nucleon and ∆) isospin projection and electric charge
are related by Q = I3 + 1

2
, and for the mesons (π and ρ) Q = I3.

Isospin is an (approximate) symmetry of the strong interactions. For
example, the proton-pion scattering reaction p + π → ∆ is consistent with
isospin symmetry because the coupling of the isospin representations of
nucleon and pion

{2} ⊗ {3} = {2} ⊕ {4} (9.1.7)

does indeed contain the quadruplet isospin 3/2 representation of the ∆-
isobar. The isospin symmetry of the hadron spectrum indicates that the
strong interactions are charge independent. This is no surprise because
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the charge Q is responsible for the electromagnetic but not for the strong
interactions.

9.2 Nucleon and ∆-Isobar in the Constituent

Quark Model

We want to approach the question of the hadronic constituents by inves-
tigating various symmetries. First we consider isospin. Since the hadrons
form isospin multiplets the same should be true for their constituents. The
only SU(2) representation from which we can generate all others is the
fundamental representation — the isospin doublet {2} with I = 1/2 and
I3 = ±1/2. We identify the two states of this multiplet with the constituent
quarks up (I3 = 1/2) and down (I3 = −1/2). A constituent quark is a
quasiparticle carrying the same quantum numbers as a fundamental (cur-
rent) quark, but also containing numerous gluons. After all, a constituent
quark is not a very well defined object. We can view it as a basic building
block for hadrons that plays a role in some simple phenomenological models
for the strong interactions. Still, the concept of constituent quarks leads to
a very successful group theoretical classification scheme for hadrons.

Since the ∆-isobar has isospin 3/2 it contains at least three constituent
quarks. We couple

{2} ⊗ {2} ⊗ {2} = ({1} ⊕ {3})⊗ {2} = {2} ⊕ {2} ⊕ {4}, (9.2.1)

and we do indeed find a quadruplet. For the charges of the baryons we
found

Q = I3 +
1

2
=

3∑
q=1

(I3q +
1

6
) =

3∑
q=1

Qq, (9.2.2)

and hence we obtain for the charges of the quarks

Qq = I3q +
1

6
, Qu =

1

2
+

1

6
=

2

3
, Qd = −1

2
+

1

6
= −1

3
. (9.2.3)

The quarks have fractional electric charges. Using Clebsch-Gordon coeffi-
cients of SU(2) one finds

1 2 3
3/2 = uuu ≡ ∆++,
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1 2 3
1/2 =

1√
3

(uud+ udu+ duu) ≡ ∆+,

1 2 3
−1/2 =

1√
3

(udd+ dud+ ddu) ≡ ∆0,

1 2 3
−3/2 = ddd ≡ ∆−. (9.2.4)

These isospin states are completely symmetric against permutations of the
constituent quarks.

We write the general coupling of the three quarks as

1 ⊗ 2 ⊗ 3 = 1 2 3 ⊕
1 2
3 ⊕

1 3
2 ⊕ 3

2
1

. (9.2.5)

Translated into SU(2) language this equation reads

{2} ⊗ {2} ⊗ {2} = {4} ⊕ {2} ⊕ {2} ⊕ {0}. (9.2.6)

Here {0} denotes an empty representation — one that cannot be realized in
SU(2) because the corresponding Young tableau has more than two rows.
We identify the totally symmetric representation as the four charge states

of the ∆-isobar, and we write as before 1 2 3
I3 .

Before we can characterize the state of the ∆-isobar in more detail we
must consider the other symmetries of the problem. The ∆-isobar is a
resonance in the scattering of spin 1/2 nucleons and spin 0 pions. The
experimentally observed spin of the resonance is 3/2. To account for this we
associate a spin 1/2 with the constituent quarks. Then, in complete analogy
to isospin, we can construct a totally symmetric spin representation for the
∆-particle

1 2 3
3/2 = ↑↑↑,

1 2 3
1/2 =

1√
3

(↑↑↓ + ↑↓↑ + ↓↑↑),

1 2 3
−1/2 =

1√
3

(↑↓↓ + ↓↑↓ + ↓↓↑),

1 2 3
−3/2 = ↓↓↓ . (9.2.7)
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The isospin-spin part of the ∆-isobar state hence takes the form

|∆I3Sz〉 = 1 2 3
I3

1 2 3
Sz . (9.2.8)

This state is symmetric with respect to both isospin and spin. Consequently,
it is symmetric under simultaneous isospin-spin permutations. For illustra-
tive purposes we write down the state for a ∆+ particle with spin projection
Sz = 1/2

|∆1

2

1

2
〉 =

1

3
(u ↑ u ↑ d ↓ +u ↑ u ↓ d ↑ +u ↓ u ↑ d ↑

+ u ↑ d ↑ u ↓ +u ↑ d ↓ u ↑ +u ↓ d ↑ u ↑
+ d ↑ u ↑ u ↓ +d ↑ u ↓ u ↑ +d ↓ u ↑ u ↑). (9.2.9)

One sees explicitly that this state is totally symmetric.

As we have seen, the Young tableau is associated with the isodou-
blet {2}. Hence, it is natural to expect that the nucleon state can be

constructed from it. Now we have two possibilities

1 2
3

I3 and

1 3
2

I3

corresponding to symmetric or antisymmetric couplings of the quarks 1 and
2. Using Clebsch-Gordon coefficients one finds

1 2
3

1/2 =
1√
6

(2uud− udu− duu),

1 2
3

−1/2 =
1√
6

(udd+ dud− 2ddu),

1 3
2

1/2 =
1√
2

(udu− duu),

1 3
2

−1/2 =
1√
2

(udd− dud). (9.2.10)

Proton and neutron have spin 1/2. Hence, we have two possible coupling

schemes

1 2
3

Sz and

1 3
2

Sz . We now want to combine the mixed isospin
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and spin permutation symmetries to an isospin-spin representation of defi-
nite permutation symmetry. This requires to reduce the inner product

I3 × Sz = I3Sz ⊕ I3Sz ⊕ I3Sz (9.2.11)

in S3. The two isospin and spin representations can be coupled to a symmet-
ric, mixed or antisymmetric isospin-spin representation. As for the ∆-isobar
we want to couple isospin and spin symmetrically. To do this explicitly, we
need the Clebsch-Gordon coefficients of the group S3. One finds

|NI3Sz〉 =
1√
2

(

1 2
3

I3

1 2
3

Sz +

1 3
2

I3

1 3
2

Sz). (9.2.12)

In our construction we have implicitly assumed that the orbital angular
momentum of the constituent quarks inside a hadron vanishes. Then the
orbital state is completely symmetric in the coordinates of the quarks. The
orbital part of the baryon wave function therefore is described by the Young

tableau . Since also the isospin-spin part is totally symmetric, the
baryon wave function is completely symmetric under permutations of the
quarks. Since we have treated constituent quarks as spin 1/2 fermions,
this contradicts the Pauli principle which requires a totally antisymmetric

fermion wave function, and hence the Young tableau . To satisfy the

Pauli principle the color symmetry comes to our rescue. In SU(3)c,
corresponds to a singlet representation, which means that baryons are color-
neutral. Since we have three colors we can now completely antisymmetrize
three quarks

=
1√
6

(rgb− rbg + gbr − grb+ brg − bgr). (9.2.13)
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The color symmetry is the key to the fundamental understanding of the
strong interactions. As opposed to isospin, color is an exact and even local
symmetry.

9.3 Anti-Quarks and Mesons

We have seen that the baryons (nucleon and ∆) consist of three constituent
quarks (isospin doublets, spin doublets, color triplets). Now we want to
construct the mesons (pion and ρ) in a similar manner. Since these parti-
cles have spin 0 and 1 respectively, they must contain an even number of
constituent quarks. When we use two quarks, i.e. when we construct states
like uu, ud or dd, the resulting electric charges are 4/3, 1/3 and −2/3 in
contradiction to experiment. Also the coupling of two color triplets

⊗ = ⊕
{3} ⊗ {3} = {6} ⊕ {3̄}, (9.3.1)

does not contain a singlet as desired by the confinement hypothesis.

We have seen already that a representation together with its anti-repre-
sentation can always be coupled to a singlet. In SU(3) this corresponds
to

⊗ = ⊕
{3̄} ⊗ {3} = {1} ⊕ {8}, (9.3.2)

Hence it is natural to work with anti-quarks. Anti-quarks are isospin dou-
blets, spin doublets and color anti-triplets. We have quarks ū and d̄ with
electric charges Qū = −2/3 and Qd̄ = 1/3. Now we consider combinations
of quark and anti-quark ud̄, uū, dd̄ and dū, which have charges 1, 0 and −1
as we need them for the mesons. First we couple the isospin wave function

⊗ = ⊕
{2} ⊗ {2} = {3} ⊕ {1}, (9.3.3)
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and we obtain

1 = ud̄,

0 =
1√
2

(uū− dd̄),

−1 = dū,

0 =
1√
2

(uū+ dd̄). (9.3.4)

We proceed analogously for the spin and we obtain

|πI3Sz〉 = I3 Sz ,

|ρI3Sz〉 = I3 Sz . (9.3.5)

Since quarks and anti-quarks are distinguishable particles (for example they
have different charges) we don’t have to respect the Pauli principle in this
case. As opposed to the baryons here the coupling to color singlets follows
only from the confinement hypothesis.

Of course, we can combine isospin and spin wave functions also in a
different way

|ωI3Sz〉 = I3 Sz ,

|η′I3Sz〉 = I3 Sz . (9.3.6)

Indeed one observes mesons with these quantum numbers with massesMω =
0.782GeV and Mη′ = 0.958GeV.

9.4 Strange Hadrons

Up to now we have considered hadrons that consist of up and down quarks
and their anti-particles. However, one also observes hadrons containing
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strange quarks. The masses of the scalar (S = 0) mesons are given by

Mπ = 0.138GeV,MK = 0.496GeV,Mη = 0.549GeV,Mη′ = 0.958GeV,
(9.4.1)

while the vector (S = 1) meson masses are

Mρ = 0.770GeV,Mω = 0.783GeV,MK∗ = 0.892GeV,Mϕ = 1.020GeV.
(9.4.2)

Altogether we have nine scalar and nine vector mesons. In each group we
have so far classified four (π+, π0, π−, η′ and ρ+, ρ0, ρ−, ω). The number
four resulted from the SU(2)I isospin relation

{2̄} ⊗ {2} = {1} ⊕ {3}. (9.4.3)

The number nine then suggests to consider the corresponding SU(3) identity

{3̄} ⊗ {3} = {1} ⊕ {8}. (9.4.4)

Indeed we obtain nine mesons if we generalize isospin to a larger symmetry
SU(3)F . This so-called flavor group has nothing to with with the color sym-
metry SU(3)c. It is only an approximate symmetry of QCD, with SU(2)I
as a subgroup. In SU(3)F we have another quark flavor s — the strange
quark.

The generators of SU(3) can be chosen as follows

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,

λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

(9.4.5)

Two of the generators commute with each other [λ3, λ8] = 0. We say that
the group SU(3) has rank 2. One can now identify the generators of the
isospin subgroup SU(2)I

I1 =
1

2
λ1, I2 =

1

2
λ2, I3 =

1

2
λ3. (9.4.6)
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Also it is convenient to introduce the so-called strong hypercharge

Y =
1√
3
λ8, (9.4.7)

(not to be confused with the generator of U(1)Y gauge transformations in
the standard model). Then I2, I3 and Y commute with each other, and we
can characterize the states of an SU(3)F multiplet by their isospin quantum
numbers and by their hypercharge. Starting with the SU(3)F triplet we have

I2u =
1

2
(
1

2
+ 1)u =

3

4
u, I3u =

1

2
u, Y u =

1

3
u,

I2d =
1

2
(
1

2
+ 1)d =

3

4
d, I3d = −1

2
d, Y d =

1

3
d,

I2s = 0, I3s = 0, Y s = −2

3
s. (9.4.8)

The electric charge is now given by

Q = I3 +
1

2
Y, (9.4.9)

such that

Qu =
2

3
, Qd = −1

3
, Qs = −1

3
, (9.4.10)

i.e. the charge of the strange quark is the same as the one of the down
quark. If SU(3)F would be a symmetry as good as SU(2)I the states in an
SU(3)F multiplet should be almost degenerate. This is, however, not quite
the case, and SU(3)F is only approximately a symmetry of QCD.

Of course, we can also include the s quark in baryons. Then we have

{3} ⊗ {3} ⊗ {3} = {10} ⊕ 2{8} ⊕ {1} (9.4.11)

compared to the old SU(2)I result

{2} ⊗ {2} ⊗ {2} = {4} ⊕ 2{2} ⊕ {0}. (9.4.12)

Indeed one observes more baryons than just nucleon and ∆-isobar.

The baryon masses for the spin 1/2 baryons are

MN = 0.939GeV, MΛ = 1.116GeV, MΣ = 1.193GeV, MΞ = 1.318GeV,
(9.4.13)
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while the spin 3/2 baryon masses are

M∆ = 1.232GeV, MΣ∗ = 1.385GeV, MΞ∗ = 1.530GeV, MΩ = 1.672GeV.
(9.4.14)

Proton and neutron are part of an octet: is {2} in SU(2)I and {8} in

SU(3)F . The ∆-isobar is part of a decouplet: is {4} in SU(2)I and

{10} in SU(3)F . One does not find an SU(3)F singlet . This is because
a spatially symmetric color singlet wave function is totally antisymmetric.
To obtain a totally antisymmetric wave function also the spin part should

transform as . Of course, in SU(2)S this is impossible.

We want to assume that the SU(3)F symmetry is explicitly broken be-
cause the s quark is heavier than the u and d quarks. Based on the quark
content one would expect

MΣ∗ −M∆ = MΞ∗ −MΣ∗ = MΩ −MΞ∗ = Ms −Mq. (9.4.15)

In fact one finds experimentally

MΣ∗ −M∆ = 0.153GeV, MΞ∗ −MΣ∗ = 0.145GeV, MΩ−MΞ∗ = 0.142GeV.
(9.4.16)

9.5 The Gellman-Okubo Baryon Mass For-

mula

We have seen that the constituent quark model leads to a successful classi-
fication of hadron states in terms of flavor symmetry. The results about the
hadron dynamics are, however, of more qualitative nature, and the assump-
tion that a hadron is essentially a collection of a few constituent quarks is
certainly too naive. The fundamental theory of the strong interactions is
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QCD. Here we want to use very basic QCD physics together with group the-
ory to describe patterns in the hadron spectrum. The interaction between
quarks and gluons is flavor independent, and therefore SU(3)F symmetric.
Also the gluon self-interaction is flavor symmetric because the gluons are
flavor singlets. A violation of flavor symmetry results only from the quark
mass matrix

M =

mu 0 0
0 md 0
0 0 ms

 . (9.5.1)

We want to assume that u and d quark have the same mass mq, while the
s quark is heavier (ms > mq). The quark mass matrix can be written as

M =
2mq +ms

3

 1 0 0
0 1 0
0 0 1

+
mq −ms

3

 1 0 0
0 1 0
0 0 −2


=

2mq +ms

3
1 +

mq −ms√
3

λ8. (9.5.2)

The mass matrix contains an SU(3)F singlet as well as an octet piece.
Correspondingly, the QCD Hamilton operator can be written as

HQCD = H1 +H8. (9.5.3)

We want to assume that H8 is small and can be treated as a perturbation.
Then we first consider H1 alone. This is justified if the mass difference
mq − ms is small. Since H1 is SU(3)F symmetric we expect degenerate
states in SU(3)F multiplets — the hadron octets and decouplets. Here we
assume that the flavor symmetry is not spontaneously broken. This should
indeed be correct for QCD.

Let us start with the baryons. The eigenstates of H1 are denoted by
|B1Y II3〉

H1|B1Y II3〉 = MB1|B1Y II3〉. (9.5.4)

We use degenerate perturbation theory to first order in H8 and obtain

MB = MB1 + 〈B1Y II3|H8|B1Y II3〉. (9.5.5)

A diagonalization in the space of degenerate states is not necessary, since H8

transforms as the λ8 component of an octet, and can therefore not change
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Y , I and I3. Next we will compute the required matrix elements using group
theory. Starting with the baryon decouplet, we obtain a nonzero value only
if {8} and {10} can couple to {10}. Indeed the decouplet appears in the
reduction. Using the Wigner-Eckart theorem we obtain

〈B1Y II3|H8|B1Y II3〉 = 〈B1||H8||B1〉〈{10}Y II3|{8}000{10}Y II3〉,
(9.5.6)

where 〈B1||H8||B1〉 is a reduced matrix element, and the second factor is
an SU(3)F Clebsch-Gordon coefficient given by

〈{10}Y II3|{8}000{10}Y II3〉 =
Y√

8
. (9.5.7)

Then we obtain for the baryon masses in the decouplet

MB = MB1 + 〈B1||H8||B1〉
Y√

8
, (9.5.8)

and hence

MΣ∗ −M∆ = MΞ∗ −MΣ∗ = MΩ −MΞ∗ = − 1√
8
〈B1||H8||B1〉. (9.5.9)

Indeed, as we saw before, the three mass differences are almost identical.
In view of the fact that we have just used first order perturbation theory,
this is quite remarkable.

Next we consider the mass splittings in the baryon octet. Here we must
ask if {8} and {8} can couple to {8}. One finds

{8} ⊗ {8} = {27} ⊕ {10} ⊕ {1̄0} ⊕ 2{8} ⊕ {1}. (9.5.10)

Hence there are even two ways to couple two octets to an octet. One is
symmetric, the other is antisymmetric under the exchange of the two octets.
We can write

〈B1Y II3|H8|B1Y II3〉 = 〈B1||H8||B1〉s〈{8}Y II3|{8}000{8}Y II3〉s
+ 〈B1||H8||B1〉a〈{8}Y II3|{8}000{8}Y II3〉a.

(9.5.11)

The Clebsch-Gordon coefficients are given by

〈{8}Y II3|{8}000{8}Y II3〉s =
1√
5

(I(I + 1)− 1

4
Y 2 − 1),

〈{8}Y II3|{8}000{8}Y II3〉a =

√
3

4
Y, (9.5.12)
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and we obtain for the baryon octet

MB = MB1 + 〈B1||H8||B1〉s
1√
5

(I(I + 1)− 1

4
Y 2 − 1) + 〈B1||H8||B1〉a

√
3

4
Y.

(9.5.13)
These formulas for the baryon masses were first derived by Gellman and
Okubo. From the octet formula one obtains

2MN + 2MΞ = 4MB1 + 〈B1||H8||B1〉s
4√
5

(
3

4
− 1

4
− 1),

MΣ + 3MΛ = 4MB1 + 〈B1||H8||B1〉s
1√
5

((2− 1) + 3(−1)),

2MN + 2MΞ = MΣ + 3MΛ. (9.5.14)

Experimentally the two sides of the last equation give 1.129 GeV and 1.135
GeV in excellent agreement with the theory.

9.6 Meson Mixing

Similar to the baryons the explicit SU(3)F symmetry breaking due to the
larger s quark mass leads to mass splittings also for the mesons. There,
however, one has in addition a mixing between flavor octet and flavor singlet
states. For the baryons a mixing between octet and decouplet is excluded
because they have different spins. First we consider eigenstates of H1 again

H1|M1Y II3〉 = MM1|M1Y II3〉. (9.6.1)

The following analysis applies both to scalar and to vector mesons. In both
cases we have an SU(3)F octet and a singlet. In perturbation theory we
must now diagonalize a 9 × 9 matrix. Similar to the baryons the matrix
is, however, already almost diagonal. Let us first consider the seven meson
states with Y, I, I3 6= 0, 0, 0. These are π and K for the scalar and ρ and
K∗ for the vector mesons. One has

MM = MM1 + 〈M1Y II3|H8|M1Y II3〉. (9.6.2)

In complete analogy to the baryon octet we obtain

MM = MM1 + 〈M1||H8||M1〉s
1√
5

(I(I+1)− 1

4
Y 2−1)+ 〈M1||H8||M1〉a

√
3

4
Y.

(9.6.3)
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As opposed to the baryons the mesons and their anti-particles are in the
same multiplet. For example we have

MK+ = MM1 + 〈M1||H8||M1〉s
1√
5

(
3

4
− 1

4
− 1) + 〈M1||H8||M1〉a

√
3

4
,

MK− = MM1 + 〈M1||H8||M1〉s
1√
5

(
3

4
− 1

4
− 1)− 〈M1||H8||M1〉a

√
3

4
.

(9.6.4)

According to the CPT theorem particles and anti-particles have exactly the
same masses in a relativistic quantum field theory, and therefore

〈M1||H8||M1〉a = 0. (9.6.5)

Now we come to the issue of mixing between the mesons η1 and η8 and
between ω1 and ω8. We concentrate on the vector mesons. Then we need
the following matrix elements

〈ω1|H8|ω1〉 = 0,

〈ω8|H8|ω8〉 = 〈M1||H8||M1〉s〈{8}000|{8}000{8}000〉s

= 〈M1||H8||M1〉s(−
1√
5

). (9.6.6)

The actual meson masses are the eigenvalues of the matrix

M =

(
Mω1 〈ω1|H8|ω8〉

〈ω8|H8|ω1〉 Mω8 − 〈M1||H8||M1〉s 1√
5

)
. (9.6.7)

The particles ϕ and ω that one observes correspond to the eigenstates

|ϕ〉 = cos θ|ω1〉 − sin θ|ω8〉,
|ω〉 = sin θ|ω1〉+ cos θ|ω8〉. (9.6.8)

Here θ is the meson mixing angle. One obtains

Mϕ +Mω = Mω1 +Mω8 −
1√
5
〈M1||H8||M1〉s,

MϕMω = Mω1(Mω8 −
1√
5
〈M1||H8||M1〉s)− |〈ω1|H8|ω8〉|2.

(9.6.9)
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Also we have

Mρ = Mω8 + 〈M1||H8||M1〉s
1√
5

(2− 1),

MK∗ = Mω8 + 〈M1||H8||M1〉s
1√
5

(
3

4
− 1

4
− 1), (9.6.10)

and hence

4

3
MK∗ −

1

3
Mρ = Mω8 + 〈M1||H8||M1〉s

1√
5

(
4

3
(−1

2
)− 1

3
)

= Mω8 −
1√
5
〈M1||H8||M1〉s, (9.6.11)

such that

Mω1 = Mϕ +Mω −
4

3
MK∗ +

1

3
Mρ = 0.870GeV,

|〈ω1|H8|ω8〉|2 = Mω1(
4

3
MK∗ −

1

3
Mρ)−MϕMω = (0.113GeV)2.

(9.6.12)

The mixing angle is now determined from

Mω1 cos θ − 〈ω1|H8|ω8〉 sin θ = Mϕ cos θ,

〈ω8|H8|ω1〉 cos θ − (Mω8 −
1√
5
〈M1||H8||M1〉s) sin θ = −Mϕ sin θ.

(9.6.13)

and we obtain

(Mω1 +Mω8 −
1√
5
〈M1||H8||M1〉s) sin θ cos θ − 〈ω1|H8|ω8〉 =

2Mϕ sin θ cos θ, (9.6.14)

and hence

1

2
sin(2θ) = ±

√
(Mϕ +Mω − 4

3
MK∗ + 1

3
Mρ)(

4
3
MK∗ − 1

3
Mρ)−MϕMω

Mϕ −Mω

.

(9.6.15)



9.6. MESON MIXING 173

Numerically one obtains θ = ±52.60 and therefore cos θ ≈ 1/
√

3, sin θ ≈
±
√

2/3, such that

|ϕ〉 ≈ ss̄ or
1

3
(2uū+ 2dd̄− ss̄),

|ω〉 ≈ 1√
2

(uū+ dd̄) or − 1√
18

(uū+ dd̄+ 4ss̄). (9.6.16)

The ϕ mesons decays in 84 percent of all cases into kaons (ϕ → K+ +
K−, K0 + K̄0) and only in 16 percent of all cases into pions (ϕ→ π+ +π0 +
π−). Hence one concludes that the ϕ meson is dominated by s quarks, such
that one has ideal mixing

|ϕ〉 ≈ ss̄, |ω〉 ≈ 1√
2

(uū+ dd̄). (9.6.17)

It is instructive to repeat the calculation of meson mixing for the scalar
mesons η and η′.
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Chapter 10

Topology of Gauge Fields

In this chapter we investigate the topological structure of non-Abelian gauge
fields. In the Standard Model, the non-trivial topology of SU(2)L gauge
fields gives rise to baryon number violating processes. Similarly, in QCD
a non-trivial topology of the gluon field leads to an explicit breaking of
the flavor-singlet axial symmetry. This offers an explanation for the U(1)A
problem in QCD — the question why the η′-meson is not a pseudo-Nambu-
Goldstone boson. The gauge field topology also gives rise to a new param-
eter in QCD — the vacuum angle θ. This confronts us with the strong CP
problem: why is θ so extremely small and consistent with zero in Nature?
We will return to the U(1)A and the strong CP problem in the next chap-
ter. First, we concentrate on understanding the topology of the gauge field
itself.

10.1 The Anomaly

Let us consider the baryon number current in the Standard Model

Jµ(x) =
∑

f

Ψ̄f(x)γµΨf(x), (10.1.1)

where Ψf(x) is the quark field for flavor f = u, d, s, . . .. The Lagrangian of
the Standard Model is invariant under global U(1)B baryon number trans-

175
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formations. The corresponding Noether current Jµ(x) is hence conserved at
the classical level

∂µJµ(x) = 0. (10.1.2)

At the quantum level, however, the symmetry cannot be maintained because
it is violated by the Adler-Bell-Jackiw anomaly

∂µJµ(x) = NgP (x). (10.1.3)

Here Ng is the number of generations (Ng = 3 in the Standard Model), and

P (x) = − 1

32π2
εµνρσTr [Wµν(x)Wρσ(x)] (10.1.4)

is the Chern-Pontryagin density. Here Wµν is the field strength tensor of
the SU(2)L gauge field.

Let us also consider the flavor-singlet axial current in QCD

J5
µ(x) =

∑
f

Ψ̄f(x)γ5γµΨf(x). (10.1.5)

The Lagrangian of QCD with massless quarks is invariant under global
U(1)A transformations, and hence also J5

µ(x) is conserved at the classical
level

∂µJ
5
µ(x) = 0. (10.1.6)

However, at the quantum level the symmetry is again explicitly broken by
an anomaly

∂µJ5
µ(x) = 2NfP (x). (10.1.7)

Now Nf is the number of quark flavors, and

P (x) = − 1

32π2
εµνρσTr [Gµν(x)Gρσ(x)] (10.1.8)

now is the Chern-Pontryagin density of the gluon field.

In the following we consider the topology of a general non-Abelian vector
potential Gµ(x). The anomaly equation can be derived in perturbation the-
ory and it follows from a triangle diagram. The Chern-Pontryagin density
can be written as a total divergence

P (x) = ∂µΩ(0)
µ (x), (10.1.9)
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where Ω
(0)
µ (x) is the Chern-Simons density or 0-cochain, which is given by

Ω(0)
µ (x) = − 1

8π2
εµνρσTr

[
Gν(x)(∂ρGσ(x) +

2

3
Gρ(x)Gσ(x)

]
. (10.1.10)

It is a good exercise to convince oneself that this satisfies eq.(10.1.9). We
can now formally construct a conserved current

J̃5
µ(x) = J5

µ(x)− 2NfΩ
(0)
µ (x), (10.1.11)

because
∂µJ̃µ(x) = ∂µJµ(x)− 2NfP (x) = 0. (10.1.12)

One might think that we have found a new U(1) symmetry which is free
of the anomaly. This is, however, not the case, because the current J̃µ(x)

contains Ω
(0)
µ (x) which is not gauge invariant. Although the gauge variant

current is formally conserved, this has no gauge invariant physical conse-
quences.

10.2 Topological Charge

In this section, we define the topological charge of a Euclidean non-Abelian
field configuration. We like to point out, that the concept of an inter-
valued topological charge does not carry over to Minkowski space-time.
In general, field configurations in Euclidean space-time do not represent
physical processes in real time. The topological charge is defined as

Q = − 1

32π2

∫
d4x εµνρσTr [Gµν(x)Gρσ(x)] =

∫
d4x P (x)

=

∫
d4x ∂µΩ(0)

µ (x) =

∫
S3

d3σµ Ω(0)
µ (x) . (10.2.1)

We have used Gauss’ law to reduce the integral over Euclidean space-time to
an integral over its boundary at infinity, which is topologically a 3-sphere S3.
We will restrict ourselves to gauge field configurations with a finite action.
Hence, their field strength should vanish at infinity, and consequently the
vector potential should then be a pure gauge (a gauge transformation of a
zero field)

Gµ(x) = g(x)∂µg(x)† . (10.2.2)
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Of course, this expression is only valid at space-time infinity. Inserting it in
the expression for the 0-cochain we obtain

Q = − 1

8π2

∫
S3

d3σµ εµνρσTr
[
(g∂νg

†)(∂ρ(g∂σg
†)

+
2

3
(g∂ρg

†)(g∂σg
†))

]
= − 1

8π2

∫
S3

d3σµ εµνρσ

× Tr
[
−(g∂νg

†)(g∂ρg
†)(g∂σg

†)

+
2

3
(g∂νg

†)(g∂ρg
†)(g∂σg

†)

]
=

1

24π2

∫
S3

d3σµ εµνρσTr
[
(g∂νg

†)(g∂ρg
†)(g∂σg

†)
]
.

(10.2.3)

The gauge transformation g(x) defines a map of the sphere S3 at space-time
infinity to the gauge group SU(N)

g : S3 → SU(N). (10.2.4)

Such maps have topological properties. They fall into equivalence classes —
the homotopy classes — which represent topologically distinct sectors. Two
maps are equivalent if they can be deformed continuously into one another.
The homotopy properties are described by homotopy groups. In our case
the relevant homotopy group is

Π3[SU(N)] = ZZ. (10.2.5)

Here the index 3 indicates that we consider maps of the 3-dimensional sphere
S3. The third homotopy group of SU(N) is given by the integers. This
means that for each integer Q there is a class of maps that can be continu-
ously deformed into one another, while maps with different Q are topologi-
cally distinct. The integer Q that characterizes the map topologically is the
topological charge. Now we want to show that the above expression for Q
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is exactly that integer. For this purpose we decompose

g = VW , W =


1 0 0 . . . 0
0 g̃11 g̃12 . . . g̃1N

0 g̃21 g̃22 . . . g̃1N

. . . .

. . . .
0 g̃N1 g̃N2 . . . g̃NN

 , (10.2.6)

where the embedded matrix g̃ is in SU(N − 1). It is indirectly defined by

V =



g11 −g∗21 −g∗31(1+g11)

1+g∗11
. . . −g∗N1(1+g11)

1+g∗11

g21
1+g∗11−|g21|2

1+g11
−g∗31g21

1+g∗11
. . . −g∗N1g21

1+g∗11

g31 −g∗21g31

1+g11

1+g∗11−|g31|2
1+g∗11

. . . −g∗N1g31

1+g∗11

. . . .

. . . .
gN1 −g∗21gN1

1+g11
−g∗31gN1

1+g∗11
. . .

1+g∗11−|gN1|2
1+g∗11


∈ SU(N) .

(10.2.7)
The matrix V is constructed entirely from the elements g11, g21, . . . , gN1

of the first column of the matrix g. One should convince oneself that V
is indeed an SU(N) matrix, and that the resulting matrix g̃ is indeed in
SU(N − 1). The idea now is to reduce the expression for the topological
charge from SU(N) to SU(N − 1) by using the formula

εµνρσTr
[
(VW )∂ν(VW )†(VW )∂ρ(VW )†(VW )∂σ(VW )†

]
=

εµνρσTr
[
(V ∂νV

†)(V ∂ρV
†)(V ∂σV

†)
]

+εµνρσTr
[
(W∂νW

†)(W∂ρW
†)(W∂σW

†)
]

+3∂νεµνρσTr
[
((V ∂ρV

†)(W∂σW
†)
]
. (10.2.8)

Again, it is instructive to prove this formula. Applying the formula to the
expression for the topological charge and using g = VW we obtain

Q =
1

24π2

∫
S3

d3σµεµνρσTr[(g∂νg
†)(g∂ρg

†)(g∂σg
†)]

=
1

24π2

∫
S3

d3σµεµνρσTr[(V ∂νV
†)(V ∂ρV

†)(V ∂σV
†)

+ (W∂νW
†)(W∂ρW

†)(W∂σW
†)]. (10.2.9)
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The ∂ν term of the formula eq.(10.2.8) drops out using Gauss’ law together
with the fact that S3 has no boundary. It follows that the topological charge
of a product of two gauge transformations V and W is the sum of the
topological charges of V and W . Since V only depends on g11, g21, . . . , gN1,
it can be viewed as a map of S3 into the sphere S2N−1

V : S3 → S2N−1. (10.2.10)

This is because |g11|2 + |g21|2 + . . .+ |gN1|2 = 1. Remarkably the correspond-
ing homotopy group is trivial for N > 2, i.e.

Π3[S2N−1] = {0}. (10.2.11)

All maps of S3 into the higher dimensional sphere S2N−1 are topologically
equivalent (they can be deformed into each other). This can be understood
better in a lower dimensional example

Π1[S2] = {0}. (10.2.12)

Each closed curve on an ordinary sphere can be constricted to the north
pole, and hence is topologically trivial. In fact,

Πm[Sn] = {0}, (10.2.13)

for m < n, whereas
Πn[Sn] = ZZ. (10.2.14)

On the other hand, Πm[Sn] with m > n is not necessarily trivial, for example

Π4[S3] = ZZ(2). (10.2.15)

Make a table for homotopy groups?

Since the map V of eq.(10.2.10) is topologically trivial, its contribution
to the topological charge vanishes. The remaining W term reduces to the
SU(N − 1) contribution

Q =
1

24π2

∫
S3

d3σµ εµνρσTr
[
(g̃∂ν g̃

†)(g̃∂ρg̃
†)(g̃∂σg̃

†)
]
. (10.2.16)

The separation of the V contribution works only if the decomposition of g
into V and g̃ is non-singular. In fact, the expression for V is singular for
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g11 = −1. This corresponds to a ((N −1)2−1)-dimensional subspace of the
(N2 − 1)-dimensional SU(N) group space. The map g itself covers a 3-d
subspace of SU(N). Hence it is of zero measure to hit a singularity. Since
we have now reduced the SU(N) topological charge to the SU(N − 1) case,
we can go down all the way to SU(2). It remains to be shown that the
SU(2) expression is actually an integer. First of all

g̃ : S3 → SU(2) = S3, (10.2.17)

and indeed
Π3[SU(2)] = Π3[S3] = ZZ. (10.2.18)

The topological charge specifies how often the SU(2) group space (which is
isomorphic to the 3-sphere) is covered by g̃ as we go along the boundary of
Euclidean space-time (which is also topologically S3). Again, it is useful to
consider a lower dimensional example, maps from the circle S1 to the group
U(1), which is topologically also a circle

g = exp(iϕ) : S1 → U(1) = S1. (10.2.19)

The relevant homotopy group is

Π1[U(1)] = Π1[S1] = ZZ. (10.2.20)

Again, for each integer there is an equivalence class of maps that can be
continuously deformed into one another. Going over the circle S1 the map
may cover the group space U(1) any number of times. In U(1) the expression
for the topological charge is analogous to the one in SU(N)

Q = − 1

2πi

∫
S1

dσµ εµν(g(x)∂νg(x)†) =
1

2π

∫
S1

dσµ εµν∂νϕ(x)

=
1

2π
(ϕ(2π)− ϕ(0)). (10.2.21)

If g(x) is continuous over the circle ϕ(2π) and ϕ(0) must differ by 2π times
an integer. That integer is the topological charge. It counts how many
times the map g covers the group space U(1) as we move along the circle
S1. We are looking for an analogous expression in SU(2). For this purpose
we parametrize the map g̃ as

g̃(x) = exp(i~α(x) · ~σ) = cosα(x) + i sinα(x)~eα(x) · ~σ,
~eα(x) = (sin θ(x) sinϕ(x), sin θ(x) cosϕ(x), cos θ(x)). (10.2.22)
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It is a good exercise to convince oneself that

εµνρσTr
[
(g̃(x)∂ν g̃(x)†)(g̃(x)∂ρg̃(x)†)(g̃(x)∂σg̃(x)†)

]
= 12 sin2 α(x) sin θ(x)εµνρσ∂να(x)∂ρθ(x)∂σϕ(x). (10.2.23)

This is exactly the volume element of a 3-sphere (and hence of the SU(2)
group space). Thus we can now write

Q =
1

2π2

∫
S3

d3σµ sin2 α(x) sin θ(x)εµνρσ∂να(x)∂ρθ(x)∂σϕ(x) =
1

2π2

∫
S3

dg̃ .

(10.2.24)
The volume of the 3-sphere is given by 2π2. When the map g̃ covers the
sphere Q times, the integral gives Q times the volume of S3. This finally
explains why the prefactor 1/32π2 was introduced in the original expression
of eq.(10.2.1) for the topological charge.

10.3 Topology of a Gauge Field on a Com-

pact Manifold

Imagine our Universe was closed both in space and time, and hence had
no boundary. Our previous discussion, for which the value of the gauge
field at the boundary was essential, would suggest that in a closed Universe
the topology is trivial. On the other hand, we think that topology has
local consequences. For example, baryon number conservation is violated
because the topological charge does not vanish. To resolve this apparent
contradiction we will now discuss the topology of a gauge field on a compact
Euclidean space-time manifold M , and we will see that non-trivial topology
is still present. Let us again consider the topological charge

Q =

∫
M

d4x P (x) . (10.3.1)

Writing the Chern-Pontryagin density as the total divergence of the 0-
cochain

P (x) = ∂µΩ(0)
µ (x) , (10.3.2)

and using Gauss’ law we obtain

Q =

∫
M

d4x ∂µΩ(0)
µ (x) =

∫
∂M

d3σµ Ω(0)
µ (x) = 0 . (10.3.3)
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Here we have used that M has no boundary, i.e. ∂M is an empty set. A
gauge field whose Chern-Pontryagin density can globally be written as a
total divergence is indeed topologically trivial on a compact manifold. The
important observation is that eq.(10.3.2) may be valid only locally. In other
words, gauge singularities may prevent us from using Gauss’ law as we did
above. In general, it will be impossible to work in a gauge that makes the
gauge field non-singular everywhere on the space-time manifold. Instead
we must subdivide space-time into local patches in which the gauge field is
smooth, and glue the patches together by non-trivial gauge transformations,
which form a fibre bundle of transition functions. A topologically non-trivial
gauge field will contain singularities at some points xi ∈ M . We cover the
manifold M by closed sets ci such that xi ∈ ci\∂ci, i.e. each singularity lies
in the interior of a set ci. Also M = ∪ici with ci ∩ cj = ∂ci ∩ ∂cj.

The next step is to remove the gauge singularities xi by performing gauge
transformations gi in each local patch

Gi
µ(x) = gi(x)(Gµ(x) + ∂µ)g†i (x). (10.3.4)

After the gauge transformation the gauge potential Gi
µ(x) is free of singu-

larities in the local region ci. Hence we can now use Gauss’ law and obtain

Q =
∑
i

∫
ci

d4x P (x) =
∑
i

∫
∂ci

d3σµ Ω(0)
µ (i)

=
1

2

∑
ij

∫
ci∩cj

d3σµ [Ω(0)
µ (i)− Ω(0)

µ (j)]. (10.3.5)

The argument i of the 0-cochain indicates that we are in the region ci. At
the intersection of two regions ci ∩ cj the gauge field Gi

µ differs from Gj
µ,

although the original gauge field Gµ(x) was continuous there. In fact, the
two gauge fields are related by a gauge transformation vij

Gi
µ(x) = vij(x)(Gj

µ(x) + ∂µ)vij(x)†, (10.3.6)

which is defined only on ci ∩ cj. The gauge transformations vij form a fibre
bundle of transition functions given by

vij(x) = gi(x)gj(x)†. (10.3.7)

This equation immediately implies a consistency equation. This so-called
cocycle condition relates the transition functions in the intersection ci∩cj∩ck
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of three regions

vik(x) = vij(x)vjk(x). (10.3.8)

The above difference of two 0-cochains in different gauges is given by the
so-called coboundary operator ∆

∆Ω(0)
µ (i, j) = Ω(0)

µ (i)− Ω(0)
µ (j). (10.3.9)

It is straight forward to show that

∆Ω(0)
µ (i, j) =− 1

24π2
εµνρσTr[vij(x)∂νvij(x)†vij(x)∂ρvij(x)†vij(x)∂σvij(x)†]

− 1

8π2
εµνρσ∂νTr[∂ρvij(x)†vij(x)Gi

σ(x)]. (10.3.10)

The above equation for the topological charge then takes the form

Q = − 1

48π2

∑
ij

∫
ci∩cj

d3σµ εµνρσ

× Tr[vij(x)∂νvij(x)†vij(x)∂ρvij(x)†vij(x)∂σvij(x)†]

− 1

16π2

∑
ij

∫
∂(ci∩cj)

d2σµν εµνρσTr[∂ρvij(x)†vij(x)Gi
σ(x)].

(10.3.11)

Using the cocycle condition this can be rewritten as

Q = − 1

48π2

∑
ij

∫
ci∩cj

d3σµ εµνρσ

× Tr[vij(x)∂νvij(x)†vij(x)∂ρvij(x)†vij(x)∂σvij(x)†]

− 1

48π2

∑
ijk

∫
ci∩cj∩ck

d2σµν εµνρσTr[vij(x)∂ρvij(x)†vjk(x)∂ρvjk(x)†].

(10.3.12)

This shows that the topology of the fibre bundle is entirely encoded in the
transition functions.

In the appropriate mathematical language the gauge transformations
gi form sections of the fibre bundle. Using formula (10.2.8) together with
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eq.(10.3.7) one can show that the topological charge is expressed in terms
of the section in the following way

Q =
∑
i

Qi

=
1

24π2

∑
i

∫
∂ci

d3σµεµνρσTr[gi(x)∂νgi(x)†gi(x)∂ρgi(x)†gi(x)∂σgi(x)†].

(10.3.13)

We recognize the integer winding number Qi that characterizes the map gi
topologically. In fact, the boundary ∂ci is topologically a 3-sphere, such
that

gi : ∂ci → SU(3), (10.3.14)

and hence
Qi ∈ Π3[SU(3)] = ZZ. (10.3.15)

The topological charge Q is a sum of local winding numbers Qi ∈ ZZ, which
are associated with the regions ci. In general, the Qi are not gauge invariant.
Hence, individually they have no physical meaning. Still, the total charge
— as the sum of all Qi — is gauge invariant. It is instructive to show this
explicitly by performing a gauge transformation on the original gauge field

Gµ(x)′ = g(x)(Gµ(x) + ∂µ)g(x)†. (10.3.16)

Deriving the gauge transformation properties of the section and using for-
mula (10.2.8) this is again straightforward.

10.4 The Instanton in SU(2)

We have argued mathematically that gauge field configurations fall into
topologically distinct classes. Now we want to construct concrete examples
of topologically non-trivial field configurations. Here we consider instan-
tons, which have Q = 1 and are solutions of the Euclidean classical field
equations. The instanton occurs at a given instant in Euclidean time. Since
these solutions do not live in Minkowski space-time they have no direct
interpretation in terms of real time events. Also it is unclear which role
they play in the quantum theory. Instantons describe tunneling processes
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between degenerate classical vacuum states. Their existence gives rise to
the θ-vacuum structure of non-Abelian gauge theories.

Here we concentrate on SU(2). This is sufficient, because we have seen
that the SU(N) topological charge can be reduced to the SU(2) case. In
this section we go back to an infinite space with a boundary sphere S3,
and we demand that the gauge field has finite action. Then at space-time
infinity the gauge potential is in a pure gauge

Gµ(x) = g(x)∂µg(x)†. (10.4.1)

Provided the gauge field is otherwise smooth, the topology resides entirely
in the map g. We want to construct a field configuration with topological
charge Q = 1, i.e. one in which the map g covers the group space SU(2) =
S3 once as we integrate over the boundary sphere S3. The simplest map
of this sort is the identity, i.e. each point at the boundary of space-time is
mapped into the corresponding point in the group space such that

g(x) =
x0 + i~x · ~σ
|x|

, |x| =
√
x2

0 + |~x|2. (10.4.2)

Next we want to extend the gauge field to the interior of space-time without
introducing singularities. We cannot simply maintain the form of eq.(10.4.1)
because g is singular at x = 0. To avoid this singularity we make the ansatz

Gµ(x) = f(|x|)g(x)∂µg(x)†, (10.4.3)

where f(∞) = 1 and f(0) = 0. For any smooth function f with these prop-
erties the above gluon field configuration has Q = 1. Still, this does not
mean that we have constructed an instanton. Instantons are field configu-
rations with Q 6= 0 that are in addition solutions of the Euclidean classical
equations of motion, i.e. they are minima of the Euclidean action

S[Gµ] =

∫
d4x

1

2g2
Tr[Gµν(x)Gµν(x)]. (10.4.4)

Let us consider the following integral∫
d4x Tr[(Gµν(x)± 1

2
εµνρσGρσ(x))(Gµν(x)± 1

2
εµνκλGκλ(x)) =∫

d4x Tr[Gµν(x)Gµν(x)± εµνρσGµν(x)Gρσ(x) +Gµν(x)Gµν(x)] =

4g2
sS[Gµ]± 32π2Q[Gµ]. (10.4.5)
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We have integrated a square. Hence it is obvious that

S[Gµ]± 8π2

g2
Q[Gµ] ≥ 0 ⇒ S[Gµ] ≥ 8π2

g2
|Q[Gµ]|, (10.4.6)

i.e. a topologically non-trivial field configuration costs at least a minimum
action proportional to the topological charge. Instantons are configurations
with minimum action, i.e. for them

S[Gµ] =
8π2

g2
|Q[Gµ]|. (10.4.7)

From the above argument it is clear that a minimum action configuration
arises only if

Gµν(x) = ±1

2
εµνρσGρσ(x). (10.4.8)

Configurations that obey this equation with a plus sign are called selfdual.
The ones that obey it with a minus sign are called anti-selfdual. It is
instructive to convince oneself that the above gluon field with

f(|x|) =
|x|2

|x|2 + ρ2
(10.4.9)

is indeed an instanton for any value of ρ. The instanton configuration hence
takes the form

Gµ(x) =
|x|2

|x|2 + ρ2
g(x)∂µg(x)†. (10.4.10)

There is a whole family of instantons with different radii ρ. As a consequence
of scale invariance of the classical action they all have the same action
S[Gµ] = 8π2/g2.

10.5 θ-Vacua

The existence of topologically non-trivial gauge transformations has drastic
consequences for non-Abelian gauge theories. In fact, there is not just
one classical vacuum state, but there is one for each topological winding
number. Instantons describe tunneling transitions between topologically
distinct vacua. Due to tunneling the degeneracy of the classical vacuum
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states is lifted, and the true quantum vacuum turns out to be a θ-state, i.e.
one in which configurations of different winding numbers are mixed.

In the following we fix to G4(x) = 0 gauge, and we consider space to
be compactified from IR3 to S3. This is just a technical trick which makes
life easier. Using transition functions one could choose any other compact-
ification, e.g. on a torus T 3, or one could choose appropriate boundary
conditions on IR3 itself. The classical vacuum solutions of such a theory are
the pure gauge fields

Gi(x) = g(x)∂ig(x)†. (10.5.1)

Since we have compactified space, the classical vacua can be classified by
their winding number

n ∈ Π3[SU(3)] = ZZ, (10.5.2)

which is given by

n =
1

24π2

∫
S3

d3x εijkTr[g(x)∂ig(x)†g(x)∂jg(x)†g(x)∂kg(x)†]. (10.5.3)

One might think that one can construct a quantum vacuum |n〉 just by con-
sidering small fluctuations around a classical vacuum with given n. Quan-
tum tunneling, however, induces transitions between the various classical
vacua. Imagine the system is in a classical vacuum state with winding
number m at early times t = −∞, then it changes continuously (now de-
viating from a pure gauge), and finally at t = ∞ it returns to a classical
vacuum state with a possibly different winding number n. The time evolu-
tion corresponds to one particular path in the Feynman path integral. The
corresponding gauge field smoothly interpolates between the initial and fi-
nal classical vacua. When we calculate its topological charge, we can use
Gauss’ law, which yields an integral of the 0-cochain over the space-time
boundary, which consists of the spheres S3 at t = −∞ and at t = ∞. At
each boundary sphere the gauge field is in a pure gauge, and the integral
yields the corresponding winding number such that

Q = n−m. (10.5.4)

Hence, a configuration with topological charge Q induces a transition from
a classical vacuum with winding number m to one with winding number
n = m + Q. In other words, the Feynman path integral that describes the
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amplitude for transitions from one classical vacuum to another is restricted
to field configurations in the topological sector Q, such that

〈n|U(∞,−∞)|m〉 =

∫
DG(n−m)

µ exp(−S[Gµ]). (10.5.5)

Here G
(Q)
µ denotes a gauge field with topological charge Q, and U(t′, t) is

the time evolution operator.

It is crucial to note that the winding number n is not gauge invariant.
In fact, as we perform a gauge transformation with winding number 1 the
winding number of the pure gauge field changes to n + 1. In the quantum
theory such a gauge transformation g is implemented by a unitary operator
T that acts on wave functionals Ψ[Gi] by gauge transforming the field Gi,
i.e.

TΨ[Gi] = Ψ[g(Gi + ∂i)g
†]. (10.5.6)

In particular, acting on a state that describes small fluctuations around a
classical vacuum one finds

T |n〉 = |n+ 1〉, (10.5.7)

i.e. T acts as a ladder operator. Since the operator T implements a special
gauge transformation, it commutes with the Hamiltonian, just the theory is
gauge invariant. This means that the Hamiltonian and T can be diagonal-
ized simultaneously, and each eigenstate can be labelled by an eigenvalue of
T . Since T is a unitary operator its eigenvalues are complex phases exp(iθ),
such that an eigenstate — for example the vacuum — can be written as |θ〉
with

T |θ〉 = exp(iθ)|θ〉. (10.5.8)

On the other hand, we can construct the θ-vacuum as a linear combination

|θ〉 =
∑
n

cn|n〉. (10.5.9)

Using

T |θ〉 =
∑
n

cnT |n〉 =
∑
n

cn|n+ 1〉

=
∑
n

cn−1|n〉 = exp(iθ)
∑
n

cn|n〉, (10.5.10)
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one obtains cn−1 = exp(iθ)cn such that cn = exp(−inθ) and

|θ〉 =
∑
n

exp(−inθ)|n〉. (10.5.11)

The true vacuum of a non-Abelian gauge theory is a linear combination
of classical vacuum states of different winding numbers. For each value of
θ there is a corresponding vacuum state. This is analogous to the energy
bands in a solid. There a state is labelled by a Bloch momentum as a
consequence of the discrete translation symmetry. In non-Abelian gauge
theories T induces discrete translations between classical vacua, with anal-
ogous mathematical consequences.

Now let us consider the quantum transition amplitude between different
θ-vacua

〈θ|U(∞,−∞)|θ′〉 =
∑
m,n

exp(inθ) exp(−imθ′)〈n|U(∞,−∞)|m〉

=
∑

n,Q=n−m

exp(inθ − i(n−Q)θ′)

∫
DG(Q)

µ exp(−S[Gµ])

= δ(θ − θ′)
∑
Q

∫
DG(Q)

µ exp(−S[Gµ]) exp(iθQ[Gµ])

=

∫
DGµ exp(−Sθ[Gµ]). (10.5.12)

There is no transition between different θ-vacua, which confirms that they
are eigenstates. Also we can again identify the action in a θ-vacuum as

Sθ[Gµ] = S[Gµ]− iθQ[Gµ]. (10.5.13)

Finally, let us consider the theory with at least one massless fermion. In
that case the Dirac operator γµ(Gµ(x) + ∂µ) has a zero mode. This follows
from an index theorem due to Atiyah and Singer. They considered the
eigenvectors of the Dirac operator with zero eigenvalue

γµ(Gµ(x) + ∂µ)Ψ(x) = 0. (10.5.14)

These eigenvectors have a definite handedness, i.e.

1

2
(1± γ5)Ψ(x) = Ψ(x), (10.5.15)
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because

γ5γµ(Gµ(x) + ∂µ)Ψ(x) = −γµ(Gµ(x) + ∂µ)γ5Ψ(x) = 0. (10.5.16)

The Atiyah-Singer index theorem states that

Q = nL − nR, (10.5.17)

where nL and nR are the numbers of left- and right-handed zero modes.
Hence, a topologically non-trivial gauge field configuration necessarily has
at least one zero mode. This zero mode of the Dirac operator eliminates
topologically non-trivial field configurations from theories with a massless
fermions, i.e. then Q[Gµ] = 0 for all configurations that contribute to the
Feynman path integral. In that case the θ-term in the action has no effect,
and all θ-vacua would be physically equivalent. This scenario has been
suggested as a possible solution of the strong CP problem. If the lightest
quark (the u quark) would be massless, θ would not generate an electric
dipole moment for the neutron. There is still no agreement on this issue.
Some experts of chiral perturbation theory claim that a massless u-quark
is excluded by experimental data. However, the situation is not clear. For
example, the pion mass depends only on the summu+md, and one must look
at more subtle effects. Most likely the solution of the strong CP problem is
beyond the standard model. We will soon discuss extensions of the standard
model with an additional U(1)PQ Peccei-Quinn symmetry, which will allow
us to rotate θ to zero. As a consequence of spontaneous U(1)PQ breaking,
we will also find a new light pseudo-Nambu-Goldstone boson — the axion.

10.6 The U(1)-Problem

The topological properties of the gluon field give rise to several questions in
the standard model. One is the strong CP problem related to the presence
of the θ-vacuum angle. A naive hope to avoid this problem might be to
assume that gluon field configurations with non-vanishing topological charge
are negligible in the QCD path integral. This, however, does not work
because there is also the so-called U(1)-problem in QCD. The problem is
to explain why the η′-meson has a large mass and hence is not a Nambu-
Goldstone boson. This is qualitatively understood based on the Adler-Bell-
Jackiw anomaly — the axial U(1) symmetry of QCD is simply explicitly
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broken. To solve the U(1)-problem quantitatively — i.e. to explain the
large value of the η′-mass — requires gluon field configurations with non-
zero topological charge to appear frequently in the path integral. This is
confirmed by lattice calculations and indeed offers a nice explanation of the
U(1)-problem. However, if we use topologically non-trivial configurations
to solve the U(1)-problem, we cannot ignore these configurations when we
face the strong CP -problem.

The chiral symmetry of the classical QCD Lagrange function is U(Nf )L⊗
U(Nf )R, while in the spectrum only the flavor and baryon number symme-
tries SU(Nf )L+R ⊗ U(1)L=R = U(Nf )L=R are manifest. According to the
Goldstone theorem one might hence expect N2

f + N2
f − N2

f = N2
f Nambu-

Goldstone bosons, while in fact one finds only N2
f − 1 Nambu-Goldstone

bosons in QCD. The missing Nambu-Goldstone boson should be a pseu-
doscalar, flavorscalar particle. The lightest particle with these quantum
numbers is the η′-meson. However, its mass is Mη′ = 0.958 GeV, which is
far too heavy for a Nambu-Goldstone boson. The question why the η′-meson
is so heavy is the so-called U(1)-problem of QCD. At the end the question
is why the axial U(1) symmetry is not spontaneously broken, although it
is also not manifest in the spectrum. It took a while before ’t Hooft real-
ized that axial U(1) is not a symmetry of QCD. Although the symmetry
is present in the classical Lagrange density, it cannot be maintained un-
der quantization because it has an anomaly. This explains qualitatively
why the η′-meson is not a Nambu-Goldstone boson. To understand the
problem more quantitatively, one must consider the origin of the quantum
mechanical symmetry breaking in more detail. It turns out that topologi-
cally non-trivial configurations of the gluon field — for example instantons
— give mass to the η′-meson. If the color symmetry would be SU(Nc)
instead of SU(3), the explicit axial U(1) breaking via the anomaly would
disappear in the large Nc limit. In this limit the η′-meson does indeed be-
come a Nambu-Goldstone boson. For large but finite Nc the η′-meson gets
a mass proportional to the topological susceptibility — the vacuum value of
the topological charge squared per space-time volume — evaluated in the
pure glue theory.

Qualitatively one understands why the η′-meson is not a Nambu-Goldstone
boson, because the axial U(1)-symmetry is explicitly broken by the Adler-
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Bell-Jackiw anomaly
∂µJ

5
µ(x) = 2NfP (x), (10.6.1)

where P is the Chern-Pontryagin density. However, the question arises how
strong this breaking really is, and how it affects the η′-mass quantitatively.
To understand this issue we consider QCD with a large number of colors,
i.e we replace the gauge group SU(3) by SU(Nc).

It is interesting that large Nc QCD is simpler than real QCD, but still
it is too complicated to solve it analytically. Still, one can classify the
subset of Feynman diagrams that contribute in the large Nc limit. An
essential observation is that for many colors the distinction between SU(Nc)
and U(Nc) becomes irrelevant. Then each gluon propagator in a Feynman
diagram may be replaced formally by the color flow of a quark-antiquark
pair. In this way any large Nc QCD diagram can be represented as a quark
diagram. For the gluon self-energy diagram, for example, one finds an
internal quark loop which yields a color factor Nc and each vertex gives a
factor gs, such that the diagram diverges as g2

sNc. We absorb this divergence
in a redefinition of the coupling constant by defining

g2 = g2
sNc, (10.6.2)

and we perform the large Nc limit such that gs goes to zero but g remains
finite. Let us now consider a planar 2-loop diagram contributing to the
gluon self-energy. There are two internal loops and hence there is a factor
N2
c . Also there are four vertices contributing factors g4

s = g4/N2
c and the

whole diagram is proportional to g4 and hence it is finite. Let us also
consider a planar 4-loop diagram. It has a factor N4

c together with six
3-gluon vertices that give a factor g6

s = g6/N3
c and a 4-gluon vertex that

gives a factor g2
s = g2/Nc. Altogether the diagram is proportional to g8 and

again it is finite as Nc goes to infinity. Next let us consider a non-planar
4-loop diagram. The color flow is such that now there is only one color
factor Nc but there is a factor g6

s = g6/N3
c from the vertices. Hence the

total factor is g6/N2
c which vanishes in the large Nc limit. In general any

non-planar gluon diagram vanishes in the large Nc limit. Planar diagrams,
on the other hand, survive in the limit. In particular, if we add another
propagator to a planar diagram such that it remains planar, we add two
3-gluon vertices and hence a factor g2

s = g2/Nc, and we cut an existing
loop into two pieces, thus introducing an extra loop color factor Nc. The
total weight remains of order 1. Now consider the quark contribution to
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the gluon propagator. There is no color factor Nc for this diagram, and
still there are two quark-gluon vertices contributing a factor g2

s = g2/Nc.
Hence this diagram disappears in the large Nc limit. Similarly, all diagrams
with internal quark loops vanish at large Nc. Even though this eliminates
a huge class of diagrams, the remaining planar gluon diagrams are still too
complicated to be summed up analytically. Still, the above Nc counting
allows us to understand some aspects of the QCD dynamics.

In the large Nc limit, QCD reduces to a theory of mesons and glueballs,
while the baryons disappear. This can be understood in the constituent
quark model. In SU(Nc) a color singlet baryon consists of Nc quarks, each
contributing the constituent quark mass to the total baryon mass. Hence
the baryon mass is proportional to Nc such that baryons are infinitely heavy
(and hence disappear) in the large Nc limit. Mesons, on the other hand, still
consist of a quark and an anti-quark, such that their mass remains finite.

Also the topology of the gluon field is affected in the large Nc limit. We
have derived the instanton action bound

S[Gµ] ≥ 8π2

g2
s

|Q[Gµ]| = 8π2Nc

g2
|Q[Gµ]|, (10.6.3)

which is valid for all SU(Nc). In the large Nc limit the action of an instanton
diverges, and topologically non-trivial field configurations are eliminated
from the Feynman path integral. This means that the source of quantum
mechanical symmetry breaking via the anomaly disappears, and the η′-
meson should indeed become a Nambu-Goldstone boson in the large Nc

limit. In that case one should be able to derive a mass formula for the η′-
meson just like for the Nambu-Goldstone pion. The pion mass resulted from
an explicit chiral symmetry breaking due to a finite quark mass. Similarly,
the η′-mass results from an explicit axial U(1) breaking via the anomaly
due to finite Nc. This can be computed as a 1/Nc effect.

Let us consider the so-called topological susceptibility as the integrated
correlation function of two Chern-Pontryagin densities

χt =

∫
d4x pg〈0|P (0)P (x)|0〉pg =

〈Q2〉
V

(10.6.4)

in the pure gluon theory (without quarks). Here |0〉pg is the vacuum of the
pure gluon theory, and V is the volume of space-time. When we add massless
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quarks, the Atiyah-Singer index theorem implies that the topological charge
— and hence χt — vanishes, because the zero-modes of the Dirac operator
eliminate topologically non-trivial field configurations. Therefore in full
QCD (with massless quarks)∫

d4x 〈0|P (0)P (x)|0〉 = 0, (10.6.5)

where |0〉 is the full QCD vacuum. In the large Nc limit the effects of
quarks are 1/Nc suppressed. Therefore it is unclear how they can eliminate
the topological susceptibility of the pure gluon theory. In the large Nc limit
the quark effects manifest themselves entirely in terms of mesons. One finds

χt −
∑
m

〈0|P |m〉〈m|P |0〉
M2

m

= 0, (10.6.6)

where the sum runs over all meson states and Mm are the corresponding
meson masses. Using large Nc techniques one can show that |〈0|P |m〉|2 is
of order 1/Nc, while χt is of order 1. If also all meson masses would be of
order 1 there would be a contradiction. The puzzle gets resolved when one
assumes that the lightest flavorscalar, pseudoscalar meson — the η′ — has
in fact a mass of order 1/Nc, such that

χt =
|〈0|P |η′〉|2

M2
η′

. (10.6.7)

Using the anomaly equation one obtains

〈0|P |η′〉 =
1

2Nf

〈0|∂µAµ|η′〉 =
1√
2Nf

M2
η′fη′ . (10.6.8)

In the large Nc limit fη′ = fπ and we arrive at the Witten-Veneziano formula

χt =
f 2
πM

2
η′

2Nf

. (10.6.9)

In this equation χt is of order 1, f 2
π is of order Nc and M2

η′ is of order 1/Nc.
This means that the η′-meson is indeed a Nambu-Goldstone boson in a world
with infinitely many colors. At finite Nc the anomaly arises leading to an
explicit axial U(1) symmetry breaking proportional to 1/Nc. The pseudo-
Nambu-Goldstone boson mass squared is hence proportional to 1/Nc. So
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far we have assumed that all quarks are massless. When a non-zero s quark
mass is taken into account, the formula changes to

χt =
1

6
f 2
π(M2

η′ +M2
η − 2M2

K) = (0.180GeV)4. (10.6.10)

Lattice calculations are at least roughly consistent with this value, which
supports this solution of the U(1)-problem.

10.7 Baryon Number Violation in the Stan-

dard Model

The classical Lagrange density of the standard model does not contain
baryon number violating interactions. However, this does not imply that
the standard model conserves baryon number after quantization. Indeed,
due to the chiral couplings of the fermions, the baryon number current has
an anomaly in the standard model. Although the Lagrange density has a
global U(1) baryon number symmetry, this symmetry is explicitly broken in
the quantum theory. The same is true for lepton number. The difference,
B − L, on the other hand, remains conserved. The existence of baryon
number violating processes at the electroweak scale may change the baryon
asymmetry that has been generated at the GUT scale.

Let us consider the vacuum structure of a non-Abelian gauge theory
(like the SU(2) sector of the standard model). A classical vacuum solution
is

Φ(~x) =

(
Φ+(~x)
Φ0(~x)

)
=

(
0
v

)
, Ai(~x) = 0. (10.7.1)

Of course, gauge transformations of this solution are also vacua. However,
states that are related by a gauge transformation are physically equivalent,
and one should not consider the other solutions as additional vacua. Still,
there is a subtlety, because there are gauge transformations with different
topological properties. First of all, there are the so-called small gauge trans-
formations, which can be continuously deformed into the identity, and one
should indeed not distinguish between states related by small gauge trans-
formations. However, there are also large gauge transformations — those
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that can not be deformed into a trivial gauge transformation — and they
indeed give rise to additional vacuum states. The gauge transformations

g : IR3 → SU(2) (10.7.2)

can be viewed as maps from coordinate space into the group space. When
one identifies points at spatial infinity IR3 is compactified to S3. On the other
hand, the group space of SU(2) is also S3. Hence, the gauge transformations
are maps

g : S3 → S3. (10.7.3)

Such maps are known to fall into topologically distinct classes characterized
by a winding number

n[g] ∈ Π3[SU(2)] = ZZ (10.7.4)

from the third homotopy group of the gauge group. In this case, maps with
any integer winding number are possible. Denoting a map with winding
number n by gn we can thus construct a set of topologically inequivalent
vacuum states

Φ(n)(~x) = gn(~x)

(
0
v

)
, A

(n)
i (~x) = gn(~x)∂ign(~x)†. (10.7.5)

Topologically distinct vacua are separated by energy barriers, and thus there
is a periodic potential in the space of field configurations.

Classically, the system is in one of the degenerate vacuum states. Quan-
tum mechanically, however, the system can tunnel from one vacuum to
another. It turns out that a transition from the vacuum (m) to the vac-
uum (n) is accompanied by a baryon number violating process of strength
∆B = Ng(n − m), where Ng is the number of generations of quarks and
leptons. Also the lepton number changes by ∆L = Ng(n −m), such that
B −L is conserved. The tunnel amplitude — and hence the rate of baryon
number violating processes — is controlled by the barrier height between
adjacent classical vacua. The unstable field configuration at the to of the
barrier is known as a sphaleron (meaning ready to decay). In the standard
model the height of the barrier (the sphaleron energy) is given by 4πv/g
and the resulting tunneling rate is

exp(−8π2

g2
) ≈ exp(−200), (10.7.6)
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which is totally negligible. Hence, for some time people assumed that
baryon number violation in the standard model is only of academic in-
terest. However, it was overlooked that in the early Universe one need
not tunnel through the barrier — one can simply step over it classically
due to large thermal fluctuations. Then one must assume that in the TeV
range baryon number violating processes are un-suppressed in the standard
model. This means that any pre-existing baryon asymmetry — carefully
created at the GUT scale — will be washed out, because baryon number
violating processes are again in thermal equilibrium. Since the electroweak
phase transition is of second or of weakly first order, it is unlikely (but
not excluded) that a sufficient baryon asymmetry is re-generated at the
electroweak scale.

However, we should not forget that B − L is conserved in the standard
model. This means that this mode is not thermalized. When baryon and
lepton asymmetries ∆Bi and ∆Li have been initially generated at the GUT
scale, equilibrium sphaleron processes will imply that finally

∆(Bf + Lf ) = 0, (10.7.7)

but still
∆(Bf − Lf ) = ∆(Bi − Li) = 0. (10.7.8)

Hence, the present baryon and lepton asymmetries then are

∆Bf = −∆Lf =
1

2
∆(Bi − Li). (10.7.9)

This again leads to a problem, because also the minimal SU(5) model con-
serves B−L. An asymmetry ∆(Bi−Li) must hence be due to processes in
the even earlier Universe. Then we would know as much as before. Fortu-
nately, there is a way out. Other GUTs like SO(10) and E6 are not ruled
out via proton decay and indeed do not conserve B − L. The reason for
B − L violation in these models is related to the existence of massive neu-
trinos. The so-called “see-saw” mechanism gives rise to one heavy neutrino
of mass 1014 GeV and one light neutrino of mass in the eV range, that is
identified with the neutrinos that we observe. Hence, we can explain the
baryon asymmetry using GUTs only if the neutrinos are massive. Other-
wise, we must assume that it was generated at times before 10−34 sec after
the Big Bang, or we must find a way to go sufficiently out of thermal equi-
librium around the electroweak phase transition and generate the baryon
asymmetry via sphaleron processes.



Chapter 11

The Strong CP-Problem

We have seen that non-Abelian SU(N) gauge fields have nontrivial topo-
logical structure. In particular, classical vacuum (pure gauge) field configu-
rations are characterized by an integer winding number from the homotopy
group Π3[SU(N)] = ZZ. Instantons are examples of Euclidean field config-
urations with topological charge Q that describe tunneling between topo-
logically distinct classical vacua. Due to tunneling, the quantum vacuum
is a linear superposition of classical vacua characterized by a vacuum angle
θ ∈ [−π, π]. In the Euclidean action the vacuum angle manifests itself as
an additional term iθQ. For θ 6= 0, π this term explicitly breaks the CP
symmetry. As a consequence, the neutron would have an electric dipole
moment proportional to θ, while without CP violation the dipole moment
vanishes. Indeed, the observed electric dipole moment of the neutron is
indistinguishable from zero. This puts a stringent bound on the vacuum
angle |θ| < 10−9. The question arises why in Nature θ = 0 to such a high
accuracy. This is the strong CP-problem.

Within QCD itself, one could “solve” the strong CP-problem simply by
demanding CP symmetry. In the standard model, however, the Yukawa
couplings already lead to CP violation which is indeed observed in the neu-
tral kaon system. This effect is rather subtle and requires the presence of
at least three generations. If there were CP violation in the strong interac-
tions, it would give rise to much more drastic effects. Naively, one might
hope to solve the strong CP-problem by the assumption that gluon fields
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with Q 6= 0 are very much suppressed. However, this probably does not
work. First of all, the quantitative solution of the U(1)-problem relies on
the fact that gluon fields with Q 6= 0 appear frequently in the pure gauge
theory. Of course, this need not necessarily be the case in full QCD with
quarks. Indeed, if the up quark would be massless, the Atiyah-Singer index
theorem would imply that fermionic zero-modes of the Dirac operator com-
pletely eliminate gluon fields with Q 6= 0 from the path integral. In that
case, the θ-vacuum term would vanish and all θ-vacua would be physically
equivalent and thus CP conserving. It is a controversial issue if the up quark
might indeed be massless, but most experts of chiral perturbation theory
believe that this possibility is excluded. In any case, if the up quark would
indeed be massless, and we would solve the CP problem in that way, we
would immediately face the mu-problem: why is the up quark massless?

We have seen already that the Chern-Pontryagin topological charge den-
sity is intimately connected with the divergence of the flavor-singlet axial
current. This implies that the vacuum angle can be rotated using an axial
U(1) transformation. In this way, one can indeed get rid of any hypothet-
ical θ′-angle in the electroweak SU(2)L gauge field. The strong SU(3)c
θ-vacuum angle, on the other hand, cannot be rotated away in this fashion,
because it just gets transformed into a complex phase of the determinant
of the quark mass matrix. Still, such a transformation can be quite useful,
for example, because we can then investigate the θ-vacuum dynamics using
chiral Lagrangians. For example, for unequal up and down quark masses,
one finds a phase transition at θ = π at which CP is spontaneously broken.
Hence, despite the fact that θ = π does not break CP explicitly, the CP
symmetry is now broken dynamically. This means that θ cannot be π in
Nature and must indeed be zero.

The chiral Lagrangian method also allows us to study θ-vacuum effects
in the large Nc limit. In this limit, the axial U(1) anomaly vanishes and
the η′-meson becomes a massless Goldstone boson. In fact, the η′-meson
couples to the complex phase of the quark mass matrix — and hence to
θ — and can indeed be used to rotate θ away. Hence, there is no strong
CP-problem at Nc = ∞. Of course, we know that in our world Nc = 3
(although some of the textbook arguments for this (anomaly cancellation,
π0 decay) are incorrect), and we indeed face the strong CP-problem.

A very appealing solution of the strong CP-problem was suggested by
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Peccei and Quinn. They suggested an extension of the standard model with
two Higgs doublets. This situation also naturally arises in supersymmetric
extensions of the standard model. As a consequence of the presence of the
second Higgs field, there is an extra U(1)PQ — a so-called Peccei-Quinn
symmetry — which allows one to rotate θ away even at finite Nc. When
SU(2)L⊗U(1)Y breaks down to U(1)em, the Peccei-Quinn U(1)PQ symmetry
also gets spontaneously broken. It was first pointed out by Weinberg and
Wilczek that this leads to a new pseudo-Goldstone boson — the axion.
Unfortunately, so far nobody has ever detected an axion despite numerous
experimental efforts and it is still unclear if this is indeed the correct solution
of the strong CP problem. Although the original Peccei-Quinn model was
soon ruled out by experiments, the symmetry breaking scale of the model
can be shifted to higher energy scales making the axion more or less invisible.

Axions are very interesting players in the Universe. They couple only
weakly to ordinary matter, but they still have interesting effects. First of
all, they are massive and could provide enough energy to close the Universe.
If it exists, the axion can also shorten the life-time of stars. Stars live so
long, because they cannot get rid of their energy by radiation very fast.
For example, a photon that is generated in a nuclear reaction in the cen-
ter of the sun spends 107 years before it reaches the sun’s surface, simply
because its electromagnetic cross section with the charged matter in the
sun is large. An axion, on the other hand, interacts weakly and can thus
get out much father. Like neutrinos, axions can therefore act as a super
coolant for stars. The observed life-time of stars can thus be used to put
astrophysical limits on axion parameters like the axion mass. Axions can
be generated in the early Universe in multiple ways. First, they can sim-
ply be thermally produced. Then they can be generated by a disoriented
U(1)PQ condensate. This mechanism is similar to the recently discussed
pion production via a disoriented chiral condensate in a heavy ion collision
generating a quark-gluon plasma. Also, the spontaneous breakdown of a
U(1) symmetry is accompanied by the generation of cosmic strings. Indeed,
if the axion exists, axionic cosmic strings should exist as well. A network of
such fluctuating strings could radiate energy by emitting the corresponding
Goldstone bosons, namely axions.
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11.1 Rotating θ into the Mass Matrix

Let us assume that there is a θ-vacuum term iθQ in the Euclidean action of
QCD. We have seen already that such a term is intimately connected with
the flavor-singlet axial U(1) symmetry. Indeed, due to the axial anomaly,
the fermionic measure is not invariant under axial U(1) transformations.
Let us discuss this in the theory with Nf quark flavors. Under an axial
U(1) transformation

q′L = exp(−iθ/2Nf )qL, q
′
R = exp(iθ/2Nf )qR, (11.1.1)

the fermion determinant in the background of a gluon field with topological
charge Q is not invariant. In fact, it changes by exp(iθQ). Hence, the above
axial transformation can be used to cancel any pre-existing θ-vacuum term
in the QCD action. Of course, the transformation must be applied con-
sistently everywhere. It cancels out in the quark-gluon gauge interactions
which are chirally invariant, but not in mass terms. In fact, the mass matrix
M = diag(mu,md, ...,mNf ) now turns into

M′ = diag(mu exp(iθ/Nf ),md exp(iθ/Nf ), ...,mNf exp(iθ/Nf )), (11.1.2)

i.e. θ turns into the complex phase of the determinant of the quark mass
matrix. If one of the quarks is massless, the determinant vanishes and
its phase becomes physically irrelevant. Interestingly, strong CP violation
manifests itself by a complex phase in the quark mass matrix, while the CP
violation due to the Yukawa couplings leads to the complex phase in the
Cabibbo-Kobayashi-Maskawa quark mixing matrix.

The strong interaction θ-angle cannot be completely rotated away, be-
cause both left- and right-handed quarks are coupled to the gluons. A
potential electroweak interaction θ′-angle, on the other hand, can simply be
rotated away, because only the left-handed fermions couple to the SU(2)L
gauge field. For example, in order to remove a θ′-angle, one just performs
a left-handed U(1) transformation(

ν ′eL
e′L

)
= exp(−iθ′)

(
νeL
eL

)
. (11.1.3)

The change of the fermion measure under the transformation cancels against
the θ′-term, the gauge interactions remain unchanged, but the mass terms
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are again affected. However, we can now simply rotate the right-handed
fields as well

ν ′eR = exp(−iθ′)νeR, e′R = exp(−iθ′)eR, (11.1.4)

which then leaves the mass term invariant. Unlike in the QCD case, this
does not regenerate the θ′-term because the right-handed fermions do not
couple to the SU(2)L gauge field.

11.2 The θ-Angle in Chiral Perturbation The-

ory

Let us now discuss how the vacuum angle affects the low-energy QCD dy-
namics. Since we know how the quark mass matrix enters the chiral La-
grangian, and since θ is just the complex phase in that matrix, it is clear
how to include θ in chiral perturbation theory. To lowest order the chiral
perturbation theory action then takes the form

S[U ] =

∫
d4x {F

2
π

4
Tr[∂µU †∂µU ] +

1

2Nf

〈Ψ̄Ψ〉Tr[M′U † + UM′†]}, (11.2.1)

where M′ is the θ-dependent quark mass matrix of eq.(11.1.2). The above
action is not 2π-periodic in θ. Instead, it is only 2πNf -periodic. Still, it
is easy to show that the resulting path integral is indeed 2π-periodic. The
situation in QCD itself is similar. While the contribution iθQ to the action
itself is not periodic in θ, it enters the path integral through the 2π-periodic
Boltzmann factor exp(iθQ). Hence, the path integral is periodic while the
action itself is not. Let us check that a non-zero vacuum angle indeed breaks
CP. On the level of the chiral Lagrangian charge conjugation corresponds
to CU = UT , while parity corresponds to PU(~x, t) = U(−~x, t)†. The action
from above breaks P while it leaves C invariant, and hence it indeed violates
CP.

Let us now examine the effect of θ on the vacuum of the pion theory in
the Nf = 2 case. Then the mass matrix takes the form

M′ = diag(mu exp(iθ/2),md exp(iθ/2)). (11.2.2)
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In order to find the vacuum configuration, we must minimize the potential
energy, and hence we must maximize

Tr[M′U † + UM′†] = mu cos(
θ

2
+ ϕ) +md cos(

θ

2
− ϕ). (11.2.3)

Here we have parametrized U = diag(exp(iϕ), exp(−iϕ)). The minimum
energy configuration has

tanϕ =
md −mu

mu +md

tan
θ

2
. (11.2.4)

As expected, for θ = 0 one obtains ϕ = 0 and hence U = 1I. It is interest-
ing that the θ-angle affects the pion vacuum only for nondegenerate quark
masses. At θ = ±π the pion vacuum configuration has ϕ = ±π/2, i.e.
U = ±diag(i,−i). These two vacua are both not CP invariant. Instead,
they are CP images of one another. This indicates that, at θ = ±π, the
CP symmetry is spontaneously broken. Hence, despite the fact that for
θ = ±π there is no explicit CP violation, the symmetry is still not intact.
This means that in Nature we have θ = 0, not θ = π.

11.3 The θ-Angle at Large Nc

We have seen that the U(1) problem can be understood quantitatively in the
limit of many colors Nc. At Nc =∞ the anomalous axial U(1) symmetry is
restored and the η′-meson becomes a Goldstone boson. At large but finite
Nc the η′-meson is a pseudo-Goldstone boson with a mass

M2
η′ =

Nfχt
F 2
π

, (11.3.1)

proportional to 1/Nc (note that F 2
π is of order Nc). Here χt = 〈Q2〉/V is

the topological susceptibility of the pure gauge theory which is of order one
in the large Nc limit.

Since for large Nc the η′-meson becomes light, it must be included in
the low-energy chiral Lagrangian. Since the axial U(1) symmetry is re-
stored at Nc =∞ and is then spontaneously broken, the chiral symmetry is
now U(Nf )L ⊗ U(Nf )R broken to U(Nf )L=R. Consequently, the Goldstone



11.4. THE PECCEI-QUINN SYMMETRY 205

bosons now live in the coset space U(Nf )L ⊗ U(Nf )R/U(Nf )L=R = U(Nf ).
Hence, now there are N2

f Goldstone bosons. The additional η′ Goldstone
boson is described by the complex phase of the determinant of a unitary
matrix Ũ , which would have determinant one if the η′-meson were heavy.
For large Nc the chiral perturbation theory action takes the form

S[U ] =

∫
d4x {F

2
π

4
Tr[∂µŨ †∂µŨ ] +

1

2Nf

〈Ψ̄Ψ〉Tr[M′Ũ † + ŨM′†]

+ Nfχt(i log detŨ)2}. (11.3.2)

If there is a θ-angle in the quark mass matrix, this angle can now be absorbed
into the η′-meson field, i.e. in the complex phase of the determinant of the
Goldstone boson field Ũ . Then the action turns into

S[U ] =

∫
d4x {F

2
π

4
Tr[∂µŨ †∂µŨ ] +

1

2Nf

〈Ψ̄Ψ〉Tr[MŨ † + ŨM†]

+ Nfχt(i log detŨ − θ)2}. (11.3.3)

In the large Nc limit the last term which is of order one can be neglected
compared to the other terms which are of order Nc. Hence, at Nc = ∞,
the vacuum angle drops out of the theory, and all θ-vacua become physi-
cally equivalent. Hence, for infinitely many colors there is no CP problem.
Essentially, the restored U(1) symmetry then allows us to rotate θ away,
despite the fact that it is still explicitly broken by the quark masses.

11.4 The Peccei-Quinn Symmetry

At finite Nc, the axial U(1) symmetry is inevitably broken by the anomaly.
Hence, we will not be able to rotate θ away using that symmetry. The
idea of Peccei and Quinn was to introduce another U(1)PQ symmetry —
now known as a Peccei-Quinn symmetry — that will allow us to get rid of
θ despite the fact that the axial U(1) symmetry is explicitly anomalously
broken. We will discuss the Peccei-Quinn symmetry in the context of the
single generation standard model. The generalization to more generations
is straightforward. Of course, it should be noted that with less than three
generations, there is no CP violating phase in the quark mixing matrix and
θ would be the only source of CP violation. Let us first remind ourselves
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how the up and down quarks get their masses in the standard model. As
we have seen earlier, the mass of the down quark md = fdv is due to the
Yukawa coupling

L(uL, dL, dR,Φ) = fd[d̄R(Φ∗+Φ∗0)

(
uL
dL

)
+ (ūLd̄L)

(
Φ+

Φ0

)
dR], (11.4.1)

while the mass of the up quark mu = fuv is due to the term

L(uL, dL, dR,Φ) = fd[ūR(Φ′∗0 Φ′∗−)

(
uL
dL

)
+ (ūLd̄L)

(
Φ′0
Φ′−

)
uR]. (11.4.2)

In the standard model the Higgs field Φ′ is constructed out of the Higgs
field Φ as

Φ′ =

(
Φ′0
Φ′−

)
=

(
Φ∗0
−Φ∗+

)
. (11.4.3)

When we write the Higgs field as a matrix

Φ =

(
Φ∗0 Φ+

−Φ∗+ Φ0

)
, (11.4.4)

both Yukawa couplings can be combined into one expression

L(uL, dL, uR, dR,Φ) = (ūRd̄R)F †Φ†
(
uL
dL

)
+(ūLd̄L)ΦF

(
uR
dR

)
, (11.4.5)

where F = diag(fu, fd) is the diagonal matrix of Yukawa couplings. When a
θ-term is present in the QCD Lagrangian, it can be rotated into the matrix
of Yukawa couplings by the transformation(

u′L
d′L

)
= exp(−iθ/4)

(
uL
dL

)
,

(
u′R
d′R

)
= exp(−iθ/4)

(
uR
dR

)
. (11.4.6)

This turns the matrix of Yukawa couplings into

F ′ = diag(fu exp(iθ/2), fd exp(iθ/2)). (11.4.7)

Since the Higgs field matrix Φ is proportional to an SU(2) matrix, the com-
plex phase exp(iθ) of the matrix of Yukawa couplings cannot be absorbed
into it, and hence θ cannot be rotated away. Here we have assumed that
fu and fd are real. Otherwise, the effective vacuum angle would still be the
complex phase of the determinant of F ′.



11.4. THE PECCEI-QUINN SYMMETRY 207

It is instructive to include the Yukawa couplings in the chiral perturba-
tion theory action

S[U,Φ] =

∫
d4x {F

2
π

4
Tr[∂µU †∂µU ] +

1

2Nf

〈Ψ̄Ψ〉Tr[ΦF ′U † + UF ′†Φ†]}.

(11.4.8)
Again, the complex phase in F ′ cannot be absorbed into the Higgs field
matrix Φ because it is proportional to an SU(2) matrix. The Goldstone
boson matrix U is also an SU(2) matrix, and hence θ cannot be rotated
away. As we have seen, θ can actually be rotated away if the Goldstone
boson matrix is in U(2) and contains the η′-meson field as a complex phase
of its determinant. This, however, is the case only at large Nc.

The basic idea of Peccei and Quinn can be boiled down to extending
the standard model Higgs field to a matrix proportional to U(2) — not
just to SU(2). The extra U(1)PQ Peccei-Quinn symmetry then allows us to
rotate θ away. The actual proposal of Peccei and Quinn does a bit more. It
introduces two completely independent Higgs doublets Φ and Φ′ which can
be combined to form a GL(2,CC) matrix. Working with GL(2,CC) rather
than with U(2) matrices ensures that the Higgs sector is described by a
perturbatively renormalizable linear σ-model, instead of a perturbatively
nonrenormalizable nonlinear σ-model. Still, this is not too relevant since,
as we have discussed earlier, both the linear and the nonlinear σ-model are
trivial in the continuum limit, and physically equivalent. For simplicity,
we will not follow Peccei and Quinn all the way and introduce two Higgs
fields. Instead we will just extend the standard Higgs field to a matrix
Φ̃ proportional to a U(2) matrix. This means that we introduce just one
additional degree of freedom, while Peccei and Quinn introduced four. The
complex phase in F ′ can then be absorbed in a redefinition of Φ̃ and one
obtains

S[U, Φ̃] =

∫
d4x {F

2
π

4
Tr[∂µU †∂µU ] +

1

2Nf

〈Ψ̄Ψ〉Tr[Φ̃FU † + UF †Φ̃†]}.

(11.4.9)
Since this expression now contains the original real Yukawa coupling matrix
F , all signs of the vacuum angle have completely disappeared from the
theory. Instead the complex phase exp(ia/v) of Φ̃ now plays the role of θ.
In particular, the axion field a(x)/v behaves like a space-time dependent
θ-vacuum angle.
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11.5 U(1)PQ Breaking and the Axion

The scalar potential V (Φ̃) in the extension of the standard model is invariant
against SU(2)L ⊗ SU(2)R ⊗ U(1)PQ transformations. In the vacuum the
Higgs field takes the value Φ̃ = diag(v, v), which breaks this symmetry
down spontaneously to SU(2)L=R. Hence, there are 3 + 3 + 1 − 3 = 4
massless Goldstone bosons. As usual, we then gauge SU(2)L as well as the
U(1)Y subgroup of SU(2)R, which amounts to a partial explicit breaking
of SU(2)R. The unbroken subgroup of SU(2)L=R then is just U(1)em. Via
the Higgs mechanism, three of the four Goldstone bosons are eaten by the
gauge bosons and become the longitudinal components of Z0 and W±. Since
U(1)PQ remains a global symmetry, the fourth Goldstone boson does not
get eaten. This Goldstone boson is the axion.

Let us construct a low-energy effective theory that contains all Gold-
stone bosons of the extended standard model, namely the pions and the
axion. This is easy to do, because we have already included Φ̃ in the chiral
Lagrangian. After spontaneous symmetry breaking at the electroweak scale
v, we can write

Φ̃ = vdiag(exp(ia/v), exp(ia/v)), (11.5.1)

where a parametrizes the axion field. Similarly, we can write

U = diag(exp(iπ0/Fπ), exp(−iπ0/Fπ)). (11.5.2)

Of course, the field U also contains the charged pions. At this point, we
are interested in axion-pion mixing. Since the axion is electrically neutral,
it cannot mix with the charged pions and we thus ignore them. Let us first
search for the vacuum of the axion-pion system. Minimizing the energy
implies maximizing

Tr[Φ̃FU †+UF †Φ̃†] = mu cos(a/v+π0/Fπ)+md cos(a/v−π0/Fπ). (11.5.3)

Obviously, this expression is maximized for a = π0 = 0. Next we expand
around this vacuum to second order in the fields. The resulting mass squared
matrix takes the form

M2 =
〈Ψ̄Ψ〉

4

(
(mu +md)/F

2
π (mu −md)/Fπv

(mu −md)/Fπv (mu +md)/v
2

)
. (11.5.4)
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In the limit v →∞ this matrix turns into

M2 =
〈Ψ̄Ψ〉

4

(
(mu +md)/F

2
π 0

0 0

)
, (11.5.5)

from which we read off the familiar mass squared of the pion

M2
π =
〈Ψ̄Ψ〉(mu +md)

4F 2
π

. (11.5.6)

In this limit the axion remains massless and there is no axion-pion mixing.
Next, we keep v finite, but we still use v � Fπ. Then there is a small
amount of mixing between the axion and the pion, but the pion mass is to
leading order unaffected. The determinant of the mass squared matrix is
given by

〈Ψ̄Ψ〉2

16
[
(mu +md)

2

F 2
πv

2
− (mu −md)

2

F 2
πv

2
] =

4mumd

F 2
πv

2
= M2

πM
2
a . (11.5.7)

Hence, the axion mass squared is given by

M2
a =

〈Ψ̄Ψ〉mumd

(mu +md)v2
. (11.5.8)

It vanishes in the chiral limit, and even if just one of the quark masses is
zero. The ratio of the axion and pion mass squares is

M2
a

M2
π

=
4mumdF

2
π

(mu +md)2v2
. (11.5.9)

Hence, for mu = md we have

Ma

Mπ

=
Fπ
v
≈ 250GeV

0.1GeV
= 2500 ⇒ Ma ≈

0.14GeV

2500
≈ 50keV. (11.5.10)

This is an unusually light particle that should have observable effects. In-
deed, there have been several experimental searches for this “standard”
axion, but they did not find anything. The only exception was an experi-
ment performed in Aachen (Germany). The signature they saw was called
the “Aachion” but it was not confirmed by other experiments, and the stan-
dard axion with a mass around 50keV has actually been ruled out. Still,
by pushing the U(1)PQ breaking scale far above the electroweak scale one
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can make the axion more weakly coupled and thus make it invisible to all
experiments performed so far. Presently, there are still searches going on
that attempt to detect the “invisible” axion. Before they are successful, we
cannot be sure that Peccei and Quinn’s elegant solution of the strong CP
problem is actually correct.

Invisible axions are light and interact only weakly, because the axion
coupling constants are proportional to the mass. Still, unless they are too
light — and thus too weakly interacting — axions can cool stars very effi-
ciently. Their low interaction cross section allows them to carry away energy
more easily than the more strongly coupled photon. A sufficiently interact-
ing axion could shorten the life-time of stars by a substantial amount. From
the observed life-time one can hence infer an upper limit on the axion mass.
In this way invisible axions heavier than 1 eV have been ruled out. This
implies that the Peccei-Quinn symmetry breaking scale must be above 107

GeV. If they exist, axions would also affect the cooling of a neutron star
that forms after a supernova explosion. There would be less energy taken
away by neutrinos. The observed neutrino burst of the supernova SN 1987A
would have consisted of fewer neutrinos if axions had also cooled the neu-
tron star. This astrophysical observation excludes axions of masses between
10−3 and 0.02 MeV — a range that cannot be investigated in the laboratory.

There are various mechanisms in the early Universe that can lead to
the generation of axions. The simplest is via thermal excitation. One can
estimate that thermally generated axions must be rather heavy in order
to contribute substantially to the energy density of the Universe. In fact,
thermal axions cannot close the Universe, because the required mass is al-
ready ruled out by the astrophysical limits. Another interesting mechanism
for axion production relies on the fact that the axion potential is not com-
pletely flat but has a unique minimum. At high temperatures the small
axion mass is irrelevant, the potential is practically flat and corresponds to
a family of degenerate minima related to one another by U(1)PQ symme-
try transformations. Hence, there are several degenerate vacua labeled by
different values of the axion field (hence with different values of θ) and all
values of θ are equally probable. Then different regions of the hot early
Universe must have been in different θ-vacua. When the temperature de-
creases, a = 0 is singled out as the unique minimum. In order to minimize
its energy, the scalar field then “rolls” down to this minimum, and oscillates
about it. The oscillations are damped by axion emission, and finally a = 0
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is reached everywhere in the Universe. The axions produced in this way
would form a Bose condensate that could close the Universe for an axion
mass in the 10−5 eV range. This makes the axion an attractive candidate
for dark matter in the Universe. This axion production mechanism via a
disoriented Peccei-Quinn condensate is very similar to the pion-production
mechanism that has been discussed via disorienting the chiral condensate in
a heavy ion collision. At temperatures high above the QCD scale, U(1)PQ is
almost an exact global symmetry, which gets spontaneously broken at some
high scale. This necessarily leads to the generation of a network of cosmic
strings. Such a string network can lower its energy by radiating axions.
Once the axion mass becomes important, the string solutions become un-
stable, and the string network disappears, again leading to axion emission.
This production mechanism may also lead to enough axions to close the
Universe.
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Appendix A

Units, Scales, and Hierarchies
in Particle Physics

Physical units represent man-made conventions influenced by the historical
development of physics. Interestingly, there are also natural units which
express physical quantities in terms of fundamental constants of Nature:
Newton’s gravitational constant G, the velocity of light c, and Planck’s
action quantum h. In this appendix we consider the units commonly used
in particle physics, and we discuss energy scales and mass hierarchies.

A.1 Man-Made versus Natural Units

The most basic physical quantities — length, time, and mass — are mea-
sured in units of meters (m), seconds (sec), and kilograms (kg). Obviously,
these are man-made units appropriate for the use at our human scales. For
example, the length of a step is roughly one meter, the duration of a heart
beat is about one second, and one kilogram is a reasonable fraction of our
body weight, e.g. the weight of a loaf of bread.

Time is measured by counting periodic phenomena. An individual ce-
sium (Cs) atom is an extremely accurate clock. In fact, 1 second is defined
as 9192631770 periods of a particular microwave transition of the Cs atom.
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While the meter was originally defined by the length of the meter stick
kept in the “Bureau International des Poids et Measure” in Paris, one now
defines the meter through the speed of light c and the second as

1 m = 3.333564097× 10−7c sec . (A.1.1)

In other words, the measurement of distance is reduced to the measurement
of time by invoking a natural constant. Together with the meter stick, a
certain amount of platinum-iridium alloy was deposited in Paris more than
hundred years ago. The corresponding mass was defined to be one kilogram.

Expressed in those man-made units, Nature’s most fundamental con-
stants are the speed of light

c = 2.99792458× 108 m sec−1 , (A.1.2)

Planck’s action quantum (divided by 2π)

~ = 1.05457163(5)× 10−34 kg m2sec−1 , (A.1.3)

and Newton’s gravitational constant

G = 6.6743(1)× 10−11 m3 kg sec−2 . (A.1.4)

Appropriately combining these fundamental constants, Nature provides us
with her own natural units (also known as Planck units): the Planck length

lPlanck =

√
G~
c3

= 1.6160× 10−35 m , (A.1.5)

and the Planck time

tPlanck =

√
G~
c5

= 5.3904× 10−44 sec , (A.1.6)

which represent the shortest distances and times relevant in physics. Today
we are very far from exploring such short length- and time-scales experi-
mentally. It is even expected that our classical concepts of space and time
may break down at the Planck scale. One might speculate that, at the
Planck scale, space and time are not resoluble any more, and that lPlanck
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and tPlanck may represent the shortest elementary quantized units of space
and time. We can also define the Planck mass

MPlanck =

√
~c
G

= 2.1768× 10−8 kg . (A.1.7)

Planck units are not very practical in our everyday life. For example, a
step has a length of about 1035 lPlanck, a heart beat lasts roughly 1044 tPlanck,
and the mass of our body is about 1010MPlanck. Still, lPlanck, tPlanck, and
MPlanck are the most fundamental basic units that Nature provides us with.
It is interesting to ask why we exist at scales so far removed from the Planck
scale. For example, why does a kilogram correspond to about 108MPlanck?
In some sense, this is a “historical” question. The amount of platinum-
iridium alloy deposited in Paris a long time ago, which defines the kilogram,
obviously is an arbitrarily chosen man-made unit. Why was it chosen in this
particular manner? If we assume that the kilogram was chosen because it
is a reasonable fraction of our body weight, we may rephrase the question
as a biological one: Why do intelligent beings weigh about 1010MPlanck? If
biology could explain the number of cells in our body and, with some help
from chemistry, could also explain the number of atoms necessary to form
a cell, we can reduce the question to a physics problem. Since atoms get
their mass from protons and neutrons (which have about the same mass),
we are led to ask: Why is the proton mass

Mp = 1.67266× 10−27 kg = 7.6840× 10−20MPlanck (A.1.8)

so light compared to the Planck mass? This hierarchy puzzle, which is dis-
cussed in Chapter ???, has been understood at least qualitatively using the
property of asymptotic freedom of Quantum Chromodynamics — the quan-
tum field theory of quarks and gluons whose interaction energy explains the
mass of the proton. As discussed in Chapter ???, eq. (A.1.8) also explains
why gravity is an extremely weak force.

Since, the ratio Mp/MPlanck ≈ 10−19 is so tiny, it is unpractical to use
MPlanck as a basic unit of mass in particle physics. Instead it is common to
use one electron Volt, the energy that an electron (of charge −e) picks up
when it is accelerated by a potential difference of one Volt,

1 eV = 1.6022× 10−19 kg m2 sec−2 , (A.1.9)
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as a basic energy unit. Obviously, the Volt, and therefore also the eV, is
again a man-made unit — as arbitrarily chosen as, for example, 1 kg. The
rest energy of a proton is then given by

Mpc
2 = 0.93827203(8) GeV . (A.1.10)

In particle physics it is common practice to put ~ = c = 1. Then masses and
momenta are measured in energy units, and lengths and times are measured
in units of inverse energy. In particular, one has

~c = 3.1616× 10−26 kg m3 sec−2 , (A.1.11)

such that ~c = 1 implies

1 fm = 10−15 m = (0.1973 GeV)−1 (A.1.12)

for the scale of nuclear radii.

The strength of the electromagnetic interaction is determined by the
quantized charge unit e (the electric charge of a proton). In natural units
it gives rise to the experimentally determined fine-structure constant

α =
e2

~c
=

1

137.03599968(1)
. (A.1.13)

The strength of electromagnetism is determined by this pure number which
is completely independent of any man-made conventions. An interesting
question (that e.g. Wolfgang Pauli was faszinated by) is why α takes this
particular value. At the moment, we have no clue how to answer this
question. Some physicists like to use the anthropic principle: if α would
be different, atomic physics and thus chemistry would work differently, and
life as we know it would be impossible. Obviously, we can only exist in
a Universe with a value of α that is hospitable to life. According to the
anthropic principle, our existence may “explain” the value of α. The authors
prefer not to subscribe to this way of thinking. In particular, the anthropic
principle should only be used as a last resort, when all other explanations
fail (which may still turn out to be the case for α). Let us be more optimistic
and hope that some extension of the Standard Model will eventually explain
the measured value of α.
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A.2 Energy Scales and Particle Masses

Table A.1 lists the charges, masses, and life times of some important par-
ticles. The photon is, as far as we can tell, exactly massless, in agreement
with the unbroken gauge symmetry U(1)em. Then it cannot possibly decay
into anything lighter and is therefore stable.1 Just as the photon mediates
the electromagnetic interaction, the heavy gauge bosons W+, W−, and Z
mediate the weak interaction. Unlike the photon, the electroweak gauge
bosons are unstable against the decay into other particles and live only for
about 10−25 sec. Due to their large mass, there is a large phase space for
the decay into light particles which causes the short life times of the W -
and Z-bosons. The inverse of their mass determines the very short range
10−17 m of the weak interaction.

Ordinary matter consists of protons and neutrons forming atomic nuclei
which are surrounded by a cloud of electrons. While the life time of an
isolated neutron is finite (about 13.5 minutes), because it decays into proton,
electron, and anti-neutrino, a neutron bound inside a stable atomic nucleus
cannot decay. Despite numerous experimental searches, protons have never
been observed to decay. Still, as discussed in Chapter ???, the Standard
Model does predict proton decay, however, at such a tiny rate that its
experimental confirmation is practically impossible. Grand Unified Theories
(GUTs) predict proton decay at a larger and perhaps detectable rate. Such
theories may eventually explain the baryon asymmetry — the fact that
there is more matter than anti-matter in the Universe.

The pions π+, π0, and π− are the lightest hadrons. They are responsible
for the large-distance contribution to the (still very short-ranged) nuclear
force between protons and neutrons. The charged pions π± are relatively
long lived, because they decay only through processes of the weak interac-
tions. The neutral pion π0, on the other hand, lives much shorter, because
(as discussed in Chapter ???) it can decay electromagnetically into two
photons. The Standard Model Lagrangian contains only one dimensionful
parameter — the vacuum expectation value v of the Higgs field — which

1Since photons can be emitted or absorbed by charged particles, their number is not
conserved.
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Particle Particle Electric Mass [GeV] Life time
Type Charge

Gauge Photon γ 0 < 10−35 stable
Bosons W±-bosons ±1 80.398(25) 3.07(6)× 10−25 sec

Z-boson 0 91.1876(21) 2.64(3)× 10−25 sec
Leptons Neutrino νe 0 < 2× 10−9 unknown

Electron e −1 0.51099891(1)× 10−3 > 2× 1022 years
Baryons Proton p 1 0.93827203(8) > 2.1× 1029 years

Neutron n 0 0.93956536(8) 885(1) sec
Mesons Pion π0 0 0.1349766(6) 8.4(6)× 10−17 sec

Pions π± ±1 0.1395702(4) 2.6033(5)× 10−8 sec

Table A.1: Electric charges (in units of e), masses, and life times of some
particles.

takes the experimentally determined value

v = 246 GeV = 2.02× 10−17MPlanck . (A.2.1)

There is a huge hierarchy separating the electroweak scale v from the Planck
scale MPlanck set by the gravitational force. Since v is a free parameter of the
Standard Model, at present we don’t know where the hierarchy originates
from. Indeed, in order to adjust v at its experimental value, the bare mass
parameter of the Higgs field must be fine-tuned to a large number of decimal
places. Many physicists consider this unnatural. Some theories beyond
the Standard Model (e.g. those based on technicolor) attempt to solve the
hierarchy problem by explaining the ratio v/MPlanck without any need for
fine-tuning.

The charges and masses of the leptons are listed in table A.2. There
are three generations of leptons containing the charged leptons — electron,
muon, and tau — as well as the corresponding neutrinos. The masses of
the charged leptons are experimentally known to a high accuracy. In the
Standard Model the lepton masses are free parameters, resulting from the
Yukawa couplings to the Higgs field. At present, we have no clue either
why the lepton masses take their respective values. In particular, we do
not understand why the masses of the electron and the tau-lepton differ by
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more than three orders of magnitude, or why the electron mass is more than
five orders of magnitude smaller than the electroweak scale v.

Currently, only upper bounds exist for the neutrino masses. Indeed, in
the Standard Model the neutrinos are exactly massless. However, the recent
observations of neutrino oscillations imply that (at least some) neutrinos
must have a non-zero mass. In certain extensions of the Standard Model
(e.g. in Grand Unified Theories) the so-called see-saw mechanism, which
is discussed in Chapter ???, can explain very small neutrino masses, at
the expense of introducing a new GUT energy scale ΛGUT ≈ 1015 GeV. In
these theories, besides additional gauge bosons, there are extremely heavy
Majorana neutrinos at this energy scale.

Generation Lepton Electric Mass [GeV]
Charge

1. Electron-Neutrino νe 0 < 2× 10−9

Electron e −1 0.51099891(1)× 10−3

2. Muon-Neutrino νµ 0 < 0.17× 10−3

Muon µ −1 0.105658367(4)
3. Tau-Neutrino ντ 0 < 15.5× 10−3

Tau τ −1 1.7768(2)

Table A.2: Electric charges (in units of e) and masses of the three genera-
tions of leptons.

Table A.3 summarizes the charges and masses of quarks. Again, quarks
appear in three generations, with the up and down quark forming the first,
the charm and strange quark the second, and the top and bottom quark the
third generation. The electric charges of quarks are either 2/3 or −1/3 of
the elementary charge e. However, since quarks do not exist as individual
objects but are confined inside hadrons, in agreement with Millikan-type
experiments, at a fundamental level no fractionally charged physical states
seem to exist in Nature.2 Confinement also implies that quark masses do not
represent the inertia of physical objects. Only the masses of the resulting

2Charge fractionalization of electrons is known to occur as a collective phenomenon
in the condensed matter physics of the fractional quantum Hall effect.
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hadrons are truly physical masses measuring inertia and gravitational cou-
pling strength. Like other quantities in quantum field theory, quark masses
are running, i.e. they depend on the chosen renormalization scheme and
scale. The quark masses in table A.3 are defined in the so-called MS min-
imal substraction renormalization scheme. The masses of the light quarks
up, down, and strange are quoted at a scale of 2 GeV, while the masses
of the heavy quarks charm, bottom, and top are quoted at the scale of the
respective mass itself. The quark masses are given by the scale v — the only
dimensionful parameter in the Standard Model Lagrangian — multiplied by
the respective Yukawa couplings to the Higgs field. Again, we presently do
not understand why the quark masses take these specific values. In partic-
ular, we don’t know why the masses of the up and the top quark differ by
more than four orders of magnitude.

Generation Quark Electric Mass [GeV]
Charge

1. up u 2/3 0.003(1)
down d −1/3 0.006(1)

2. charm c 2/3 1.24(9)
strange s −1/3 0.10(2)

3. top t 2/3 173(3)
bottom b −1/3 4.20(7)

Table A.3: Electric charges (in units of e) and running masses (in the MS
scheme at the respective mass scales) of the three generations of quarks.

It is interesting to note that the masses of the proton and other hadrons
are not proportional to v. In QCD hadrons arise non-perturbatively as
states containing confined quarks and gluons. Remarkably, the proton mass
is still about 0.9 GeV even when the quark masses are set to zero. For
massless quarks (i.e. in the chiral limit), the QCD action contains no di-
mensionful parameter and is thus scale invariant. However, scale invariance
is anomalous, i.e. although it is present in the classical theory, it is explicitly
broken at the quantum level. Since quantum field theories must be regular-
ized and renormalized, upon quantization a dimensionful cut-off parameter
enters the theory. Even when the cut-off is removed, a dimensionful scale is
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left behind. This phenomenon — which is known as dimensional transmu-
tation — is visible already in perturbation theory. In particular, in the MS
renormalization scheme the perturbatively defined scale ΛMS arises, whose
value in the two flavor theory (with up and down quarks only) is given by

ΛMS = 0.260(40) GeV . (A.2.2)

In the chiral limit ΛMS is the only scale of QCD, to which all hadron masses
are proportional. For example, the ratio Mp/ΛMS is a dimensionless num-
ber predicted by non-perturbative QCD without any adjustable parame-
ters. While the proton mass is provided by Nature, the scale ΛMS is again
a man-made unit, introduced by theoretical physicists to ease perturbative
calculations in QCD. Of course, in contrast to the kg, which was chosen
at our human scales, ΛMS is chosen at the relevant energy scale of the
strong interaction. As mentioned before, as a consequence of the property
of asymptotic freedom of QCD, it is natural that the proton mass Mp (and
hence the QCD scale ΛMS) is much smaller than the Planck scale MPlanck.
On the other hand, since the Higgs sector of the Standard Model is not
asymptotically free, the hierachy problem arises: Why is v so much smaller
than MPlanck? As long as this problem remains unsolved, we will not un-
derstand either why ΛMS is about three orders of magnitude smaller than
v.

Just as the fundamental electric charge e determines the strength of the
electromagnetic interaction between photons and electrons or other charged
particles, the strong coupling constant gs determines the strength of the
strong interaction between quarks and gluons. Like the quark masses, the
QCD analog αs = g2

s/~c of the fine-structure constant α = e2/~c also de-
pends on the renormalization scale and scheme. Asymptotic freedom implies
that αs goes to zero in the high energy limit, i.e. the strong interaction be-
comes weak at high momentum transfers. At the scale of the Z-boson mass
the quark-gluon coupling constant is given by

αs(MZ) = 0.1176(20) . (A.2.3)

The parameter ΛMS sets the energy scale at which αs becomes strong.

The electroweak interactions are described by the gauge group SU(2)L×
U(1)Y with two corresponding gauge coupling constants g and g′. At tem-
perature scales below v, in particular in the vacuum, the SU(2)L × U(1)Y
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symmetry is spontaneously broken down to the U(1)em gauge group of elec-
tromagnetism with the elementary electric charge given by

e =
gg′√
g2 + g′2

. (A.2.4)

The ratio of the W - and Z-boson masses is given by

MW

MZ

=
g√

g2 + g′2
= cos θW , (A.2.5)

which defines the Weinberg angle θW. Its measured value is given by

sin2 θW =
g′2

g2 + g′2
= 0.2226(5) . (A.2.6)

Just as the value of the fine-structure constant α ≈ 1/137 is not understood
theoretically, the values of the three gauge couplings gs, g, and g′ associated
with the Standard Model gauge group SU(3)c × SU(2)L × U(1)Y are not
understood either. When one uses the renormalization group to evolve the
three gauge couplings from the currently experimentally accessible energy
scales all the way up to the GUT scale ΛGUT, in a supersymmetric GUT
extension of the Standard Model the couplings converge to one unified value.
Hence, properly designed GUT theories are indeed able to relate the values
of the gauge couplings gs, g, and g′, or equivalently ΛMS, sin2 θW, and α.

A.3 Fundamental Standard Model Parame-

ters

Let us consider the fundamental Standard Model parameters. While their
values can be determined experimentally, they are not understood on the-
oretical grounds. In fact, achieving a deeper understanding of these free
parameters would require the discovery of even more fundamental struc-
tures underlying the Standard Model.

First, we concentrate on the minimal Standard Model with massless neu-
trinos and we consider its parameters in the order in which they appear in
the book. Since the Standard Model is renormalizable, only a finite number
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of terms enter its Lagrangian. Consequently, the number of fundamental
Standard Model parameters is also finite.

Chapter ?? addresses the Higgs sector of the Standard Model, whose
Lagrangian contains two fundamental parameters — v and λ — which de-
termine the quartic potential V (Φ) = λ/4!(Φ†Φ − v2)2. The vacuum ex-
pectation value v = 246 GeV of the Higgs field is the only dimensionful
parameter that enters the Lagrangian of the minimal Standard Model. In
particular, in combination with the scalar self-coupling λ it determines the
Higgs boson mass mH =

√
λ/3v.

Chapter ?? extends the Higgs sector by gauging its SU(2)L× U(1)Y
symmetry. In this way, two additional fundamental parameters — the
gauge couplings g and g′ — arise, which (together with v) determine the

masses of the W - and Z-bosons, mW = 1
2
gv and mZ = 1

2

√
g2 + g′2, as

well as the Weinberg angle cos θW = g/
√
g2 + g′2 and the electric charge

e = gg′/
√
g2 + g′2.

In Chapter ?? the gluon field appears as the SU(3)c gauge field medi-
ating the strong interaction, with the corresponding gauge coupling gs as
another fundamental Standard Model parameter. By dimensional transmu-
tation, the dimensionless coupling gs is traded for the dimensionful param-
eter ΛQCD = 0.??? GeV, that sets the energy scale at which the running
gauge coupling becomes strong. Besides v (which enters the theory via the
Lagrangian), ΛQCD (which appears in the process of renormalization) is the
only dimensionful parameter of the minimal Standard Model.

Many more parameters arise from the Yukawa couplings between the
Higgs field and the lepton and quark fields, which are addressed in Chapters
?? and ??. In the minimal Standard Model with massless neutrinos there
are three dimensionless Yukawa couplings fe, fµ, and fτ , which determine
the masses of the charged leptons me = fev, mµ = fµv, and mτ = fτv.
Similarly, there are six Yukawa couplings fu, fd, fc, fs, ft, and fb, for the
different quark flavors. Besides these, there are four more parameters which
determine the Cabibbo-Kobayashi-Maskawa quark mixing matrix: three
angles (including the Cabibbo-angle) and one CP-violating phase. Hence,
including the Higgs self-coupling λ as well as the vacuum expectation value
v, altogether there are 2 + 3 + 6 + 4 = 15 fundamental Standard Model
parameters associated with the non-gauge interactions between Higgs and
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matter fields.

Besides the three gauge couplings g, g′, and gs, as discussed in Chapters
?? and ??, the gauge interactions also give rise to the strong and electro-
magnetic vacuum angles θ and θQED. The weak interaction vacuum angle,
on the other hand, is unphysical and can be absorbed by a field redefini-
tion (cf. Chapter ??). The experimentally determined QCD vacuum angle
|θ| ≤ 10−10 leads to the strong CP-problem: Why is θ consistent with zero?
Like understanding the value of any other fundamental Standard Model pa-
rameter, solving this problem requires to go beyond the Standard Model.
The value of the electromagnetic vacuum angle θQED is not known. In fact,
this parameter is often ignored and indeed deserves more attention than it
has received until now (cf. Chapter ??).

Altogether the gauge and non-gauge interactions of the minimal Stan-
dard Model give rise to 5 + 15 = 20 fundamental parameters.

Since the discovery of neutrino oscillations, it is clear that neutrinos
have mass. As discussed in Chapter ??, this can be accounted for by adding
non-renormalizable dimension 5 operators to the minimal Standard Model,
thus treating it as a low-energy effective theory. Once non-renormalizable
terms are included, the number of free parameters grows very quickly, in
principle even to infinity. Hence, in order to continue counting a finite
number of fundamental parameters, we now consider the renormalizable
extension of the minimal Standard Model by right-handed neutrino fields
(cf. Chapter ??). In this way, three Dirac mass parameters mνe , mνµ , and
mντ (or, equivalently, three corresponding dimensionless Yukawa couplings
fνe , fνµ , and fντ ) as well as three dimensionful Majorana mass parameters
Mi (i ∈ {1, 2, 3}) enter the extended Lagrangian. In this way, besides
v and ΛQCD, the high-energy scales Mi are introduced, which — via the
see-saw mass mixing mechanism — give rise to small neutrino masses. In
addition, as an analog of the CKM matrix, the Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) lepton mixing matrix arises. As discussed in Chapter ??, it
contains three mixing angles as well as two CP-violating phases and thus it
contributes five additional fundamental parameters. Hence, in the extended
renormalizable Standard Model with right-handed neutrino fields, there are
3 + 3 + 5 = 11 additional fundamental parameters.

As discussed in Chapter ?? the minimal Standard Model extended by



A.3. FUNDAMENTAL STANDARD MODEL PARAMETERS 227

right-handed neutrino fields may provide us with a viable dark matter can-
didate as well as with a satisfactory explanation of the baryon asymme-
try. Hence, it may account for all observed fundamental phenomena with
the exception of gravity. As discussed in Chapter ??, perturbative quan-
tum gravity can indeed be incorporated in the Standard Model, at least
as an effective low-energy theory. At leading order, the corresponding La-
grangian is the one of classical general relativity, with Newton’s constant G
(or equivalently the Planck mass MPlanck) and the cosmological constant Λc

as two additional dimensionful fundamental parameters. Further extended
by gravity in this way, the Standard model then contains 20 + 11 + 2 = 33
fundamental parameters. This model might, in fact, be valid all the way
up to the Planck scale, where it would necessarily have to be replaced by a
theory of non-perturbative quantum gravity.

Until now we have counted those fundamental Standard Model parame-
ters that take continuous values. In addition, there are many hidden discrete
parameters, such as, for example, the number of generations or the number
of quark colors Nc, which indeed plays a prominent role in this book. Other
discrete parameters are associated with the number of fundamental fields
and their representations under the various gauge groups. What one con-
siders a discrete parameter is a matter of choice, and thus counting them is
ambiguous. There are many deep questions beyond the Standard Model re-
lated to its discrete parameters, such as: Why are there three generations?
Why is the gauge group SU(3)c× SU(2) × U(1)? Why do quarks transform
in the fundamental representation of SU(3)c? Why are there three space
and one time dimension? This list could easily be extended further and we
have no clue how to answer any of these deep questions.

One could have argued that the weak hypercharges of the leptons and
quarks, YlL , YeR

, YqL
, YuR

, and YdR
should be counted as additional continu-

ous parameters. While this would indeed be correct at the classical level, as
we have seen in Chapter ??, at the quantum level these parameters are fixed
by anomaly cancellation and should thus not be counted as free parameters.

While the total number of 33 continuous fundamental parameters may
seem quite large, we should not forget that all other physical quantities
(and, in fact, all other natural phenomena), at least in principle, originate
from those parameters. In addition, while many of the parameters — in-
cluding, for example, the masses and mixing angles of the heavy quarks or
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the neutrinos — are relevant in particle physics, their values have hardly
any impact on the rest of physics. Only a few parameters — namely the
masses of the light quarks and the electron, the Cabibbo angle, and the
three gauge couplings, as well as v — at least in principle, determine all of
nuclear and atomic physics (and hence condensed matter physics, chemistry,
biology, and everything else that may eventually be related to fundamental
physical processes). Of course, one should not forget that, in practice, the
predictive power of the Standard Model is limited. While it forms a the-
oretical foundation for other subfields of physics, in no way does it make
them any less important.



Appendix B

Basics of Quantum Field
Theory

This chapter presents an introduction to the structure of quantum field
theory. Classical field theories are introduced as a generalization of point
mechanics to systems with infinitely many degrees of freedom — some num-
ber in each space point. Similarly, quantum field theories are just quantum
mechanical systems with infinitely many degrees of freedom. In the same
way as point mechanics, classical field theories can be quantized by means of
the path integral — or functional integral — method. A schematic overview
is sketched in Figure 1.B.

The transition to Euclidean time (Wick rotation) is favorable for the
convergence of functional integrals. The resulting quantum field theories in
Euclidean space have a close analogy to statistical mechanics. In this con-
text, we also address the lattice regularization, which provides a formulation
of quantum field theories beyond perturbation theory. In order to capture
fermions, we introduce Grassmann variables and discuss the integration of
Grassmann fields.
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Figure B.1: Overview of the transitions between different branches of
physics: we proceed from mechanics to field theory (left to right), and from
classical physics to quantum physics (top to bottom).

B.1 From Point Particle Mechanics to Clas-

sical Field Theory

Point mechanics describes the dynamics of classical, non-relativistic point
particles. The coordinates of the particles represent a finite number of
degrees of freedom. In the simplest case — a single particle moving on a
line — this degree of freedom is just given by the particle position1 x, as a
function of the time t. The dynamics of a particle of mass m moving in an
external potential V (x) obeys Newton’s equation

F (x) = mẍ = −V ′(x) (B.1.1)

(where m is constant). Once the initial conditions are specified, this ordi-
nary second order differential equation determines the path of the particle,
x(t).

1For the considerations here, and in Section 1.2 and 1.3, the space dimension hardly
matters. For simplicity we set it to 1, but a generalization to higher dimension is trivial;
one just does the same in each dimension, and replaces x by ~x everywhere.
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Newton’s equation can be obtained from the variational principle by
minimizing the action,

S[x] =

∫
dt L(x, ẋ) , (B.1.2)

in the set of all paths x(t).2 The action is a functional (a function whose
argument is itself a function) that results from the time integral of the
Lagrange function

L(x, ẋ) =
m

2
ẋ 2 − V (x) (B.1.3)

over some particle path with fixed end-points in space and time. Now the
variational condition δS = 0 implies the Euler-Lagrange equation

∂t
δL

δẋ
− δL

δx
= 0 , (B.1.4)

which coincides with Newton’s equation (B.1.1) at any time t.

Classical field theories are a generalization of point mechanics to
systems with infinitely many degrees of freedom — a given number for each
space point ~x. In this case, the degrees of freedom are the field values φ(~x, t),
where φ represents an arbitrary field. We mention a few examples:

• In the case of a neutral scalar field, φ is simply a real number repre-
senting one degree of freedom per space point.

• A charged scalar field, on the other hand, is described by a complex
number. Hence it represents two degrees of freedom per space point.

• The Higgs field φa(~x, t) (with a ∈ {1, 2}), which is part of the Stan-
dard Model, is a complex doublet; it has four real degrees of freedom
per space point.

• An Abelian gauge field Aµ(~x, t) (with index µ ∈ {0, 1, 2, 3}) — in
particular the photon field in electrodynamics — is a neutral vector
field, which seems to have 4 real degrees of freedom per space point.

2More precisely, one identifies a stationary point in the set of possible paths connecting
fixed end-points.
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However, two of them are redundant due to the U(1) gauge symmetry.3

Hence the Abelian gauge field has two physical degrees of freedom per
space point, which correspond to the two polarization states of the
(massless) photon.

• A non-Abelian gauge field Aaµ(~x, t) is charged and has an additional
index a. For example, the gluon field in chromodynamics with a color
index a ∈ {1, 2, . . . , 8} represents 2× 8 = 16 physical degrees of free-
dom per space point, again because of some redundancy due to the
SU(3) color gauge symmetry.

The field that represents the W - and Z-bosons in the Standard Model
has an index a ∈ {1, 2, 3} and transforms under the gauge group
SU(2). Thus, to start with, it represents 2 × 3 = 6 physical degrees
of freedom. However, in contrast to the photon and the gluons, the
W - and Z-bosons are massive due to the Higgs mechanism, to be
discussed later. Therefore they are equipped with three (not just two)
polarization states. The three extra degrees of freedom are provided
by the Higgs field, which is then left with only one degree of freedom
in each space point.

The analogue of Newton’s equation in field theory is the classical field
equation of motion. For instance, for a neutral scalar field it reads

∂µ∂
µφ = −dV (φ)

dφ
. (B.1.5)

Again, after specifying appropriate initial conditions it determines the clas-
sical field configuration φ(x), i.e. the values of the field φ in all space-time
points x = (~x, t). Hence, the rôle of time in point mechanics is played by
space-time in field theory, and the rôle of the point particle coordinates

is now played by the field values. As before, the classical equation of
motion results from minimizing the action, which now takes the form

S[φ] =

∫
d4x L(φ, ∂µφ) , where d4x = d3x dt . (B.1.6)

3For instance, the Lorenz gauge condition ∂µAµ = 0 leaves the Abelian gauge field
with 3 degrees of freedom (in each space point), but it does still not fix the gauge
completely. Doing so swallows yet another degree of freedom.
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The integral over a time interval in eq. (B.1.2) is extended to an integral over
a volume in space-time, and the Lagrange function L of point mechanics is
replaced by the Lagrange density, or Lagrangian,4

L(φ, ∂µφ) =
1

2
∂µφ∂

µφ− V (φ) . (B.1.7)

A prominent interacting field theory is the λΦ4 model with the potential5

V (φ) =
m2

2
φ2 +

λ

4!
φ4 . (B.1.8)

Classically m is the mass of the scalar field φ, and λ is the coupling strength
of its self-interaction. The mass term6 corresponds to a harmonic oscilla-
tor potential in the point mechanics analogue, while the interaction term
corresponds to an anharmonic perturbation.

Here the condition δS = 0 leads to the Euler-Lagrange equation

∂µ
δL

δ(∂µφ)
− δL
δφ

= 0 , (B.1.9)

which is the equation of motion. In particular, based on the Lagrangian
(B.1.7) we arrive at the scalar field equation (B.1.5). The analogies between
point mechanics and field theory are summarized in Table B.1.

B.2 The Quantum Mechanical Path Integral

The quantization of field theories is conveniently performed using the path
integral approach [?, ?]. We first discuss the path integral in quantum me-
chanics — quantized point mechanics — using the real time formalism. A

4Throughout this book the derivatives ∂µ act only on the immediately following field.
We add that other authors use the term “Lagrangian” also for the Lagrange function
(B.1.3).

5Part of the literature restricts “potentials” to the interaction terms, so the mass term
is not included, but this is just a matter of terminology.

6For the moment we assume m2 to be positive. Later we will also consider the case
m2 < 0.
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Point Mechanics Classical Field Theory

time t space-time x = (~x, t)
particle coordinate x field value φ

particle path x(t) field configuration φ(x)
(for all t in some interval) (for all x in some volume)

Lagrange function Lagrangian
L(x, ẋ) = m

2
ẋ2 − V (x) L(φ, ∂µφ) = 1

2
∂µφ∂

µφ− V (Φ)

action action
S[x] =

∫
dt L(x, ẋ) S[φ] =

∫
d4x L(φ, ∂µφ)

equation of motion field equation
∂t
δL
δẋ
− δL

δx
= 0 ∂µ

δL
δ(∂µφ)

− δL
δφ

= 0

Newton’s equation scalar field equation

mẍ = −V ′(x) ∂µ∂
µφ = −dV (φ)

dφ

kinetic energy kinetic energy density
m
2
ẋ2 1

2
∂µφ∂

µφ

harmonic oscillator potential mass term
m
2
ω2x2 m2

2
φ2

anharmonic potential quartic self-interaction term
λ
4!
x4 λ

4!
φ4

Table B.1: A dictionary that translates 1-d point mechanics into the lan-
guage of classical field theory in 3 spatial dimensions. Thus we proceed from
one degree of freedom to an infinite number of degrees of freedom. More-
over, we consider field theories where L consists of Lorentz invariant terms,
hence this translation also provides special relativity.
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mathematically safer formulation uses an analytic continuation to the so-
called Euclidean time. This will be addressed in Section 1.3.

We use the Dirac notation, where a ket |Ψ〉 describes some state as a
unit vector in a Hilbert space, and a bra 〈Ψ| its Hermitian conjugate. Thus
the bracket 〈Ψ′|Ψ〉 is a scalar product. The corresponding wave functions in
(one dimensional) coordinate space and in momentum space are obtained
as

Ψ(x, t) = 〈x |Ψ(t)〉 , Ψ(p, t) = 〈p |Ψ(t)〉 , (B.2.1)

where |x〉 and |p〉 are the coordinate and momentum eigenstates, x̂|x〉 =
x|x〉 , p̂|p〉 = p|p〉 . We further denote the energy eigenstates as |n〉, i.e.
Ĥ|n〉 = En|n〉, where Ĥ is the Hamilton operator and En are the energy
eigenvalues. The spatial energy eigenfunctions are then given by 〈x|n〉.

The eigenstates |x〉, |p〉 and |n〉 all build complete orthonormal sets,∫
dx |x〉〈x| =

∫
dp

2π~
|p〉〈p| =

∑
n

|n〉〈n| = 1̂1 . (B.2.2)

(Of course, the meaning is to build sums and integrals whenever the set of
states is discrete resp. continuous). So we can write a scalar product as

〈Ψ′|Ψ〉 =

∫
dx 〈Ψ′|x〉〈x|Ψ〉 =

∫
dxΨ′

†
(x) Ψ(x) . (B.2.3)

The wave functions in coordinate and momentum space can be converted
into one another by the Fourier transform and its inverse,

Ψ(p, t) =

∫
dx 〈p |x〉 〈x |Ψ(t)〉 =

∫
dx e−ipx/~ Ψ(x, t) ,

Ψ(x, t) =

∫
dp

2π~
eipx/~ Ψ(p, t) , (B.2.4)

so that p̂Ψ(x, t) = −i~ d
dx

Ψ(x, t) and x̂Ψ(p, t) = i~ d
dp

Ψ(p, t).

A Hermitian operator Ô(x̂), which may represent some observable, takes
the expectation value

〈Ψ|Ô|Ψ〉 =

∫
dxΨ∗(x)O(x) Ψ(x) . (B.2.5)
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The time evolution of a quantum system — described by a Hamilton
operator Ĥ — is given by the time-dependent Schrödinger equation

i~∂t|Ψ(t)〉 = Ĥ|Ψ(t)〉 . (B.2.6)

Like Newton’s equation, the Schrödinger equation describes the evolution
over an infinitesimal time. As in Section 1.1 we proceed to its integrated
form, i.e. to finite time steps, for which we write the ansatz

|Ψ(t′)〉 = Û(t′, t)|Ψ(t)〉 (t′ ≥ t) . (B.2.7)

Û(t′, t) is the evolution operator. For a Hamilton operator without explicit
time dependence it takes the simple form7

Û(t′, t) = exp
(
− i

~
Ĥ(t′ − t)

)
. (B.2.8)

Let us consider the transition amplitude 〈x ′|Û(t′, t)|x〉 of a non-relativistic
point particle that starts at space-time point (x, t) and arrives at (x′, t′).
Using eqs. (B.2.1) and (B.2.2) we obtain

Ψ(x′, t′) =

∫
dx 〈x′|Û(t′, t)|x〉Ψ(x, t) , (B.2.9)

i.e. 〈x ′|Û(t′, t)|x〉 acts as a propagator for the wave function, if we assume
t′ > t.

The propagator is a quantity of primary physical interest. In particu-
lar it contains information about the energy spectrum: let us consider the
propagation from an initial position eigenstate |x〉 back to itself,

〈x|Û(t′, t)|x〉 = 〈x| exp
(
− i

~
Ĥ(t′ − t)

)
|x〉

=
∑
n

|〈x|n〉|2 exp
(
− i

~
En(t′ − t)

)
, (B.2.10)

where we applied the last relation in eq. (B.2.2). Hence the inverse Fourier
transform of the propagator yields the energy spectrum as well as the energy
eigenstates.

7In the general case the evolution operator has to be expanded by the Dyson series.
In the present case we could also just write Û(t′ − t). We stay with the general notation
Û(t′, t), however, since the crucial decomposition in eq. (B.2.15) and the central result
(B.2.17) hold in fact generally.
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Inserting now a complete set of position eigenstates at some time t1,
with t < t1 < t′, we obtain

〈x′|Û(t′, t)|x〉 = 〈x′| exp
(
− i

~
Ĥ(t′ − t1)

)
exp

(
− i

~
Ĥ(t1 − t)

)
|x〉

=

∫
dx1〈x′| exp

(
− i

~
Ĥ(t′ − t1)

)
|x1〉

× 〈x1| exp
(
− i

~
Ĥ(t1 − t)

)
|x〉

=

∫
dx1〈x′|Û(t′, t1)|x1〉〈x1|Û(t1, t)|x〉 . (B.2.11)

This expression is illustrated in Figure B.2 (on top).

Obviously we can repeat this process an arbitrary number of times. This
is exactly what we do in the formulation of the path integral. Let us divide
the time interval [ t, t′ ] into N equidistant time steps of size ε such that

t′ − t = Nε . (B.2.12)

Inserting a complete set of position eigenstates at the intermediate times
tj = t+ jε, j = 1, 2, . . . , N − 1, we arrive at

〈x′|Û(t′, t)|x〉 =

∫
dx1

∫
dx2 . . .

∫
dxN−1 〈x′|Û(t′, tN−1)|xN−1〉 . . .

× 〈x2|Û(t2, t1)|x1〉〈x1|Û(t1, t)|x〉 . (B.2.13)

Now we are summing over all paths, as depicted (symbolically) in Figure
B.2 (below).

In the next step we focus on one of these factors. We consider a single
non-relativistic point particle moving in an external potential V (x) such
that

Ĥ =
p̂ 2

2m
+ V̂ (x̂) . (B.2.14)

Using the Baker-Campbell-Hausdorff formula, and neglecting terms of order
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Figure B.2: A transition amplitude with one intermediate time t1 (on top),
and with a set of equidistant intermediate times t1 . . . tN−1 (below).

ε2, we obtain8

〈xi+1|Û(ti+1, ti)|xi〉 = 〈xi+1| exp
(
− iεp̂ 2

2m~

)
exp

(
− iε

~
V̂ (x̂)

)
|xi〉

=
1

2π~

∫
dp 〈xi+1| exp

(
− iεp̂ 2

2m~

)
|p〉〈p|

8This decomposition of exp(−iĤε/~) is also known as Trotter’s formula. The fact
that it holds only up to O(ε2) is the reason why we have to proceed in infinitesimal time
steps. This formula is obvious for bounded operators p̂ 2, V̂ , but it is highly relevant that
it also holds if these operators are only semi-bounded.
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× exp
(
− iε

~
V̂ (x̂)

)
|xi〉

=
1

2π~

∫
dp exp

(
− iεp2

2m~

)
exp

(
− i

~
p(xi+1 − xi)

)
× exp

(
− iε

~
V (xi)

)
. (B.2.15)

• Question : Baker-Campbell-Hausdorff formula

Let Â and B̂ be bounded operators, and ε is an infinitesimal parameter. For
the product exp(εÂ) · exp(εB̂) we make the ansatz

exp(εÂ) · exp(εB̂) = exp
(
εX̂ + ε2Ŷ + ε3Ẑ +O(ε4)

)
.

Compute the operators X̂, Ŷ , and Ẑ, and express them in a compact form in

terms of commutators.

This integral over p is ill-defined because the integrand is a rapidly oscil-
lating function.9 To make this expression well-defined we replace the time
step ε by ε−ia, 0 < a� 1, i.e. we step a little bit into a complex time plane.
After performing the integral we take the limit a → 0. We keep in mind
that the definition of the path integral requires an analytic continuation in
time. One arrives at

〈xi+1|Û(ti+1, ti)|xi〉 =
( m

2πi~ε

)1/2

exp
( i

~
ε
[m

2
(
xi+1 − xi

ε
)2 − V (xi)

])
.

(B.2.16)
Inserting this back into the expression for the propagator we obtain

〈x′|Û(t′, t)|x〉 =

∫
Dx exp

( i

~
S[x]

)
. (B.2.17)

9Moreover, there is an ambiguity in the last factor of eq. (B.2.15): one could also argue
that it should be exp{− iε

~ V (xi+1)} instead. In the present case this difference does not
matter for the result that we obtain in the limit ε → 0. This difference does matter,
however, if the potential also depends on ẋ. This is the case for the electrodynamic
vector potential, where one runs into an ambiguity, which corresponds to the ordering
problem in operator Quantum Mechanics.
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The action has been identified in the time continuum limit as

S[x] = lim
ε→0

ε
∑
i

[m
2

(xi+1 − xi
ε

)2

− V (xi)
]

=

∫
dt
[m

2
ẋ2 − V (x)

]
. (B.2.18)

The integration measure in eq. (B.2.17) is given by∫
Dx = lim

ε→0

( m

2πi~ε

)N
2

∫
dx1

∫
dx2 . . .

∫
dxN−1 . (B.2.19)

This means that we integrate over all possible particle positions at each
intermediate time ti. In this way we integrate over all possible paths of the
particle starting at x(t) and ending at x′(t′). Each path is weighted with
a phase factor exp( i

~S[x]). As in classical point mechanics, a finite time
interval is handled by the Lagrangian. In quantum mechanics this formu-
lation eliminates the operators, but it employs a (somewhat mysterious)
functional measure Dx.

If the path is varied, this phase factor undergoes an extremely fast oscil-
lation, because ~ is very small. The classical path of minimal action has the
least oscillations, hence its vicinity provides the largest contribution to the
path integral. In the limit ~→ 0 only the contribution of the classical path
survives, and we are back at the Euler-Lagrange equation (B.1.4). At finite
(but tiny) ~ the contributions of non-classical paths are still suppressed (or
“washed out”) by the rapidly oscillating phase; their remaining contribu-
tions to the path integral are the quantum effects.

Eq. (B.2.17) is the key result for the path integral formulation of quan-
tum mechanics. It provides a transparent transition from classical physics
to quantum physics as we turn on ~ gradually to include fluctuations around
the path of minimal action. This transition has an analogue in optics, if
we proceed from Fermat’s principle to the more fundamental Huygens prin-
ciple. Along this line, also the transition behavior of quantum particles
through double slits (and multi-slits) is obvious in view of the path in-
tegral description. More detailed presentations can be found in e.g. Ref.
[?, ?, ?, ?, ?, ?, ?].
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B.3 The Path Integral in Euclidean Time

As we have seen, it takes at least a small excursion into the complex time
plane to render the path integral well-defined. Now we will perform a radical
step into that plane and consider purely imaginary time, the so-called Eu-
clidean time. Remarkably, this formulation has a direct physical interpreta-
tion in the framework of statistical mechanics, as discussed comprehensively
e.g. in Ref. [?].

Let us consider the quantum statistical partition function

Z = Tr exp(−βĤ) , (B.3.1)

where β = 1/T is the inverse temperature. It is mathematically equivalent
to the time interval that we discussed in the real time path integral. In
particular, the operator exp(−βĤ) turns into the time evolution operator
Û(t′, t) in eq. (B.2.8) if we identify

β =
i

~
(t′ − t) . (B.3.2)

In this sense the system at finite temperature corresponds to a system propa-
gating in purely imaginary time, i.e. in Euclidean time. The rotation of the
time coordinate by π/2 in the complex plane is denoted as the Wick rota-
tion. Clearly it transforms Minkowski’s metric tensor gµν into a Euclidean
metrics ∝ δµν , cf. Chapter 4.

By dividing the Euclidean time interval into N equidistant time steps,
i.e. by writing β = Na/~ — and by inserting again complete sets of position
eigenstates — we now arrive at the Euclidean time path integral 10

Z =

∫
Dx exp

(
− 1

~
SE[x]

)
. (B.3.3)

Here the action takes the Euclidean form

SE[x] =

∫ t′

t

dτ
[m

2
ẋ2 + V (x)

]
10Note that here the momentum integral corresponding to eq. (B.2.15) is well-defined

from the beginning.
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= lim
a→0

a
∑
i

[m
2

(
xi+1 − xi

a
)2 + V (xi)

]
. (B.3.4)

Unlike the real time case, the measure now involves N integrals,∫
Dx = lim

a→0

( m

2π~a

)N
2

∫
dx1

∫
dx2 . . .

∫
dxN . (B.3.5)

The extra integration over xN = x′ is due to the trace in eq. (B.3.1). Note
that there is no extra integration over x0 = x because the trace implies
periodic boundary conditions in the Euclidean time direction, x0 = xN .

The Euclidean path integral allows us to evaluate thermal expectation
values. For example, let us consider an operator Ô(x̂) that is diagonal in the
position state basis {|x〉}. By inserting this operator into the path integral
we obtain an expression for its expectation value,

〈Ô(x̂)〉 =
1

Z
Tr[Ô(x̂) exp(−βĤ)] =

1

Z

∫
Dx O(x(0)) exp

(
− 1

~
SE[x]

)
.

(B.3.6)
Since the theory is translation invariant in Euclidean time, one can place
the operator anywhere in time, e.g. at t = 0 as it is done here.

When we take the low temperature limit, β →∞, the thermal fluctua-
tions are switched off and only the quantum ground state |0〉, the vacuum,
contributes to the partition function, Z ∼ exp(−βE0). In this limit the
path integral is formulated in a very long Euclidean time interval, which de-
scribes the vacuum expectation values. For instance, for the 1-point function
it reads

〈0|Ô(x̂)|0〉 = lim
β→∞

1

Z

∫
Dx O(x(0)) exp

(
− 1

~
SE[x]

)
. (B.3.7)

In addition, it is very often of interest to consider 2-point functions of
operators at different instances in Euclidean time,

〈Ô(x̂(t)) Ô(x̂(0))〉 =
1

Z
Tr
[

exp(−Ĥt) Ô(x̂) exp(Ĥt) Ô(x̂) exp(−βĤ)
]

=
1

Z

∫
Dx O(x(t))O(x(0)) exp

(
− 1

~
SE[x]

)
. (B.3.8)
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Again we consider the limit β → ∞, but we also separate the operators
by a large difference in Euclidean in time, i.e. we also let t → ∞. Then
the leading contribution is |〈0|O(x)|0〉|2. Subtracting this part, and thus
forming the connected 2-point function, one obtains asymptotically

lim
β, t→∞

〈O(x(t))O(x(0))〉 − |〈O(x)〉|2 = |〈1|O(x)|0〉|2 exp (−(E1 − E0)t) .

(B.3.9)
Here |1〉 is the first excited state of the quantum system, with energy E1.
The connected 2-point function decays exponentially at large Euclidean time
separations. This decay is governed by the energy gap E1 − E0.

At this point we anticipate that in a quantum field theory E1 corre-
sponds to the energy of the lightest particle. Its mass is determined by the
energy gap E1−E0 above the vacuum. Hence, in Euclidean field theory par-
ticle masses are evaluated from the exponential decay of connected 2-point
functions.

B.4 Spin Models in Classical Statistical Me-

chanics

So far we have considered quantum systems, both at zero and at finite
temperature. We have represented their partition functions by means of
Euclidean path integrals over configurations on a time lattice of length β.
We will now take a new start and consider classical discrete systems at fi-
nite temperature. We will see that their mathematical description is very
similar to the path integral formulation of quantum systems. The physical
interpretation, however, is basically different in the two cases. In the next
section we will set up another dictionary that allows us to translate quan-
tum physics language into the terminology of statistical mechanics. For
further reading about spin models and critical phenomena we recommend
the text books listed in Refs. [?, ?, ?].

For simplicity, let us concentrate on classical spin models. Here the
term “spin” does not mean that we deal with quantized angular momenta.
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All we do is work with classical vectors as field variables.11 We denote these
vectors as ~sx = (s1

x, . . . , s
N
x ). In these models the spins live on the sites of

a d-dimensional spatial grid. Hence x denotes a corresponding lattice site.
The latter is often meant to be a crystal lattice (so typically d = 3), and
here the lattice spacing has a physical meaning. This is in contrast to the
time step that we have introduced before as a regularization in order to
render the path integral mathematically well-defined, and that we finally
send to zero to reach the temporal continuum limit.

One often normalizes the spin vectors,

|~sx| = 1 at all sites x . (B.4.1)

The simplest spin model of this kind is the Ising model with classical spin
variables sx = ±1. Below we list some spin models, all of them with the
constraint (B.4.1) and a global O(N) spin rotation symmetry (which turns
into Z(2) for N = 1), see also Appendix A:

N = 1 : Ising model

N = 2 : XY model

N = 3 : classical Heisenberg model

N =∞ : spherical model

The XY model is of theoretical interest, but it does hardly match experi-
mental phenomena. On the other hand, the classical Heisenberg model is
used for the description of ferromagnets, where the electron spins in some
crystal cell are summed up to act collectively like a classical spin. In this
case the spin space — which is completely abstract in general — is linked to
the ordinary space. The O(3) and O(4) model also occur in particle physics
(due to their local isomorphy to SU(2) and SU(2) ⊗ SU(2)), respectively,
as we will see. The spherical model enables a number of analytical calcu-
lations, which are not feasible at finite N . Along with a 1/N expansion
one can then hope to capture some features of the physically relevant cases
N ≤ 4.

These O(N) spin models are characterized by a (classical) Hamilton
function H (not a quantum Hamilton operator), which specifies the energy

11Quantum spin models also exist, but they are far more complicated: for instance, in
those models it is already hard to identify the ground state.
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of any spin configuration. The couplings between different spins are often
limited to nearest neighbor sites, which we denote as 〈xy〉. The standard
form of the Hamilton function reads

H[~s ] = J
∑
〈xy〉

~sx · ~sy − ~B ·
∑
x

~sx . (B.4.2)

It is ferromagnetic for a coupling constant J < 0 (which favors parallel
spins), and anti-ferromagnetic for J > 0. In addition the spins prefer to be

aligned with the external “magnetic field” ~B = (B1, . . . , BN).

In particular, the partition function of the Ising model is given by

Z =
∏
x

∑
sx=±1

exp(−H[s]/T ) :=

∫
Ds exp(−H[s]/T ) , (B.4.3)

where we set again the Boltzmann constant kB = 1. The sum over all spin
configurations corresponds to the summation over all possible orientations
of individual spins. For N ≥ 2 the measure Ds can be written as

Ds =
∏
x

∫ 1

−1

ds1
x . . .

∫ 1

−1

dsNx δ(~s 2
x − 1) . (B.4.4)

Thermal averages are computed by inserting appropriate quantities in
the functional integrand. For example, the magnetization is given by

〈~sx〉 =
1

Z

∫
Ds ~sx exp(−H[~s ]/T ) . (B.4.5)

Due to the translation invariance of the measure Ds, the result does not
depend on x. So we can simply write the magnetization as 〈~s 〉, in analogy
to the time independence of the 1-point function (B.3.6).

Similarly, the spin correlation function is defined as

〈~sx · ~sy〉 =
1

Z

∫
Ds ~sx · ~sy exp(−H[~s ]/T ) , (B.4.6)

which only depends on the distance |x− y|. Subtracting again the leading
contribution, we obtain the connected spin correlation function. At large
distances it typically decays exponentially,

〈~sx · ~sy〉c = 〈~sx · ~sy〉 − 〈~s 〉 2 ∼ exp

(
−|x− y|

ξ

)
, (B.4.7)
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where ξ is called the correlation length. At high — or even moderate —
temperatures the correlation length can well be just a few lattice spacings;
strong thermal noise is destructive for long-range correlations.

When one models real materials, the Ising model appears as a drastic
simplification, for example because real magnets also involve couplings be-
yond nearest neighbor spins. However, the details of the Hamilton function
at the scale of the lattice spacing do not always matter. There may be a
critical temperature Tc at which ξ diverges and a universal behavior arises.
At this temperature a second order phase transition sets in. Then the de-
tails of the model at the scale of a few lattice spacings are irrelevant for
the long-range physics that takes place at the scale of ξ. In fact, some real
materials do behave close to their critical temperatures just like the simple
Ising model of eq. (B.4.3). This is why this model attracts so much inter-
est. It was introduced in the 19th century, solved in d = 1 by Ernst Ising in
1928, and in d = 2 by Lars Onsager in 1944 (this means that observables like
the correlation functions could be computed explicitly). In higher dimen-
sions an analytic solution has not be found so far, but there are analytical
approximation techniques as well as accurate numerical results.

In d = 1 there is no finite temperature Tc, and Ernst Ising concluded
from this that the model is an over-simplification. There are, however, fi-
nite critical temperatures in d > 1, as first argued qualitatively by Rudolf
Peierls (1941) for the 2-d case. Hence the Ising model is of interest, and it
is in fact the most successful spin model in statistical mechanics.

The Ising model is just a very simple member of a large universality
class of different models, which all share the same critical behavior. This
does not mean that they have the same values of their critical temperatures.
However, as the temperature T approaches Tc from below, their magneti-
zation M = |〈~s 〉| vanishes with the same power of Tc − T .12 This universal

behavior (at B = | ~B| = 0) is characterized by the critical exponent β,

M ∼ (Tc − T )β , i.e. lim
T↗Tc

lnM

ln(Tc − T )
= β . (B.4.8)

12In terms of thermodynamics one would write M = − ∂f
∂B |T=const., where f is the free

energy density (and the free energy is given as F = −T lnZ).
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Alternatively, if we fix the temperature Tc and include an external magnetic
field ~B, which is then gradually turned off, the magnetization goes to zero
as M ∼ B1/δ.

On the other hand, the susceptibility χ = T ∂M
∂B
|T=const. diverges for

T → Tc as χ ∼ |T − Tc|−γ. Also the specific heat C = T ∂S
∂T
|B=const. diverges

at the critical temperature; in that case we write C ∼ |T − Tc|−α (and
S = − ∂f

∂T
|B=const. is the entropy).

The parameters β, δ, γ and α are all critical exponents. For a large
variety of materials — with different Tc, different crystal structure etc. —
experimentalists found within a few percent

β ≈ 1/3 , γ ≈ 4/3 , δ ≈ 4.2 , α>∼ 0 . (B.4.9)

Therefore these values describe a universality class which plays a prominent
rôle in Nature. A Table with explicit results for these critical exponents is
displayed in Appendix A.

Note that dimensional quantities — like Tc — will clearly change if, for
instance, the lattice spacing of the crystal is altered, as it often happens for
materials with different kinds of molecules. On the other hand, the critical
exponents are dimensionless — as all exponents in physics — hence these
are the parameters which are suitable for an agreement within a universality
class.

B.5 Analogies between Quantum Mechanics

and Classical Statistical Mechanics

We notice a close analogy between the Euclidean path integral for a quantum
mechanical system, and a classical statistical mechanics system.

The path integral for the quantum system is defined on a 1-dimensional
Euclidean time lattice, while a spin model can be defined on a d-dimensional
spatial lattice. In the path integral we integrate over all paths, i.e. over all
“configurations of intermediate points” xi = x(ti). In the spin model we
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sum over all spin configurations ~sx. Paths are weighted by their Euclidean
action SE[x], while spin configurations are weighted with their Boltzmann
factors based on the classical Hamilton function H[~s ].

The prefactor of the action is 1/~, and the prefactor of the Hamilton
function is 1/T . Indeed ~ determines the strength of quantum fluctuations,
while the temperature T controls the strength of thermal fluctuations. The
classical limit ~ → 0 (only the path with the least action survives) corre-
sponds to the limit T → 0 (only the ground state contributes). A difference
is, of course, that T is variable in Nature, in contrast to ~.

The kinetic energy 1
2
((xi+1 − xi)/a)2 in the path integral is analogous

to the nearest neighbor spin coupling ~sx · ~sx+µ̂ (where µ̂ is a vector in µ-
direction with the length of one lattice unit). The potential term V (xi) is

similar to the coupling ~B · ~sx to an external magnetic field (or ~Bx · ~sx to
make it more general).13

The magnetization 〈~s 〉 corresponds to the vacuum expectation value of
an operator 〈O(x)〉, also denoted as a condensate or 1-point function, and
the spin correlation function 〈~sx ·~sy 〉 corresponds to the 2-point correlation
function 〈O(x(t))O(x(0))〉.

The inverse correlation length 1/ξ is analogous to the energy gap E1−E0

(and hence to a particle mass in a Euclidean quantum field theory). Finally,
the Euclidean time continuum limit a → 0 corresponds to a second order
phase transition where ξ →∞. The lattice spacing in the path integral is an
artifact of our regularized description. We send it to zero at the end, and
the physical quantities emerge asymptotically in this limit. In statistical
mechanics, on the other hand, the lattice spacing is physical and hence
fixed, while the correlation length ξ goes to infinity at a second order phase
transition. Nevertheless, since ξ sets the relevant scale, the lattice spacing
has to be measured as the ratio a/ξ, which vanishes in both cases. Hence
the second order phase transition is indeed equivalent to a continuum limit.
All these analogies are summarized in Table B.2.

13Of course, the potential and the vacuum expectation value of any operator are more
general than the corresponding quantities that we mention for the spin models.
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Quantum Mechanics Statistical Mechanics

Euclidean time lattice d-dimensional spatial lattice
elementary time step crystal lattice spacing

particle position xi = x(ti) classical spin variable ~sx

particle path {xi} (i = 1 . . . N) spin configuration [~s ] = {~sx} (x ∈ lattice)

path integral
∫
Dx sum over configurations

∫
Ds

Euclidean action SE[x] Hamilton function H[~s ]

Planck constant ~ temperature T
quantum fluctuations thermal fluctuations

classical limit zero temperature

kinetic energy 1
2
(xi+1−xi

a
)2 nearest neighbor coupling J~sx · ~sx+µ̂

potential energy V (xi) external field energy ~Bx ~sx
weight of a path exp(−1

~SE[x]) Boltzmann factor exp(−H[~s ]/T )

1-point function 〈O(x)〉 magnetization 〈~sx〉
2-point function 〈O(x(t))O(x(0))〉 correlation function 〈~sy~sx〉

energy gap E1 − E0 inverse correlation length 1/ξ
continuum limit a→ 0 critical behavior ξ →∞

Table B.2: A dictionary that translates quantum mechanics into the lan-
guage of statistical mechanics. The points x are located in physical space,
whereas ~sx is an unit vector in an abstract N-dimensional spin space (and
the index x represents a site on some crystal lattice).
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B.6 Lattice Field Theory

So far we have restricted our attention to quantum mechanical problems
and to statistical mechanics. The former were defined by a path integral on
a 1-dimensional Euclidean time lattice, while the latter involved spin models
on a d-dimensional spatial lattice. When we quantize field theories on the
lattice, we formulate the theory on a d-dimensional space-time lattice, i.e.
usually the lattice is 4-dimensional. Just as we integrate over all paths ~x(t)
of a 3-d quantum particle, we now integrate over all configurations φ(x) of
a quantum field defined at any Euclidean space-time point x = (~x, x4).14

Again the weight factor in the path integral is given by the action SE[φ].
Let us illustrate this for a free neutral scalar field φ(x) ∈ RI . Its Euclidean
action reads

SE[φ] =

∫
d4x

[1

2
∂µφ∂µφ+

m2

2
φ2
]
. (B.6.1)

Interactions can be included, for example, by adding a λφ4 term to the
action, as we have seen before. The partition function for this system is
formally written as

Z =

∫
Dφ exp(−SE[φ]) . (B.6.2)

Note that we have set ~ = c = 1, i.e. from now on we use natural units,
which we discuss in Appendix X. The physical units can be reconstructed
at any point unambiguously by inserting the powers of ~ and c which match
the dimensions. In natural units (excluding the Planck scale) we only deal
with one scale, which can be considered either as length or time, or its
inverse that corresponds to mass or energy or momentum or temperature.

The integral
∫
Dφ extends over all field configurations, which is a

divergent expression if no regularization is imposed. One can make the
expression mathematically well-defined by using the lattice regularization.
Starting from well-defined terms is essential from the conceptual point of
view. Moreover, this formulation extends to the interacting case, including
finite field couplings. Thus it is also essential in practice, if the interaction
does not happen to be small. That situation occurs in particular in QCD

14In contrast to Section 1.3, we now denote the Euclidean time as x4, following the
standard convention of field theory. In addition we adapt the usual convention to write
only lower indices in Euclidean space, cf. Chapter 4.
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at moderate or low energies, which dominate our daily life.

On the lattice, the continuum field φ(x) is replaced by a lattice field φx,
which is restricted to the sites x of a d-dimensional space-time lattice of
spacing a. Then the continuum action (B.6.1) has to be approximated by
discretized continuum derivatives, such as

SE[φ] =
ad

2

∑
x

[
d∑

µ=1

(φx+µ̂ − φx
a

)2

+m2φ2
x

]
, (B.6.3)

where µ̂ is the vector of length a in the µ-direction. This is the standard
lattice action, but different discretized derivatives (with couplings beyond
nearest neighbor sites) are equivalent in the continuum limit. The corre-
sponding lattice actions belong to the same universality class.

The integral over all field configurations now becomes a multiple integral
over all values of the field at all lattice sites,

Z =
∏
x

∫ ∞
−∞

dφx exp(−SE[φ]) . (B.6.4)

For a free field theory the partition function is just given by Gaussian inte-
grals. In fact, we can write its lattice action as

SE[φ] =
ad

2

∑
x,y

φxMxyφy , (B.6.5)

with a symmetric matrix M, which contains the couplings between the
field variables at the lattice sites. We can diagonalize this matrix by an
orthogonal transformation matrix Ω,

M = ΩTDΩ , D = diag (d1, . . . , dN) , (B.6.6)

where N is the number of lattice sites. We choose Ω ∈ SO(N), and with
the substitution

φ′x = Ωxyφy (B.6.7)

we arrive at (note that the Jacobian is det Ω = 1)

Z =
∏
x

∫ ∞
−∞

dφ′x exp
(
− ad

2

∑
x

φ′xDxxφ
′
x

)
=
(2π

ad

)N/2 1√
detM

. (B.6.8)
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To extract the energy eigenvalues of the corresponding (quantum) Hamil-
ton operator, we study the 2-point function of the lattice field,

〈φxφy〉 =
1

Z

∫
Dφ φxφy exp(−SE[φ]) . (B.6.9)

This can be achieved elegantly by introducing a source field j(x) in the
partition function,

Z[j] =

∫
Dφ exp(−SE[φ] + jφ) , (B.6.10)

where we use the short-hand notation jφ = ad
∑

x jxφx. Similarly we are
going to write below φMφ = a2d

∑
x,y φxMxyφy, etc.

The connected 2-point function is given by

〈φxφy〉c = 〈φxφy〉 − 〈φ〉2 =
δ2

δjxδjy
lnZ[j]|j=0 . (B.6.11)

In our case 〈φ〉 vanishes, i.e. 〈φxφy〉c = 〈φxφy〉. We eliminate the linear
term in the exponent by another substitution

φ′ = φ−M−1j , (B.6.12)

so that the Boltzmann factor characterizing Z[j] in eq. (B.6.10) is given by
the exponent

−1

2
φMφ+ jφ = −1

2
φ′Mφ′ +

1

2
jM−1j . (B.6.13)

Performing now the functional integral over φ′, we obtain

Z[j] =
(2π

ad

)N/2 1√
detM

exp
(1

2
jM−1j

)
, (B.6.14)

and from eq. (B.6.11) we infer

〈φxφy〉 = (M−1)xy . (B.6.15)

It is instructive to invert the matrix M by going to Fourier space,

φx =
( a

2π

)d ∫
B

ddp φ(p) exp(ipx) , (where xp =
d∑

µ=1

xµpµ) . (B.6.16)
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Due to periodicity, the momentum integration on the lattice is restricted to
the (first) Brillouin zone

B = (−π/a, π/a]d . (B.6.17)

The impact of finite lattice spacing and finite volume is illustrated below.
The virtue of momentum space is here that the action becomes diagonal,

SE[φ] =
ad

2

( a
2π

)d ∫
ddp φ(−p)M(p)φ(p) , M(p) = p̂2+m2 , p̂µ =

2

a
sin
(pµa

2

)
.

(B.6.18)
M(p) must be periodic over B, which is achieved by the “lattice momen-
tum” p̂ (we adapt here a usual notation, but the “hat” does not indicate
an operator in this case). A general 2-point function in momentum space
reads

〈φ(q)φ(p)〉 =M−1(p) δ(p+ q) . (B.6.19)

This is the lattice version of the (field theoretic) propagator in the contin-
uum

lim
a→0 〈φ(−p)φ(p)〉 =

1

p2 +m2
. (B.6.20)

From the propagator (B.6.19) we can deduce the energy spectrum of the
lattice theory. For this purpose we construct a lattice field with definite
spatial momentum ~p located in a specific time slice,

φ(~p )xd = ad
∑
~x

φ~x,xd exp(−i~p · ~x) =
a

2π

∫
dpd φ(p) exp(ipdxd) , (B.6.21)

and we consider its 2-point function

〈φ(−~p )0φ(~p )xd〉 =
a

2π

∫ π/a

−π/a
dpd 〈φ(−p)φ(p)〉 exp(ipdxd) . (B.6.22)

Inserting now the lattice propagator we can compute this integral. We
encounter poles in the propagator when pd = iE with

[2

a
sinh

(Ea
2

)]2

=
d−1∑
i=1

p̂ 2
i +m2 . (B.6.23)
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The integral (B.6.22) captures the pole with E > 0. Hence the 2-point
function decays exponentially with rate E,

〈φ(−~p )0φ(~p )xd〉 ∝ exp(−Exd) , (B.6.24)

This allows us to identify E as the energy of the lattice scalar particle
with spatial momentum ~p. In the continuum limit we obtain the dispersion
relation

E2 = ~p 2 +m2 . (B.6.25)

At finite a, the lattice dispersion relation differs from the continuum result,
i.e. we are confronted with lattice artifacts.

The lattice literature often uses “lattice units”, where one sets the lattice
spacing a = 1. In these terms, agreement with continuum physics is found
in the limit where E, ~p and m are small. In particular m corresponds to the
inverse correlation length 1/ξ, and we discussed in Appendix A that ξ →∞
characterizes the continuum limit.

A free scalar particle has the same propagator in quantum mechanics
and in classical mechanics. We see now the same property holds for the free
scalar field, since eq. (B.6.25) is in accordance with the (classical) Klein-
Gordon equation. Of course, this agreement is strictly limited to the free
case.

Now that we have a safe continuum limit for the free field, we could
proceed to the interacting case, e.g. to the λφ4 theory. Keeping only the free
part of the action in the exponent, the interacting part could be expanded as
a power series in λ, if λ is small. These terms are then evaluated as n-point
functions (n even). They are naturally decomposed into 2-point functions,
as the above technique with the source derivatives shows. However, the
corresponding propagators

〈φxφy〉 =
1

(2π)d

∫
ddp

exp(ip(y − x))

p2 +m2
(B.6.26)

diverge as they stand in d ≥ 2. They can be treated by continuum regular-
izations like the Pauli-Villars method: it subtracts another propagator with
a very large mass. This renders the propagators UV finite, and it maintains
covariance. At the end the Pauli-Villars mass is sent to infinity. An alter-
native, which is more fashionable now, is dimensional regularization, that



B.6. LATTICE FIELD THEORY 255

we are going to discuss in Chapter 4. However, one should keep in mind
that these methods are restricted to perturbation theory, whereas the lattice
provides a definition of the functional integral also at finite field couplings.

In lattice units all quantities appear dimensionless. To return to physical
units one inserts the suitable power of a, such as m/a or x a. In practice,
the physical value of a — and thus of all dimensional terms — is fixed by
simulation measurements of one reference quantity, which is phenomenolog-
ically known. In QCD simulations the appropriate lattice spacings are in
the order of 0.1 fm.
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Exercises to Section 1.1

• Klein-Gordon Equation

Consider a neutral scalar field φ with the Lagrangian

L(φ) =
1

2
∂µφ∂

µφ− m2

2
φ2 − λ

4!
φ4 .

Apply the variational condition δS = 0 to derive the equation of motion of
for field φ.

Assume λ > 0 and discuss for arbitrary m2 ∈ IR the stability of the constant
solutions φ(x) = φ0.

• The non-linear σ-model

The non-linear σ-model deals with a multiple scalar field ~s(x) = (s1(x), . . . , sn(x)),
si(x) ∈ IR, which obeys in each point x the condition ~s(x) 2 ≡ 1. The Lagrangian
reads

L(~s) =
1

2
∂µ~s · ∂µ~s .

We now assume one component to dominate everywhere and denote it by σ,
~s = (σ, π), π = (π1, . . . , πn−1), 1>∼σ

2 � π2, and we count each small component
as |πi| = O(ε).

Compute the Lagrangian L(π) up to O(ε2).

Derive for this (approximate) Lagrangian the equations of motion for the field
components πi.

Which are the symmetries of the actions S[~s ] and S[π] ?

How many generators have the corresponding groups of continuous field trans-
formations ?
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Exercises to Section 1.2

• Free propagator

A free, non-relativistic quantum mechanical particle of mass m moves on a
line. Compute the transition amplitude from point position state |x〉 at time
t = 0 to |y〉 at time t = T with the path integral formalism, and check the result
with the canonical operator formalism. Compare this result to the one obtained
in the classical limit.

• Quantum rotor

Another non-relativistic quantum particle of mass m moves freely on a closed
curve of length L. Which is the transition amplitude from some position eigen-
state back to itself after time T ? Compute the energy spectrum of this particle.

Can you interpret this result, e.g. in view of a vibrating string ?

Hint: it is useful to express
∑

n∈ZZ . . . in terms of the integral
∫∞
−∞ dα δ(α −

n) . . . , and then to apply the Poisson formula

2π
∑
n∈ZZ

δ(α− n) =
∑
n∈ZZ

exp(2πinα) .

• Imaginary Gauss integral

Investigate the imaginary Gauss integral∫ +∞

−∞
dx exp(−iαx2) , α > 0 ,

by considering as the integration contour in the complex plane the polygon con-
necting the points −R, R(−1 + i), R(1− i),R with R� 1.

• Dominance of the classical path
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We reduce the set of paths in a path integral to the trajectories, which can
be parameterized by a single, real variable u. The action of such a path is S(u),
and the path integral is reduced to

Zred =

∫ ∞
−∞

du exp
( i

~
S(u)

)
.

This set of trajectories also contains the (unique) classical path at u0.

Evaluate Zred in the approximation, which neglects O((u − u0)3), assuming
S′′(u)|u=u0 6= 0.

This approximation implies that the vicinity of the classical path (in units of
~) dominates the path integral. To justify this claim, compare the above approxi-
mate result to the contribution by some interval u ∈ [a, b], which does not contain
u0. (Method: Substitute σ = S(u) and assume 1/S′(u) to be differentiable in
[a, b].)

Exercise to Section 1.3

• Random walk

At time t = 0 a point particle is located at position x0. Now it starts to move
on a 1-dimensional lattice of spacing a. In each time unit ∆t it jumps over one
lattice spacing, with equal probability for both directions.

Which is the differential equation that the probability distribution for the
location of this particle, P (x, t), obeys in the limit

a→ 0 , ∆t→ 0 , D :=
a2

2 ∆t
= constant ?

How is it related to the Schrödinger equation ?

What does the condition D = constant imply on the random walk in the
continuum limit regarding continuity and velocity of the particle path ?

Exercises to Section 1.4
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• The CPn−1 model

The two dimensional CPn−1 model is based on a field with n complex com-
ponents,

z =


z1(x)
.
.

zn(x)

 , zi ∈ CI ,

with the constraint z† z = 1 in each point x ∈ IR2.

The action reads

S[~z ] =

∫
d2x (Dµz)

†Dµz , Dµ := ∂µ − z†∂µz .

Which is the global (x-independent) symmetry of this action ?

Show that there is in addition even a local (x-dependent) U(1) symmetry.

• Critical Exponents

The simplest theoretical description of critical exponents is the mean field
theory (or molecular field theory). It expands the magnetic field perceived by a
specific spin as

~Beff = ~B + a ~M − bM2 ~M ,

where ~M is the magnetic field due to the magnetization of the remaining spins.
As a phenomenological input, we further use the Curie Law (Pierre Curie, 1859-
1906)

~M =
c

T
~Beff

where a, b and c are constants.
(a) Neglect O(M3) and derive the prediction for the critical exponent γ.
(b) Now include O(M3) and derive predictions for β and δ.

Discuss the quality of this ansatz. What happens if you include O(M3) in
the determination of γ ?

[perhaps also determination of Ising model critical exponents in

MFA]
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Exercises to Section 1.6

• Natural units

In particle physics one quantifies for instance the mass of the proton as mp =
938 MeV. Identify the power of c and ~ which are needed to convert this quantity
into kg. How much is mp in kg ?

Which is the Compton wave length λ−c of the proton in cm ?
(In natural units λ−c = 1/mp).

The value of the electron mass of me = 0.511003 MeV expressed in American
pounds has been referred to in the US congress as an argument for preserving
this unit, guess why.

At an early stage of nuclear physics Hideki Yukawa made the following ob-
servation: he knew the pion masses (mπ0 ≈ 135 MeV, mπ± ≈ 140 MeV)
and assumed their wave function to be governed by the Klein-Gordon equation
(2 −m2)Ψ = 0 (relativistic Quantum Mechanics of free, spin 0 particles). The
stationary, spherically symmetric solutions take the form Ψ(r) ∝ 1

re
−mr (please

check !). Explain why this inspired Yukawa to postulate that nuclear forces are
due to pion exchange.

• Connected 3-point function

In the presence of a source field j the partition function of some quantum
field theoretical model on the lattice reads

Z[j] =

∫
Dφ exp

(
iS[φ] +

∑
x

jxφx

)
.

Show that the connected 3-point function corresponds to

〈φxφyφz〉c =
δ

δjx

δ

δjy

δ

δjz
lnZ|j=0 .
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• The lattice propagator for a free scalar field

We have considered the case of a neutral scalar field φx ∈ RI on an infinite
lattice of spacing a, and we computed its propagator.
(a) In which order of a is the corresponding dispersion relation plagued by lattice
artifacts ?
(b) Plot the dispersion relations for masses ma = 0, 1 and 2 for the field on the
lattice and in the continuum.
(c) We now allow for couplings of the field variable φx to φx+µ̂ and to φx+2µ̂.
Construct a new discrete derivative in form of a linear combination of these cou-
plings, such that the lattice artifacts in the leading order (identified in (a)) are
eliminated. (This method is known as Symanzik’s program.)

Exercises to Section 1.7

• Grassmann integrals

(a) Discuss in which sense functions of Grassmann variables can be partially in-
tegrated.
(b) How would you set up a δ-function for Grassmann integrals ?

• Fermion determinant

The components of Ψ =


ψ1

.

.
ψN

 and of Ψ̄ = (ψ̄1, . . . , ψ̄N ) are Grassmann

variables, and M is an N ×N matrix (its elements are any complex numbers).

Show that the following equations hold

(a)

∫
DΨ̄DΨ e−Ψ̄MΨ = det M ,

(b)

∫
DΨ̄DΨ ψ̄iψj e

−Ψ̄MΨ = (M−1)ij det M , where DΨ̄DΨ =
N∏
i=1

dψ̄i dψi .
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Hints:
(a) Start from the special case M = 11 and generalize the result by means of a
suitable substitution.
(b) Introduce external sources.

• The Pfaffian

We consider a set of Grassmann numbers η1, . . . , ηn, and an anti-symmetric
matrix A = −AT . The term

PfA =

∫
dη1 . . . dηn exp

(
− 1

2

n∑
i,j=1

ηiAijηj

)
is the Pfaffian of the matrix A (this name refers to Johann Friedrich Pfaff, 1765
- 1825).

(a) Show that the Pfaffian vanishes if n is odd.

(b) Compute explicitly the Pfaffian for the cases n = 2 and n = 4. The results
should be expressed in terms of the matrix elements Aij , i > j.

(c) We now address the case n = 2n′ (n′ ∈ NI ) and matrices with the structure

A =

(
0 a
−aT 0

)
,

where a is a n′ × n′ matrix. How are PfA and Det a related ?



Appendix C

Group Theory of SN and SU(n)

We will soon complete the formulation of the standard model by adding
the gluons as the last remaining field, thus introducing the strong interac-
tions which are governed by an SU(3)c gauge symmetry. To first familiarize
ourselves a bit with the relevant group theory, we will now make a short
mathematical detour. Once we add the strong interactions to the standard
model, the quarks will get confined inside hadrons. In the so-called con-
stituent quark model (which is at best semi-quantitative) baryons are made
of three quarks, while mesons consist of a quark and an anti-quark. In the
group theoretical construction of baryon states the permutation group S3

of three quarks plays an important role. In general, the permutation group
SN of N objects is very useful when one wants to couple arbitrary SU(n)
representations together.

C.1 The Permutation Group SN

Let us consider the permutation symmetry of N objects — for example
the fundamental representations of SU(n). Their permutations form the
group SN . The permutation group has N ! elements — all permutations
of N objects. The group S2 has two elements: the identity and the pair
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permutation. The representations of S2 are represented by Young tableaux

1-dimensional symmetric representation,

1-dimensional antisymmetric representation. (C.1.1)

To describe the permutation properties of three objects we need the group
S3. It has 3! = 6 elements: the identity, 3 pair permutations and 2 cyclic
permutations. The group S3 has three irreducible representations

1-dimensional symmetric representation,

2-dimensional representation of mixed symmetry,

1-dimensional antisymmetric representation. (C.1.2)

The representations of the group SN are given by the Young tableaux with
N boxes. The boxes are arranged in left-bound rows, such that no row is
longer than the one above it. For example, for the representations of S4 one
finds

, , , , . (C.1.3)

The dimension of a representation is determined as follows. The boxes of
the corresponding Young tableau are enumerated from 1 to N such that the
numbers grow as one reads each row from left to right, and each column
from top to bottom. The number of possible enumerations determines the
dimension of the representation. For example, for S3 one obtains

1 2 3 1-dimensional,

1 2
3 ,

1 3
2 2-dimensional,

3
2
1

1-dimensional. (C.1.4)
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The squares of the dimensions of all representations add up to the order of
the group, i.e. ∑

Γ

d2
Γ = N ! . (C.1.5)

In particular, for S2 we have 12 + 12 = 2 = 2! and for S3 one obtains
12 + 22 + 12 = 6 = 3!.

A general Young tableau can be characterized by the number of boxes
mi in its i-th row. For example the Young tableau

(C.1.6)

has m1 = 7, m2 = 4, m3 = 4, m4 = 3, m5 = 2 and m6 = 2. The dimension
of the corresponding representation is given by

dm1,m2,...,mn = N !

∏
i<k(li − lk)
l1!l2!...ln!

, li = mi + n− i. (C.1.7)

Applying this formula to the following Young tableau from S5

(C.1.8)

with m1 = 3, m2 = 1, m3 = 1 and n = 3 yields l1 = 3 + 3 − 1 = 5,
l2 = 1 + 3− 2 = 2, l3 = 1 + 3− 3 = 1 and hence

d3,1,1 = 5!
(l1 − l2)(l1 − l3)(l2 − l3)

l1!l2!l3!
= 5!

3 · 4 · 1
5!2!1!

= 6. (C.1.9)

The permuted objects can be the fundamental representations of SU(n).
For SU(2) we identify

= {2}. (C.1.10)
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To each Young tableau with no more than two rows one can associate an
SU(2) representation. Such a Young tableau is characterized by m1 and
m2, e.g.

(C.1.11)

has m1 = 7 and m2 = 3. The corresponding SU(2) representation has

S =
1

2
(m1 −m2), (C.1.12)

which is also denoted by {m1 −m2 + 1}. The above Young tableau hence
represents S = 2 — a spin quintet {5}. Young tableaux with more than
two rows have no realization in SU(2) since among just two distinguishable
objects no more than two can be combined anti-symmetrically.

C.2 The Group SU(n)

The unitary n× n matrices with determinant 1 form a group under matrix
multiplication — the special unitary group SU(n). This follows immediately
from

UU † = U †U = 1, detU = 1.

detUV = detUdetV = 1. (C.2.1)

Associativity ((UV )W = U(VW )) holds for all matrices, a unit element
1 exists (the unit matrix), the inverse is U−1 = U †, and finally the group
property

(UV )†UV = V †U †UV = 1, UV (UV )† = UV V †U † = 1 (C.2.2)

also holds. The group SU(n) is non-Abelian because in general UV 6= V U .
Each element U ∈ SU(n) can be represented as

U = exp(iH), (C.2.3)

where H is Hermitean and traceless. The matrices H form the su(n) alge-
bra. One has n2 − 1 free parameters, and hence n2 − 1 generators ηi, and
one can write

H = αiηi, αi ∈ R. (C.2.4)
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The structure of the algebra results from the commutation relations

[ηi, ηj] = 2icijkηk, (C.2.5)

where cijk are the so-called structure constants.

The simplest nontrivial representation of SU(n) is the fundamental rep-
resentation. It is n-dimensional and can be identified with the Young

tableau . Every irreducible representation of SU(n) can be obtained from
coupling N fundamental representations. In this way each SU(n) represen-
tation is associated with a Young tableau with N boxes, which characterizes
the permutation symmetry of the fundamental representations in the cou-
pling. Since the fundamental representation is n-dimensional, there are n
different fundamental properties (e.g. u and d in SU(2)L and c ∈ {1, 2, 3}
in SU(3)c). Hence, we can maximally anti-symmetrize n objects, and the
Young tableaux for SU(n) representations are therefore restricted to no
more than n rows.

The dimension of an SU(n) representation can be obtained from the
corresponding Young tableau by filling it with factors as follows

n− 5 n− 4

n− 4 n− 3

n− 3 n− 2 n− 1

n− 2 n− 1 n n+ 1

n− 1 n n+ 1 n+ 2

n n+ 1 n+ 2 n+ 3 n+ 4 n+ 5 n+ 6

. (C.2.6)

The dimension of the SU(n) representation is given as the product of all
factors divided by N ! and multiplied with the SN dimension dm1,m2,...,mn of
the Young tableau

Dn
m1,m2,...,mn

=
(n+m1 − 1)!

(n− 1)!

(n+m2 − 2)!

(n− 2)!
...
mn!

0!

1

N !
N !

∏
i<k(li − lk)
l1!l2!...ln!
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=

∏
i<k(mi −mk − i+ k)

(n− 1)!(n− 2)!...0!
. (C.2.7)

We see that the dimension of a representation depends only on the differ-
ences qi = mi −mi+1. In particular, for SU(2) we find

D2
m1,m2

=
m1 −m2 − 1 + 2

1!0!
= m1 −m2 + 1 = q1 + 1 (C.2.8)

in agreement with our previous result. For a rectangular Young tableau
with n rows, e.g. in SU(2) for

, (C.2.9)

all qi = 0, and we obtain

Dn
m,m,...,m =

∏
i<k(mi −mk − i+ k)

(n− 1)!(n− 2)!...0!
=

(n− 1)!(n− 2)!...0!

(n− 1)!(n− 2)!...0!
= 1, (C.2.10)

and therefore a singlet. This shows that in SU(3) corresponds to a
singlet. It also explains why the dimension of an SU(n) representation
depends only on the differences qi. Without changing the dimension we
can couple a representation with a singlet, and hence we can always add a
rectangular Young tableau with n rows to any SU(n) representation. For
example in SU(3)

∼= . (C.2.11)

We want to associate an anti-representation with each representation by
replacing mi and qi with

m̄i = m1 −mn−i+1, q̄i = m̄i − m̄i+1 = mn−i −mn−i+1 = qn−i. (C.2.12)

Geometrically the Young tableau of a representation and its anti-represen-
tation (after rotation) fit together to form a rectangular Young tableau with
n rows. For example, in SU(3)

and (C.2.13)
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are anti-representations of one another. In SU(2) each representation is its
own anti-representation. For example

and (C.2.14)

are anti-representations of one another, but

∼= . (C.2.15)

This is not the case for higher n. The dimension of a representation and its
anti-representation are identical

Dn
m̄1,m̄2,...,m̄n

= Dn
m1,m2,...,mn

. (C.2.16)

For general n the so-called adjoint representation is given by q1 = qn−1 = 1,
qi = 0 otherwise, and it is identical with its own anti-representation. The
dimension of the adjoint representation is

Dn
2,1,1,...,1,0 = n2 − 1. (C.2.17)

Next we want to discuss a method to couple SU(n) representations by
operating on their Young tableaux. Two Young tableaux with N and M
boxes are coupled by forming an external product. In this way we generate
Young tableaux with N + M boxes that can then be translated back into
SU(n) representations. The external product is built as follows. The boxes
of the first row of the second Young tableau are labeled with ‘a’, the boxes
of the second row with ‘b’, etc. Then the boxes labeled with ‘a’ are added to
the first Young tableau in all possible ways that lead to new allowed Young
tableaux. Then the ‘b’ boxes are added to the resulting Young tableaux in
the same way. Now each of the resulting tableaux is read row-wise from
top-right to bottom-left. Whenever a ‘b’ or ‘c’ appears before the first ‘a’,
or a ‘c’ occurs before the first ‘b’ etc., the corresponding Young tableau is
deleted. The remaining tableaux form the reduction of the external product.

We now want to couple N fundamental representations of SU(n). In
Young tableau language this reads

{n} ⊗ {n} ⊗ ...⊗ {n} = ⊗ ⊗ ...⊗ . (C.2.18)
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In this way we generate all irreducible representations of SN , i.e. all Young
tableaux with N boxes. Each Young tableau is associated with an SU(n)
multiplet. It occurs in the product as often as the dimension of the corre-
sponding SN representation indicates, i.e. dm1,m2,...,mn times. Hence we can
write

{n} ⊗ {n} ⊗ ...⊗ {n} =
∑

Γ

dm1,m2,...,mn{Dn
m1,m2,...,mn

}. (C.2.19)

The sum goes over all Young tableaux with N boxes. For example

⊗ ⊗ = ⊕ 2 ⊕ . (C.2.20)

Translated into SU(n) language this reads

{n} ⊗ {n} ⊗ {n} = {n(n+ 1)(n+ 2)

6
} ⊕ 2{(n− 1)n(n+ 1)

3
}

⊕ {(n− 2)(n− 1)n

6
}. (C.2.21)

The dimensions test

n(n+ 1)(n+ 2)

6
+ 2

(n− 1)n(n+ 1)

3
+

(n− 2)(n− 1)n

6
= n3 (C.2.22)

confirms this result. In SU(2) this corresponds to

{2} ⊗ {2} ⊗ {2} = {4} ⊕ 2{2} ⊕ {0}, (C.2.23)

and in SU(3)
{3} ⊗ {3} ⊗ {3} = {10} ⊕ 2{8} ⊕ {1}. (C.2.24)



Appendix D

Canonical Quantization of Free
Weyl, Dirac, and Majorana
Fermions

In this chapter we introduce left- and right-handed Weyl fermions as well
as Dirac and Majorana fermions. The basic fermionic building blocks of
the Standard Model are indeed Weyl fermions. Here we investigate how
fermions are described in a Hamiltonian formulation using anti-commuting
fermion creation and annihilation operators. We also discuss Lorentz and
Poincaré invariance as well as the discrete symmetries of parity P and of
charge conjugation C. In addition, we address the chiral U(1)L × U(1)R

symmetry of massless left- and right-handed Weyl fermions as well as the
U(1)F and ZZ(2)F fermion number symmetries of massive Dirac and Majo-
rana fermions, respectively. In the next chapter we will relate the Hamil-
tonian formulation to the Euclidean fermionic functional integral in which
fermions are described by anti-commuting Grassmann numbers.

D.1 Massless Weyl Fermions

The fermions of the Standard Model are described by left- and right-handed
Weyl spinor fields. In the absence of the Higgs field, these fermions would
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be massless. Hence, it is natural to begin our discussion with massless Weyl
fermions, a formulation originally derived by Hermann WeylWeyl, Hermann
Weylfermion.

Massless free particles are characterized by their conserved 3-momentum
~p which determines their energy E(~p) = |~p|. The fermions in the Standard

Model are spin-1
2

particles whose spin ~S = 1
2
~σ is described in terms of the

Pauli matrices

~σ = (σ1, σ2, σ3) =

((
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

))
. (D.1.1)

Massless Weyl fermions are energy eigenstates with two different helici-
ties.helicity This means that their spin vector ~S is either parallel or anti-
parallel to their momentum vector ~p; we will see in Section D.2 that these
observables can be measured simultaneously. Since massless fermions travel
with the speed of light, their helicity is independent of the reference frame.
(The helicity of massive fermions, on the other hand, depends on the ob-
server.) The Hamilton operator of a free massless right-handed Weyl fermion
field reads

ĤR =

∫
d3x ψ̂†R(~x)

(
−i~σ · ~∇

)
ψ̂R(~x) . (D.1.2)

The field operators

ψ̂R(~x) =

(
ψ̂1

R(~x)

ψ̂2
R(~x)

)
, ψ̂†R(~x) =

(
ψ̂1†

R (~x), ψ̂2†
R (~x)

)
, (D.1.3)

obey the canonical anti-commutation relations{
ψ̂aR(~x), ψ̂b†R (~y)

}
= δabδ(~x− ~y) ,{

ψ̂aR(~x), ψ̂bR(~y)
}

=
{
ψ̂a†R (~x), ψ̂b†R (~y)

}
= 0 , (D.1.4)

with the anti-commutator being defined as {Â, B̂} = ÂB̂ + B̂Â. Therefore
the Fourier transformed field operators

ψ̂R(~p) =

∫
d3x ψ̂R(~x) exp(−i~p · ~x) , ψ̂†R(~p) =

∫
d3x ψ̂†R(~x) exp(i~p · ~x) ,

(D.1.5)
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obey the anti-commutation relations{
ψ̂aR(~p), ψ̂b†R (~q)

}
= (2π)3δabδ(~p− ~q) ,{

ψ̂aR(~p), ψ̂bR(~q)
}

=
{
ψ̂a†R (~p), ψ̂b†R (~q)

}
= 0 , (D.1.6)

and the Hamilton operator takes the form

ĤR =
1

(2π)3

∫
d3p ψ̂†R(~p)~σ · ~p ψ̂R(~p) . (D.1.7)

We diagonalize the Hamilton operator by the unitary transformation

U(~p) (~σ · ~p) U(~p)† = |~p| σ3 . (D.1.8)

For 3-momentum

~p = |~p|~ep , ~ep = (sin θ cosϕ, sin θ sinϕ, cos θ) , (D.1.9)

the diagonalizing matrix is given by

U(~ep) =

(
cos(θ/2) sin(θ/2) exp(−iϕ)

− sin(θ/2) exp(iϕ) cos(θ/2)

)
. (D.1.10)

For the transformed fermion field components we introduce the annihi-
lation and creation operators ĉR and d̂†R,

ψ̂R(~p) =

(
ψ̂1

R(~p)

ψ̂2
R(~p)

)
= U(~p)†

(
ĉR(~p)

d̂†R(−~p)

)
. (D.1.11)

The positive energy eigenstates are associated with fermions, while the
negative energy states are associated with anti-fermions. As we will see,
the operator ĉR(~p) annihilates a fermion with momentum ~p, while d̂†R(−~p)
creates an anti-fermion with momentum −~p. These operators obey the
anti-commutation relations{

ĉR(~p), ĉ†R(~q)
}

= (2π)3δ(~p− ~q) ,
{
d̂R(~p), d̂†R(~q)

}
= (2π)3δ(~p− ~q) ,

{ĉR(~p), ĉR(~q)} =
{
ĉ†R(~p), ĉ†R(~q)

}
= 0 ,

{
d̂R(~p), d̂R(~q)

}
=
{
d̂†R(~p), d̂†R(~q)

}
= 0 ,{

ĉR(~p), d̂R(~q)
}

=
{
ĉR(~p), d̂†R(~q)

}
=
{
ĉ†R(~p), d̂R(~q)

}
=
{
ĉ†R(~p), d̂†R(~q)

}
= 0 .

(D.1.12)
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Inserting eq. (D.1.11) into the Hamilton operator of eq. (D.1.7) we obtain

ĤR =
1

(2π)3

∫
d3p |~p|

[
ĉ†R(~p)ĉR(~p)− d̂R(~p)d̂†R(~p)

]
=

1

(2π)3

∫
d3p |~p|

[
ĉ†R(~p)ĉR(~p) + d̂†R(~p)d̂R(~p)− V

]
. (D.1.13)

As in Section ??, the spatial volume arises by identifying (2π)3δ(~0) = V .

By definition, the vacuum state |0〉R is the state of lowest energy. It is
annihilated by all particle or anti-particle annihilation operators

ĉR(~p) |0〉R = d̂R(~p) |0〉R = 0 . (D.1.14)

Massless particle or anti-particle excitations with momentum ~p above the
vacuum cost the positive energy |~p|.

As we will see, right-chirality (or right-handed) Weyl fermions with mo-
mentum ~p and energy E(~p) − E0 = |~p| have positive helicity ~σ · ~ep = 1.

They are created from the vacuum by ĉ†R(~p), while their anti-particles have

negative helicity ~σ · ~ep = −1 and are created by d̂†R(~p),

ĉ†R(~p) |0〉R = |~p, ~σ · ~ep = 1〉R , d̂†R(~p) |0〉R = |~p, ~σ · ~ep = −1〉R . (D.1.15)

Since the creation operators anti-commutate, at most one fermion can oc-
cupy a given quantum state; this property is known as the Pauli prin-
ciple.Pauli principle For example, a state with two right-chirality Weyl
fermions is given by

|~p1, ~σ · ~ep1 = 1; ~p2, ~σ · ~ep2 = 1〉R = c†R(~p1)c†R(~p2) |0〉R = −c†R(~p2)c†R(~p1) |0〉R
= −|~p2, ~σ · ~ep2 = 1; ~p1, ~σ · ~ep1 = 1〉R .

(D.1.16)

The anti-symmetry implies that a state with two fermions of the same mo-
mentum ~p1 = ~p2 and the same helicity does not exist.

Now let us consider the vacuum energy density

ρ =
E0

V
= − 1

(2π)3

∫
d3p |~p| . (D.1.17)
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As in the case of a free scalar field that we discussed in Section ??, it is
ultraviolet divergent, but in the fermionic case ρ is negative. The vacuum
state is denoted as the filled “Dirac sea”Dirac sea (in this case, perhaps
better the filled “Weyl sea”, although this picture was suggested by [?]), in
which all negative energy states are occupied and all positive energy states
are empty. A missing particle of negative energy then manifests itself as an
anti-particle with positive energy, relative to the filled vacuum sea.

Left-chirality (or left-handed) Weyl fermions are very similar to right-
chirality ones, except that they have negative helicity, ~σ · ~ep = −1, while
their anti-particles have positive helicity, ~σ · ~ep = 1. The corresponding
Hamilton operator takes the form

ĤL =

∫
d3x ψ̂†L(~x)

(
i~σ · ~∇

)
ψ̂L(~x)

=
1

(2π)3

∫
d3p |~p|

[
ĉ†L(~p)ĉL(~p) + d̂†L(~p)d̂L(~p)− V

]
, (D.1.18)

in this case with

ψ̂L(~p) =

(
ψ̂1

L(~p)

ψ̂2
L(~p)

)
= U(−~ep)†

(
ĉL(~p)

d̂†L(−~p)

)
,

U(−~p)(−~σ · ~p)U(−~p)† = |~p| σ3 . (D.1.19)

The various creation and annihilation operators again obey canonical anti-
commutation relations. The corresponding vacuum state is denoted as |0〉L,

ĉL(~p) |0〉L = d̂L(~p) |0〉L = 0 , (D.1.20)

and the left-chirality single fermion and anti-fermion states are given by

ĉ†L(~p) |0〉L = |~p, ~σ · ~ep = −1〉L , d̂†L(~p) |0〉L = |~p, ~σ · ~ep = 1〉L . (D.1.21)

D.2 Momentum, Angular Momentum, and

Helicity of Weyl Fermions

In order to convince ourselves that the theory of free right-handed Weyl
fermions indeed provides a representation of the Poincaré algebra, we need
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to show that the Hamiltonian ĤR of eq. (D.1.2) can be complemented by mo-
mentum, angular momentum, and boost operators,momentumangular mo-

mentumboost ~̂PR, ~̂JR, and ~̂KR, such that the commutation relations of eq.
(??) are satisfied. This is indeed the case with the following operators

~̂PR =

∫
d3x ψ̂†R(~x)

(
−i~∇

)
ψ̂R(~x) ,

~̂JR =

∫
d3x ψ̂†R(~x)

(
~x×

(
−i~∇

)
+

1

2
~σ

)
ψ̂R(~x) ,

~̂KR =

∫
d3x ψ̂†R(~x)

1

2

(
~x
(
−i~∇ · ~σ

)
+
(
−i~∇ · ~σ

)
~x

)
ψ̂R(~x) .(D.2.1)

Using eq. (D.1.11), we rewrite the momentum operator as

~̂PR =
1

(2π)3

∫
d3p ~p

[
ĉ†R(~p)ĉR(~p) + d̂†R(~p)d̂R(~p)

]
. (D.2.2)

As one would expect, this implies that the vacuum has zero momentum,

i.e. ~̂PR |0〉R = ~0. One can verify the commutation relations[
~̂PR, ĉ

†
R(~p)

]
= ~p ĉ†R(~p) ,

[
~̂PR, d̂

†
R(~p)

]
= ~p d̂†R(~p) . (D.2.3)

In this way one readily confirms that ĉ†R(~p) or d̂†R(~p) indeed create single-
particle or anti-particle states with momentum ~p, e.g.

~̂PR|~p, ~σ · ~ep = 1〉R = ~̂PR ĉ†R(~p) |0〉R =
([
~̂PR, ĉ

†
R(~p)

]
+ ĉ†R(~p) ~̂PR

)
|0〉R

= ~p ĉ†R(~p) |0〉R = ~p |~p, ~σ · ~ep = 1〉R . (D.2.4)

Let us verify the helicity of the single-particle states in a similar manner.

First of all, ~̂JR and ~̂PR do not commute and are thus not simultaneously
measurable. However, the component of the angular momentum vector in

the direction of a particle’s momentum, ~̂JR·~ep, is simultaneously measurable
with the momentum. In Problem ?? we are going to show that[

~̂JR · ~ep, ĉ†R(~p)
]

=
1

2
ĉ†R(~p) ,

[
~̂JR · ~ep, d̂†R(~p)

]
= −1

2
d̂†R(~p) . (D.2.5)
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At this point we assume the property ~̂JR |0〉R = ~0. This is physically ex-

pected, and it is in fact true, but — in contrast to the case of ~̂PR — it is
not so easy to demonstrate. It leads to

~̂JR · ~ep|~p, ~σ · ~ep = 1〉R =
[
~̂JR · ~ep, ĉ†R(~p)

]
|0〉R

=
1

2
ĉ†R(~p) |0〉R =

1

2
|~p, ~σ · ~ep = 1〉R ,

~̂JR · ~ep|~p, ~σ · ~ep = −1〉R =
[
~̂JR · ~ep, d̂†R(~p)

]
|0〉R

= −1

2
d̂†R(~p) |0〉R = −1

2
|~p, ~σ · ~ep = −1〉R . (D.2.6)

Similarly, for left-handed Weyl fermions one obtains[
~̂JL · ~ep, ĉ†L(~p)

]
= −1

2
ĉ†L(~p) ,

[
~̂JL · ~ep, d̂†L(~p)

]
=

1

2
d̂†L(~p) ,

~̂JL · ~ep|~p, ~σ · ~ep = −1〉L =
[
~̂JL · ~ep, ĉ†L(~p)

]
|0〉L

= −1

2
ĉ†L(~p) |0〉L = −1

2
|~p, ~σ · ~ep = −1〉L ,

~̂JL · ~ep|~p, ~σ · ~ep = 1〉L =
[
~̂JL · ~ep, d̂†L(~p)

]
|0〉L

=
1

2
d̂†L(~p) |0〉L =

1

2
|~p, ~σ · ~ep = 1〉L . (D.2.7)

D.3 Fermion Number, Parity, and Charge

Conjugation

In a free field theory the total numbers of particles and of anti-particles are
constant in time, simply because the individual particles do not interact.
However, in this respect free field theory is exceptional. In general, in
quantum field theory particles can be created and annihilated. In particular,
a particle and its anti-particle can annihilate each other, or they can be pair-
created. Hence, unlike in non-relativistic quantum mechanics, in relativistic
quantum field theories the particle number is usually not a conserved — or
even a meaningful — physical quantity. Particle–anti-particle annihilation
or pair-creation proceed exclusively via interactions and are hence absent in
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a free field theory. While the total numbers of fermions or anti-fermions are
not separately conserved in a generic quantum field theory, often (though
not always) the number of fermions minus the number of anti-fermions,
known as the fermion number,fermion number is a conserved quantity.

For a right-handed Weyl fermion, the corresponding fermion number
operator is defined as

F̂R =
1

(2π)3

∫
d3p

[
ĉ†R(~p)ĉR(~p)− d̂†R(~p)d̂R(~p)

]
. (D.3.1)

The conservation of F̂R is associated with a U(1)R symmetry. In the multi-
particle–multi-anti-particle Hilbert space, i.e. in Fock space,Fock space this
symmetry is represented by unitary transformations

ÛR(χR) = exp(iχRF̂R) , χR ∈ IR , (D.3.2)

which are constructed by exponentiating the infinitesimal symmetry gener-
ator FR. When applied to the field operators, this symmetry transformation
acts as

ÛR(χR)ψ̂R(~x)ÛR(χR)† = exp(iχR)ψ̂R(~x) ,

ÛR(χR)ψ̂†R(~x)ÛR(χR)† = ψ̂†R(~x) exp(−iχR) . (D.3.3)

This transformation leaves the Hamilton operator of eq. (D.1.2) invariant,
which implies that F̂R is indeed a conserved quantity.

For left-chirality Weyl fermions there is an analogous conserved fermion
number

F̂L =
1

(2π)3

∫
d3p

[
ĉ†L(~p)ĉL(~p)− d̂†L(~p)d̂L(~p)

]
, (D.3.4)

which results from a U(1)L symmetry.

Fermion numbers FR, FL, and helicity ~σ · ~ep of Weyl fermions
fermion (right) fermion (left) anti-fermion (right) anti-fermion (left)

FR 1 0 −1 0
FL 0 1 0 −1
~σ · ~ep 1 −1 −1 1
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Consequently, we can assign a fermion number FR,L = ±1 to each of the
single-particle and anti-particle states that we constructed before

F̂R|~p, ~σ · ~ep = 1〉R = |~p, ~σ · ~ep = 1〉R ,

F̂R|~p, ~σ · ~ep = −1〉R = −|~p, ~σ · ~ep = −1〉R ,

F̂L|~p, ~σ · ~ep = −1〉L = |~p, ~σ · ~ep = −1〉L ,
F̂L|~p, ~σ · ~ep = 1〉L = −|~p, ~σ · ~ep = 1〉L . (D.3.5)

We hence confirm that right-chirality Weyl fermions with FR = 1 have pos-
itive helicity (~σ · ~ep = 1), while their anti-particles with FR = −1 have
negative helicity. Left-chirality Weyl fermions with FL = 1, on the other
hand, have negative helicity and their anti-particles (with FL = −1) have
positive helicity. This is summarized in Table D.3.

Let us now discuss two discrete symmetry transformations:

• A parity transformation performs a spatial inversion at the origin,
~x → −~x. This implies that a state with momentum ~p turns into a
state with momentum −~p. Angular momenta (such as ~x× ~p or spin),
however, are pseudo-vectors and thus don’t change under a parity
transformation. As a result, the helicity of a state (the projection
of the spin on the momentum) does change sign under parity. This
implies that the parity partner of a left-handed Weyl fermion is right-
handed. As we will see in Chapter ??, in the Standard Model there are
only left-handed but no right-handed neutrino fields. Consequently,
the parity P is not a symmetry of the Standard Model.

• Charge conjugation turns particles into anti-particles and vice versa,
but leaves their spin and momenta and hence their helicity unchanged.
Thus the charge conjugation partner of a left-handed Weyl fermion is
a right-handed anti-fermion. Again, since the Standard Model in-
cludes only left-handed neutrino fields, charge conjugation C is not a
symmetry either.

• The combined transformation CP turns a left-handed Weyl fermion
(with negative helicity) into a left-handed anti-fermion (with positive
helicity), and hence does not require the presence of a right-handed
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Weyl fermion field. Indeed, despite the absence of right-handed neu-
trino fields, CP would be a symmetry of the Standard Model, if it had
fewer than three generations of fermions, cf. Chapter ??.

Let us now assume a theory in which both left- and right-handed Weyl
fermion fields are present at the same time. For example, the Standard
Model has both left- and right-handed electron fields. Then the parity
transformation is implemented by a unitary transformation ÛP in the com-
bined Hilbert space of left- and right-handed fields,

Pψ̂R(~x) = ÛPψ̂R(~x)Û †P = ψ̂L(−~x) ,
Pψ̂L(~x) = ÛPψ̂L(~x)Û †P = ψ̂R(−~x) . (D.3.6)

The parity transformed Hamilton operator of a right-handed Weyl fermion
results as

PĤR = ÛPĤRÛ
†
P =

∫
d3x Pψ̂

†
R(~x)

(
−i~σ · ~∇

)
Pψ̂R(~x)

=

∫
d3x ψ̂†L(−~x)

(
−i~σ · ~∇

)
ψ̂L(−~x)

=

∫
d3x ψ̂†L(~x)

(
i~σ · ~∇

)
ψ̂L(~x) = ĤL . (D.3.7)

In the last step we have substituted the integration variable ~x→ −~x. Sim-
ilarly, one obtains PĤL = ĤR. While neither ĤR nor ĤL is parity invariant,
their sum is,

[ĤR + ĤL, ÛP] = 0 . (D.3.8)

Charge conjugation is implemented by another unitary transformation
ÛC which acts as

Cψ̂R(~x) = ÛCψ̂R(~x)Û †C = iσ2ψ̂†L(~x)T ,
Cψ̂L(~x) = ÛCψ̂L(~x)Û †C = −iσ2ψ̂†R(~x)T . (D.3.9)

Here — and throughout these notes — T denotes “transpose”. The charge
conjugated Hamilton operator then takes the form

CĤR = ÛCĤRÛ
†
C =

∫
d3x Cψ̂

†
R(~x)

(
−i~σ · ~∇

)
Cψ̂R(~x)
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=

∫
d3x ψ̂L(~x)T

(
iσ2
)† (−i~σ · ~∇

)
iσ2ψ̂†L(~x)T

=

∫
d3x ψ̂L(~x)T

(
i~σT · ~∇

)
ψ̂†L(~x)T =

∫
d3x

(
−~∇ψ̂†L(~x) · i~σ

)
ψ̂L(~x)

=

∫
d3x ψ̂†L(~x)

(
i~σ · ~∇

)
ψ̂L(~x) = ĤL . (D.3.10)

Here we have used (iσ2)†~σ(iσ2) = −~σT, as well as the anti-commutativity
of the fermionic operators, which implies

ψ̂L(~x)T
(

i~σT · ~∇
)
ψ̂†L(~x)T = −

(
~∇ψ̂†L(~x) · i~σ

)
ψ̂L(~x) , (D.3.11)

and, finally, we have performed a partial integration. Similarly, one finds
CĤL = ĤR. Hence, neither ĤR nor ĤL is charge conjugation invariant, but
their sum is, i.e. [ĤR + ĤL, ÛC] = 0.

Based on eqs. (D.3.6) and (D.3.9), as well as on eqs. (D.1.10), (D.1.11),
and (D.1.19), one obtains the parity and charge conjugation transformation
rules(

PĉR(~p)
PĉL(~p)

)
= σ1

(
ĉR(−~p)
ĉL(−~p)

)
,

(
Pd̂R(~p)
Pd̂L(~p)

)
= σ1

(
d̂R(−~p)
d̂L(−~p)

)
,(

CĉR(~p)
CĉL(~p)

)
= iσ2

(
d̂R(~p)

d̂L(~p)

)
,

(
Cd̂R(~p)
Cd̂L(~p)

)
= −iσ2

(
ĉR(~p)
ĉL(~p)

)
,(

CPĉR(~p)
CPĉL(~p)

)
= −σ3

(
d̂R(−~p)
d̂L(−~p)

)
,

(
CPd̂R(~p)
CPd̂L(~p)

)
= σ3

(
ĉR(−~p)
ĉL(−~p)

)
.

(D.3.12)

While they are neither P nor C invariant, both ĤR and ĤL are individ-
ually invariant against the combined operation CP, i.e. CPĤR = CĤL = ĤR

and CPĤL = CĤR = ĤL. Under a CP transformation a right-chirality
fermion state transforms as

ÛCP |~p, ~σ · ~ep = 1〉R = ÛCPĉ
†
R(~p) |0〉R = CPĉ†R(~p)ÛCP |0〉R

− d̂†R(−~p) |0〉R = −| − ~p,−~σ · ~ep = −1〉R .

(D.3.13)

Here we have used the fact that the vacuum is CP invariant, i.e. ÛCP |0〉R =
|0〉R. We conclude that the CP partner of a massless right-chirality fermion
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(which hence has helicity ~σ · ~ep = 1) is a right-chirality anti-fermion with
opposite momentum −~p and helicity −~σ · ~ep = −1. (Note that the helicity
of a state with momentum −~p is −~σ ·~ep because the unit-vector pointing in
the direction of the momentum −~p = −|~p| ~ep is −~ep.) In the same manner
as above, we obtain

ÛCP |~p, ~σ · ~ep = ±1〉R = ∓| − ~p,−~σ · ~ep = ∓1〉R ,

ÛCP |~p, ~σ · ~ep = ±1〉L = ∓| − ~p,−~σ · ~ep = ∓1〉L . (D.3.14)

D.4 Massive Dirac Fermions

Dirac fermionsDirac fermion have both a right- and a left-handed Weyl
component, which are combined to a 4-component Dirac spinor,

ψ̂(~x) =

(
ψ̂R(~x)

ψ̂L(~x)

)
=


ψ̂1

R(~x)

ψ̂2
R(~x)

ψ̂1
L(~x)

ψ̂2
L(~x)

 ,

ψ̂†(~x) =
(
ψ̂†R(~x), ψ̂†L(~x)

)
=
(
ψ̂1†

R (~x), ψ̂2†
R (~x), ψ̂1†

L (~x), ψ̂2†
L (~x)

)
.(D.4.1)

Let us introduce 4 × 4 matrices in the so-called chiral basis, that project
out the left- and right-handed components

PR =
1

2

(
1 + γ5

)
=

(
1I 0
0 0

)
, PL =

1

2

(
1− γ5

)
=

(
0 0
0 1I

)
,

γ5 =

(
1I 0
0 −1I

)
. (D.4.2)

Here 0 and 1I are 2× 2 zero- and unit-matrices, respectively (while the 4× 4
unit-matrix is written simply as 1).

Based on the transformation properties (D.3.6) of its Weyl fermion com-
ponents, under parity a Dirac spinor transforms as

Pψ̂(~x) =

(
Pψ̂R(~x)
Pψ̂L(~x)

)
=

(
ψ̂L(−~x)

ψ̂R(−~x)

)
= γ0ψ̂(−~x) . (D.4.3)
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Here we have introduced the 4× 4 Dirac matrix γ0, which — together with
the 4× 4 matrices ~γ — forms the 4-vector γµ

γ0 =

(
0 1I
1I 0

)
, ~γ = (γ1, γ2, γ3) =

(
0 −~σ
~σ 0

)
, (D.4.4)

still in the “chiral basis”. In any “basis”, i.e. for any valid choice, different
γ-matrices, including γ5, anti-commute

{γµ, γν} = 2gµν , γ5 = iγ0γ1γ2γ3 , {γµ, γ5} = 0 , (D.4.5)

where gµν = diag(1,−1,−1,−1) is the metric of Minkowski space-time. The
first relation is the defining property of the Dirac matrices γµ. If this holds,
then the third relation follows from the definition of γ5.

According to eq. (D.3.9), a Dirac spinor transforms under charge conju-
gation as

Cψ̂(~x) =

(
Cψ̂R(~x)
Cψ̂L(~x)

)
=

(
iσ2ψ̂†L(~x)T

−iσ2ψ̂†R(~x)T

)
= Cγ0ψ̂†(~x)T ,

C =

(
iσ2 0
0 −iσ2

)
. (D.4.6)

The Hamilton operator of a free massive Dirac fermion is the sum of ĤR

and ĤL plus a mass term that couples the left- and right-handed compo-
nents,

ĤD =

∫
d3x

[
ψ̂†R(~x)

(
−i~σ · ~∇

)
ψ̂R(~x) + ψ̂†L(~x)

(
i~σ · ~∇

)
ψ̂L(~x)

+ m
(
ψ̂†R(~x)ψ̂L(~x) + ψ̂†L(~x)ψ̂R(~x)

)]
=

∫
d3x ψ̂†(~x)

(
−i~α · ~∇+ βm

)
ψ̂(~x) , (D.4.7)

where we have introduced the 4× 4 matrices

~α = γ0~γ =

(
~σ 0
0 −~σ

)
, β = γ0 =

(
0 1I
1I 0

)
, (D.4.8)

(again in the chiral basis). The mass term is parity, charge conjugation,
and Lorentz invariant, but it explicitly breaks the chiral U(1)R × U(1)L
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symmetry to its diagonal subgroup U(1)F that is generated by the total
fermion number F̂ = F̂R + F̂L (F̂R and F̂L are defined in Section D.3).

Using eqs. (D.1.11) and (D.1.19), in momentum space the Dirac-Hamilton
operator takes the form

ĤD =
1

(2π)3

∫
d3p

[(
ĉ†R(~p), d̂L(−~p)

)( |~p| m
m −|~p|

)(
ĉR(~p)

d̂†L(−~p)

)
+

(
ĉ†L(~p), d̂R(−~p)

)( |~p| m
m −|~p|

)(
ĉL(~p)

d̂†R(−~p)

)]
=

1

(2π)3

∫
d3p
√
~p 2 +m2

[
ĉ†+(~p)ĉ+(~p) + d̂†+(~p)d̂+(~p)

+ ĉ†−(~p)ĉ−(~p) + d̂†−(~p)d̂−(~p)− 2V
]
. (D.4.9)

We have diagonalized the Hamilton operator by means of the unitary trans-
formation(

ĉR(~p)

d̂†L(−~p)

)
= V (~p)†

(
ĉ+(~p)

d̂†+(−~p)

)
,

(
ĉL(~p)

d̂†R(−~p)

)
= V (~p)†

(
ĉ−(~p)

d̂†−(−~p)

)
,

V (~p)

(
|~p| m
m −|~p|

)
V (~p)† =

( √
~p 2 +m2 0

0 −
√
~p 2 +m2

)
,

V (~p) =

(
cos(χ/2) sin(χ/2) exp(−iϕ)

− sin(χ/2) exp(iϕ) cos(χ/2)

)
,

cosχ =
|~p|√

~p 2 +m2
, (D.4.10)

and ϕ is the polar angle of the momentum vector defined in eq. (D.1.10).
The operators ĉ±(~p), ĉ†±(~p), d̂±(~p), d̂†±(~p) again obey canonical anti-commutation
relations.

By definition, the vacuum of Dirac fermions (the filled Dirac seaDirac
sea) is the state of lowest energy, in which all negative energy states are
occupied while all positive energy states are empty. Hence the Dirac vacuum
|0〉D fulfills

ĉ±(~p) |0〉D = d̂±(~p) |0〉D = 0 . (D.4.11)

Single–fermion states (with F = 1) and single–anti-fermion states (with
F = −1) are created from the vacuum by the creation operators ĉ†±(~p) and
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d̂†±(~p), respectively, i.e.

ĉ†±(~p) |0〉D = |F = 1, ~p, ~σ · ~ep = ±1〉D ,

d̂†±(~p) |0〉D = |F = −1, ~p, ~σ · ~ep = ±1〉D . (D.4.12)

The momentum operator of Dirac fermions takes the form

~̂PD = ~̂PR + ~̂P L

=
1

(2π)3

∫
d3p ~p

[
ĉ†R(~p)ĉR(~p) + d̂†R(~p)d̂R(~p) + ĉ†L(~p)ĉL(~p) + d̂†L(~p)d̂L(~p)

]
=

1

(2π)3

∫
d3p ~p

[
ĉ†+(~p)ĉ+(~p) + d̂†+(~p)d̂+(~p) + ĉ†−(~p)ĉ−(~p) + d̂†−(~p)d̂−(~p)

]
.

(D.4.13)

One can show that[
~̂PD, ĉ

†
±(~p)

]
= ~p ĉ†±(~p) ,

[
~̂PD, d̂

†
±(~p)

]
= ~p d̂†±(~p) , (D.4.14)

and that this implies

~̂PD |F, ~p, ~σ · ~ep = ±1〉D = ~p |F, ~p, ~σ · ~ep = ±1〉D . (D.4.15)

Similarly, the Dirac angular momentum operator is given by ~̂JD = ~̂JR +

~̂JL. In Problem ?? we will show that eqs. (D.2.1) and (D.2.7) lead to[
~̂JD · ~ep, ĉ†±(~p)

]
= ±1

2
ĉ†±(~p) ,

[
~̂JD · ~ep, d̂†±(~p)

]
= ±1

2
d̂†±(~p) , (D.4.16)

which implies

~̂JD · ~ep |F, ~p, ~σ · ~ep = ±1〉D = ±1

2
|F, ~p, ~σ · ~ep = ±1〉D . (D.4.17)

We conclude that the indices ± on the Dirac fermion creation and anni-
hilation operators refer to positive and negative helicity. While the helicity
of a massless Weyl fermion or anti-fermion is uniquely determined by the
chirality (left or right) of the corresponding Weyl fermion field, massive
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Dirac fermions or anti-fermions exist with both helicities. This follows, be-
cause the helicity of a massive particle is not Lorentz invariant. An observer
who moves faster than a massive fermion perceives its momentum — and
hence its helicity — with a changed sign relative to an observer at rest. A
massless fermion, on the other hand, moves with the velocity of light and
has a Lorentz invariant helicity.

Based on eqs. (D.3.12) and (D.4.10), one obtains the parity and charge
conjugation transformation rules

Pĉ±(~p) = ĉ∓(−~p) , Pd̂±(~p) = d̂∓(−~p) ,
Cĉ±(~p) = ±d̂±(~p) , Cd̂±(~p) = ±ĉ±(~p) . (D.4.18)

Applying the unitary transformation ÛP (which implements parity in Hilbert
space) on a single-particle state, one then obtains

ÛP |F = 1, ~p, ~σ · ~ep = ±1〉D = ÛPĉ
†
±(~p) |0〉D = Pĉ†±(~p)ÛP |0〉D = ĉ†∓(−~p) |0〉D

= |F = 1,−~p,−~σ · ~ep = ∓1〉D . (D.4.19)

Here we have used the fact that the vacuum is parity invariant, i.e. ÛP |0〉D =
|0〉D. A corresponding relation applies to anti-particle states, such that in
general

ÛP |F, ~p, ~σ · ~ep = ±1〉D = |F,−~p,−~σ · ~ep = ∓1〉D . (D.4.20)

We conclude that the parity partner of a fermion or anti-fermion indeed
has the opposite momentum and helicity. Similarly, by using the charge
conjugation invariance of the vacuum, i.e. ÛC |0〉D = |0〉D, one obtains

ÛC |F, ~p, ~σ · ~ep = ±1〉D = ±| − F, ~p, ~σ · ~ep = ±1〉D . (D.4.21)

Hence, as expected, charge conjugation exchanges fermions and anti-fermions,
leaving their momentum and helicity unchanged. Based on the previous re-
lations, one arrives at

ÛCP |F, ~p, ~σ · ~ep = ±1〉D = ∓| − F,−~p,−~σ · ~ep = ∓1〉D . (D.4.22)

It is again easy to convince oneself that ÛPCψ̂(~x)Û †PC = −ÛCPψ̂(~x)Û †CP.
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D.5 Massive Majorana Fermions

As Ettore MajoranaMajorana, Ettore realized, some fermions — now known
as Majorana fermionsMajorana fermions — are indistinguishable from their
anti-particles Majorana37. The corresponding Majorana spinor results from
a Dirac spinor by imposing a constraint, which is known as the Majorana
condition,Majorana condition

Cψ̂(~x) = ψ̂(~x) ⇒ Cψ̂R(~x) = iσ2ψ̂†L(~x)T = ψ̂R(~x) ⇒
ψ̂aR(~x) = εabψ̂

b†
L (~x) . (D.5.1)

One can check that relation (D.5.1) is consistent with the anti-commutation
relations (D.1.4) of the right-handed spinors, and that ĤR = ĤL.

It is important to note that the Majorana condition is not invariant
against the chiral U(1)L × U(1)R symmetry transformation

ψ̂L(~x)′ = exp(iχL)ψ̂L(~x) , ψ̂R(~x)′ = exp(iχR)ψ̂R(~x) . (D.5.2)

This follows because

iσ2ψ̂†L(~x)′T = exp(−iχL)iσ2ψ̂†L(~x)T = exp(−iχL)ψ̂R(~x)

= exp(−iχL − iχR)ψ̂R(~x)′ . (D.5.3)

The Majorana condition remains invariant only if χL = −χR, which implies
that it breaks U(1)L×U(1)R explicitly down to U(1)L=R∗ . The fermion num-
ber symmetry U(1)F = U(1)L=R is then reduced to exp(iχL) = exp(iχL) =
exp(−iχR) ∈ {±1} = ZZ(2)F . As a consequence, the number of Majorana
fermions (which are indistinguishable from their anti-particles) is conserved
only modulo 2.

Interestingly, the Majorana condition is not consistent with parity either,
because

iσ2 Pψ̂†L(~x)T = iσ2ψ̂†R(−~x)T = iσ2(−iσ2)T ψ̂L(−~x) = −Pψ̂R(~x) . (D.5.4)

On the other hand, when we combine a chiral transformation with parity
we obtain

Pψ̂L(~x)′ = exp(iχL)Pψ̂L(~x) = exp(iχL)ψ̂R(−~x) ,
Pψ̂R(~x)′ = exp(iχR)Pψ̂R(~x) = exp(iχR)ψ̂L(−~x) ,

iσ2 Pψ̂†L(~x)′T = exp(−iχL)iσ2ψ̂†R(−~x)T = − exp(−iχL)ψ̂L(−~x)

= − exp(−iχL − iχR)Pψ̂R(~x)′ . (D.5.5)
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Hence, the Majorana condition is invariant against P combined with U(1)L=−R∗ .
The corresponding fermion number transformations U(1)L=−R∗=R are char-
acterized by exp(iχL) = exp(iχR) = ±i. We denote the parity transforma-
tion P combined with the phase factor i as P’.

Applying the Majorana condition, the Dirac-Hamilton operator reduces
to ĤD = 2ĤM with the Majorana-Hamilton operator given by

ĤM =

∫
d3x

[
ψ̂†R(~x)

(
−i~σ · ~∇

)
ψ̂R(~x) +

m

2

(
ψ̂R(~x)Tiσ2ψ̂R(~x)− ψ̂†R(~x)iσ2ψ̂†R(~x)T

)]
=

∫
d3x

[
ψ̂†L(~x)

(
i~σ · ~∇

)
ψ̂L(~x) +

m

2

(
−ψ̂L(~x)Tiσ2ψ̂L(~x) + ψ̂†L(~x)iσ2ψ̂†L(~x)T

)]
.

(D.5.6)

While the Dirac mass term is invariant against the continuous U(1)F fermion
number symmetry, the Majorana mass term is invariant only under the dis-
crete ZZ(2)F symmetry. Just like the Majorana condition itself, the Majo-
rana mass term is invariant, not against P, but against the modified parity
transformation P’.

In momentum space the first contribution to the Majorana mass term
is given by

ψ̂R(~p)Tiσ2ψ̂R(−~p) =
(
ĉR(~p), d̂†R(−~p)

)
U(~p)∗iσ2U(−~p)†

(
ĉR(−~p)
d̂†R(~p)

)
= − exp(iϕ)ĉR(~p)ĉR(−~p)− exp(−iϕ)d̂†R(−~p)d̂†R(~p) .

(D.5.7)

The Majorana-Hamilton operator then takes the form

ĤM =
1

(2π)3

∫
IR3/2

d3p

[(
ĉ†R(~p), ĉR(−~p)

)( |~p| m exp(−iϕ)
m exp(iϕ) −|~p|

)(
ĉR(~p)

ĉ†R(−~p)

)
+

(
d̂†R(~p), d̂R(−~p)

)( |~p| m exp(−iϕ)
m exp(iϕ) −|~p|

)(
d̂R(~p)

d̂†R(−~p)

)]
. (D.5.8)

Here the integration is limited to one half of the momentum space, since
both ~p and −~p appear explicitly in the integrand. The Majorana condi-
tion implies CĉR(~p) = d̂L(~p) = ĉR(~p), CĉL(~p) = −d̂R(~p) = ĉL(~p), as well as
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Cĉ±(~p) = ±d̂±(~p) = ĉ±(~p). We can hence rewrite eq. (D.4.10) and diagonal-
ize the Hamiltonian by the unitary transformation(

ĉR(~p)

ĉ†R(−~p)

)
= V (~p)†

(
ĉ+(~p)

ĉ†+(−~p)

)
,(

d̂R(~p)

d̂†R(−~p)

)
= −V (~p)†

(
ĉ−(~p)

ĉ†−(−~p)

)
. (D.5.9)

The two components of the first equation take the form

ĉR(~p) = cos(χ/2) ĉ+(~p)− sin(χ/2) exp(−iϕ)ĉ†+(−~p) ,
ĉ†R(−~p) = sin(χ/2) exp(iϕ)ĉ+(~p) + cos(χ/2) ĉ†+(−~p) . (D.5.10)

Taking the Hermitian conjugate of the equation for the first component, and
replacing ~p by −~p, which implies replacing exp(iϕ) by − exp(iϕ), one indeed
obtains the equation for the second component. This shows the consistency
of the diagonalizing unitary transformation with the Majorana constraint,
which leads to

ĤM =
1

(2π)3

∫
IR3/2

d3p
√
~p 2 +m2

[
ĉ†+(~p)ĉ+(~p)− ĉ+(−~p)ĉ†+(−~p)

+ ĉ†−(~p)ĉ−(~p)− ĉ−(−~p)ĉ†−(−~p)
]

=
1

(2π)3

∫
d3p

√
~p 2 +m2

[
ĉ†+(~p)ĉ+(~p) + ĉ†−(~p)ĉ−(~p)− V

]
.

(D.5.11)

In the last step we have again extended the integration to the entire mo-
mentum space IR3.

The vacuum of Majorana fermions is characterized by ĉ±(~p) |0〉M = 0
and the single-particle states are given by

ĉ†±(~p) |0〉M = |(−1)F = −1, ~p, ~σ · ~ep = ±1〉M . (D.5.12)

As usual, under a parity transformation this state changes both its momen-
tum and its helicity,

ÛP |(−1)F = −1, ~p, ~σ · ~ep = ±1〉M = Pĉ†±(~p) |0〉M = ĉ†∓(−~p) |0〉M
= |(−1)F = −1,−~p,−~σ · ~ep = ∓1〉M .

(D.5.13)
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Similarly, since the Majorana condition implies Cĉ†±(~p) = ĉ†±(~p), one obtains

ÛC |(−1)F = −1, ~p, ~σ · ~ep = ±1〉M = |(−1)F = −1, ~p, ~σ · ~ep = ±1〉M .
(D.5.14)

Hence, Majorana fermion states are indeed invariant under charge conju-
gation, i.e. particles and anti-particles are indistinguishable. Since C acts
trivially on Majorana fermions, P and CP then have the same effect.

D.6 Massive Weyl Fermions

As we have already seen in eq. (D.5.6), we can reinterpret the Majorana-
Hamilton operator as a massive Weyl-Hamilton operator,

ĤW =

∫
d3x

[
ψ̂†R(~x)

(
−i~σ · ~∇

)
ψ̂R(~x) +

m

2

(
ψ̂R(~x)Tiσ2ψ̂R(~x)− ψ̂†R(~x)iσ2ψ̂†R(~x)T

)]
.

(D.6.1)
In this case, one would not assume that there is a Dirac fermion field (con-
sisting of both left- and right-handed components) with a Majorana con-
straint (that expresses the left-handed field as a function of the right-handed
one). Instead one simply works with a right-handed Weyl spinor without
ever introducing a left-handed component. As a result, P and C are not
symmetries of the Hamiltonian. Not even CP is, but only CP’, which is the
combination of C with the modified parity transformation P’. In addition,
the U(1)R symmetry of a massless Weyl fermion is explicitly broken down
to ZZ(2)R.

The diagonalization of the massive Weyl fermion Hamiltonian is math-
ematically equivalent to the one of the Majorana fermion, except that
one now substitutes ĉ−(~p) by −d̂−(~p) (which are equivalent for Majorana
fermions), i.e.(

ĉR(~p)

c†R(−~p)

)
= V (~p)†

(
ĉ+(~p)

ĉ†+(−~p)

)
,

(
d̂R(~p)

d†R(−~p)

)
= V (~p)†

(
d̂−(~p)

d̂†−(−~p)

)
.

(D.6.2)
One then obtains

ĤW =
1

(2π)3

∫
d3p

√
~p 2 +m2

[
ĉ†+(~p)ĉ+(~p) + d̂†−(~p)d̂−(~p)− V

]
. (D.6.3)
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The vacuum of massive Weyl fermions is characterized by ĉ+(~p) |0〉R =
d̂−(~p) |0〉R = 0 and the corresponding vacuum energy density is given by

ρ =
E0

V
= − 1

(2π)3

∫
d3p

√
~p 2 +m2 . (D.6.4)

This is exactly opposite to two times the positive vacuum energy that we
encountered for the free real-valued scalar field theory in eq. (??). We
conclude that a theory containing a complex-valued scalar field and a Weyl
fermion field, with the same mass m, has a zero cosmological constant,
because the bosonic and the fermionic contribution to the vacuum energy
cancel each other.

In fact, supersymmetry relates the bosonic to the fermionic sector, with
the complex scalar field and the Weyl fermion field forming the physical
components of a so-called chiral super-multiplet. Hence in an exactly super-
symmetric world the vacuum energy density would indeed vanish. However,
we also know that in the real world, i.e. at low energy, supersymmetry has
to be broken — if it exists at all — since for instance the “selectron” (the
bosonic partner of the electron) must be much heavier than the electron,
otherwise it would have been observed already. Imposing the supersymme-
try breaking, which is minimally required by phenomenology (even before
the LHC results), leads to a vacuum energy density that is still about 1060

times larger than the observed value ≈ 2 · 10−3 eV4 Carroll01, which accel-
erates the expansion of the universe, so supersymmetry does not solve the
cosmological constant problem.

The single-particle states of massive Weyl fermions with right-chirality
are given by

ĉ†+ |0〉R = |(−1)FR = −1, ~p, ~σ · ~ep = 1〉R ,

d̂†− |0〉R = |(−1)FR = −1, ~p, ~σ · ~ep = −1〉R . (D.6.5)

Under CP these states transform as

ÛCP |(−1)FR = −1, ~p, ~σ · ~ep = ±1〉R = ∓|(−1)FR = −1,−~p,−~σ · ~ep = ∓1〉R ,
(D.6.6)

i.e. they change both their momentum and their helicity. Since U(1)R is re-
duced to ZZ(2)R, just as for Majorana fermions, there is no longer a conserved
fermion number that distinguishes particles from anti-particles.
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Massive Weyl fermions and Majorana fermions are mathematically equiv-
alent, but have different physical interpretations. While Majorana fermions
are invariant under charge conjugation, Weyl fermions do not even obey C
or P symmetry individually but only the combination CP’. Still both mas-
sive Weyl and Majorana fermions respond to the CP’ symmetry (which is
indistinguishable from the modified parity P’ for Majorana fermions) in the
same way.



Appendix E

Fermionic Functional Integrals

In this chapter we formulate the functional integral for fermion fields us-
ing anti-commuting Grassmann variables. We then derive the Dirac, Weyl,
and Majorana equation from the corresponding Lagrangians and show that
the Hamiltonian formulation of the previous chapter results upon canoni-
cal quantization, by replacing Grassmann fields by anti-commuting fermion
creation and annihilation operators. We then perform a Wick rotation to
Euclidean time and investigate the Euclidean version of Lorentz invariance,
of the discrete symmetries C and P, as well as time reversal T. This will lead
to a discussion of the CPT theorem and the spin-statistics theorem. Finally,
we show in the simple case of massless Weyl fermions that the Euclidean
functional integral is equivalent to the Hamiltonian formulation. For this
purpose, we construct the transfer matrix that results from the functional
integral on a Euclidean time lattice, and show that it reduces to the correct
Hamilton operator in the continuous time limit.

E.1 Grassmann Algebra, Pfaffian, and Fermion

Determinant

In contrast to bosons, fermions cannot be piled up in large numbers in the
same quantum state and hence do not manifest themselves directly at the
classical level — for instance, we cannot build a “fermionic laser”. While

295
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for bosonic quantum field theories one uses (real- or complex-valued) clas-
sical fields as integration variables in the functional integral, for fermionic
theories no corresponding classical fields exist. Instead, the fermionic func-
tional integral uses anti-commuting Grassmann numbers as the integration
variables.

In the following we summarize some of the basic rules for operating with
Grassmann numbers. This kind of numbers was introduced by Hermann
Günther Grassmann (1809–1877),1 and a century later adopted in quantum
field theory, in particular by Felix Alexandrovich Berezin.

The generators of a Grassmann algebra are anti-commuting variables ηi,
i ∈ {1, 2, . . . , N}, that obey

ηiηj = −ηjηi . (E.1.1)

This implies in particular η2
i = 0. An element of the Grassmann algebra is

a polynomial in the variables ηi,

f(η) = f +
∑
i

fiηi +
∑
ij

fijηiηj +
∑
ijk

fijkηiηjηk + . . . . (E.1.2)

The coefficients fij...l are ordinary commuting numbers (real or complex);
they are anti-symmetric in the indices i, j, . . . , l. There can be at most
l = N indices, since each variable ηi occurs in each term either with power
0 or 1. Thus the expansion (E.1.2) is already the most general “Taylor
series” of a function f(η); there are only 2N independent terms.

One defines a formal differentiation, which follows the familiar pattern
(regarding the left-most factor). The corresponding rules are

δ

δηi
ηj = δij ,

δ

δηi
ηiηj = ηj ⇒ δ

δηi
ηjηi = −ηj (i 6= j) . (E.1.3)

Since we aim at a functional integral for Grassmann fields, we also need
rules for the integration of Grassmann variables. As usual, one defines
integration as a linear operation∫

dηi (a+ bηi) = a

∫
dηi + b

∫
dηi ηi , a, b ∈ CC , (E.1.4)

1The authentic spelling seems to be “Graßmann”, but we adopt the spelling which is
internationally used.
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where the integrand represents the most general function f(ηi).

Unlike ordinary numbers, Grassmann numbers cannot take particular
values. Hence, it is not meaningful to extend a Grassmann integral over
some interval as its integration range. Still, integrals over Grassmann num-
bers share some features with ordinary integrals

∫∞
−∞ dx that extend over

all of IR. This is, in fact, the range that we extensively used in the bosonic
functional integrals for a real-valued scalar field. We often made use of its
invariance under translations x→ x+c, for instance when we evaluated the
partition function and the 2-point function of the free (lattice) scalar field
in Section ??. Invariance under translation holds for Grassmann integrals
as well,∫
dηi (a+bηi) =

∫
dηi (a+b(ηi+c+dηj)) =

∫
dηi (a+bηi+bc+bdηj) (i 6= j) .

(E.1.5)
This provides an argument for the rule that integrals

∫
dηi over terms that

do not involve ηi vanish. On the other hand, the integral
∫
dηi ηi is defined

to be non-zero, and — since we have no scale at hand — we set it to 1.2

Thus we have motivated the following integration rules,∫
dηi = 0 ,

∫
dηi ηj = δij ,

∫
dηidηj ηiηj = −1 (i 6= j) . (E.1.6)

The last rule corresponds to the prescription to carry out the innermost
integral first. Again, these integrals are formal expressions and one should
not ask over what range of ηi we integrate. Interestingly, Grassmann in-
tegration acts just like differentiation, cf. eq. (E.1.3). After all, we have
constructed the rules (E.1.6) based on translation invariance, which holds
for differentiation as well.

Up to permutations, the only non-vanishing integral over the entire set
of Grassmann generators is∫

dη1dη2 . . . dηN ηN . . . η2η1 = 1 . (E.1.7)

Let us consider the “Gaussian” integral for N generators.

2Choosing a different constant ( 6= 0) would not affect any fermionic expectation values.
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• N = 2∫
dη1dη2 exp(−η1A12η2) =

∫
dη1dη2 (1− η1A12η2) = A12 . (E.1.8)

Note that this holds for any A12 ∈ CC. The expansion of the exponen-
tial terminates because η2

1 = η2
2 = 0.

• N = 3 ∫
dη1dη2dη3 exp(−η1A12η2 − η1A13η3 − η2A23η3) =∫
dη1dη2dη3 (1− η1A12η2 − η1A13η3 − η2A23η3) = 0 .(E.1.9)

The quadratic term in the expansion of the exponential vanishes be-
cause at least one of the three Grassmann variables gets squared.
Indeed, the corresponding integral∫

Dη exp

(
−1

2
ηAη

)
=

∫
dη1dη2 . . . dηN exp

(
−1

2
ηiAijηj

)
,

(E.1.10)
with A being an anti-symmetric matrix (i.e. Aij = −Aji) vanishes for
all odd N . This follows because each term in the expansion of the
exponential contains an even number of Grassmann variables, while
the non-vanishing integral of eq. (E.1.7) requires N of them.

• N = 4∫
Dη exp

(
−1

2
ηAη

)
=

∫
dη1dη2dη3dη4

1

2

(
1

2
ηiAijηj

)2

= A12A34 − A13A24 + A23A14 . (E.1.11)

Explicit calculation shows (A12A34 − A13A24 + A23A14)2 = det(A).

This extends to the result for general N∫
Dη exp

(
−1

2
ηAη

)
= Pf(A) , (E.1.12)

where Pf(A) is known as the Pfaffian of the anti-symmetric matrix A, named
after Johann Friedrich Pfaff, 1765–1825. Its square is the determinant of A,

Pf(A)2 = det(A) . (E.1.13)
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While the square-root of the determinant has a sign ambiguity, the Pfaffian
is uniquely defined. It is given by a sum over the elements P ∈ SN of the
permutation group, whose signature depends on whether P is composed of
an even (sign(P ) = 1) or odd (sign(P ) = −1) number of pair permutations,

Pf(A) =
1

2N/2(N/2)!

∑
P∈SN

sign(P )

N/2∏
i=1

AP (2i−1),P (2i) . (E.1.14)

As we will see later, Pfaffians arise in the functional integrals for Majorana
or massive Weyl fermions.

Consider the case N = 4: check the Grassmann integral (E.1.11), show that
it coincides with Pf(A) as defined in formula (E.1.14), and that its square
is equal to det(A).

In fermionic quantum field theories, two distinct sets of Grassmann num-
bers ηi and η̄i are associated with fermion creation and annihilation oper-
ators. It is important to note that ηi and η̄i are independent Grassmann
numbers. In particular, unlike creation and annihilation operators, η̄i is
not in any sense an adjoint of ηi. From the point of view of the Grassmann
algebra, the bar is just a book-keeping device that distinguishes two subsets
of generators. Hence, if we again introduce ηi with i ∈ {1, 2, . . . , N}, and,
in addition, η̄i, the total number of generators is now 2N .

It is instructive to evaluate the Gaussian integral in the N = 2 case,
which yields∫

dη̄1dη1dη̄2dη2 exp

(
−(η̄1, η̄2)

(
M11 M12

M21 M22

)(
η1

η2

))
=

M11M22 −M12M21 . (E.1.15)

This result generalizes when we enlarge the Grassmann algebra to an
arbitrary even number 2N of generators, and we obtain a fermion determi-
nant

∫
Dη̄Dη exp(−η̄Mη) =

∫
dη̄1dη1dη̄2dη2 . . . dη̄NdηN exp(−η̄iMijηj) =

det(M) . (E.1.16)
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An easy way to make this result plausible proceeds by performing the sub-
stitution η′ = Mη, for which det(M) arises as the Jacobian,∫

Dη̄Dη exp(−η̄Mη) =

∫
Dη̄Dη′ det(M) exp(−η̄η′) =

det(M)
∏
i

∫
dη̄idη

′
i exp(−η̄iη′i) = det(M)

∏
i

∫
dη̄idη

′
i (−η̄iη′i) =

det(M) . (E.1.17)

One might question, however, whether the usual Jacobian factor really ap-
plies to the Grassmann integral. An explicit calculation will be asked for in
Problem ??.

Just as the Pfaffian, the determinant can also be expressed as a sum
over permutations

det(M) =
∑
P∈SN

sign(P )
N∏
i=1

Ai,P (i) . (E.1.18)

The result of eq. (E.1.16) is consistent with eq. (E.1.12) because we can
write∫
Dη̄Dη exp(−η̄Mη) =

∫
Dη̄Dη exp

(
−1

2
η̄iMijηj +

1

2
ηjM

T
jiη̄i

)
=

∫
Dη̄Dη exp

(
−1

2
(η, η̄)

(
0 −MT

M 0

)(
η
η̄

))
= Pf(A) ,

where we have introduced an anti-symmetric matrix A, whose Pfaffian
squared indeed coincides with det(M)2,

A =

(
0 −MT

M 0

)
, Pf(A)2 = det(A) = det(M)det(MT) = det(M)2 .

(E.1.19)

It is instructive to compare the previous results for fermionic Gaussian
integrals with ordinary, i.e. bosonic ones.

• First, we consider a real-valued lattice scalar field φi ∈ IR with i ∈
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{1, 2, . . . , N}, such that∫
Dφ exp

(
−1

2
φAφ

)
=

∫
IR

dφ1

∫
IR

dφ2 . . .

∫
IR

dφN exp

(
−1

2
φiAijφj

)
.

(E.1.20)
Let us assume A to be real and symmetric, i.e. Aij ∈ IR and AT = A,
so it can be diagonalized by an orthogonal transformation Ω ∈ O(N),

ΩAΩT = D = diag(a1, a2, . . . , aN) , (E.1.21)

where ai ∈ IR are the eigenvalues of A. The Gaussian integral exists
only if all ai are positive. Performing the orthogonal rotation φ′ = Ωφ
we obtain∫

Dφ exp

(
−1

2
φAφ

)
=

∫
Dφ′ exp

(
−1

2
φ′Dφ′

)
=∫

IR

dφ′1

∫
IR

dφ′2 . . .

∫
IR

dφ′N

N∏
i=1

exp

(
−1

2
aiφ
′
i
2

)
=

N∏
i=1

√
2π

ai

=
(2π)N/2√

det(A)
, (E.1.22)

as we saw before in Section ??. Up to the constant factor (2π)N/2

(which could be absorbed by a re-definition of the integration measure
as (1/

√
2π)

∫
IR
dφi), this is similar to the result of eq. (E.1.12), except

that A is now symmetric and the square-root of its determinant now
appears in the denominator.

• Next, we consider a complex lattice scalar field Φi ∈ CC with i ∈
{1, 2, . . . , N}, such that∫

DΦ exp

(
−1

2
Φ†MΦ

)
=∫

CC

dΦ1

∫
CC

dΦ2 . . .

∫
CC

dΦN exp

(
−1

2
Φ∗iMijΦj

)
. (E.1.23)

Here we assume M to be Hermitian and thus be diagonalizable by a
unitary transformation U ∈ U(N)

UMU † = D = diag(m1,m2, . . . ,mN) , mi ∈ IR . (E.1.24)
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The Gaussian integral again exists only if all eigenvalues mi are posi-
tive. Performing the unitary transformation Φ′ = UΦ, we obtain∫

DΦ exp

(
−1

2
Φ†MΦ

)
=

∫
DΦ′ exp

(
−1

2
Φ′
†
DΦ′

)
=∫

CC

dΦ′1

∫
CC

dΦ′2 . . .

∫
CC

dΦ′N

N∏
i=1

exp

(
−1

2
mi|Φ′i|2

)
=

N∏
i=1

2π

ai
=

(2π)N

det(M)
. (E.1.25)

This is similar to the result of eq. (E.1.16), except that M is now
Hermitian (rather than being unrestricted as in the fermionic case),
and the determinant again appears in the denominator. Essentially
it is only the power of the determinant that depends on the type of
integration variables.

A quantity of physical interest is the fermionic 2-point function. In the
two variable (N = 2) case we readily obtain∫

dη1dη2 η1η2 exp(−η1A12η2) = −1 , (E.1.26)

such that

〈η1η2〉 =

∫
dη1dη2 η1η2 exp(−η1A12η2)∫
dη1dη2 exp(−η1A12η2)

= − 1

A12

= (A−1)12 ,

A−1 =

(
0 A12

−A12 0

)−1

=

(
0 −1/A12

1/A12 0

)
. (E.1.27)

That result generalizes to

〈ηiηj〉 =

∫
Dη ηiηj exp

(
−1

2
ηAη

)∫
Dη exp

(
−1

2
ηAη

) = (A−1)ij . (E.1.28)

This will be demonstrated in Problem ??.
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Next we consider the case with two distinct sets of Grassmann genera-
tors, first for N = 2,∫

dη̄1dη1dη̄2dη2 η1η̄2 exp

(
−(η̄1, η̄2)

(
M11 M12

M21 M22

)(
η1

η2

))
=∫

dη̄1dη1dη̄2dη2 η1η̄2(−η̄1M12η2) = −M12 , (E.1.29)

which implies

〈η1η̄2〉 = (M−1)12 , M−1 =
1

M11M22 −M12M21

(
M22 −M12

−M21 M11

)
.

(E.1.30)
For arbitrary N this result generalizes to

〈ηiη̄j〉 =

∫
Dη̄Dη ηiη̄j exp (−η̄Mη)∫
Dη̄Dη exp (−η̄Mη)

= (M−1)ij . (E.1.31)

This is consistent with eq. (E.1.28) because

A−1 =

(
0 −MT

M 0

)−1

=

(
0 M−1

−(M−1)T 0

)
⇒

(M−1)ij = (A−1)i,j+N ⇒ 〈ηiη̄j〉 = 〈ηiηj+N〉 , (E.1.32)

which indeed results when we relabel η̄j as ηj+N . Again there is a remarkable
similarity to the scalar field result, in this case to the 2-point function in
eq. (B.6.15).

Let us prove eq. (E.1.31) by means of the generating functional

Z[ξ̄, ξ] =

∫
Dη̄Dη exp

(
−η̄Mη + ξ̄ηi + η̄jξ

)
. (E.1.33)

Here we have introduced Grassmann sources ξ and ξ̄ only at the positions
i and j.3 Varying the generating functional with respect to the two Grass-

3If one would introduce source fields elsewhere, one would have to put them to zero
at the end of the calculation. It seems unnatural to assign zero to a Grassmann number,
which does not actually take any value. If one does it anyways, one obtains the same
result as the one we will derive now.
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mann source variables ξ̄ and ξ we obtain

δ

δξ̄
exp

(
ξ̄ηi
)

=
δ

δξ̄

(
1 + ξ̄ηi

)
= ηi ,

δ

δξ
exp (η̄jξ) =

δ

δξ
(1 + η̄jξ) = −η̄j ⇒

δ

δξ

δ

δξ̄
Z[ξ̄, ξ] =

∫
Dη̄Dη ηiη̄j exp (−η̄Mη) . (E.1.34)

Performing the shifts η̄′k = η̄k − ξ̄M−1
ik and η′l = ηl −M−1

lj ξ results in

−η̄kMklηl + ξ̄ηi + η̄jξ = −
(
η̄′k + ξ̄M−1

ik

)
Mkl

(
η′l +M−1

lj ξ
)

+ ξ̄
(
η′i +M−1

ij ξ
)

+
(
η̄′j + ξ̄M−1

ij

)
ξ

= −η̄′kMklη
′
l + ξ̄M−1

ij ξ ⇒
Z[ξ̄, ξ] = det(M) exp

(
ξ̄M−1

ij ξ
)
,

δ

δξ

δ

δξ̄
exp

(
ξ̄M−1

ij ξ
)

=
δ

δξ

δ

δξ̄

(
1 + ξ̄M−1

ij ξ
)

= M−1
ij ⇒

δ

δξ

δ

δξ̄
Z[ξ̄, ξ] = det(M)M−1

ij , (E.1.35)

which — together with eq. (E.1.16) — proves eq. (E.1.31).

It is interesting to note that the generating functional can also be eval-
uated by interpreting the exponential as an Euclidean action S[η̄, η],

Z[ξ̄, ξ] =

∫
Dη̄Dη exp(−S[η̄, η]) , S[η̄, η] = η̄Mη − ξ̄ηi − η̄jξ , (E.1.36)

and by varying it with respect to the Grassmann field in order to obtain
“classical equations of motion”

δS[η̄, η]

δη̄k
= Mklηl − δkjξ = 0 ⇒ ηl = M−1

lj ξ ,

δS[η̄, η]

δηl
= −η̄kMkl + ξ̄δil = 0 ⇒ η̄k = ξ̄M−1

ik . (E.1.37)

Inserting the result back into the action we obtain its “value” at the “sta-
tionary point”

S0[η̄, η] = ξ̄M−1
ik MklM

−1
lj ξ − ξ̄M

−1
ij ξ − ξ̄M−1

ij ξ = −ξ̄M−1
ij ξ . (E.1.38)
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The result of the Gaussian integral then resembles the steepest decent,

Z[ξ̄, ξ] =

∫
Dη̄Dη exp(−S[η̄, η]) = det(M) exp(−S0[η̄, η])

= det(M) exp(ξ̄M−1
ij ξ) . (E.1.39)

This method, which uses the “classical equations of motion”, is applicable
to all Gaussian Grassmann integrals.

E.2 The Dirac Equation

Dirac constructed a relativistic equation for the electron

(iγµ∂µ −m)ψ(x) = 0 , ψ(x) =

(
ψR(x)
ψL(x)

)
, (E.2.1)

which led him to predict the existence of anti-matter. It was a great triumph
of Dirac’s theory that positrons — the anti-particles of electrons — were
discovered with the predicted properties a few years later.

Again we deal with the γ-matrices in the chiral basis (which Dirac was
originally not using)

γ0 =

(
0 1I
1I 0

)
, γi =

(
0 −σi
σi 0

)
, γ5 =

(
1I 0
0 −1I

)
. (E.2.2)

It took a long time to decipher the meaning of the Dirac equation, in par-
ticular, to figure out what the 4-component spinor ψ(x) means. Origi-
nally, Dirac interpreted his equation as a relativistic generalization of the
Schrödinger equation, with ψ(x) playing the role of a quantum mechanical
wave function that describes a single particle or anti-particle. The equation
can then be written as

i∂0ψ(x) = −iγ0γi∂iψ(x) + γ0mψ(x) =
(
−i~α · ~∇+ βm

)
ψ(x) , (E.2.3)

with the matrices αi = γ0γi and β = γ0 matching eq. (D.4.8). The right-
hand side of this equation indeed resembles the Dirac Hamilton operator of
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eq. (D.4.7),

ĤD =

∫
d3x ψ̂†(~x)

(
−i~α · ~∇+ βm

)
ψ̂(~x) , (E.2.4)

where it is sandwiched between fermion creation and annihilation opera-
tors ψ̂†(~x) and ψ̂(~x). It eventually became clear that an interpretation of
the Dirac equation with a fixed particle number is inconsistent, and that
the equation does not belong to quantum mechanics but to quantum field
theory. In other words, ψ(x) is not a wave function but a quantum field.
In fact, we can promote the time-independent field operator ψ̂(~x) in the
Schrödinger picture to a time-dependent operator in the Heisenberg picture

ψ̂(x) = ψ̂(x0, ~x) = exp
(

iĤDx
0
)
ψ̂(~x) exp

(
−iĤDx

0
)
, (E.2.5)

which obeys the Heisenberg equation of motion

i∂0ψ̂(x) =
[
ψ̂(x), ĤD

]
. (E.2.6)

Using the equal-time anti-commutation relations of eq. (D.1.4), for both
chiralities, we obtain[

ψ̂(x), ĤD

]
= exp

(
iĤDx

0
) [
ψ̂(~x), ĤD

]
exp

(
−iĤDx

0
)

= exp
(

iĤDx
0
)(
−i~α · ~∇+ βm

)
ψ̂(~x) exp

(
−iĤDx

0
)

=
(
−i~α · ~∇+ βm

)
ψ̂(x) . (E.2.7)

We see that the Dirac equation

(iγµ∂µ −m) ψ̂(x) = 0 (E.2.8)

can be identified as the Heisenberg equation of motion for the fermion field

operator ψ̂(x) in the Heisenberg picture. Introducing ˆ̄ψ(x) = ψ̂†(x)γ0, one
can similarly derive the “adjoint Dirac equation”

−i∂µ
ˆ̄ψ(x)γµ −m ˆ̄ψ(x) = 0 . (E.2.9)

Interestingly, there is another interpretation of the Dirac equation as
the “classical” equation of motion for an anti-commuting Grassmann field
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ψ(x). To appreciate this, we introduce the Dirac Lagrangian for a free
fermion field,

LD(ψ̄, ψ) = ψ̄(x) (iγµ∂µ −m)ψ(x) , (E.2.10)

ψ(x) =

(
ψR(x)
ψL(x)

)
, ψ̄(x) =

(
ψ̄L(x), ψ̄R(x)

)
. (E.2.11)

It is important to note that ψ̄(x) and ψ(x) are independent Grassmann

fields which, unlike ˆ̄ψ(x) and ψ̂(x) in the Hamiltonian formulation, are not
related via Hermitian conjugation. By using the Grassmann algebra rules
for differentiation of eq. (E.1.3), we obtain the Euler-Lagrange equation

δLD(ψ̄, ψ)

δψ̄
− ∂µ

δLD(ψ̄, ψ)

δ∂µψ̄
= (iγµ∂µ −m)ψ(x) = 0 , (E.2.12)

which is nothing else than the Dirac equation. While eq. (E.2.9) for ˆ̄ψ is
just the Hermitian conjugate of eq. (E.2.8) for ψ̂, in the Grassmann field
formulation its “adjoint” is an independent equation of motion for ψ̄

δLD(ψ̄, ψ)

δψ
− ∂µ

δLD(ψ̄, ψ)

δ∂µψ
= i∂µψ̄(x)γµ +mψ̄(x) = 0 . (E.2.13)

The “classical” Euler-Lagrange equations of motion for ψ and ψ̄ are just
the Dirac equations for the Grassmann fields. It should be clear, however,
that these equations make no sense in the context of classical field theory.
Even in quantum field theory, they are rather formal relations. What does
it mean that a Grassmann field, which does not even take particular values,
satisfies a partial differential equation? In the next section, we will use
Grassmann fields as integration variables in fermionic functional integrals.

As we have seen in eqs. (E.1.36) - (E.1.39), “minimizing” a fermionic
action, and thus solving the corresponding Euler-Lagrange equation, is at
least useful for performing Gaussian Grassmann integrals. The “classical”
equations of motion, eqs. (E.2.12) and (E.2.13), can also be used to show
that the fermion current jµ(x) is conserved

jµ(x) = ψ̄(x)γµψ(x) , ∂µj
µ(x) = 0 . (E.2.14)

Next, let us construct the canonically conjugate momenta of the Grass-
mann fields

Πψ(x) =
δLD(ψ̄, ψ)

δ∂0ψ
= −iψ̄(x)γ0 , Πψ̄(x) =

δLD(ψ̄, ψ)

δ∂0ψ̄
= 0 , (E.2.15)
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from which we obtain a Dirac Hamilton density function

HD(ψ̄, ψ) = ∂0ψ̄(x)Πψ̄(x)− Πψ(x)∂0ψ(x)− LD(ψ̄, ψ)

= iψ̄(x)γ0∂0ψ(x)− ψ̄(x) (iγµ∂µ −m)ψ(x)

= ψ̄(x)
(
−iγi∂i +m

)
ψ(x) (E.2.16)

(where γi∂i = −~γ · ~∇). Upon canonical quantization, the Grassmann fields
ψ(x) and ψ̄(x) are replaced by fermion field operators ψ̂(x) and ψ̂†(x)γ0,
for which one postulates the usual canonical anti-commutation relations,(

ψR(x)
ψL(x)

)
→
(
ψ̂R(~x)

ψ̂L(~x)

)
,(

ψ̄L(x), ψ̄R(x)
)
γ0 =

(
ψ̄R(x), ψ̄L(x)

)
→
(
ψ̂†R(~x), ψ̂†L(~x)

)
.(E.2.17)

The Hamilton densityHD(ψ̄, ψ) then turns into the Dirac Hamilton operator
ĤD of eq. (E.2.4).

E.3 The Weyl and Majorana Equations

For the sake of an efficient handling of the γ-matrices in the chiral basis, we
introduce the notation

γµ =

(
0 σ̄µ

σµ 0

)
, σµ = (1I, ~σ) , σ̄µ = (1I,−~σ) . (E.3.1)

With the matrix

γ5 = −iγ0γ1γ2γ3 =

(
11 0
0 −11

)
(E.3.2)

we obtain the projection operators

P± =
1

2
(1± γ5) = P 2

± . (E.3.3)

In the notation of eq. (E.2.11), they decompose the Grassmann field into
left- and right-handed components,

P+ψ =

(
ψR

0

)
, P−ψ =

(
0
ψL

)
; ψ̄P+ = (ψ̄L, 0) , ψ̄P− = (0, ψ̄R) .

(E.3.4)
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Then the Dirac equation takes the form

iσµ∂µψR(x)−mψL(x) = 0 , i∂µψ̄R(x)σµ +mψ̄L(x) = 0 ,

iσ̄µ∂µψL(x)−mψR(x) = 0 , i∂µψ̄L(x)σ̄µ +mψ̄R(x) = 0 .(E.3.5)

In the massless case, these equations decouple into independent Weyl equa-
tions.

iσµ∂µψR(x) = 0 , i∂µψ̄R(x)σµ = 0 ,

iσ̄µ∂µψL(x) = 0 , i∂µψ̄L(x)σ̄µ = 0 . (E.3.6)

In the Hamiltonian formulation the Majorana condition, cf. eq. (D.5.1),
is given by

ψ̂L(~x) = −iσ2ψ̂†R(~x)T ⇒ ψ̂†L(~x) = ψ̂R(~x)Tiσ2 . (E.3.7)

Replacing the fermion creation and annihilation operators by Grassmann
fields according to eq. (E.2.17), one obtains the Grassmann Majorana con-
straint

ψL(x) = −iσ2ψ̄R(x)T , ψ̄L(x) = ψR(x)Tiσ2 . (E.3.8)

When we use these constraints to eliminate the left-handed fields from the
Dirac Lagrangian, we obtain LD(ψ̄, ψ) = 2LM(ψ̄R, ψR) with the Majorana
Lagrangian

LM(ψ̄R, ψR) =
1

2
ψ̄R(x)iσµ∂µψR(x)− 1

2
∂µψ̄R(x)iσµψR(x)

− m

2

(
ψR(x)Tiσ2ψR(x)− ψ̄R(x)iσ2ψ̄R(x)T

)
. (E.3.9)

The corresponding Euler-Lagrange equations are the Majorana equations

iσµ∂µψR(x) +miσ2ψ̄R(x)T = 0 ,

i∂µψ̄R(x)σµ +mψL(x)Tiσ2 = 0 . (E.3.10)

Let us again consider the conjugate momenta fields,

ΠψR
(x) =

δLM(ψ̄R, ψR)

δ∂0ψR

= − i

2
ψ̄R(x) ,

Πψ̄R
(x) =

δLM(ψ̄R, ψR)

δ∂0ψ̄R

= − i

2
ψR(x) , (E.3.11)
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from which we obtain the Majorana Hamilton density

HM(ψ̄R, ψR) = ∂0ψ̄R(x)Πψ̄R
(x)− ΠψR

(x)∂0ψR(x)− LM(ψ̄R, ψR)

=
1

2
∂iψ̄R(x)iσiψR(x)− 1

2
ψ̄R(x)iσi∂iψR(x)

+
m

2

(
ψR(x)Tiσ2ψR(x)− ψ̄R(x)iσ2ψ̄R(x)T

)
. (E.3.12)

When we replace Grassmann fields by fermion field operators according to
eq. (E.2.17), the Hamilton density HM(ψ̄R, ψR) indeed turns into the Ma-
jorana Hamilton operator of eq. (D.5.6) (or equivalently the massive Weyl
Hamilton operator of eq. (D.6.1)). This also involves partial integration
applied to the first term on the right-hand side.

E.4 Euclidean Fermionic Functional Integral

Until now we have treated fermion fields in Minkowski space-time. The
functional integral for free Dirac fermions in Minkowski space-time takes
the form of a Grassmann integral∫
Dψ̄Dψ exp

(
iS[ψ̄, ψ]

)
=

∫
Dψ̄Dψ exp

(
i

∫
dt d3x ψ̄ (iγµ∂µ −m)ψ

)
.

(E.4.1)
In the continuation, we will work in Euclidean space-time. For this purpose,
we again perform the Wick rotation x4 = it = ix0. The Dirac Lagrangian
then turns into

ψ̄(x) (iγµ∂µ −m)ψ(x) = −ψ̄(x)
(
γ4∂4 − iγi∂i +m

)
ψ(x)

= −ψ̄(x) (γµ∂µ +m)ψ(x) = −LD(ψ̄, ψ) .

(E.4.2)

Here LD(ψ̄, ψ) is the Euclidean Lagrangian (which we denote by the same
symbol as previously the Lagrangian in Minkowski space-time). As usual,
in Euclidean space-time we no longer distinguish between co- and contra-
variant vectors, so we only write lower space-time indices. We arranged it
such that until now all γ-matrices in Minkowski space-time occurred with
upper indices. From now on, all γ-matrices will be Euclidean and will appear
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with lower indices only. The Euclidean γ-matrices in the chiral basis take
the form

γi = −iγi =

(
0 iσi

−iσi 0

)
, γ4 = γ0 =

(
0 1I
1I 0

)
,

γ5 = γ1γ2γ3γ4 =

(
1I 0
0 −1I

)
= γ5 . (E.4.3)

Just like in Minkowski space-time, different γ-matrices anti-commute, but
the Euclidean γ-matrices are all Hermitian

{γµ, γν} = 2δµν , γ†µ = γµ . (E.4.4)

Here δµν is the metric of Euclidean space-time. Using dt d3x = −id3x dx4 =
−id4x, the Euclidean functional integral for free Dirac fermions takes the
form

Z =

∫
Dψ̄Dψ exp

(
−SD[ψ̄, ψ]

)
=

∫
Dψ̄Dψ exp

(
−
∫
d4x LD(ψ̄, ψ)

)
=

∫
Dψ̄Dψ exp

(
−
∫
d4x ψ̄ (γµ∂µ +m)ψ

)
. (E.4.5)

As it stands, the Grassmann measure Dψ̄Dψ of the functional integral
is a formal expression that needs to be properly regularized. This is a
non-trivial issue, in particular, when fermions are coupled to gauge fields.
In Chapter ?? we will use the lattice regularization to address some of
the related subtleties. On a Euclidean space-time lattice Λ the fermions
are described by Grassmann fields ψax and ψ̄ax, which are associated with
the lattice points x and have internal (e.g. Lorentz) indices a. The lattice
regularized free fermion measure is

Dψ̄Dψ =
∏
x∈Λ

∏
a

dψ̄axdψ
a
x . (E.4.6)

As we will discuss in the next section, and as we have already seen for
bosonic theories in Chapter ??, the Euclidean functional integral represents
the canonical partition function of quantum statistical mechanics,

Z = Tr exp
(
−βĤD

)
. (E.4.7)
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Here ĤD is the Hamilton operator of Dirac fermions from eq. (D.4.7). As we
have seen in Section ??, the inverse temperature β = 1/T manifests itself
as the extent of the Euclidean time dimension. Bosonic fields obey periodic
boundary conditions in Euclidean time. As we will see later in this chapter,
due to the peculiar features of Grassmann integration, in order to obtain
eq. (E.4.7), fermion fields must obey anti-periodic Euclidean-time boundary
conditions, i.e.

ψ(~x, x4 + β) = −ψ(~x, x4) , ψ̄(~x, x4 + β) = −ψ̄(~x, x4) . (E.4.8)

Applying the rules of Grassmann integration, one obtains

Z =

∫
Dψ̄Dψ exp

(
−
∫
d4x ψ̄(x) (γµ∂µ +m)ψ(x)

)
=

∫
Dψ̄Dψ exp

(
−ψ̄Dψ

)
= det(D) ,

ψ̄Dψ =

∫
d4x d4y ψ̄(x)D(x, y)ψ(y) ,

D(x, y) = δ(x− y) (γµ∂µ +m) . (E.4.9)

Here D is the Dirac operator. It plays the role of the matrix M in eq.
(E.1.16) with the matrix times vector multiplications being realized as in-
tegrations.

Let us also consider free Weyl and Majorana fermions. First, we intro-
duce Euclidean variants of the matrices σµ and σ̄µ, which again carry lower
Lorentz indices only

γµ =

(
0 σ̄µ
σµ 0

)
, σµ = (−i~σ, 1I) , σ̄µ = (i~σ, 1I) . (E.4.10)

The Euclidean Lagrangians of massless Weyl fermions then take the form

LR(ψ̄R, ψR) = ψ̄R(x)σµ∂µψR(x) , LL(ψ̄L, ψL) = ψ̄L(x)σ̄µ∂µψL(x) .
(E.4.11)

Introducing the Weyl operators

WR(x, y) = δ(x− y)σµ∂µ , WL(x, y) = δ(x− y)σ̄µ∂µ , (E.4.12)
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the Dirac operator takes the form

D =

(
mδ(x− y) WL

WR mδ(x− y)

)
. (E.4.13)

Similarly, the Euclidean Lagrangian for Majorana (or equivalently mas-
sive Weyl) fermions is given by

LM(ψ̄R, ψR) =
1

2
ψ̄R(x)σµ∂µψR(x)− 1

2
∂µψ̄R(x)σµψR(x)

+
m

2

(
ψR(x)Tiσ2ψR(x)− ψ̄R(x)iσ2ψ̄R(x)T

)
.(E.4.14)

In this case, the functional integral takes the form

Z =

∫
Dψ̄RDψR exp

(
−
∫
d4x LM(ψ̄R, ψR)

)
=

∫
Dψ̄RDψR exp

(
−1

2

(
ψT

R, ψ̄R

)
AR

(
ψR

ψ̄T
R

))
= Pf(AR) .

(E.4.15)

We identify the anti-symmetric Majorana operator as

AR =

(
miσ2δ(x− y) −WT

R

WR −miσ2δ(x− y)

)
, AT

R = −AR . (E.4.16)

One can apply the Majorana constraint to show that we can alternatively
write

Z =

∫
Dψ̄LDψL exp

(
−1

2

(
ψT

L , ψ̄L

)
AL

(
ψL

ψ̄T
L

))
= Pf(AL) ,

AL =

(
0 −iσ2

−iσ2 0

)
AR

(
0 iσ2

iσ2 0

)
=

(
−miσ21I WL

−WT
L miσ21I

)
.

(E.4.17)

E.5 Euclidean Lorentz Group

The 4-dimensional Euclidean space-time is invariant against translations
by 4-vectors as well as against SO(4) space-time rotations. Together this
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Transformation of different types of relativistic quantum fields
type of field representation of

Spin(4) = SU(2)L × SU(2)R

scalar (0, 0)
4-vector (1

2
, 1

2
)

left-handed Weyl fermion (1
2
, 0)

right-handed Weyl fermion (0, 1
2
)

Dirac fermion (1
2
, 0)⊕ (0, 1

2
)

constitutes the Euclidean version of Poincaré invariance. In the presence of
spinor fields, it is important to consider the universal covering group

Spin(4) = SU(2)L × SU(2)R (E.5.1)

of the Euclidean version of the Lorentz group. In a relativistic quantum
field theory, the fields must transform appropriately under space-time ro-
tations. Their transformation behavior can be characterized by specifying
the representation of Spin(4), or equivalently of SU(2)L and SU(2)R. Since
SU(2) representations are characterized by a “spin” S = 0, 1

2
, 1, . . ., the

transformation behavior of relativistic quantum fields under space-time ro-
tations is characterized by a pair (SL, SR). The transformation behavior of
various types of fields, regarding the representation of SU(2)L × SU(2)R, is
summarized in Table E.5.

The six generators of the SO(4) algebra4 can be expressed as commuta-
tors of Euclidean γ-matrices

σµν =
1

2i
[γµ, γν ] ⇒ σi4 =

(
σi 0
0 σi

)
, σij = εijk

(
σk 0
0 σk

)
.

(E.5.2)
The generators of SU(2)L × SU(2)R take the form

Ri =
1

2

(
σi 0
0 0

)
, Li =

1

2

(
0 0
0 σi

)
. (E.5.3)

From them we can construct the generators

Ji = Ri + Li =
1

2
εijkσjk , Ki = Ri − Li =

1

2
σi4 , (E.5.4)

4A rigorous notation distinguishes between groups SO(N) and SU(N) from the cor-
responding algebras so(N) and su(N). For simplicity we suppress this distinction here,
but we use it in Appendix ??, which is specifically devoted to Lie groups and algebras.
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where the Ji generate the vector subgroup SU(2)L=R of spatial rotations
(the universal covering group of SO(3)), and the Ki generate the Euclidean
boosts.

Under a Euclidean Lorentz transformation Λ ∈ SO(4) a space-time point
x rotates into x′ = Λx, such that x = Λ−1x′, i.e.

xν = Λ−1
νρ x

′
ρ = ΛT

νρx
′
ρ = Λρνx

′
ρ ⇒ ∂′µxν =

∂xν
∂x′µ

= Λρνδµρ = Λµν .

(E.5.5)
Here we have used the fact that Λ is an orthogonal rotation matrix, i.e.
Λ−1 = ΛT.

Left- and right-handed Weyl spinor fields transform as

ψ′R(x′) = ΛRψR(Λ−1x′) , ψ̄′R(x′) = ψ̄R(Λ−1x′)Λ†L , ΛR ∈ SU(2)R ,

ψ′L(x′) = ΛLψL(Λ−1x′) , ψ̄′L(x′) = ψ̄L(Λ−1x′)Λ†R , ΛL ∈ SU(2)L .

(E.5.6)

The transformation Λ in the 4-dimensional vector representation of Spin(4)
is related to the transformations ΛR and ΛL in the two 2-dimensional spinor
representations by

Λµν =
1

2
ReTr

(
Λ†LσµΛRσ̄ν

)
⇒

Λ†LσµΛR = Λµνσν = σνΛ
−1
νµ , Λ†Rσ̄µΛL = Λµν σ̄ν = σ̄νΛ

−1
νµ .(E.5.7)

For spatial rotations in the vector subgroup SU(2)L=R one has ΛR = ΛL =
ΛV and one obtains

Λij =
1

2
ReTr

(
Λ†VσiΛVσj

)
.
= Oij , O ∈ SO(3) ,

Λi4 = 0 , Λ44 = 1 , Λ†VσiΛV = Oijσj . (E.5.8)

We will come back to eqs. (E.5.7) and (E.5.8) in Problem ??.

Applying the chain rule and using eq. (E.5.5), we obtain

∂′µψ
′
R(x′) = ΛR∂

′
µψR(Λ−1x′) = ΛR

∂xν
∂x′µ

∂νψR(x) = ΛRΛµν∂νψR(x) ,

∂′µψ
′
L(x′) = ΛL∂

′
µψL(Λ−1x′) = ΛL

∂xν
∂x′µ

∂νψL(x) = ΛLΛµν∂νψL(x) .

(E.5.9)
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Hence, the Lagrangians of massless Weyl fermions transform as scalars

ψ̄′R(x′)σµ∂
′
µψ
′
R(x′) = ψ̄R(x)Λ†LσµΛRΛµν∂νψR(x) = ψ̄R(x)σρΛ

−1
ρµΛµν∂νψR(x)

= ψ̄R(x)σρδρν∂νψR(x) = ψ̄R(x)σν∂νψR(x) ,

ψ̄′L(x′)σ̄µ∂
′
µψ
′
L(x′) = ψ̄L(x)Λ†Rσ̄µΛLΛµν∂νψL(x) = ψ̄L(x)σ̄ρΛ

−1
ρµΛµν∂νψL(x)

= ψ̄L(x)σ̄ρδρν∂νψL(x) = ψ̄L(x)σ̄ν∂νψL(x) . (E.5.10)

Under Euclidean Lorentz transformations a Dirac spinor transforms as

ψ′(x′) = ΛDψ(Λ−1x′) , ψ̄′(x′) = ψ̄(Λ−1x′)Λ†D , ΛD =

(
ΛR 0
0 ΛL

)
.

(E.5.11)
Eq. (E.5.7) yields(

Λ†R 0

0 Λ†L

)(
0 σ̄µ
σµ 0

)(
ΛR 0
0 ΛL

)
= Λµν

(
0 σ̄ν
σν 0

)
⇒

Λ†DγµΛD = Λµνγν , (E.5.12)

which implies that ψ̄γµ∂µψ is a scalar under Euclidean space-time rotations.
The Dirac mass term is a scalar as well, because

ψ̄′(x′)ψ′(x′) = ψ̄(Λ−1x′)Λ†DΛDψ(Λ−1x′) = ψ̄(x)ψ(x) . (E.5.13)

The fermion current jµ(x) = ψ̄(x)γµψ(x), on the other hand, transforms as
a 4-vector field,

ψ̄′(x′)γµψ
′(x′) = ψ̄(Λ−1x′)Λ†DγµΛDψ(Λ−1x′) = Λµνψ̄(x)γνψ(x) , (E.5.14)

while the anti-symmetric tensor field ψ̄(x)σµνψ(x) transforms as

ψ̄′(x′)σµνψ
′(x′) = ψ̄(Λ−1x′)Λ†D

1

2i
[γµ, γν ]ΛDψ(Λ−1x′)

= ψ̄(x)
1

2i
[Λ†DγµΛD,Λ

†
DγνΛD]ψ(Λ−1x′)

= ΛµρΛνσψ̄(x)
1

2i
[γρ, γσ]ψ(x)

= ΛµρΛνσψ̄(x)σρσψ(x) . (E.5.15)
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It is important to note that the Majorana constraint eq. (E.3.8) is Lorentz
covariant, i.e.

ψ′L(x′) = ΛLψL(Λ−1x′) = −ΛLiσ2ψ̄R(Λ−1x′)T = −ΛLiσ2ΛT
Lψ̄
′
R(x′)T

= −iσ2ψ̄′R(x′)T ,

ψ̄′L(x′) = ψ̄L(Λ−1x′)Λ†R = ψR(Λ−1x′)Tiσ2Λ†R = ψ′R(x′)TΛ∗Riσ2Λ†R
= ψ′R(x′)Tiσ2 . (E.5.16)

Here we have used the property that any matrix U ∈ SU(2) obeys U iσ2UT =
UU †iσ2 = iσ2. This relation is also used to show that the Majorana mass
terms transform as scalars under Euclidean space-time rotations,

ψ′R(x′)Tiσ2ψ′R(x′) = ψR(Λ−1x′)TΛT
Riσ2ΛRψR(Λ−1x′) = ψR(x)Tiσ2ψR(x) ,

ψ̄′R(x′)iσ2ψ̄′R(x′)T = ψ̄R(Λ−1x′)Λ†Liσ2Λ∗Lψ̄R(Λ−1x′)T = ψ̄R(x)iσ2ψ̄R(x)T ,

ψ′L(x′)Tiσ2ψ′L(x′) = ψL(Λ−1x′)TΛT
L iσ2ΛLψL(Λ−1x′) = ψL(x)Tiσ2ψL(x) ,

ψ̄′L(x′)iσ2ψ̄′L(x′)T = ψ̄L(Λ−1x′)Λ†Riσ2Λ∗Rψ̄L(Λ−1x′)T = ψ̄L(x)iσ2ψ̄L(x)T .

(E.5.17)

E.6 Charge Conjugation, Parity, and Time-

Reversal

for Weyl Fermions

As we have seen in Section D.3, charge conjugation and parity are important
discrete symmetries that exchange left- and right-handed Weyl fermions.

Let us first consider charge conjugation, which exchanges particles and
anti-particles. Translating the transformation rules of eq. (D.3.9) from
the Hamiltonian formulation into the Euclidean functional integral, on the
Grassmann fields charge conjugation acts as

CψR(x) = iσ2ψ̄L(x)T , Cψ̄R(x) = −ψL(x)Tiσ2 ,
CψL(x) = −iσ2ψ̄R(x)T , Cψ̄L(x) = ψR(x)Tiσ2 . (E.6.1)

We see once more that charge conjugation exchanges left- and right-handed
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fermion fields. We now apply charge conjugation to the action of a right-
handed Weyl fermion field

SR[Cψ̄R,
CψR] =

∫
d4x Cψ̄R(x) σµ∂µ

CψR(x)

=

∫
d4x ψL(x)T(−iσ2)σµ∂µiσ2ψ̄L(x)T

=

∫
d4x ψL(x)Tσ̄T

µ∂µψ̄L(x)T

=

∫
d4x ψ̄L(x)σ̄µ∂µψL(x) = SL[ψ̄L, ψL] .

(E.6.2)

Here we have used the anti-commutation rules of the Grassmann variables,
and we have performed an integration by parts. We see that charge conju-
gation exchanges the actions of left- and right-handed Weyl fermions. The
individual Weyl fermion actions are not invariant against C, but their sum
(which enters the Dirac Lagrangian) is.

In Euclidean space-time, parity acts as a spatial inversion, which replaces
x = (~x, x4) with (−~x, x4). Translating the parity transformation eq. (D.3.6)
from the Hamiltonian formulation to the Euclidean functional integral, for
the Grassmann fields one obtains

PψR(x) = ψL(−~x, x4) , Pψ̄R(x) = ψ̄L(−~x, x4) ,
PψL(x) = ψR(−~x, x4) , Pψ̄L(x) = ψ̄R(−~x, x4) . (E.6.3)

The Lagrangian depends on fields which are functions of x. Since under
parity x = (~x, x4) turns into (−~x, x4), the Lagrangian itself can not be P-
invariant. What may be invariant, however, is the action. Let us now apply
the parity transformation to the action of a massless right-handed Weyl
fermion field

SR[Pψ̄R,
PψR] =

∫
d4x Pψ̄R(x) σµ∂µ

PψR(x)

=

∫
d4x ψ̄L(−~x, x4)(−iσi∂i + ∂4)ψL(−~x, x4)

=

∫
d4x ψ̄L(~x, x4)(iσi∂i + ∂4)ψL(~x, x4)

=

∫
d4x ψ̄L(x)σ̄µ∂µψL(x) = SL[ψ̄L, ψL] . (E.6.4)
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(σ̄µ in Euclidean space is defined in eq. (E.4.10)). Here we have changed
the coordinates from −~x to ~x. As we see, under parity the action of a
right-handed Weyl fermion again turns into the one of a left-handed Weyl
fermion. In particular, each individual Weyl fermion action is not invariant
against P, but their sum is.

As for the combination of charge conjugation and parity, CP, we obtain

CPψR(x) = CψL(−~x, x4) = −iσ2ψ̄R(−~x, x4)T ,
CPψ̄R(x) = Cψ̄L(−~x, x4) = ψR(−~x, x4)Tiσ2 ,
CPψL(x) = CψR(−~x, x4) = iσ2ψ̄L(−~x, x4)T ,
CPψ̄L(x) = Cψ̄R(−~x, x4) = −ψL(−~x, x4)Tiσ2 . (E.6.5)

Since both C and P exchange the actions of left- and right-handed fermions,
CP leaves the individual actions invariant.

Let us consider the symmetries of the Grassmann Majorana constraint
of eq.(E.3.8). First, we perform the chiral U(1)L × U(1)R transformation

ψL(x)′ = exp(iχL)ψL(x) , ψ̄L(x)′ = ψ̄L(x) exp(−iχL) ,

ψR(x)′ = exp(iχR)ψR(x) , ψ̄R(x)′ = ψ̄R(x) exp(−iχR) , (E.6.6)

which implies

−iσ2ψ̄R(x)′
T

= − exp(−iχR)iσ2ψ̄R(x)T = exp(−iχR)ψL(x)

= exp(−iχR − iχL)ψL(x) ,

ψR(x)′
T
iσ2 = ψR(x)Tiσ2 exp(iχR) = ψ̄L(x) exp(iχR)

= ψ̄L(x)′ exp(iχR + iχL) . (E.6.7)

As a result, the Grassmann Majorana condition is invariant only against the
subgroup U(1)L=R∗ of U(1)L×U(1)R, and hence only against the ZZ(2)F sub-
group of U(1)F = U(1)L=R that is characterized by exp(iχL) = exp(iχR) =
exp(−iχR) = ±1. The Grassmann Majorana condition is not invariant
against the parity P. However, it is again invariant against the combination
P’ of P with the phase factor i,

P ′ψR(x) = iψL(−~x, x4) , P ′ψ̄R(x) = −iψ̄L(−~x, x4) ,
P ′ψL(x) = iψR(−~x, x4) , P ′ψ̄L(x) = −iψ̄R(−~x, x4) . (E.6.8)
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because then

−iσ2 P ′ψ̄R(x)T = −σ2ψ̄L(−~x, x4)T = −σ2(iσ2)T ψR(−~x, x4) = iψR(−~x, x4)

= P ′ψL(x) ,
P ′ψR(x)Tiσ2 = −ψL(−~x, x4)Tσ2 = −ψ̄R(−~x, x4)T(−iσ2)Tσ2

= −iψ̄R(−~x, x4)T = P ′ψ̄L(x) . (E.6.9)

Let us also consider the CP transformation of the Weyl fermion mass
term

CPψR(x)Tiσ2 CPψR(x)− CPψ̄R(x)iσ2 CPψ̄R(x)T =

ψ̄R(−~x, x4)iσ2ψ̄R(−~x, x4)T − ψR(−~x, x4)Tiσ2ψR(−~x, x4) .(E.6.10)

Interestingly, its contribution to the action is odd under CP.

Next we consider Euclidean time-reversal which acts as

TψR(x) = iσ2ψ̄R(~x,−x4)T , Tψ̄R(x) = ψR(~x,−x4)Tiσ2 ,
TψL(x) = iσ2ψ̄L(~x,−x4)T , Tψ̄L(x) = ψL(~x,−x4)Tiσ2 .(E.6.11)

Here the superscript T on the left refers to time-reversal and (as usual) the
superscript T on the right denotes transpose.

The action of a right-handed Weyl fermion turns out to be T invariant

SR[Tψ̄R,
TψR] =

∫
d4x Tψ̄R(x) σµ∂µ

TψL(x)

=

∫
d4x ψR(~x,−x4)Tiσ2(−iσi∂i + ∂4)iσ2ψ̄R(~x,−x4)T

=

∫
d4x ψR(x)T(−iσT

i ∂i + ∂4)ψ̄R(x)T

=

∫
d4x ψ̄R(x)(−iσi∂i + ∂4)ψR(x)

=

∫
d4x ψ̄R(x)σµ∂µψR(x) = SR[ψ̄R, ψR] . (E.6.12)

One can show that the Weyl fermion mass term is odd under T. Since
it is odd under CP as well, it is CPT invariant. One can also show that is
invariant under CP’.
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As one would expect, parity, charge conjugation, and time-reversal square
to the identity, i.e.

P2 = C2 = T2 = 1 , (E.6.13)

while they do not all commute with one another. In particular, in the chiral
basis one obtains

P C = −C P , C T = −T C , T P = P T . (E.6.14)

E.7 C, P, and T for Dirac Fermions

The properties of Dirac fermions under the discrete symmetries C, P, and T
follow from the corresponding properties of the underlying left- and right-
handed Weyl fermions,

Cψ(x) =

(
CψR(x)
CψL(x)

)
=

(
iσ2ψ̄L(x)T

−iσ2ψ̄R(x)T

)
= Cψ̄(x)T ,

Cψ̄(x) =
(

Cψ̄L(x), Cψ̄R(x)
)

=
(
ψR(x)Tiσ2,−ψL(x)Tiσ2

)
= −ψ(x)TC−1 ,

Pψ(x) =

(
PψR(x)
PψL(x)

)
=

(
ψL(−~x, x4)
ψR(−~x, x4)

)
= Pψ(−~x, x4) ,

Pψ̄(x) =
(

Pψ̄L(x), Pψ̄R(x)
)

=
(
ψ̄R(−~x, x4), ψ̄L(−~x, x4)

)
= ψ̄(−~x, x4)P−1 ,

Tψ(x) =

(
TψR(x)
TψL(x)

)
=

(
iσ2ψ̄R(~x,−x4)T

iσ2ψ̄L(~x,−x4)T

)
= T ψ̄(~x,−x4)T ,

Tψ̄(x) =
(

Cψ̄L(x), Cψ̄R(x)
)

=
(
ψL(~x,−x4)Tiσ2, ψR(~x,−x4)Tiσ2

)
= −ψ(~x,−x4)TT−1 . (E.7.1)

To be explicit, in the chiral basis, the matrices C, P , and T take the form

C = −C−1 =

(
iσ2 0
0 −iσ2

)
= σ3 ⊗ iσ2 = γ2γ4 ,

C−1γµC = −γTµ ,

P = P−1 =

(
0 1I
1I 0

)
= σ1 ⊗ 1I = γ4 ,

P−1γiP = −γi , P−1γ4P = γ4 ,

T = −T−1 =

(
0 iσ2

iσ2 0

)
= σ1 ⊗ iσ2 = γ5γ2 ,

T−1γiT = −γTi , T−1γ4T = γT4 . (E.7.2)
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E.8 CPT Invariance in Relativistic Quantum

Field Theory

As was first shown by Gerhart Lüders, John Stewart Bell, Wolfgang Pauli,
and Res Jost, the combination CPT is a symmetry of any relativistic local
quantum field theory; this is the CPT theorem. 5 The combined transfor-
mation CPT takes the form

CPTψR(x) = iσ2 CPψ̄R(~x,−x4)T = iσ2(iσ2)TψR(−~x,−x4) = ψR(−x) ,
CPTψ̄R(x) = CPψR(~x,−x4)Tiσ2 = ψ̄R(−~x,−x4)(−iσ2)Tiσ2 = −ψ̄R(−x) ,
CPTψL(x) = iσ2 CPψ̄L(~x,−x4)T = −iσ2(iσ2)TψL(−~x,−x4) = −ψL(−x) ,
CPTψ̄L(x) = CPψL(~x,−x4)Tiσ2 = ψ̄L(−~x,−x4)(iσ2)Tiσ2 = ψ̄L(−x) .

(E.8.1)

For a Dirac fermion field this implies

CPTψ(x) =

(
CPTψR(x)
CPTψL(x)

)
=

(
ψR(−x)
−ψL(−x)

)
= γ5ψ(−x) ,

CPTψ̄(x) =
(

CPTψ̄L(x), CPTψ̄R(x)
)

=
(
ψ̄L(−x),−ψ̄R(−x)

)
= ψ̄(−x)γ5 .

(E.8.2)

While we will not discuss the proof of the CPT theorem,6 we would like
to explain why the CPT symmetry is closely related to Lorentz invariance.
In four Euclidean space-time dimensions, the SO(4) rotation Λµν = −δµν
turns x into −x. If we choose the SU(2)L × SU(2)R transformation ΛR = 1I
and ΛL = −1I, this induces the Euclidean Lorentz transformation

Λµν =
1

2
ReTr

(
Λ†LσµΛRσ̄ν

)
= −1

2
ReTr (σµσ̄ν) = −δµν ,

ΛD =

(
ΛR 0
0 ΛL

)
= γ5 . (E.8.3)

5While the CPT theorem applies to all relativistic local quantum field theories, it
does not always apply beyond this framework, e.g. in string theory which violates strict
locality.

6For the interested reader, we particularly recommend the proof by [?], who considers
an arbitrary local and covariant action, and demonstrates by means of analytic contin-
uation — in the framework of a complex Lorentz group — that any n-point function is
CPT invariant.
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This implies that for a relativistic fermion field (be it Weyl, Dirac, or Majo-
rana), the combined transformation CPT is indistinguishable from a specific
Euclidean Lorentz transformation. This already shows that any relativistic
quantum field theory with fermion fields only is automatically CPT invari-
ant.

For complex scalar fields Φ(x), Abelian gauge fields iAµ(x), and non-
Abelian gauge fields Gµ(x) CPT acts as

CPTΦ(x) = Φ(−x)∗,CPT (iAµ(x)) = − (iAµ(−x))∗ , CPTGµ(x) = −Gµ(−x)∗ .
(E.8.4)

Hence, for these bosonic fields CPT is equivalent to the Euclidean Lorentz
transformation Λµν = −δµν combined with complex conjugation. The CPT
theorem for theories of both bosonic and fermionic fields thus needs to
show that complex conjugation of the bosonic fields is a symmetry of the
Euclidean action.

E.9 Connections between Spin and Statis-

tics

In quantum mechanics, the Pauli principle is imposed by hand. In quantum
field theory, on the other hand, Fermi statistics is naturally incorporated by
the anti-commutativity of Grassmann fields. The spin-statistics theorem,
which was first proved by Markus Fierz, states that fields with half-odd-
integer spin obey Fermi-Dirac statistics, while fields with integer spin obey
Bose-Einstein statistics The spin-statistics theorem follows from relativistic
quantum field theory where the Lagrangian transforms as a Lorentz scalar.
It also requires the existence of a stable vacuum state.

Let us investigate the statistics of a generic field φR(x) that transforms
as (0, 1

2
) under the Euclidean Lorentz group SU(2)L × SU(2)R = Spin(4),

i.e.

φ′R(x′) = ΛRφR(Λ−1x′) . (E.9.1)

At this point, it is undecided whether φR(x) is bosonic or fermionic. We now
want to construct a Lagrangian systematically, by considering terms in the
order of their dimension. Obviously, a term that is linear in φR(x) cannot
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be Lorentz invariant. What about quadratic terms without derivatives, i.e.
mass terms? Two factors of φR(x) transform as(

0,
1

2

)
×
(

0,
1

2

)
= (0, 0) + (0, 1) . (E.9.2)

As we know, two spins 1
2

couple to a singlet in an anti-symmetric manner,
i.e. the singlet combination of two right-handed doublets is

εabφ
a
R(x)φbR(x) = φR(x)Tiσ2φR(x) =

(
φ1

R(x), φ2
R(x)

)( 0 1
−1 0

)(
φ1

R(x)
φ2

R(x)

)
.

(E.9.3)
This is one of the two contributions to a Majorana mass term. If φR(x)
would be a commuting bosonic field, the Majorana mass term would simply
vanish due to the anti-symmetry of εab. We conclude that massive Weyl
fields must necessarily be fermionic.

A derivative ∂µ is a 4-vector that transforms as (1
2
, 1

2
). Hence, in order

to incorporate terms with a single derivative in the Lagrangian, we must
also introduce a field that transforms as (1

2
, 0). We thus introduce a generic

field φ̄R(x) that transforms as

φ̄′R(x′) = φ̄R(Λ−1x′)Λ†L . (E.9.4)

First of all, φ̄R(x) has its own Majorana mass term that can be arranged to
be the Hermitian conjugate of the other mass term in eq. (E.9.3). Hence, the
existence of φ̄R(x) already follows from the Hermiticity of the Hamiltonian.
Bilinears that contain one factor of φ̄R(x) and one factor of φR(x) transform
as (1

2
, 0) × (0, 1

2
) = (1

2
, 1

2
). They can thus be made Lorentz invariant when

they are combined with a derivative. We know that ΛLσµΛ†R = σνΛ
−1
νµ and

that ∂′µ = Λµν∂ν . We can hence construct a Euclidean Lorentz scalar as
φ̄R(x)σµ∂µφR(x). Such a Lagrangian describes massless right-handed Weyl
fields, and we have already seen explicitly that such a theory is consistent
with fermionic fields.

What if φR(x) and φ̄R(x) were bosonic fields? Returning briefly to
Minkowski space-time, the Lagrangian would take the form L(φ̄R, φR) =
φ̄R(x)iσµ∂µφR(x). The corresponding (classical) Hamilton density would
then result from the canonically conjugate momenta

ΠφR
(~x) =

δL(φ̄R, φR)

δ∂0φR(~x)
= φ̄R(~x) , Πφ̄R

(~x) =
δL(φ̄R, φR)

δ∂0φ̄R(~x)
= 0 ⇒
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H(φ̄R, φR) = ∂0φR(~x)ΠφR
(~x) + ∂0φ̄R(~x)Πφ̄R

(~x)− L(φ̄R, φR)

= φ̄R(~x)
(
−i~σ · ~∇

)
φR(~x) ⇒

Ĥ =

∫
d3x ˆ̄φR(~x)

(
−i~σ · ~∇

)
φ̂R(~x) . (E.9.5)

Upon canonical quantization, i.e. by promoting the classical fields to field
operators, and by postulating bosonic commutation relations between the
fields and their canonically conjugate momenta, one arrives at the Hamilton
operator Ĥ. While at first glance there may seem nothing wrong with it, it
is easy to see that, in contrast to the fermionic Weyl Hamiltonian, it does
not have a stable vacuum state. This is because infinite numbers of bosons
can occupy the negative energy states.7 Hence, invoking vacuum stability,
we conclude that massless Weyl fields also require fermionic statistics.

While the above considerations do not constitute a proof of the spin
statistics theorem, they show that Lorentz invariance combined with vac-
uum stability establishes intimate connections between the spin and the
statistics of quantum fields.

E.10 Euclidean Time Transfer Matrix

We have already shown that, upon canonical quantization and by imposing
anti-commutation relations, the fermionic functional integral in Minkowski
space-time leads back to the Hamiltonian formulation. In this section, we
will demonstrate explicitly that the partition function that results from the
Euclidean fermionic functional integral is the same as the one that results
from the Hamiltonian formulation.

As they stand, functional integrals are formal expressions that require
regularization. As we will discuss in Chapter ??, the regularization of Weyl
fermions is a subtle issue because they may be afflicted by anomalies. These
amount to explicit symmetry breaking, e.g. of the chiral U(1)L × U(1)R

symmetry, due to quantum effects, in particular in the presence of gauge
fields. The subtleties that arise in the regularization of Weyl fermions are
most apparent in the lattice regularization, where they manifest themselves

7For the Dirac field, this property is discussed in Section 3.5 of [?].
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in the so-called fermion doubling problem, but they also arise in dimensional
regularization.

We do not yet address these subtleties and concentrate entirely on work-
ing out the Euclidean functional integral for a single momentum mode of
a left-handed Weyl neutrino. The corresponding calculation in the Hamil-
tonian formulation, along the lines of Chapter D, leads to a product of
single-mode partition functions

Z = Tr exp
(
− β

(
ĤL − µF̂L

))
=
∏
~p

Z(~p) . (E.10.1)

The Euclidean functional integral of a left-handed Weyl fermion field at
inverse temperature β, coupled to the chemical potential µ (not be confused
with a space-time index), takes the form

Z =

∫
Dψ̄LDψL exp

(
−SL[ψ̄L, ψL]

)
,

SL[ψ̄L, ψL] =

∫ β

0

dx4

∫
d3x

(
ψ̄L(x)σ̄µ∂µψL(x)− µψ̄L(x)ψL(x)

)
.

(E.10.2)

As we already mentioned in eq. (E.4.8), and as we will soon understand, the
Grassmann fields must obey anti-periodic boundary conditions in Euclidean
time, i.e. ψL(~x, x4 + β) = −ψL(~x, x4), ψ̄L(~x, x4 + β) = −ψ̄L(~x, x4). As
usual, we also impose periodic spatial boundary conditions over a box of
size L× L× L. Introducing the spatial Fourier transform

ψL(~p, x4) =

∫
d3x ψL(~x, x4) exp(−i~p · ~x) ,

ψ̄L(~p, x4) =

∫
d3x ψ̄L(~x, x4) exp(i~p · ~x) , (E.10.3)

and introducing the short-hand notation ψL(~p, x4) = ψ(x4), ψ̄L(~p, x4) =
ψ̄(x4), the partition function for a single 3-momentum mode then takes the
form of a quantum mechanical fermionic path integral

Z(~p) = Tr exp
(
−β
(
Ĥ − µF̂

))
=

∫
Dψ̄Dψ exp

(
−S[ψ̄, ψ]

)
,

S[ψ̄, ψ] =

∫ β

0

dx4 ψ̄(x4) (∂4 + ~σ · ~p− µ)ψ(x4) . (E.10.4)
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Upon canonical quantization and by imposing the anti-commutation rela-
tions

{ψ̂a, ψ̂b†} = δab , {ψ̂a, ψ̂b} = {ψ̂a†, ψ̂b†} = 0 , a, b ∈ {1, 2} . (E.10.5)

this yields the single-mode Hamilton operator Ĥ = −ψ̂† ~σ · ~p ψ̂ as well as
the fermion number operator F̂ = ψ̂†ψ̂. The corresponding Fock space can
be spanned by the four states |0〉, |1〉, |2〉, and |12〉, such that

ψ̂1|0〉 = ψ̂2|0〉 = 0 , ψ̂1†|0〉 = |1〉 , ψ̂2†|0〉 = |2〉 , ψ̂2†ψ̂1†|0〉 = |12〉 .
(E.10.6)

It should be noted that |0〉 is not the physical vacuum state of lowest energy,
but just the empty Fock state that serves here as a reference state. As a
consequence, the physical vacuum energy is not subtracted from Ĥ. In
addition, the fermion number F̂ is also measured with respect to the empty
Fock state |0〉.

Next we introduce coherent Grassmann states |ψ〉 which, just like the fa-
miliar bosonic coherent states, are eigenstates of the annihilation operators
ψ̂a with Grassmann number eigenvalues ψa

ψ̂a|ψ〉 = ψa|ψ〉 , |ψ〉 = |0〉 − ψ1|1〉 − ψ2|2〉+ ψ1ψ2|12〉 . (E.10.7)

The Grassmann numbers are treated as not only anti-commuting among
each other but also with the fermion creation and annihilation operators,
such that indeed

ψ̂1|ψ〉 = ψ̂1|0〉+ψ1ψ̂1|1〉+ψ2ψ̂1|2〉+ψ1ψ2ψ̂1|12〉 = ψ1|0〉−ψ1ψ2|2〉 = ψ1|ψ〉 .
(E.10.8)

Here we have used ψ̂1|1〉 = |0〉, ψ̂1|2〉 = 0, and ψ̂1|12〉 = ψ̂1ψ̂2†ψ̂1†|0〉 =
−ψ̂2†|0〉 = −|2〉. Similarly, one can confirm that |ψ〉 is an eigenstate of ψ̂2.
In addition (unlike for bosonic creation operators), we construct coherent
Grassmann eigenstates of the creation operators

〈ψ̄|ψ̂a† = 〈ψ̄|ψ̄a , 〈ψ̄| = 〈0| − 〈1|ψ̄1 − 〈2|ψ̄2 + 〈12|ψ̄2ψ̄1 . (E.10.9)

One can show that |ψ〉 is an eigenstate of ψ̂2, and that the states of eq.
(E.10.9) are indeed eigenstates of ψ̂a†.

The scalar product of two coherent Grassmann states is given by

〈ψ̄|ψ〉 = 〈0|0〉+ 〈1|1〉ψ̄1ψ1 + 〈2|2〉ψ̄2ψ2 + 〈12|12〉ψ̄2ψ̄1ψ1ψ2

= exp
(
ψ̄1ψ1 + ψ̄2ψ2

)
. (E.10.10)
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Similarly, the completeness relation takes the form∫
dψ̄1dψ1dψ̄2dψ2 |ψ〉〈ψ̄| exp

(
−ψ̄1ψ1 − ψ̄2ψ2

)
=

|0〉〈0|+ |1〉〈1|+ |2〉〈2|+ |12〉〈12| = 1I . (E.10.11)

The trace of an operator Â is obtained as

TrÂ =

∫
dψ̄1dψ1dψ̄2dψ2 exp

(
−ψ̄1ψ1 − ψ̄2ψ2

)
〈ψ̄|Â| − ψ〉 . (E.10.12)

The negative sign in |−ψ〉 is the reason for the anti-periodic boundary con-
ditions of Grassmann fields in Euclidean time. The state | −ψ〉 is obtained
from |ψ〉 by changing the sign of the Grassmann number coefficients in eq.
(E.10.7), i.e. | − ψ〉 = |0〉+ ψ1|1〉+ ψ2|2〉+ ψ1ψ2|12〉.

Finally, we consider a Hermitian matrix Λ (in this case a 2× 2 matrix)
which defines a particular operator Â that has the following matrix elements
between Grassmann coherent states

Â = exp
(
ψ̂†Λψ†

)
⇒ 〈ψ̄|Â|ψ〉 = exp

(
ψ̄eΛψ

)
. (E.10.13)

One can convince oneself of the orthogonality, completeness, and trace
relations, as well as of the formula for the operator Â, i.e. of eqs. (E.10.10)
– (E.10.13). Corresponding relations are valid in larger Grassmann algebras
as well.

As it stands, in the continuum the fermionic path integral of eq. (E.10.4)
is a rather formal expression that needs to be properly regularized. In
particular, a priori it is not clear how to interpret the derivative ∂4ψ(x4).
Since a Grassmann number does not even take any particular values, one
will not be able to decide whether or not it is a differentiable function of x4.

On the other hand, we know that even in a bosonic quantum mechanical
path integral, the paths that contribute significantly are not differentiable
either. As we already did for bosonic path integrals in Section ??, we again
introduce a Euclidean time lattice with spacing a and extentNa = β in order
to rigorously define the fermionic path integral. The lattice regularization
is extremely powerful, particularly in quantum field theory. Compared to
perturbative schemes, such as dimensional regularization, it has the advan-
tage that it regularizes the entire theory at once (i.e. beyond perturbation
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theory), rather than regularizing individual Feynman diagrams in a pertur-
bative expansion. The lattice regularization is applicable both beyond and
within perturbation theory. However, for purely perturbative calculations
other regularizations are easier to handle. For our present purpose, namely
to give the formal expression of eq. (E.10.4) a well-defined mathematical
meaning, the lattice regularization is ideally suited.

First of all, on the lattice the integration measure is regularized as

Dψ̄Dψ =
N∏
i=1

∏
a=1,2

dψ̄ai dψ
a
i , (E.10.14)

where ψ̄1
i , ψ

1
i , ψ̄

2
i , ψ

2
i form a set of four independent Grassmann numbers as-

sociated with each point x4 = ia (with i ∈ {1, 2, . . . , N}) on the Euclidean-
time lattice. The action is regularized as

S[ψ̄, ψ] = a
∑
i

(
1

2a

[
ψ̄i (ψi+1 − ψi)−

(
ψ̄i+1 − ψ̄i

)
ψi+1

]
− ψ̄i (~σ · ~p+ µ)ψi

)
.

(E.10.15)
As in Chapter ??, we have again used a manifestly time-reversal invariant
regularization of the derivative term. Here, however, this relation should
not be viewed as a finite-difference approximation of the continuum action
of eq. (E.10.4), which is, in fact, just a formal expression; a priori it is
mathematically ill-defined. The lattice regularization instead provides a
proper definition of this expression.

We will now construct a Euclidean transfer matrix T̂ that approaches
exp(−a(Ĥ − µF̂ )) in the Euclidean time continuum limit a→ 0, i.e.

Z(~p) =

∫
Dψ̄Dψ exp

(
−S[ψ̄, ψ]

)
= Tr T̂N , − lim

a→0

1

a
log(T̂ ) = Ĥ − µF̂ .

(E.10.16)
Using eq. (E.10.12), the trace is expressed as

Tr T̂N =

∫
dψ̄1

Ndψ
1
1dψ̄

2
Ndψ

2
1 exp

(
−ψ̄Nψ1

)
〈ψ̄N |T̂N | − ψ1〉 . (E.10.17)

We associate one factor of T̂ with each instant of discrete Euclidean time
i. We then insert complete sets of coherent Grassmann states between
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adjacent factors of T̂ associated with the discrete times i and i + 1, for
i ∈ {1, 2, . . . , N − 1},∫

dψ̄1
i dψ

1
i+1dψ̄

2
i dψ

2
i+1|ψi+1〉〈ψ̄i| exp

(
−ψ̄iψi+1

)
= 1I . (E.10.18)

The corresponding Grassmann integrations provide the functional integral
measure in eq. (E.10.16). The factor exp(−ψ̄iψi+1) corresponds to those
discrete derivate contributions to the action of eq. (E.10.15) that couple ψ̄i
to ψi+1. The other contributions to the action are associated with single
instants of time and give rise to the transfer matrix elements

〈ψ̄i|T̂ |ψi〉 = exp
(
ψ̄iψi + aψ̄i (~σ · ~p+ µ)ψi

)
. (E.10.19)

This expression has the form of eq. (E.10.13) with eΛ = 1I + a(~σ · ~p + µ),
such that the transfer matrix is

T̂ = exp
(
ψ̂†Λψ̂

)
= exp

(
ψ̂† log (1I + a (~σ · ~p+ µ)) ψ̂

)
⇒

lim
a→0

T̂ = exp
(
aψ̂† (~σ · ~p+ µ) ψ̂

)
= exp

(
−a
(
Ĥ − µF̂

))
.(E.10.20)

In the continuum limit it is indeed consistent with the correct Hamilton
operator. Hence, we have convinced ourselves that the Hamiltonian for-
mulation and the Euclidean functional integral lead to the same physical
results.

The derivation presented here is inspired by Martin Lüscher’s construc-
tion of the transfer matrix for Wilson’s lattice gauge theory. It should be
pointed out that, unlike in some other transfer matrix considerations which
discard certain “small” terms, here no terms have been neglected. This is
important because for Grassmann numbers there is no notion of large or
small. Lüscher’s construction simply provides the exact answer at finite
lattice spacing and is well-behaved in the continuum limit.


