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Abstract 

In Einstein’s gravitational theory, the spacetime is Riemannian, that is, it has vanishing torsion and vanishing 

nonmetricity (covariant derivative of the metric). In the gauging of the general affine group A(4, R) and of 
its subgroup GL(4, R) in four dimensions, energy-momentum and hypermomentum currents of matter are 

canonically coupled to the coframe and to the connection of a metric-affine spacetime with nonvanishing 
torsion and nonmetricity, respectively. Fermionic matter can be described in this framework by half-integer - 
representations of the SL( 4, R) covering subgroup. We set up a (first-order) Lagrangian formalism and build up 

the corresponding Noether machinery. For an arbitrary gauge Lagrangian, the three gauge field equations come 
out in a suggestive Yang-Mills like form. The conservation-type differential identities for energy-momentum 

and hypermomentum and the corresponding complexes and superpotentials are derived. Limiting cases such 
as the Einstein-Cartan theory are discussed. In particular we show, how the A(4, R) may “break down” to 

the Poincare (inhomogeneous Lorentz) group. In this context, we present explicit models for a symmetry 
breakdown in the cases of the Weyl (or homothetic) group, the SL(4, R), or the GL(4, R). 

This article is dedicated to the memory of Rev. Dr. J. Dermott McCrea, OFM, who 
passed away on 21 May 1993. We lost a dear friend and an esteemed colleague 

whom we closely collaborated with since the early eighties. 
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1. Deformable spacetime structures in physics 

I. 1. Introduction: The need to go beyond Riemannian manifolds 

A number of developments in physics in recent years have evoked the possibility that the treatment 
of spacetime might involve more than just the Riemannian spacetime VI of Einstein’s general relativity: 
( 1) The vain effort so far to quantize gravity is, perhaps, the strongest piece of evidence for going 

beyond a geometry which is dominated by the classical distance concept. 
(2) The generalization of the three-dimensional theory of elastic continua with microstructure to 

the four-dimensional spacetime of gravity suggests, in a rather convincing manner, physical 
interpretations for the newly emerging structures in post-Riemannian spacetime geometry. 

(3) The description of hadron (or nuclear) matter in terms of extended structures: In particular, the 
quadrupole pulsation rates of that matter and, in a rest frame, their relation to representations 
of the volume-preserving three-dimensional linear group SL(3, R) - with the rotation group 
SO( 3) as subgroup - have been established experimentally. 

(4) The study of the early universe - in the light of the various theorems about a singular origin, the 
ideas about unification of the fundamental interactions (mostly involving additional dimensions, 
later compactified) and inflationary models with dilaton-induced Weyl covector 

. . . and each of these developments necessitates the study of dynamical theories involving post- 
Riemannian geometries, whether in the context of local field theories or within the framework of 
string theories, We explain the interest in continua with microstructure, in extended structures, and 
the problematics of the early universe - as far as these are relevant as motivations for a relaxation of 
the Riemannian constraint in gravity - in the rest of this chapter, leaving the rather involved issue of 
quantum gravity to section 2. 

The smallest departure from a V, would consist in admitting torsion, the field strength of local 
translations, arriving thereby at a Riemann-Cartan spacetime U, and, furthermore, nonmetricity, 

resulting in a metric-afine (Ld, g) spacetime [ 2751. In what follows, starting with section 3, we 
will deal with the geometry of spacetime, the Euler-Lagrange field equations, the Noether identities 
generalizing flat conservation laws, the conformal properties, and with a specific model of spontaneous 
symmetry breakdown - and all this in the framework of such metric-affine spacetimes. For reasons that 
will become clear in the sequel, we study in particular spacetime models arising from a Weyl/Yang- 
Mills-like gauge theory approach to gravity. 

1.2. Spacetime as a continuum with microstructure 

In Einstein’s general relativity theory (GR), the linear connection of its Riemannian spacetime is 
(i) metric(-compatible), that is, the length and angle measurements are integrable, and (ii) sym- 
metric. The symmetry of the Riemannian (or Levi-Civita) connection translates into the closure of 
infinitesimally small parallelograms, that is, in spaces with an asymmetric connection such paral- 
lelograms could carry a closure failure. Already the transition from the flat gravity-free Minkowski 
spacetime to the Riemannian spacetime in Einstein’s theory can locally be understood as a defor- 
mation process. A strain tensor &AB in continuum mechanics [ 3851 measures by its very definition 

defer. undef. 

CAB := (gALI - gAB )/2 the change of the metric between the undeformed and the deformed state. 
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Thus, because of the pairing of stress and strain, it does not come as a surprize that in GR, according 
to Hilbert’s definition, the stress-energy-momentum tensor couples the Lagrangian to the metric. 

The lifting of the constraints of metric-compatibility and symmetry yields nonmetricity and torsion, 
respectively. The continuum under consideration, here classical spacetime, is thereby assumed to have 
a non-trivial microstructure, similar to that of a liquid crystal or a dislocated metal or the like. In 
particular, to drop the metricity condition, i.e. to allow for nonmetricity Qnp := --DgaP # 0, and to 
“touch” thereby the lightcone, if parallelly displaced, is classically a step of unusual boldness, but 
may be unavoidable in quantum gravity. It is gratifying, though, to have the geometrical concepts 
of nonmetricity and torsion already arising in the (three-dimensional) continuum theory of lattice 
defects - and there they have concrete interpretations as densities of point defects and line defects 
(dislocations), respectively, cf. [ 373,375]. But even more, certain types of “hyperstress” are induced 
by these post-Riemannian structures: Double-stress without moment relates to nonmetricity, spin 
moment stress to torsion. ’ 

Just as ordinary stress is the analogue of the (Hilbert) energy-momentum density, hyperstress finds 
its field-theoretical image in the density of hypermomentum which consists of 

spin current $ dilation current @ shear current. (1.2.1) 

And these currents ought to couple to the corresponding post-Riemannian structures, a hypothesis 
which brought the metric-affine gravity theory under way in the first place [ 277,278]. 

According to Sakharov [ 5845851, gravitation represents a “metrical elasticity” of space which is 
brought about by quantum fluctuations of the vacuum. Here we pursue this analogy with continuum 
mechanics much further and introduce additional nonmetric and torsional degrees of freedom into 
spacetime, but, we believe, it is done in the same spirit. 

1.3. Hadrons as extended structures - effective ‘strong gravity’ 

With the discovery of a spatial spread for the hadrons - first in experiments measuring the electro- 
magnetic form factors, then in the identification of the baryons with an SU( 3) octet (rather than with 
the fundamental representation of the group, as in the Sakata model) and the conception of quarks 
as constituents - it became important to describe the dynamics and kinematics of quantum extended 
structures (extendons) . The 1965 work dealt with three-dimensional vibrating and rotating “lumps” 
[ 1671. Then came dual models [ 6991 and their reinterpretation as a quantum string [475,663], a 
one-dimensional extendon. It was later understood as an “effective” description of QCD flux tubes, 
extending between point-quarks [ 5 171. 

Extendons can be deformed, and thus represent affine geometries in themselves. Hadron excitations 
show up as Regge trajectories, and the massive states fit E( 3, R) representations - as would indeed 
be expected from the pulsations of a (consider it as an approximation) fixed-volume three-extendon 

’ There exists an extended literature on continua with microstructure, see, for example, Ericksen [ 1861, Jaunzemis [ 3191, 
Mindlin [ 4621, and Nye [ 5271. Kroner’s articles [ 372-376,28 1 ] on lattice defects are particularly illuminating, since they 
relate differential geometric notions to distributions of lattice defects. His article on the lattice interpretation of nonmetricity 
[376] seems remarkable; however, no use of it has been made so far. The gauge-theoretical point of view is stressed 
by Kleinert [ 3521. The analogies between three-and four-dimensional continua with microstructure have been particularly 
worked out in [246,267,291,437]. In [274] the dislocation as a model for torsion and its similarity to spacetime structures 
in the Einstein-Cartan theory of gravity has been emphasized; for a recent development, see [ 6781. 
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[ 1671. The quantum d-extendon involves covariance of a (d + 1) manifold (e.g. the world-sheet 
for the string), the extendon’s time evolution. This resembles gravity, involves gauging geometrical 
groups, and often reproduces the same equations that were derived.in the pursuit of quantum gravity. 

It is thus not surprising that “effective strong-gravity” theories, in which the Planck length 1 
is replaced by the Compton wavelength of the proton, were derived in the same context. One such 
example [ 2921 with a confining Poschl-Teller type potential [ 4471 in the effective radial Schrodinger 
equation arose in the Poincare gauge theory and its generalization to SL(6, C) flavor models of 

Salam et al. [ 587,588,443]. By including the SU(3) color group of QCD, one ends up with the 
SL( 6, C ) f @ SL( 6, C)’ model of color geometrodynamics [ 4454471. Another such treatment has 
used affine manifolds [490,498]. In these models, “low energy” means “hadron energies”, i.e. l-100 
GeV. The slope of the trajectories is of the order of 1 GeV, as against the 1019 GeV of the theories 
we mentioned in section 1.1 above. 

In a recent version of this approach, “chromogravity” [ 499,501,629,63 1 ] is derived from QCD 
itself, as an “effective” theory. A gravitation-like component is identified in the infrared limit of 
QCD, its contribution providing for color confinement, for the systematics of the excitations in the 
hadron spectrum (Regge sequences), and for the forces of longer-range responsible for the nuclear 
excitation spectrum. This QCD-generated graviton-like component is the analog of van der Waals 
forces in molecules, where a J = 2 combination of two photons is exchanged between atoms; in 
QCD, a J = 2-mediated zero-color component, plus all higher spin zero-color combinations of QCD 
gluons, make up this pseudo-gravitational component. The emergence of a J = 2 contribution from a 
J = 1 force (QCD) in higher orders is similar to the generation of the J = 2 gravitational contribution 
in string theory, from closed strings - i.e. from the contraction of two open strings - an open string 
corresponding in the massless sector to a J = l-mediated force. 

1.4. The early universe (cosmogony) 

Already in the seventies, various theorems implied that, with a cosmology based on Riemannian 
geometry, the universe was forced either to have come out of a singularity - or, inevitably, to fall into 
one in the future. The simplest way of avoiding such a result is to assume that in the distant past - 
or the distant future - the geometry is not Riemannian. 

In the late seventies and in the eighties, the same conclusion emerged from the new studies of 
the early universe connected with gauge unification theories2 (GUT) [ 5411 and their supersym- 
metric extensions - later replaced by unification and superunification as derived from the quantum 
superstring. In these theories the early universe has additional dimensions (and superdimensions). 
It is assumed that these extra dimensions spontaneously compactify, leaving internal symmetries as 
residual effects in the final four-dimensional spacetime, cf. [711]. The symmetries that we have 
identified phenomenologically include those of the SU(3) x SU(2) x V( 1) group of the standard 
model embedded within higher rank groups such as E(6) or SU(5). All of this implies geometries 
ranging from Kahler and Calabi-Yau to affine manifolds. 

* Although the initials GUT were originally taken to mean Grand Unified Theories, it was later agreed (1979 HEPAP 
Conference) to read them as Gauge Unification Theories, in order to leave room, as might be needed, for ‘grander’ theories 
some day. 
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The eighties also ushered in injutionary cosmology [ 251,395,7], a new conception of the very 
early universe, now from the point of view of cosmology itself, rather than particle physics (though it 
does affect it too) _ In the more advanced “extended” models [ 3821 one finds it necessary to abandon 
the Riemannian constraints [ 65 11, at the very least replacing Einstein’s geometry by Weyl’s. We deal 
with this situation in an example in section 6. 

1.5. Organization of the paper and notation 

In section 2 we take a tour d’horizon around quantum gravity. We mention the main open questions 

and unsolved problems. 
In section 3 we show how, by starting with the affine group A( n, R) and its Yang-Mills type 

gauging, we eventually arrive at a metric-affine geometry of spacetime, the structures and properties 
of which we explicate in the rest of this chapter. In particular, the potentials emerging from the affine 
connection are the coframe and the linear connection. The latter is decomposed into Riemannian and 
post-Riemannian pieces, and the interrelations of the Chem-Simons terms to the Bianchi identities are 
exhibited. The rules of exterior calculus we defer to appendix A and the irreducible decompositions 
of nonmetricity, torsion, curvature, and of the Bianchi identities to appendix B. All this is more or less 
traditional wisdom. However, we emphasize the post-Riemannian structures, such as the nonmetricity, 
the Weyl one-form, and the volume-preserving piece of the connection, within a coherent geometrical 
framework. 

In section 4 the question is answered of how one can present especially fermionic matter in such 
a metric-affine spacetime. The results of this chapter are fairly new and have been found during 
the last 15 years or so by one of us (Y.N.) and his collaborators. World spinors are defined and 
their conformal properties studied. Technical details of the unitary irreducible representations of the - 
SA (4, R) and the corresponding subgroups are collected in appendix C. 

Having now a spacetime arena available and matter fields ‘moving’ therein, we can build up a 
Lagrangian of this gravitationally interacting matter system and an action function as well. This 
is done in section 5 in the conventional way. We postulate affine gauge invariance and switch on 
the Lagrange-Noether machinery. Besides the conventional canonical energy-momentum current, 
we define, generalizing the spin current, a hypermomentum current that is coupled to the linear 
connection, i.e. to the new gravitational potential of spacetime. 

The Noether identities (5.2. lo), (5.2.16) and the general form of the gravitational field equations 
(5.5.3), (5.5.4)) (5.5.5) are derived. We discuss the Belinfante-Rosenfeld symmetrization of the 
energy-momentum current and study different limiting cases of the gravitational field equations by 
means of the Lagrange multiplier technique. Finally Astekhar type complex variables are generated by 
means of a metric-affine Chem-Simons term in the gauge Lagrangian. Whereas most of the material 
of this chapter appeared before, we claim some originality as to the completeness and the rigor of 
our presentation. 

Up to including section 5, no gravitational gauge Lagrangian is specified explicitly. Thus we 
provided a ‘kinematical’ framework for metric-affine gauge gravity which has to be filled with 
physical life. This is done in section 6 in a preliminary way. Conformally invariant gravitational 
gauge Lagrangians, including dilaton fields, are studied and compared to alternative approaches in 
the literature. Various schemes of symmetry reduction from the linear to the Lorentz group are given 
explicitly. The physically relevant procedure is one of the main open problems. We believe, however, 
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that the solution of exactly this problem is indispensable for future progress in gravity. Moreover, we 
discuss generalizations of recent inflationary models in our post-Riemannian framework. 

In the list of literature all material relevant to our task is compiled as a service for the reader. 
Should we have overlooked some articles, we would like to ask the authors to let us know, possibly by 
email to hehl@thp.uni-koeln.de. We may want to supply this additional information in an Addendum. 

In the body of the paper, special relativity (theory) will be abbreviated as SR, whereas the 
gravitational models used carry the following acronyms: 
- GR = general relativity (theory), also called Einstein gravity (Riemannian spacetime V,) [ 1801. 
- GRll = teleparallel (version of general relativity) theory (Weitzenbock spacetime W4: Riemann- 

Cat-tan spacetime with vanishing (Cartan-)curvature and non-vanishing torsion), see [523,614]. 
- EC theory = Einstein-Cartan( -Sciama-Kibble) theory (of gravity) ; non-propagating torsion 

(Riemann-Cartan spacetime U4: Metric and metric-compatible connection), see [ 683,275 ] . 

- PG (theory) = Poincare gauge theory (of gravity) ; propagating torsion ( Riemann-Cartan spacetime 

U,), see [272]. 
- MAG = Metric-affine (gauge theory of) gravity (metric-affine spacetime ( L4, g) : Independent 

GL( 4, R) -connection and independent metric), see [ 2881. 
- We denote the covering of a certain group by an overline. We have, for instance, SL( 2, C) = 

so( 1,3). Sometimes we dispense with the overline for convenience provided it is clear from the 
context in any case. 

2. Motivation: search for quantum gravity 

2.1. No Einstein theory at quantum level perturbatively 

It is now probably safe to state that GR, though fully validated “in the large”, does not exist in the 
perturbative sense at the quantum level. This statement relies on the following two facts: 

(i) Although the one-loop “vacuum” amplitude (i.e. gravitons interacting with gravitons, with no 
“matter” fields present) had been shown [ 3061 to be finite, with the infinities cancelling through 
the unexpected action of a specific identity (Bach-Lanczos identity [ 21,384], cf. appendix A.3)) 
no such “miracle” happens for the two-loop amplitude [ 232,233]. Explicit calculation shows it 
to be infinite. 

(ii) In a renormalizable theory, such infinities are removed by appropriate counter-terms. However, 
the fact that in this case, the theory’s coupling constant, i.e. Newton’s constant, has dimensions 
dN = -2, leads to a need for an infinite number of different renormalization counter-terms, 
one for each order of the perturbation expansion. It does not appear possible that this would 
represent a “manageable” renormalization procedure. 

It is, of course, still possible that quantum gravity might be correctly represented by GR, but 
solely with non-perturbative realizations (cf. Ashtekar’s new variables [ 151 within a Hamiltonian 
approach). The alternative would be to assume that the perturbation expansion does exist, but that it 
is Einstein’s theory which is an incomplete description of gravity. It is because of the latter eventuality 
that the quest for quantum gravity adds an important motivation to go beyond Riemannian manifolds 
- the subject of this work. Noticing that the renormalizable paradigmatic standard model is entirely 
constituted of local gauge theories, and that GR itself is already a gauge theory at the classical level 
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[ 6741 (as a matter of fact it had served as the model for the newer Weyl/Yang-Mills quantum gauge 
theories making up the standard model), we assume that quantum gravity is also a gauge theory. In 
this view, one should thus look for the “complete” gauge theory “CT” of quantum gravity, existing fully 
at the quantum level. The Einstein theory (or Einstein-Car-tan or any other theory reproducing the 
observational results of GR) would then just represent the “long-range” or “low-energy” component 
(and also limit) of “G”. Since the quantum regime takes over at Planck mass MPlanck, defined as 
the mass (or energy) at which the (quantum) Compton wave length is equal to the (gravitational) 
Schwarzschild radius, what is meant here by “low-energy” is “below Planck energies”, i.e. below 
lOI GeV. We are aware of the conceptual problems [ 3091 which this perturbative extension to the 
Planck scale encounters with our usual macroscopic notions of space, time and causality. 

2.2. Dimensional analysis and renormalizability of Yang-Mills gauge theories 

Comparing with the successfully quantized Yang-Mills theories, we note that one key difficulty 
with GR as a relativistic quantum field theory resides in the abnormal dimensionality of its Lagrangian 
density. In Yang-Mills theories, the gauge potential is a Lie algebra-valued connection one-form and 
it reads’ 

A = Ai dx’ = AiKAK dx’ , (2.2.1) 

where the AK are the generators of the gauged Lie algebra. Its components Ai have the dimension 
dA = - 1 of a spacetime derivative, since its very definition is related to its role as guaranteeing 
parallel-transport, as a piece of the gauge-covariant exterior derivative 

D=d-A, D; I= e,] D = d, - Ai. (2.2.2) 

As a result, the components F;j” of the field strength or “curvature” two-form F = $, FijKAK dn’ r\dx’, a 
generalized curl of the potential or “connection” A, has dF = -2; the classical piece of the Yang-Mills 
Lagrangian density, which is quadratic in the curvature, thus has dimension dL = -4. 

Having d,_ = -4 for the Lagrangian density is an important result, since it will directly yield a 
dimensionless expression for the Lagrangian four-form and consequently also for the action, after the 
integration over four-dimensional spacetime. This is as it should be; however, this also implies that 
the coupling constant in such theories (it appears as a coefficient of the squared curvature term) is 
necessarily dimensionless. As a result, we obtain two aspects essential to renormalizability: 

(i) In the perturbative expansion, all powers of this coupling are then also dimensionless, and thus 
do not impose any constraints on the counter terms. 

(ii) In calculating amplitudes, integrations, by definition, should be cut-off independent. This is 
generally identical to requiring scale invariance, i.e. no dependence on dimensional parameters 
- a requirement thus fulfilled in Yang-Mills theories, with their dimensionless couplings. 

’ The index K runs from 1 to y, the dimension of the group manifold; the coordinate (or holonomic) indices are denoted 
by i,j, k. . . = 0, I, 2,3; the coordinate basis of our tangent space is ei, and 1 denotes the interior product. We use the 
notations of [ 2721, where detailed definitions and derivations can be found. Incidentally, the use (a la Landau-Lifshitz 
[ 3861) of Latin indices for coordinates and Greek indices for frames is the opposite of what is generally adopted among 
particle physicists. 
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2.3. Dimensions in Einstein’s GR and in Poincar6 gravity; the gauge field of translations 

This is not the situation in GR, with its Lagrangian, linear in the Lorentz curvature, i.e. with 
dR = -2; the same is true in the simplest PG model [275], the EC theory, in which torsion is locally 
present but does not propagate. A partly similar situation occurs in generic PG [272], residing in 
a U, spacetime with propagating torsion (in addition to curvature as in GR). In PG, although the 
Lorentz group’s squared curvatures do yield dR z = -4 terms, like a canonical Yang-Mills theory, 
one nevertheless has dTz = -2 contributions, this time from the torsion-square terms. This is due 
to the anomalous dimensionality dp = -1 of the (inhomogeneous) translation generators in the 
Poincare group (as against d,, = 0 in the Yang-Mills gauge groups of the standard model and 
in the (homogeneous) Lorentz subgroup of the Poincare group). In the connection (2.2.1) and 
in the covariant derivative (2.2.2), the AK is now replaced by a spacetime derivative, forcing the 
gauge-compensating mechanism to act multiplicatively with tetrad frame fields, rather than through a 

connection: 

D, = ;‘a Dj , D, := e,j D , (2.3.1) 

where e, = zindi is the local Lorentz frame (the superscript o stands in for orthonormaf and anholo- 
nomic indices are denoted by (Y, p, . . . = 0, 1,2,3). 

The operator D, thus replaces di and forms a semi-direct product with the iaP of the SO( 1, II - I ) = 

spin( 1, n - 1) [in four dimensions SL(2, C)] on the frames and involves the frame field as the 
(multiplicative mode) gauge field for translations. Alternatively, we can use the non-degenerate 

coframe (or one-form) 8fi = Zj’ dxj, which relates to the frame field via the relation 

Moreover, the coordinate components of the metric tensor field 

g,j = Oafi gj” gjp, oap =diag(-l,l, I, 1), 

(2.3.2) 

(2.3.3) 

will enter the gravitational model, where onp is the local Minkowski metric. The components 

el , ilay “P g;,j are all dimensionless. 
The gravitational “gauge field” of the translations is thus dimensionless. The translational field 

strength is the torsion, 4 the components of which thus have dT = -1, as a curl of the ij’. Its square 

in the Lagrangian density then has d TX = -2. In PG and in the teleparallelism theory (in which one 
keeps only the torsion-square term, putting the curvature to zero), it is this dTz = -2 term which 
replaces Einstein’s curvature scalar in describing macroscopic gravity - the distinction between these 
theories and Einstein’s arising only in 5th order in the parametrized post-Newtonian (PPN) treatment 
[ 613,637,523]. 

To obtain a dimensionless action in GR or in PG, one is therefore forced to assign to the coupling 
constant (Newton’s) a dimensionality dN = -2, in order to make up for having only d = -2 from 
the fields and their derivatives. As mentioned above, this fact then interferes with the possibility of 

A As we will discuss in section 3.2, the translational field strength of the affine (or the Poincark) group does contain the 

torsion, but it also carries an additional piece, see (3.2.13). 
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developing a perturbation-theoretical renormalization procedure - in addition to introducing a scale 
(Planck mass) and thus indirectly making the amplitudes cut-off dependent. 

Basically, the unconventional dimensionality is due to the fact that spacetime appears both as the 
base space and as a subspace of the gauged group manifold (spacetime being the manifold of the 
translations’ parameters): In GR it allows gauge group indices of the curvature - due to the soldering 
of the Lorentz bundle to the base manifold - to be contracted with the frame indices of spacetime. In 
PG, it generates the anomalous dimensionality of the generators of translations. As a matter of fact, 
MacDowell and Mansouri 14161 have shown that the Hilbert-Einstein Lagrangian can be obtained as 
an Inonti-Wigner contraction of a quadratic curvature L,agrangian gauging SO( 1,4); in this derivation, 
the Riemannian curvature scalar is a degenerate bilinear in which one factor is a contracted curvature 
whose connection has become the coframe with d8 = 0, and the &a = -2 dimensionality of the 
Hilbert-Einstein Lagrangian density can thus again be blamed on the anomalous dimensionality of 

the translation generators - just as in PG. 

2.4. The groups gauged in gravity 

“...gravity is that jield which corresponds to a gauge invariance with respect to displacement 

transformations ” Richard Feynman (I 963) 

Before returning to our dimensional analysis, in the search for a candidate “complete” gauge theory 
of gravity, with a dL = -4 Lagrangian density, we discuss the gauge groups relevant to gravity. 

In Einsteinian gravity proper, there is only one such group, namely, the double covering Diff(4, R) 

of the group of differentiable coordinate transformations or covariance group [ 4611, acting on the 
(holonomic) spacetime indices (i, j, k . . .). Mostly, it is applied passively (“alias” transformations, 
only changing “names” amongst the curvilinear coordinates); sometimes, however, these locally 
dependent orbital Poincare’ transformations, merging with the other diffeomorphisms, are interpreted 
actively. On the face of it, local diffeomorphisms can be considered as locally gauged translations; 
this view gains some additional justification from the fact that the gravitational field is coupled 
to the energy-momentum tensor density, i.e. to the translational current. However, in contrast to 
the Yang-Mills construction, the Lagrangian density involves only curvatures - the field strengths 
of the (homogeneous) Lorentz subgroup. In the presence of spinorial matter fields, when Lorentz 
labelled local frames have to be introduced, or in EC theory - in these cases there is in addition 
a local (homogeneous) Lorentz group acting on those frames as a separate gauge group. Here 
the compensating role of the gauge field is fulfilled by the connection (with anholonomic indices) 
T”p = -ffia in a canonical Yang-Mills mode. 

In the PG, the aim is for the full Poincare group to be treated as a local gauge group. In a full 
Yang-Mills like mode [457], one starts from a generalized affine connection which contains the 
Lorentz and the true translational connection. The field strength contains the Lorentz curvature and a 
translational curvature. Only after a certain reduction, the translational connection and curvature are 
converted into coframe and torsion, respectively; see sections 3.1-3.5 for details. 

Then, in order to preserve the action of the Lorentz group generators on the translations, the latter 
have to be defined by the frames, i.e. they should carry anholonomic indices. In PG, the Lorentz 
connection and the coframe are independent and we have the two modes of gauge compensation 
acting together. As we noted in our dimensional analysis, in the construction of a Yang-Mills-like 
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quadratic Lagrangian for the Poincare group, the squared torsion pieces are added to the squared 
Lorentz curvatures (torsion being the translational field-strength), providing for a Yang-Mills like 
dynamical local Poincare gauge, aside from the action of Diff(4, R). 

However, it is partly possible (and physically more plausible) to unify the two local gauge groups 
- Poincare on the frames and general covariance - and at the same time obtain a reinterpretion of 

_ 
the transformations wrought by Diff(4, R), reproducing them by one and the same gauge group, 
“almost” in a Yang-Mills like mode. This is done by gauging a deformed and anholonomized version 
of the translations. More precisely, we have to take as translation generators D,, i.e. the local tangent- 
space version (“anholonomic”) of the Lorentz-covariant parallel-displacements [ 275,479,504], i.e. of 
the covariant exterior derivatives (2.3.1). Geometrically, these covariant parallel-displaceable frame- 
defined translations [ 2751 (the “anholonomized general coordinate transformations” AGCT of [ 4791, 
or “shift” and “laps” of the Hamiltonian formalism) are linked to Lie derivatives, see section 3.6, 
and their commutation relations involve “structure functions” instead of structure constants, i.e. they 
do not close: 

]D,, &I = -&3yw D, + &pYSW i,s * (2.4.1) 

The structure functions are given by the components of torsion and curvature [ 275,488,504]. Effec- 
tively, the D, generate the equivalent of the infinite-dimensional algebra of local translations, a topic 

we will discuss in section 3. Note that the commutation relations between the Lorentz generators ~~~ 
are unmodified [ 275,488,498] ; in the language of the “soft group manifold” approach [ 488,67 1.6431, 

the Poincare algebra undergoes a “spontaneous fibration” in which the Lorentz SO( I, 3) subgroup 
becomes the fiber of an on-mass-shell effective bundle - as a result of the equations of motion. The 
motions over the residual quotient base-manifold “Poincare/Lorentz” after the “spontaneous selection” 
of the fiber, are still generated by the parallel-transport guaranteeing covariant derivatives.’ 

2.5. Gravity theories with a ‘dynamically truncated’ gauging of the Poincare’ group 

Let us now inspect the GR and PG gravitational theories from the point of view of a Yang-Mills 
like gauging of the Poincare group. In both, the Hilbert-Einstein and the EC Lagrangian densities, it is 
only the Lorentz SO( 1,3) subgroup which is treated dynamically, i.e. with its curvature entering the 
Lagrangian. Thus, the connection generally plays a Yang-Mills like dynamical role. The translation 
generators - with their multiplicatively acting compensating fields (i.e. cancelling gradient terms in the 
variations) for local translations (i.e. diffeomorphisms) - are not independently gauged dynamically; 
indeed, the Lagrangian density does not contain a kinetic energy term for the tetrads or the metric. 
The opposite occurs in teleparallelism models, in which the curvature is constrained to zero and the 
physical degrees of freedom are solely carried by the coframe. In these theories, the connection is 
additionally constrained by the metricity condition 

D, gpy = 0 7 (2.5.1) 

which guarantees the metric-compatibility of the connection. 

5 This quotient manifold is the spacetime for gravity, or the superspace in supergravity, where in addition to the above 
mentioned spacetime “AGCT”, there are “local supersymmetry transformations” consisting in a similar set of “AGCT” 

modified translations, this time in the spinor sector of superspace. 
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The EC Lagrangian density is linear in the Lorentz curvature (which, as noted above, has the same 
dimensionality da = -2 as in the Yang-Mills case), so that only after counting the coupling constant 
l/l* it ends up having dnE = -4: 

V,, = ( 1/2Z2)det]~kYI &“@(af, r) g’,zj,. (2.5.2) 

This Lagrangian involves two fields, the coframe 6 a =& a dx’ and the so( 1,3)-valued connection 
r*fi. There is only the derivative d I’ Ofl appearing in the curvature, so that only one field propagates 
physically, i.e. has kinetic energy. In addition, one gets an algebraic equation (Sciama’s [615,616] 
and Kibble’s [ 344,345] ) as a second equation of motion. It just reexpresses the torsion in terms 
of the spin current of the matter fields (or states that torsion is vanishing, if matter carries no 
spin). This is then a theory with local but non-propagating torsion. Simple (N = 1) supergravity 
can be derived from an EC Lagrangian plus the Lagrangian of a minimally coupled massless spin- 
3/2 Rarita-Schwinger field (spinor-valued one-form) [ 155,207,696], with the spin density of the 
Rarita-Schwinger gravitinos as sources of torsion. 

Note that in PG theories in which a torsion-square term is present solely, as in teleparallelism 
theory [ 272,363,45 I 1, sometimes used as an alternative to the Hilbert-Einstein Lagrangian, or when 
it appears in addition to the curvature-squared term, as in Poincare gauge theories [ 263,272], we 
have propagating torsion either instead of the metric graviton or in addition to it. However, although 
this approach may thus have an advantage in adding new true physical degrees of freedom, it leaves 
the dimensional issue unresolved as we already remarked, the squared torsion term in the Lagrangian 
having again dTz = - 2 and thus interfering with renormalizability. There is one case in which this 
dimensionality issue can be overcome. However, as we shall see, there then arises a difficulty with 

unitarity. 

2.6. Unitarity violation in a gauge theory with quadratic Lorentz curvature 

The wrong dimensionality of the Hilbert-Einstein Lagrangian is not yet the full difficulty. Leaving 
out the torsion and staying in V, geometry, we could still have hoped to emulate the Yang-Mills 
case, through the use of a Lagrangian quadratic in the Lorentz curvature [302,348,654,728]. As we 
noted above, this will have d = -4 as in the Yang-Mills case; it does indeed lead to renormalizable 
theories, at least in vacuum [ 6521. Nevertheless, even using such Lagrangian densities, quadratic in 
the curvatures, does not resolve the problem. Taking only quadratic terms in the curvatures, there is 
no decent Newtonian limit. This then forces us to include the Hilbert-Einstein Lagrangian (to cover 
macroscopic gravity), in addition to the quadratic curvature terms, in the hope that the latter dominate 
in the high energy limit, which would make the theory renormalizable. This was indeed achieved by 
Stelle [ 6521. 

However, there then appear new difficulties, this time with unitarity. Catastrophic unitarity violations 
will occur in situations in which the Lorentz connection can be reexpressed in terms of the metric or 
the (co-)frame, i.e. when the metricity condition (2.5.1) holds, the connection then being given by 
the Christoffel formula. 

Whenever the connection is given in terms of first derivatives ag of the metric or of the coframe, 
the Yang-Mills type gravity will be converted into a higher derivative theory, see section 5.8.3 for 
details. The curvature-squared terms will contain terms of the form 
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m43 (a*g)*Y V2g) Vd2. (2.6.1) 

As a result, for a Lagrangian quadratic in the Lorentz curvature, the propagator, which is the in- 
verted Fourier transform of the linearized Lagrangian, is quartic in the momenta. Such propagators 

automatically contain double poles, such as 

1 1 
p2(p2 _ m2) = 2 ( 

1 1 
___ - - p2-fn2 

> 
P2 ’ 

(2.6.2) 

so that one of the two poles has the wrong sign for its residue (leading to negative probabilities, i.e. 
ghosts, cf. [ 3781 and references). 

This may be remedied by adding new degrees of freedom, provided they do not reintroduce d # 
-4 terms. The connection Pp should then still have d = -1 but it should become an independent 
field. One straightforward way of constructing precisely such a connection appears to lead to the 
abandonment of the metricity condition (2.5.1). 

2.7. Metric-a&e gauge theories: gauging the A(4, R) and relaxing the constraint of metricity 

In a general (L4, g), the metric g+, the coframe P, and the linear connection rap, all are 
independent “potentials”. In Table 1, we list the currents, potentials, field strengths, and Bianchi 
identities in such a framework. 

Since a metric is given, the linear connection can, according to (3.10.12), be decomposed as 

follows: 

(2.7.1) 

Here r$, is the Riemannian part of the connection depending solely on metric, frame, coframe, and 
their derivatives. The contortion one-form Kap = -Kpa is implicitly given in terms of the torsion 
two-form Tfi by 

TP:=D8p=6aAKnP. 

The nonmetricity one-form 

(2.7.2) 

Qap := -Dgap (2.7.3) 

measures the deformation of length and angle standards during parallel-transport. In Riemann-Cartan 
spacetime U4 it vanishes, 

(2.7.4) 

Currents of MAC and their associated gauge fields. 

Current Potential Field strength Bianchi identity 

sym. en.-mom. crap 
can. en.-mom. Zb 

hypermom. Aup 

metric gOp 
coframe 6” 

connection TOP 

DQop = 2&p, 
DT” = R,” A tYp 

DR,@ = 0 



16 FI W. Hehl et al. /Physics Reports 2.58 (1995) 1-I 71 

and, consequently, is not present in GR or EC theory. Moreover, if spinor fields - that would 
have induced torsion - are absent, Eq.(2.7.1) reduces just to the familiar Christoffel formula, in its 
anholonomic version. 

Foregoing the metricity condition thus carries us over to metric-affine spacetimes ( L4, g), the 
physical picture should then be as follows: 

( i) At very high energy (E 2 MPlanck) , as in Yang-Mills gauge theories, gravity is described by 
dL = -4 quadratic Lagrangians in which the connection T,P is an independent field. The group 
to be gauged G has to include the translations and should contain an homogeneous subgroup 

c > SL(2,C). (2.7.5) 

The theory should thus be both unitary (no metricity condition, thus leading to an independent 
connection and no pp4 propagators) and renormalizable (dL = -4 Lagrangian density). 

(ii) At low energies (E 5 M Planck), spontaneous breakdown should occur, G’ =% SL(2, C) so 
that with an orthogonal (or pseudo-orthogonal) local invariance group the metricity condition 
becomes operational; yet this cannot be a “strong” statement about field operators, only a 
“weak” statement about matrix elements between low-energy states (1.e.s.) : 

(I.e.s.lQ,p)l.e.s.) = 0. (2.7.6) 

As a result, the metric enters the game. The components of the Lie algebra-valued connection 
for that part of the group which does not survive as a residual local gauge group, in GR, EC, 
PG, or teleparallelism theory, i.e. in the low energy effective Lagrangian, all become massive 

(M N Mplanck). - 
Such models have recently been investigated [26,287,496,388,389,387], with SL(4, R) 3 SL(2, C) 

as the homogeneous part of the gauge group. This is denoted as the “affine” gauge approach, the 
affine group x(4, R) := ti K a(4, R) consisting of the semi-direct product of the general linear 
group a(4, R) and the Abelian group T4 = ti of spacetime translations. For the representation of 
spinor fields we need their respective double-covering groups, see [ 495,628], denoted by an overline. 
We will discuss the role and structure of the double covering of the linear and diffeomorphism groups 
in our treatment of the matter fields in section 4 and in our construction of the spontaneous symmetry 
breakdown in section 6. Certain metric-affine gauge models have been proved to be renormalizable 
[ 388,389,387] ; however, there is as yet no certainty with respect to the theory’s unitarity. 

We have thus sketched this particular logical chain that has led to the interest in metric-affine 
spacetimes, and in particular spacetimes that are generated by a local gauge. 

A related, though different program [ 1841 has centered on a Weyl-type gauge formalism; the 
obstacles to quantization do stem from the same basic dimensional analysis we have presented here. 

2.8. Super-gravity and renorrnalizability? 

In all generality, G can be any group that contains SL(2, C), as stated in (2.7.5). The most 
obvious possibilities are the Weyl, conformal, or linear groups and their respective supergroups. The 
Weyl or homothetic group (containing Lorentz transformations and dilations) is contained in both the 
15-parameter group of conformal transformations and the general linear group m(4, R) . Conformal 
gauge theories have been investigated at the classical and the quantum level [ 184,185]. 
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The inclusion of the Poincare group in supersymmetry, 6 leading to supergravity [ 207,155 1, gen- 
erated hopes of improved renormalizability. The bosonic homogeneous subgroup, however, is still 
SL( 2, C ) , or SL( 2, C) x O(N) for N-extended supersymmetry. The enlargement happens in the 
system of translations, i.e. in the inhomogeneous quotient. For the flat case, this is 

(2.8.1) 

For the (curved space) gauged group, the spinorial local supersymmetry transformations are yet 
another example of a symmetry generated by Lie-derivatives as in (2.4.1) . 

Supergravity itself was developed within the same context of constructing a renormalizable “com- 
plete” gauge theory “G” of quantum gravity as explained in section 2.1. Its spacetime realization 
involves torsion and is thus a U, manifold, embedded in a superspace, the quotient (2.8.1). It has 
been shown, however, that though supergravity does induce finite results in many of the cases in which 
Einstein’s theory gave infinities, it will not “cure” cases such as those discussed in [232,233]. Local 
supersymmetry in supergravity generalizes Einstein’s theory so that a “vacuum” result in gravity (i.e. 
only gravitons, interacting with gravitons), becomes a vacuum result in supergravity (in which the 
graviton is part of a gauge multiplet, including at least one J = 3/2 spinorial field). Thus, after the 
discovery of supergravity, the finiteness of the one-loop vacuum amplitude in gravity [306], which 
had prior to that been shown [ 150,15 l] to fail in the presence of spins 0, i, 1 matter fields, was 
now proved to hold in the one-loop “supergravity vacuum”, which contains, aside from gravitons, the 
matter fields belonging to the graviton’s supermultiplet. In extended supergravity with any N 6 8, it 
was shown [ 3311 that all vacuum amplitudes are finite, up to N loops. The graviton gauge super- 
multiplet in theories with N 5 4 includes fields with spins J = 0, i, 1, +, 2, thus curing defects such 
as had been encountered by Deser and van Nieuwenhuizen [ 150,151] ; but the same generalization 
caused by supersymmetry also causes the negative two-loops result in gravity [232,233] to reappear 
in (N + 1 )-loops in N-extended supergravity. 

With only X(2, C) left as local gauge symmetry, only the graviton stays massless. The fields in 
the gauge supermultiplet acquire mass, through a Goldstone-Higgs mechanism. In supersymmetrized 
gauge unification theories (superGUTs), this mass may be related to the scale of the weak interaction, 
as part of a solution of the “hierarchy” problem: How to constrain the electroweak symmetry-breaking 
Higgs field so that its GUT- and gravity-induced radiative corrections do not bring its mass up to 
GUT ( 10” GeV) or to Planck energy regions. 7 

The quantum gravity program that was based on supergravity has thus been useful, but cannot 
resolve the issue completely. It may prove necessary to the full program, but it is certainly insufficient. 
Nevertheless, one may speculate that, at the end, the metric-ufJine program may yet have to be 
reinforced through supersymmetrization. This would involve infinite-component spinor translation 
generators, a subject that has barely been “touched” to date [ 4891. 

’ According to recent experiments [ I], supersymmetric partners of the quarks and gluons of the standard model are 
excluded at a 90 % confidence level below 126 GeV. Since the allowed energy region for these supersymmetric particles’ 
masses (e.g. gluinos, squarks, etc..) is centered on 500 GeV and extends to 1 TeV, the final verdict will have to await the 
activation of the 8-10 TeV accelerator LHC at CERN (near Geneva), which will provide such center-of-mass values for 
the energy; see also the newly proposed UC of next footnote. 

’ The UC (“ultimate collider”) up to Planck energies is described by Akahito [5] as an “experiment of the month”. 
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2.9. Quantum super-string? 

With William Thomson’s idea of “vortex atoms” [675] coming of age in the shape of string and 
superstring theories, in recent years hopes for a $nite theory of quantum gravity have centered on 
the quantum superstring (QSS) [612]. Although the perturbation expansion yields finite terms, the 
summations do involve infinities [ 2481. However, that would still be true in quantum electrodynamics 
(QED) ; in perturbative treatments in quantum field theory these infinities are assumed to arise because 
of non-perturbative solutions and are regarded as an indication of the latter’s existence. Should we 
then consider the search for a theory of quantum gravity as having reached its goal and should we 
therefore cross it out as a motivation for the study of non-Riemannian gravitational theories? The 
basic assumption in the post- 1984 treatment of the quantum superstring [ 2381 “theory of everything” 
(TOE), an on-mass-shell S-matrix type theory, is that its truncation below Planck mass should go 
over smoothly into an off-mass-shell relativistic quantum (point) local field theory * (including a 
version of ten-dimensional supergravity, in one sector of the “heterotic string” [ 2471, for instance) ; 

thus, even if the search were over, the same geometrical-gravitational question then relates to that 
truncated “low-energy” field theory and its gravitational sector. Moreover, it has been pointed out 
[ 1051 that consistency would then require the low-energy $eid theory to be fmite by itseIf! This then 
implies the existence of a finite or renormalizable relativistic quantum field theory of gravity. 

As an S-matrix theory, the TOE should, for instance, provide the precise energy levels of positro- 
nium, including the (very small) gravitational contribution. QED gives us - to any order of the 
perturbation expansion - the electromagnetic component of these energy levels; the difference be- 
tween the TOE and QED levels is then a finite contribution of quantum gravity, which should be 
calculable within that low energy quantum field theory of gravity. 

Moreover, the success of the QSS as the$nal theory is not evident yet. In contrast to the psycho- 
logical impact resulting from the apparent uniqueness of the original superstring, with only Es x Es or 
SU( 32) as allowed internal symmetries, a very large number of superstring theories have subsequently 
been shown to exist, when reducing from the original 26 or 10 to our macroscopic four dimensions. 
These different theories have to be reinterpreted as different vacuum solutions of a meta-theory; the 
actual suggestion is to look for the non-perturbative solutions of a string field theory and to hope 
that some stability criteria will select the physical vacuum. Such string field theories have been con- 
structed, but the search for a theory with a finite set of candidate vacua is still on, resembling at this 
stage the traditional search for a needle in a haysack. 

String theory was originally developed in a flat embedding manifold (the “target space”) with 
linearized gravity. To go beyond weak fields and to include the successful tests of GR, it had to 
be adapted to curved spacetime, while relating the spin-2 graviton in the string Hilbert space to 
the presence of macroscopic curvature. Einstein had originally realized that the symmetric energy- 
momentum tensor density is the source of a curvature field; quantum field theory had pointed to this 
held’s particle realization as J = 2 gravitons, coupling to that energy-momentum tensor density. In 
the flat-embedding string the intermediate step is missing - and with it such effects as the precession 
of Mercury. 

Two approaches have been followed, in dealing with the embedding of the string in a curved 
manifold. Both lines of work have consisted in constraining the embedding space so as to preserve 

’ Point-local as against string-local. 
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the features required by quantization: (a) Unitarity through critical dimensionality, i.e. the cancellation 
of the conformal anomaly - or of the Liouville field, breaking Weyl invariance of the world sheet 
description, in the quantized string; (b) tachyon cancellation through the preservation of the action 
of the super-Poincare (flat supersymmetry) group; (c) the cancellation of the chiral anomaly, as 
obtained through the selection of the gauged internal symmetry group, e.g. E8 x E8. The main line 
of work has taken a renormalization group approach, i.e. imposing the above results by requiring the 
cancellation of the radiative corrections to the critical dimensionality, etc. [ 203,97,98,413]. Einstein’s 
vacuum equation then emerges as a result of such constraints; in first order, the theory involves in 
addition a scalar “dilaton” and an antisymmetric field. For strings which become “rigid” through the 
addition of extrinsic curvature terms [ 5631 to the conventional Nambu-Goto action, a Weyl-invariant 
formulation was developed [ 398-4011, relaxing the metricity condition (2.7.4), for instance. The 
alternative route [ 494 ] has consisted in developing a curved version of supersymmetry. 

Two further developments in string theory are relevant to the quest for quantum gravity. Work 
on non-critical strings, i.e. strings that therefore do not have the Liouville field cancelling in the 
quantized version (i.e. a breakdown of Weyl invariance on the world sheet). The technique of matrix 
models [249] has yielded for the first time information about non-perturbative solutions to quantum 
gravity - but only in two dimensional quantum gravity, which therefore makes for inconclusive results 
as far as non-Riemannian aspects are concerned. The other line of work has consisted in the study of 
extendons, i.e. classical and quantum extended structures with more than one spatial dimension, e.g. 
a quantum membrane [ 4841. In these constructions, the main criterion for utilizability as a TOE or 
as a theory of quantum gravity is to ascertain whether or not the model has massless solutions fitting 
the graviton. The most favorable model, in this sense, appears to consist [55] of an embedding of 
the ten-dimensional superstring in a quantized membrane, through the addition of one new spatial 
dimension to both ten-dimensional supergravity - the underlying low energy field theory - and to 
the string and its world sheet. In the low energy field theory, this is set to yield eleven-dimensional 

supergravity. 
Having said all this, we will now turn to the affine group and its gauging, leading eventually to a 

metric-affine geometric “arena” with fully liberated nonmetricity and torsion. 

3. Geometry 

3.1. Rigid afine group A( n, R) and its Lie-algebra 

In the flat n-dimensional affine space R”, the rigid affine group A(n, R) := R” CI GL(n, R) is 

the semidirect product of the group of n-dimensional translations and n-dimensional general linear 
transformations. This transformation group acts on an affine n-vector x = {x”} according to 

x--+x’=Ax+7 (3.1.1) 

where A = {nap} E GL( n, R) and r = {f} E R”. [The range of the Greek indices is: CY, ,6, . . . = 
0, 1,2 ,..., (n - 1) .] Thus it is a generalization of the Poincare group P := ti 61 SO( 1,3), with 

the pseudo-orthogonal group SO( 1, n - 1) being replaced by the general linear group GL( n, R), cf. 
[ 3471. The semi-direct product property of both groups is reflected in the rather complicated law of 
group multiplication: 
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(A,7) 0 (A’,#) = (AA’,A7’+7). (3.1.2) 

Therefore in the following it is more convenient to work with a Mobius type representation 
[ 355,447] for which we take the same symbol A(n, R) : It is that subgroup of GL( n + 1, R) which 

leaves the n-dimensional hyperplane % := (2 = (;) E R”+‘} invariant: 

A(n,R) = ; ; 
i( 1 

EGL(~+I,R)IAEGL(~,R),~ER” . 
i 

(3.1.3) 

Thus, by an affine transformation, we obtain ? = (,” y) (f) = ( “xr+;:7)r as is required for the action of 

the affine group on the flat affine space. 
The Lie algebra a(n, R) consists of the generators PY, representing n-dimensional translations, 

and the L”,, which span the Lie algebra gl(n, R) of n-dimensional linear transformations. Their 
commutation relations read: 

[Pm Ppl = 0, (3.1.4) 

Wp, P,l = qpp7 (3.1.5) 

[L”,, LYa] = &LYp - S’pL”& (3.1.6) 

Observe that the physical dimensions of these generators are [L”, ] = h and [P, ] = h/length. 
However, throughout this paper, natural units with /i = c = 1 are chosen. 

For n 1 2, the general linear group GL(n, R) has two connected pieces, one with positive and the 
other one with negative determinant. The most important component is the special (or unimodular) 
linear group SL,(n, R) the elements of which are continously connected to the identity and, addi- 
tionally, satisfy the condition det A = 1. Guided by the four-dimensional spacetime, we distinguish, 
besides the group unit 1, the operators T, P, J := TP E GL( n, R), which would correspond to time, 
space (parity), and total rejlections, respectively. For n 2 3, we can invariantly characterize them, 
after factoring out SL, (n, R) -transformations, by the following properties: 

T: detT = -1, trT=n-2, 

P: det P = (-1)“-‘, trP=2-n, 

J: detJ = (-l)“, trJ= -n. (3.1.7) 

The unconstrained determinant of GL(n, R) contains, aside from the R+ corresponding to the 
Abelian Lie subgroup of group elements A E GL(n, R) with positive determinant, the time reflection 
T E GL(n, R) with det T = -1 by definition. For dimensions n 1 2, we are thus lead to the 
isomorphic decomposition 

GL(n, R) = [T cx SL(n, R)] x Rf. (3.1.8) 

This decomposition induces the following splitting of the infinitesimal generators of the general linear 
group into the generators of traceless 9 linear transformations ,E‘ln p and dilations i” D: 

‘) Quite generally, for an arbitrary quantity BUp with two indices, we define its traceless part, the so-called “deviator” of 
continuum mechanics, according to pU P := BUP - ( I/n)&?& with B := BYY. 

I” Dilatations or dilations? “Since darkness dilates the pupils of our eyes and does not dilatate them, we see no reason for 
the extra ‘ta’ “. Cited from [642, p.371. 
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L”, =/AT p + (l/n&D, D := LY,. 

For the dilation generator, we find the following commutation relations: 

[D, Dl = 0, 1’0, Pal = Pa, [D,P “pl = 0. 

3. I. I. Additional structures in the presence of a metric 

If the flat affine space carries a metric g = gap dx” @J dxfl with components 
indices and a finer splitting of the general linear group can be achieved: 

21 

(3.1.9) 

(3.1.10) 

g,p, one can lower 

(3.1.11) 

Here L,, := L,,pl are the generators of Lorentz rotations, pCafl,= L,,p, - (l/n) g,+ LY, represent 
shears, whereas D := Ly, generates dilations. The first two pieces on the right-hand side of (3.1 .ll) 
correspond to the decomposition 

sZ(n,R) =k@5= so(n) @rJ (3.1.12) 

of the simple real Lie algebra sl( n, R) of SL(n, R) into the maximal compact subalgebra & and its 
noncompact part ~2. In our case this amounts to the well-known decomposition of a traceless square 
matrix into its skew-symmetric and its traceless symmetric parts. 

As noted above, the A( n, R) is an n-dimensional generalization of the Poincare group P := 

R“ cz SO( 1,3), with the pseudo-orthogonal group SO( 1, y1- 1) replaced by the general linear group 
GL( II, R). This point of view, however, is no longer useful when one compares the two groups with 
respect to algebraic deformations of larger semi-simple geometrical transformation groups. Whereas 
the Poincare group can be obtained by a Wigner-InSnii contraction from the de Sitter groups SO( 2,3) 
or SO( 1,4), cf. [ 2341 for the corresponding gauge theories, the A(n, R) cannot be derived by a 
group contraction, neither from GL(n + 1, R), nor from any other semi-simple group. ” 

3.2. Afine gauge approach 

In a matrix representation analogous to (3.1.3), we can write the affine gauge group l2 as 

” Contraction of GL( n + 1, R) or of the SL( n + 1, R), or of the related projective group pGL( n, R) = SL( n + 1, R) /Z, 
with Z denoting the center, yields the graded aftine group A* (n, R), with two Abelian subgroups instead of one. The origin 
of the two sets of “translations” can be exhibited by rewriting [ 355, p.1321 the sl( n + 1, R) algebra, that generates these 
groups, as the graded algebra a* = R” 6B gl(n, R) CT+ R’“. Although this decomposition of sl(n + 1, R) seemingly looks 

like a generalization of the conformal group, with so( 1, n - 1) replaced by gI( n, R), one cannot identify the RR and R*” 

pieces with translations and special conformal transformations, respectively. This is related to the fact that it is impossible 
to find both sl( n, R) and the conformal generators’ algebra conf(n, R) as subalgebras of the same finite dimensional Lie 
algebra. Indeed, Ogievetsky [ 5331 has proved the following important theorem: The algebraic closure of sE( n, R) and 
conf( n, R), when these algebras are defined over the same n-dimensional manifold [non-linearly for conf(n, R) 1, is the 
infinite-dimensional algebra of analytical diffeomorphisms Diff( n, R): [ sl( n, R), conf( n, R) ] = diff( n, R) . A corollary to 
this theorem then states: There is no finite matrix embedding sZ( n, R) in its defining form simultaneously with the generators 
of special conformal transformations on the same manifold. 
‘* In contrast to the structure group G = A(n, R), the gauge group B consists of spacetime-dependent group elements g(x) 

and is thus injnite-dimensiona/. This intuitive notion is made more precise in the fiber bundle approach [ 226,356,684,685], 

where one introduces first the bundle of afine frames A(M) := P (M,, A( n, R), T, 6); here T denotes the projection to the 
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d(n, R) = 
K 

“b”) ‘(,)) 1 /i(x) E GL(n, R), T(X) E I(,, R)}. (3.2.1) 

In accordance with a Yang-Mills type gauge approach, we introduce the generalized a&e connection 
[ 3561 (cf. also [ 213,214,525,564,694] ) : 

F= (f”’ ‘b”) = (rb”);Lff, ‘“6”“). 
(3.2.2) 

It is a one-form ? = Fj dx’ and transforms inhomogeneously under an affine gauge transformation: 

r ---+ r = A-‘(x) ?A(x) + A-‘(x)dA(x), 
= A-‘(x) =, 

A(x) E d(n, R). (3.2.3) 

Following Mack [417], we regard a transformation as an active l3 one, if it is formed with respect 
to the group element 

A-‘(x) = 

( 

n_kx) -n-1(;)7(x) , 

> 

which is inverse to A(x) E d(n, R). 

(3.2.4) 

The corresponding affine curvature is given by 

i:&+;r\; =(“b” ‘I’)=( 
dr(L) + r(L) A r(L) dr(T) + r(L) A r(T) 

o o ), (3.2.5) 

where the exterior product of Lie algebra-valued forms has to be evaluated with respect to the adjoint 
representation Ad A(B) = [A, B] . It transforms covariantly under the affine gauge group: I4 

R + R = A-‘(x) ;A(x). 
= A-‘(x) =, 

(3.2.6) 

The exterior covariant derivative E := d + ;A acts on an affine p-form g = (7) as follows 

5; = 

( 

dq + FL) AT + rcT) 
0 

>=("*'o'"'). (3.2.7) 

base manifold and S the (left or right) action of the structure group A( n, R) on the bundle. Gauge transformations are 
vertical automorphisms of P. These are diffeomorphisms of the bundle P which preserve each fiber, i.e. act trivially on the 
base space. In general, the infinite-dimensional gauge group can be identified with E = Coo ( P x Ad G) , where the cross 
section in the associated bundle is abbreviated by Coo and Ad denotes the adjoint representation with respect to G, cf. [ 731. 
Theaffinegaugegroupd(n,R) :=C”(A(M) xAdA(n,R)) containsthegroupG&n,R) :=Cm(A(kf) xAdGL(n,R)) 
of linear gauge transformations and the group T( n, R) := C”( A( M) x~d R”) of local translations as subgroups. Due to its 
construction, the group I( n, R) is locally isomorphic to the group of active diffeomorphisms Diff(n, R) of the manifold 
[ 533,6.56]. We will not go any further into the bundle action of gauge groups, but refer the reader to [73,196,447,656] 
for details. In the more intricate case of the semidirect affine group, there may also exist a close interrelation of nonlinear 
gauge realizations [ 408,589,592,326] and induced representations [681,619,620,444], cf. appendix C.6. 

” We regard, in accordance also with Dewitt, cf. [ 1571, active diffeomorphisms or vertical automorphisms as those 
transformations which arise from a shift of a point in the manifold or in the fiber, respectively. Infinitesimally these actions 
can be expressed by Lie derivatives. Thus activ diffeomorphisms are equivalent to local translations, whereas vertical 
automorphisms yield (3.2.3) for the pull-back of the connection. On the other hand, passive transformations correspond to 
a mere relabeling of the coordinates, under which Cartan’s exterior differential forms [ 1031 are invariant by construction. 
I4 Our matrix formalism, cf. [447,427] and references therein, is a spacetime generalization of the so-called motor calculus 

of von Mises [465,466]. 
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Only by imposing the gauge f (r) = 0 one would recover the covariant exterior derivative D := d+FL) 
with respect to the linear connection r(‘) = f,fl p( Lap). Its ’ ac tion on (geometrical) fields depends 
on the representation type p to be specified later on. The Ricci identity takes the form 

NNZZ 

DD?P= 
DDly + DZ-’ 

0 
= i; 

After substitution of (3.2.2) and (3.2.4), the inhomogeneous transformation law (3.2.3) splits into 

I 
f(L) A_) f(L), = n-1 (x>f%i(x> + n-‘(x) &l(x), (3.2.8) 

f(T) - f A-‘(*) (r)r 
= A-‘(x)fCT) + A-‘(x) DT(x). (3.2.9) 

The local translations r(x) automatically drop out in (3.2.8) due to the one-form structure of fCT). 
Thereby (3.2.8) acquires the conventional transformation rule (with the exterior derivative d) of a 
Yang-Mills-type connection for gfZ(11, R). Thus we can identify fCL) = f = f,fi Lap with the linear 
connection. Due to the covariant exterior derivative term DT(x) := k(x) + fCL) T(X) in (3.2.9), the 
translational part f V) does not transform as a covector as is required for the coframe 9 := iFPa, i.e. 
a one-form with values in the Lie algebra of R”. 

However, it is suggestive to follow Trautman [683] and to introduce a vector (vector-valued 

zero-form) 4 = (f) = (5;‘“) which transforms as F = A-’ (x)$, i.e. as 

I 
[A+t = K’(x) (5 - 7(x)) 

under an active affine gauge transformation. Then 

(3.2.10) 

6 := fCT) + Dsf 

transforms ” as a vector-valued one-form under the A( It, R) , as required: 

(3.2.11) 

-9-Q)& = n-‘(x)& (3.2.12) 

By differentiation of (3.2.11)) the translational part of the affine curvature turns out to be 

R’r’ := Df’*’ = (T” - Rg’“tfi ) p,, (3.2.13) 

that is, the translational curvature contains, besides the torsion, a piece l6 induced by the linear 
curvature RcL). The vector field & is also found, perhaps in a more natural way, in the context 
of a group theoretical analysis of the gauged non-linear realizations of the translation group, see 
[ 408,340,341,326]. 

If fcT) vanished throughout the manifold, the vector field 6 would represent a n-dimensional 
version of Cat-tan’s generalized radius vector [ 1031. The integrability condition is, in this instance, 
given by the vanishing of the translational part of the affine curvature (3.2.5), i.e. RCT) = 0, which 

implies T” = R, (L)a,$p Incidentally, we correct hereby a sign error in [457]. . 

I5 The canonical soldering one-form 6 := StSC @ ea = 6” @ e, would transform trivially under affine gauge transformation, 
cf. [617, p.3421. 
” One of us appreciates extended discussions which he had on this point with Luciano Mistura (Rome). 
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In a spacetime with a metric, a specific solution of the integrability condition would be RcL)@ = 
Rap = ai?” A 8p and T” = -agp,S” A I~-P~Y, with the dimensionful constant a. For teleparallelism 
models with RcLjB = 0, the integrability condition yields a vanishing torsion. LI 

3.3. Reduction to the metric-afJine framework 

In components, our key relation (3.2.11) takes the form 

(3.3.1) 

which, for Dip = S$, makes contact with the approach of Hayashi et al. [ 262-2641, see also [ 4711. 
This condition identifies the coset space A( n, R)/GL(n, R) M R” with the cotangent space T’( M,), 
cf. Niederle [ 5 131. In a recent paper [ 2431 on the Poincare gauge approach, the p are kinematically 
interpreted as “Poincare coordinates”; note that in Eq. (2.14) of that paper, vielbein and translational 
connection are identified opposite to our notation. Observe also that we do not have to put the 
“Poincare coordinates” 5” to zero, in order to obtain the affine gauge transformation law (3.2.12) of 
the coframe. The reason is that the local translations are now “hidden” in the invariant transformation 
behavior of the exterior one-form 4 under (passive) diffeomorphisms. Note also that in our approach 
in [457] we have shown of how to avoid a degenerate coframe. In contrast to Sex1 and Urbantke 
[ 617, p.3811, we do not need to break the affine gauge group kinematically via DT(x) = 0. There 
are attempts [593] to motivate the translational connection (3.3.1) from the theory of dislocations, 
whereas Hennig and Nitsch [ 3001 provide an explanation in terms of jet bundles. 

Since 5 = pPu acquires its values in the “orbit” (coset space) A(n, R)/GL(n, R) FZ R”, it can 
be regarded as an affine vector field l7 (or “generalized Higgs field” according to Trautman [ 6841) 
which “hides” the action of the local translational “symmetry” I( 12, R) . We believe that the story of 
the 5 has not yet come to an end and that future developments on this point are possible. Probably 
one has to come up with an idea of how to construct an explicit symmetry breaking mechanism. For 
the time being, however, we require the condition [ 5611 

D[=O (3.3.2) 

to hold. Then the translational connection r (T) together with the coframe 6, is soldered to the , 

spacetime manifold, cf. [ 6411, and the translational part of the affine gauge group is “spontaneously 
broken”, cf. [540-5421. We may even postulate the stronger constraint of a “zero section” vector 

field 5 = 0. Then the generalized affine connection ? on the affine bundle A(M) reduces to the 
Cartan connection [ 3551 

(3.3.3) 

on the bundle L(M) of linear frames. Due to (3.2.12)) this is not anymore a connection in the usual 
sense. 

” In the anti-deSitter gauge model of gravity of Stelle and West [653], the p parametrize the coset space 

SO( 2,3)/SO( 1,3). The coframe 6” and the Lorentz connection Fap = --Ffi can then be derived from the original 
SO( 2,3)-connection via a nonlinear realization of that group involving the &field. Such a Cartan connection arises not only 
from a reduction of (anti) -deSitter bundles [ 2341, but also from conformal G-structures [ 2981. 
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This affects also the measurability of a connection. Quantum interference measurements depend 
on the non-integrable phase factor U( A, y) = P exp [(i/h) $A], where A = AiJ AJ dx’ is a Yang- 
Mills type connection. If the loop y lies in a field-free region, i.e., one with Yang-Mills curvature 
F = dA + A A A = 0, but encloses a region with “magnetic” flux F # 0, the potential A can still be 
measured ( Aharanov-Bohm effect) via the amount of phase shift for closed loops. The same would 

hold true for a gravitationally induced phase factor U( ?, 7) = P exp [ (i/h) f( rcTja Pa + rLL)fi Lap) ] : 

For a field @ carrying no GL(4, R) excitations, i.e. no spin, no shear, and no dilation, we need a 
closed loop y to detect the gravitational analog of the Aharonov-Bohm effect in a conical space, 
since outside the (rounded) apex of the cone there is r (T)nAO locally. This analogy would break 
down, however, if one considered, instead of the true translational potential r(*ja, the coframe 6” 
soldered to the spacetime manifold, cf. Anandan [ lo]. Because the coframe is non-degenerate by 
definition, it could be measured even by a non-closed loop, showing its essential classical character. 
Since the dimension of Pa is 27+5/l, the gravitational analog of Dirac’s quantization condition would 

be U( ?, y) = (27rtiM,G/tilc*) = 27rn, i.e. the mass would turn out to be a multiple M, = nMp~anck 

of the Planck mass. 
Anyways, if additionally a metric is given, we recover the familiar metric-affine geometrical arena I8 

with nonmetricity, torsion, and curvature, as is summarized in Table 1. 

3.4. DifSerentiable manifold M,, frames, and coframes 

A geometrical arena which is large enough to eventually carry the Cartan connection (3.3.3) is an 
n-dimensional differentiable manifold M,. At each point P of M,, there is an n-dimensional vector 
space Tp (M,), the tangent vector space at P. We introduce a local vector basis, the local frame 
(or vielbein) e,. Here we adhere to the following conventions: a, p, . . . = 0, 1,2, . . . . (n - I ) are 
anholonomic or frame indices, i, j, k, . . . = 0, 1,2, . . . . (n - 1) are holonomic or coordinate indices, and 

A denotes the exterior product. In terms of the local coordinate basis a, := a/&‘, the frame e, can be 
expanded according to 

e, = e’, a, . (3.4.1) 

In order for e, to serve as an anholonomic basis, the eia are required to be non-degenerate, i.e. 

det eia # 0. In the cotangent space Tp* (M,) there exists a one-form basis or a coframe 

-9-O = e.iP dS . (3.4.2) 

As a cobasis, the ej’ have to be non-degenerate as well. Moreover, the ‘duality’ of the frame e, and 
the coframe with respect to the interior product J requires for the frame and coframe coefficients that 

euJ@ = eia eip = Sf . (3.4.3) 

For the translational gauge potential rcrjcr this condition implies 

en_K a (T)P=@-Da+@, (3.4.4) 

Ix Among the few textbooks which stress the importance of the interplay between affine and metric structures in the set-up 
of a theory of spacetime, we mention those of Kopczyliski and Trautman [367] and of Ludwig [414], cf. Weyl [ 7171 and 
Cartan [ 1031. 
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since 05” = 0 for a Cartan connection. This is another manifestation of the ‘soldering’ of the frames 
to the manifold. 

In an M,, the frame e, is determined only up to a local linear transformation (general frame 

deformation) 

e, -t e& = A(x),V p(LpV)Je, = A,“(x) e, , (3.4.5) 

whereas the coframe, as part of the Cartan connection (3.3.3), transforms according to (3.2.12) or, 
more explicitly, as 

9” + 6’” = /i-‘(x),“p(L”,),Q’ = n-‘(x)/P. (3.4.6) 

The basis of gl(n, R) acts on a geometrical object of representation type p via p( Lap). In the case 
of the frame (3.4.5), for instance, the corresponding representation is the Cartan-Weyl basis given 
by Kronecker deltas, i.e., p(PV)$’ = 8: St. 

In the M, we can use the operator of exterior derivation d and, of course, exterior A and interior 
1 multiplication. We call 

Cy := day = ;Capy6” A 19~ (3.4.7) 

the anholonomity two-form, which is not a gauge-covariant object. The components of the an- 
holonomity Cy can be obtained by repeated interior multiplication with the frame e,: 

c & y = eple,]CY = 2e’,eJpa liellY. (3.4.8) 

In the ‘holonomic gauge’ where Cy vanishes, we have a natural (or coordinate) coframe. 
It has been noted already by Bergmann and Komar [53] that the apparent additional geometrical 

degrees of freedom, which are represented by the n* coefficients eiU( x) of the coframe one-form 
6” = ein (x) dx’, can be absorbed by the action of the infinite-dimensional gauge group GL( n, R) of 
local linear transformations. An element of this group of automorphisms of the linear frame bundle 
may be locally represented by A(x) = naa(x) L”,. The spacetime-dependent parameters Amp(x) 
consist of n-dimensional rotations (or Lorentz transformations), shear transformations, and scale 
transformations of the frames (“local Weyl transformations” [ 3591) . 

In an M, we can define the Lie derivative of a scalar-valued p-form !P with respect to a vector 
field u as a rate of change of the p-form if transported along the vector. One finds (see [ 1211) : 

l,.P := ujdP + d(uJ!P) . (3.4.9) 

The properties of this derivative are listed in (A.1.37). This expression is not gauge-covariant for 
tensor-valued forms and needs to be generalized. 

3.5. Connection, exterior covariant derivative, torsion and curvature 

In order to allow for a covariant differentiation of a tensor-valued form, we use the linear part of 
the Cartan connection (3.3.3) characterized by a one-form r which has values in the Lie algebra 
g1( n, R) of the genera1 linear group GL(n, I?). Hence r is expressible as 

r = I-/L”B, rap = riap dx’, (3.5.1) 
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where the r,p’s are one-forms. A manifold M, that is equipped with a linear connection r will be 
called [606] a finearty connected manifold L,. 

According to (3.2.8), the components of the linear connection transforms inhomogeneously under 
a local linear gauge transformation 

r/--f r, ‘P = A(x),yry%rl(x)g~ - n(~),ydn-I(X),? (3.5.2) 

This is still a passive transformation, but with inverted factor ordering. The difference between two 
different connections behaves tensorial again: 

Ar 
n 

P := (l)r 
0 

P _ (2)raP, Al-y = A(x),yArySA-'(x)~~. (3.5.3) 

If in (3.5.2) we pick a transformation which leads from a holonomic to an anholonomic frame, I9 
that is, _K’ (x) in = ei”, then we find 

dein + rpa eip - ri’ eja = 0. (3.5.4) 

This is not a separate condition “De;” = 0” on the tetrads, as often erroneously stated in the literature, 
but merely a relation which allows to compute the holonomic components r,’ in terms of the 
anholonomic ones rPU, or vice versa. 

For a tensor-valued p-form density of representation type p, the GL(n, R)-covariant exterior 

derivative is given by 

D := d + rap &Lap) A. (3.5.5) 

As an example, a vector-valued p-form QD” differentiates as 

D@* = d@” + rpa@. (3.5.6) 

For a lower GL(n, R)-index, as in !Pa, a minus sign should be used instead. If we have a density, 

say +a, of anholonomic weight o, then the trace r := raa of the connection appears, due to 
p( Lap); = -S;S$ - ~8; SE, explicitly in the covariant derivative: 

(3.5.7) 

In general the weight w is different from the dimension dp of the field q, 
Alternatively, one can derive this relation from the postulates that the Levi-Civita n-form density 

of (A.1.15) is covariantly constant and that the Leibniz rule is valid even if a density is involved. 
Note that the minus sign in front of the o-term in (3.5.7) also occurs if a quantity with an upper 
Lie algebra index is differentiated, see [ 6051. By applying the exterior covariant derivatice twice, we 

arrive at the Ricci identity 

DD = R/p( L”,) A, (3.5.8) 

which, if applied to a vector-valued zero-form, is often used for defining the curvature two-form Rap, 
see (3.5.10). 

I’) This transformation provides a transition from an anhotonomic to a holonomic cross section of the linear bundle. 
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The field strengths associated with the coframe and the linear connection are given by the torsion 
two-form 

T” = 06” = di?” + rPa A I?~ = ;TPyn W A b”, (35.9) 

and the linear part of the Lie-algebra-valued curvature two-form (3.2.5), respectively. From the 
commutation relation (3.15) and (3.1.6) of the affine algebra, we find for the components of the 
curvature: 

R/ = dT/ - ray A TrP = +R,,/W A 6”. (3.510) 

The left hand sides of (3.5.9) and (3.5.10) constitute Cartan’s first and second structure equation, 
respectively. 

A big boost for the application and in the visualization of torsion was Kazuo Kondo’s 1952 
discovery [ 3601 (see also [ 373,352] ) of the possibility of describing a quasi-continuous distribution 
of dislocations in three-dimensional crystals by means of a torsion field. From this example it is 
immediately clear that the torsion field can encompass singularities. For the curvature this sort 
of behavior is well-known from GR. There, a singular metric may induce a singularity in the 
curvature as, for example, in the vacuum Schwarzschild solution at the origin (vanishing radial 
coordinate). However, torsion singularities - being induced by a singular coframe and/or a singular 
linear connection - are qualitatively different therefrom and should be studied in their own right, as 
was first pointed out by Nester and Isenberg [ 5 111, see also Baker [ 301, Edelen [ 1771, Garcia de 
Andrade [217], Tod [678], and Zhang and Chen [736]. 

We have demonstrated explicitly that torsion and curvature are merely parts of the generalized 
curvature of the Cartan connection discussed above. According to (3.4.6) and (3.5.2), torsion and 
curvature transform as 

T” --+ T’” = il-‘(~)~~ TP, 

R,P --+ R&p = /I(x),~/~-‘(x)/ R,’ 

under a linear gauge transformation. 

(3.511) 

(3.5.12) 

Having now a prescribed connection at our disposal, we can, in generalizing the notion of the 
ordinary Lie derivative (3.4.9) of a scalar-valued form, come up with the notion of gauge covariant 
Lie derivative of a Lie algebra-valued form ?P with respect to a vector u (see [ 504,506,5 10,674,704 J ) : 

t,.ly := UJ DP + D (ujly) . (3.513) 

In deriving the Noether identities in section 5.2, this gauge-covariant notion20 will be of great help. 
Alternatively, Eq. (3.5.13) can be put into the form 

L,.P = 1,~ + (ujr/)p(LyP. (3.5.14) 

Later on in (3.11.9), we will employ the covariant exterior derivative b with respect to the 
transposed connection (see [ 607,682] ) 

?,,4 := rap + e,]TP. (3.5.15) 

2” The ‘ordinary’ Lie derivative f,, of (A. 1.38), which is already defined in an M,, does not coincide with the t,. of above. 

These two operators are interrelated by f,,P = LE,9 - ( oOup)p( L”p)P, 0, := e,J 6. 
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Its somewhat unclear role becomes more transparent by the following observation: If applied to 
vector components Us, the transposed derivative is identical to the gauge-covariant Lie derivative of 
the coframe with respect to the vector, i.e. 

t,. 6” = D LF. (35.16) 

3.5.1. Geometric interpretation of torsion and curvature 

In section 3.2 the affine connection ? and the affine curvature E are defined in the standard Yang- 

Mills manner. If, by means of F, an affine vector E is parallelly transported around a small closed 

loop, an affine transformation of z is induced, the linear piece of which is determined by the linear 
curvature RcL) and the translational piece by the translational curvature RcT’, see (3.2.13). In order 
to recover this sort of behavior on the level of the L,, we have to introduce the so-called Cartan 

transport: 
In a flat L, - that is an L,, with R,fl = 0 - a parallel vector field 6 = 5” e, is one that satisfies the 

equation 

0s” =o, (35.17) 

compare also (3.3.2). In an arbitrary linearly connected space L,, the 
(35.17) is 

DDC” = R,“lP = 0. 

integrability condition for 

(3.5.18) 

If the curvature tensor Rpn does not vanish, we may still integrate (3.5.1 7) along a curve in order 

to get a vector which is parallelly transported along this curve. A standard calculation shows that if 
a vector l is parallelly transported around an injinitesimal closed loop, it is linearly deformed by an 
amount proportional to the curvature x area enclosed by the loop. An explicit statement of this result 
will be included in a more general result to be derived below, see (3.5.24). Note that the torsion 
plays no role here. 

In order to find a context in which torsion does enter, let us consider an extension of the propagation 
law (3.5.17) along the lines of Cartan [ 1031 (cf. [ 6831). Returning to the flat L,, we may define a 
radius vector field (or position vector field) 5 as one that satisfies the equation 

05” =6”, (3.5.19) 

which corresponds to I’ U% = 0, compare (3.2.11). Let us refer to (3.5.19) as the equation of a 
Cartan transport (‘rolling without sliding’). In terms of a Cartesian coordinate basis ai with 5 = 5’ di, 
Eq.(3.5.19) is simply ajr’ = $ and hence 5’ = xi + A’, with A’ as a constant vector, so that 5’ is 
the radius (or position) vector of xi with respect to an origin xi = -A’. In an L,, the integrability 
condition for (3.5.19) is 

DD5”-DP=Rp”[P-TT”=0. (3.5.20) 

Hence a necessary condition for the existence of global radius vector fields 6 is vanishing translational 
curvature; sufficient for this is zero torsion and zero linear curvature. Note that a metric is not 
necessary in the context of these considerations. 
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Suppose now that the torsion and curvature are non-zero and we integrate (3.5.19) around a closed 
infinitesimal curve C, with tangent vector U, beginning and ending at a point P having coordinates xi. 
Let Q be any point on the curve with coordinates xi + yi and Q’ a neighboring point with coordinates 
x’ + yi + dy’. The equation of the curve is of the form y’ = y’(t) and the tangent vector field is 
u = (dy’/dt) &. Then (3.5.19) becomes 

dS” a dy’ - - ripa p dy’ 
dt = e1 dt dt 

(3.5.21) 

Thus the change in 5” in the displacement from Q to Q’ is 

d5” = (e,“dy’ - r,aa~%i)l(,,+~,~. (3.5.22) 

Following Cartan [ 1031, we may interpret this equation by looking upon the tangent spaces at Q and 
Q’ as affine spaces. Eq. (3.5.22) tells us that the mapping bringing the point 5” in the tangent space 
at Q to 5” + dp at Q’ consists of a soldered translation ei” dy’ and a linear deformation -rip” dy’ [fi. 

If we now make a Taylor expansion about xi of the functions eia(x + y) and ripa(X + y) and 
apply (3.5.22) to the infinitesimal displacement xi ---t xi + y’ to get [p(x + y) = tp(x) + ej’yj - 
r,,,fl(x)[p(x)yj, then Eq. (3.5.22) becomes 

d[” = d( ein$ - r~p”~‘Y’) + ( cjm - Rij,“~P)y”dyj’. 

Hence, on integrating around C, it is found that the total change in 5” is 

(3.5.23) 

A[” N (Tj” - Rijp”[‘) j yli dy” = i (Kjii” - Rijp”[‘) / dy’ A dy’, (3.5.24) 

C s 

where S is the two-dimensional plane element enclosed by C. The N sign indicates that the surface 
S is so small that the components of curvature and torsion are constant in this area and can be taken 
in front of the surface integral. Thus, in going around the infinitesimal closed loop C, the vector 5 
undergoes a translation and a linear deformation of the same order of magnitude as the area of S, the 
translation being determined by the torsion and the linear dkformation by the curvature. 

The Cartan transport may also be understood from the aftine point of view. The affine version of 
(3.5.17) reads 

XN 

D5”= 
daf” + I-CL) A 5” + r(T)n 

0 , 

see (3.2.7). Parallel-transport along a tangent vector y of the Car-tan circuit yields 

(3.5.25) 

(3.5.26) 

Integration of the first one-form on a closed loop parametrized by y yields 

A5” = - ~ Y] (00~~) = f yj R’T’cr = J’ R’T’” 21 ~ (75i” - R,” 5’) S dy’ /\ dy’, (3.5.27) 

C C s s 

see (3.2.13). This derivation is much nicer than the component approach starting with (3.5.19). 
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3.6. Affine gauge transformations versus active diffeomorphisms 

The affine gauge transformations in (3.2.3) are finite transformations. If we expand them up to 
first order according to 

A(X) = I + w/L”, +. . . , 

r(x) = 0 + &“P, +. . ., 

we obtain from (3.2.8) and (3.2.9), respectively, 

(3.6.1) 

(3.6.2) 

a,& 1 PL) = ( Dw,p) L”, + . . * ) (3.6.3) 

aA--’ F = (DE, + q3F)P) P, + . . . . (3.6.4) 

Incidentally, for the “product” of Lie generators we use the Lie brackets of section 3.1, since we work 
in the adjoint representation. It is gratifying to note that the leading exterior covariant derivatives 
reveal, in particular, that the translational connection r(r) is really the “compensating” field for 
infinitesimal local translations E in the Yang-Mills sense. 

Let us compare this result with the “diffeomorphism” approach, which was orginally developed for 
the Poincare subgroup of the A( n, R) : In essence, the translational part E = .sa P, of the transformation 

11= 1 + & + w = 1 + &“P, + w/L”,, (3.6.5) 

is embedded as an n-parameter subgroup in the infinite-dimensional group of active diffeomorphisms 
of spacetime. In order to calculate the effect on the linear conection and the coframe, one has to 
consider the action [268] of the Lie derivative L, with respect to the vector field E together with an 
infinitesimal frame rotation parametrized by w. Since L, = 1, holds for geometrical objects which are 
invariant under changes of the basis, a straightforward calculation yields 

(Cc, + 6,)F= [D(u/ + EJfy) +&JR/] L”,, (3.6.6) 

(Cc, + &)6= [DEn - (up” + &Jzy)@ +&pa] P,. (3.6.7) 

The “annoying” linear connection terms in (3.6.6) and (3.6.7) can be dismissed by going over to the 
parallel transport version of the theory, as presented in [ 275,479], for example, in which, instead of 
P,, the covariant derivative components D, := eaJD are adopted as generators of local translations: 

Then the infinitesimal transformations read 

fi = 1 + ca D, + o/L”, = I7 - &J T/L”,. (3.6.8) 

Since this amounts to a redefinition i;, := w -c] rapLap of the parameters of the infinitesimal linear 

transformation, we can simply read off, from (3.6.6) and (3.6.7), the new results 

(Cc, + &,)T= [Do/ + .FJ I?/] L”, (3.6.9) 

(Ls + S,)S= [D8 - ~~“8~ + cjTa] P,. (3.6.10) 

In this parallel transport version, the leading covariant derivative pieces are the same as in the affine 
gauge approach. In particular, the “hidden” translational piece in the afine transformation (3.2.9) of 
the coframe gets thereby “uncovered” in (3.6.10). In the end, is it “...somewhat a matter of taste...“, as 
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Nester [ 5041 has put it, whether or not one prefers the parallel transport interpretation of translations 
over the affine gauge approach? One could argue that the Pauli-type curvature and torsion terms in 
the infinitesimal transformations (3.6.9) and (3.6.10) violate the spirit of the principle of minimal 

coupling, a cornerstone of a conventional Yang-Mills type gauge approach. 
These terms also show up in the commutation relations for the operator D, of parallel-transport, if 

applied to a zero-form. Let us start with the identity fiy A (e,]ly) = p!P for any p-form ly. Then we 
get from 

(p + l)DDq = D r\19~ A (e,JDF) = TY A (e,]Dly) - fiy A D(e,jDp) 

and the Ricci identity (3.5.8)) the relation 

(3.6.11) 

6” A tip (e,]D(epJDly)) = -(p + l)TY A (e,JDly) + (p + l)*R,“p(L~“,)W. 

If p is a zero-form, Eq.( 3.6.12) reduces to the commutation relation (see [ 275,479] ) 

(3.6.12) 

L<,A,l = [Da, &I = -LpY~y + &,“p(~‘“,L (3.6.13) 

cf. (2.4.1). Thus in a space with torsion and curvature the translations do not commute any longer, 
their Lie-algebra gets deformed and the former structure constants become x-dependent functions. 

Such a softening [ 3451 of the Lie algebra structure cannot be avoided in a diffeomorphism-type 
approach. Using the covariant derivatives (or Lie derivatives) has the advantage of being physically 
meaningful as a parallel transport, as explained in Ref. [272,275], once we put up a frame, and, in 
a corresponding first order approach, these ‘non-minimal’ structures do not touch the explicit form 
of the Lagrangian. However, they are algebraically less useful because (3.6.13) is not a Lie algebra 
any more. 

3.7. Metric 

For building up a macroscopical 
us to measure lengths and angles. ̂ , 

physical theory, we need a geometric structure which will enable 
This is provided by the Riemannian metric g, a non-degenerate 

second order covariant symmetric ” tensor field. In the L, we introduce, besides the connection r,p, 
an independent local metric structure by 

g = gap@ @ @, gap = g(e,, ep>. (3.7.1) 

A simple way to introduce a metric tensor field explicitly is to specify its n( n + 1)/2 independent 
components g;i E g(a;, Jj) with respect to a given holonomic basis di: 

g=gijdX’@dX’, g,, = g(Iai9 aj> = gjt. (3.7.2) 

The transition between the holonomic and anholonomic formulation is given by 

g,p = e’,e’pgii. (3.7.3) 

We assume that the metric is non-degenerate, i.e. det gap Z 0. 

*’ In contradistiction to Moffat’s approach [467], we do not allow an antisymmetric part in the metric tensor, since it does 
not lend itself to a direct geometrical interpretation. 
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Let us consider, using standard results from linear algebra [ 2411, the properties of the matrix gaP 
at an arbitrary point P of the manifold: Because the matrix gap is symmetric, we can diagonalize 
it. Starting with a general frame field err with respect to which the metric components are given 
by (3.7.1), it is always possible to make a suitable local deformation &p(x) to another frame 
e: = nQp( x) ep such that 

J& = &‘(x)ApY(x) g,, = diag (Ao, &,Ax,...,~I) (3.7.4) 

is diagonal. We can normalize and rearrange the basis vectors e& in such a way that they yield 

g(&,zP) =& =diag (-1,. ..,-l,+l,.,., +l) (3.7.5) 
-- 

=: Oap . 

Ind(g) n-Ind(g) 

We call such a basis z, a (pseudo)orthonormal basis. The natural number Ind(g) is the index 22 of 
the metric. According to Sylvester’s law of inertia, the index is an invariant which is independent 23 
of the particular orthonormal basis one arrived at. Only if we allow for degenerate metrics, see 
[ 174,586,183,147,143], then the index may change in different parts of the manifold. 

The matrices i(x) E G(n, R), which ‘rotate’ one orthonormal basis into another one, are de- 

termined by the equation plnfi(~)&~(x)o~~ = oap. They build up the pseudo-orthogonal group 

O(Ind(g), n - Ind(g) 1. 
If the metric is not positive (negative) definite, then there exists the ‘lightcone’ 

LCp :={KET,(M,)\{O} Ig(K,K)=O}. 

It uniquely determines the metric g in TP( M,) up to a factor 0 E R\(O). If we act with an element of 
0( Ind( g) , n-Ind( g) ) on a vector, its length does not change. Accordingly, the 0( Ind( g) , n-Ind(g) ) 
leaves the lightcone invariant. 

So far we considered the properties of the metric on every Tp (M,) . We now require the metric to be 
a smooth tensor field over M,. It can then be shown that the index Ind( g) has to be constant 24 on M,. 

If we restrict ourselves to a metric of Minkowskian index, that is, to orrp = diag( - 1, 1, . .. , 1) , we find 
the n( IZ - 1)/2-dimensional Lore& group O( 1, n - 1) as subgroup of the n2-dimensional GL( ~1, I?). 

The “length square” of a vector V = V”e, is defined by V2 := g( Y V) = V”V@g( e,, ep) = V”Vpg,p. A 
vector V is called timelike, lightlike (null) or spacelike, according to whether g( Y V) < 0, g( Y V) = 0, 
or g( V V) > 0, respectively. 

The metric g induces an isomorphism 4 : Tp( M,) - Tp* (M,) by C#J( V) s g( Y ) for each 

V E Tp( M,). This isomorphism does not depend on a choice of a basis. Since the metric g,p is 
non-degenerate, we can form the inverse metric g@ such that g,,gYp = 8:. Now we can identify 
T,( M,,) with T,Z( M,) or, technically speaking, we can raise and lower indices. 

22 More geometrically, we may define the index Ind(g) to be the maximal number of linearly independent timelike vectors 

E TP(Mn). 

23 In order to change the signature in, for example, two dimensions from the Minkowskian form (0,~) = (-,\ ‘;) to the 

Euclidian metric {j&p} = (,!, y), one has to transform oap, according to (3.7.4), by a necessarily complex matrix. In our 

example, it is given by A = {Anp} = ( 
i&z i* 

A G) E GL(2,C), detA = i. 

24 More exactly: constant on every connected part of M,, see [ 2591. 
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An L,, with an additional metric field will be called a metric-affine space (L,, g). A connected 
four-dimensional oriented2’ differentiable manifold M4 together with a linear connection r,p and a 
metric g of index 1 will be called a SPACETIME (Ld, g). Conventionally a spacetime is defined as 
an M4 with a metric, see Sachs and Wu [582]. Our insistence on the independence of the linear 

connection basically results from the experience that one has made with gauge theories in which 
Lie-algebra valued connections play a prominent role as gauge potentials. 

Owing to the existence of a metric, we can define the scalar density 1 det g,,] and, in view of 

(A. 1.34)) the g-volume element n-form 26 

7 := J~B’A..~A6”= gG& ,_.. a,,6a1 r\~*~A7Yau =‘I, (3.7.6) 

dual to the unit zero-form. The Hodge star * will be defined below. Picking a (pseudo) orthonormal 
” 

positively oriented coframe 3 n, the g-volume element simplifies to 

&$i*.. . A 5 ;I. (3.7.7) 

Having an n-form at our disposal, we can successively, as in (A.l.35)) contract it by means of the 
frame en, thereby arriving at an ( IZ - 1 )-form, an ( IZ - 2)-form, etc., until we terminate the series 
with a zero-form: 

1 
rl 01 := e,, J7j = 

(n _ I ) pm2...u,,Qa2 A . . . A iP = *79,,, 

ha2 := e,,Jrl,, = ’ 
(n _ 2)!hwi...n,,6n3 A . . . A 6”CJ = *( 6,, A 6,, ) ) 

rla,“‘n,, =e,,,j...Je,,Jr]=*(~,, A...r\ti,,,). (3.7.8) 

The q-bases span the graded algebra of dual exterior forms on each cotangent space T* (M,) . 

3.7. I. Hodge star 
The Hodge star operator * maps a p-form into an (n - P)-form. Already in (3.7.6) and in (3.7.8) 

we specified how the star operator acts on zero-forms, one-forms, two-forms, etc.. Note that we had 
to lower the index of the coframe in (3.7.8) by means of the metric in order to achieve such a 
correspondence, that is, the star operator can only be defined if a (pseudo)Riemannian metric is at 
hand. Explicitly, the Hodge dual of a p-form p is defined by 

(3.7.9) 

25 Because of CP-violation in the Kaon system, space cannot be non-orientable, see Zel’dovich and Novikov [735]. 
2h Following early attempts of Einstein, one may consider theories which are invariant merely under the special groups 

SL(n, R) or SDiff( n, R) with determinant plus one. Then the determinant of the metric in (3.7.6) appears as an additional 
structure which is, at times, identified with the dilaton field g according to u = d= (as a result of symmetry breaking, 

cf. section 6 for details). 
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If f is a zero-form, p and @ p-forms, the Hodge star has the properties * (f!J’) = f*p and 
*(W + 0) = *ly + *@. These rules allow us to compute the Hodge dual of any p-form. 

Possibly up to a sign, double application of the Hodge star to a p-form reproduces the original 

p-form, 

**@ = (-1) /J(n-P)+lnd(g)@j 
9 (3.7.10) 

where we used the normalization E,, _,, E”‘“‘~” = ( - 1) ind(g)n!. For @ and p of the same degree p, 

we find 

*@Ay/=VA@, (3.7.11) 

and for a p-form @ 

8” A (em]@) = p@, 

*(@ A 6,) = e,J*@. 

(3.7.12) 

(3.7.13) 

3.8. Nonmetricity 

In an (L,, g), the field strengths are then given by the components of the nonmetricity one-form 
(relates to the relativistic mass quadrupole moment) 27 

Qap := -Dgap = -&a,_? + 2&Iygylp, = Qiap dx’, (3.8.1) 

the torsion two-form (3.5.9), and the curvature two-form (3.5.10). The Weyl one-form (note the 
conventional factor 1 /n) 

e := (l/n)QyY = -(l/n)g%Lp, (3.8.2) 

is one irreducible piece of the nonmetricity. Thus the traceless part of the nonmetricity reads 

Mla,~= Qap - Qsc+ (3.8.3) 

For the complete irreducible decompositions of the field strengths (and of the Bianchi identities), we 
refer to Appendix B. The explicit expressions for their tensor components are given, e.g., in [ 241, 
[ 261. Note that from (3.8.1) there result the contra- and covariant relations 

Q”p = Dg”p and T, := gapTP = 06, + QaP A OP. 

The covariant derivatives of the v-bases read: *’ 

(3.8.4) 

Ds, = -inQ A G, + TP A rlo,p, 

27 In the textbook of Landau-Lifshitz [ 3861 it is proved that the nonmetricity of a spacetime manifold has to vanish. We 
leave it as an exercise to our readers to show that this “proof’ consists in a petitio principii. Incidentahy, also the proof 
in [386] of the vanishing of torsion of spacetime is of similar quality. With an analogous technique one could prove the 
vanishing of the curvature, too. 
** This set of formulae has also been derived by Tresguerres, see [687-6891. 
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Fig. I. Parallel displacement of vectors V and W along a closed contour (not shown). The (shaded) null-vectors at the 
beginning may become, due to shear, both time-like at the end. 

Drln, . ..a., = -inQ A T~,...~,,. (3.8.5) 

Clearly, the relation Dv 5 0 for the n-form 77 is identically fulfilled. We remark that, due to the 
appearance of the nonmetricity, the (conformal) lightcone structure will, in general, not be preserved 
during parallel-transport. The parallel-displacement of vectors V and W along a curve with tangent 
vector u is given by the gauge covariant Lie derivative t,V” = uj DV” = 0 and t, W” = 0. Then, in a 
metric-affine spacetime, the scalar product (VW) := g( Y W) is generally displaced as follows: 

t,(y w) = -uJ(@ap Vawp + QW'>)~ (3.8.6) 

It shows that the Weyl one-form Q will leave the (conformal) light-cone structure intact, whereas 
the traceless @+ which corresponds to the shear in (3.1 .l l), deforms this structure, if transported 
along the vector u (cf. [ 174,260] ) . The local lightcone will not be touched therefrom. We will return 
to this issue in section 6 after our presentation of the symmetry-breaking mechanism and its induced 
geometry. 

3.9. Bianchi identities and Chern-Simons terms 

The field strengths nonmetricity, torsion, and curvature obey the following Bianchi identities: 

This 

DQap = 2R,aYgpjyv (0th)) 

DT” s R,” A Sy , (lst), 

DRP=O n 7 (2nd). (3.9.1) 

0th identity comes into existence, 2g because the curvature two-form in an (L,, g) enjoys no 
symmetry in the Lie algebra indices. In a Riemann-Cartan spacetime, however, where the curvature is 
antisymmetric in (Y and p, the 0th identity becomes trivial. In Riemannian spacetime, the 1st identity 
degenerates to the familiar symmetry condition R, {la A 67 = 0 of the Riemannian curvature. The 

“) Its trace reads dQYY G 2RyY or dQ E (2/n) R,“. 
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irreducible decompositions of these Bianchi identities can be found in full detail in sections B.5 and 
B.6 of the appendix. 

In metric-affine gravity for 12 2 3, there exist analogs of the Chem-Simons three-form of a 
non-Abelian gauge theory. However, let us first introduce the volume preserving connection 

tr,p = rap - iQ& (3.9.2) 

which will be derived in section 3.12. The GL(4, R) Chem-Simons term [ 116,117] reads 

cRR:=-#)~Rp” +fra%rPYr\rya) 

= -~(r,pr\drpff-~r~Pr\rPyAr~a) (3.9.3) 

= +&? + $trR WRI (3.9.4) 

see also Bardeen [ 351 and the earlier construction of Buchdahl [ 861 in the case of the Riemannian 
curvature, and that associated with dilutions is 

c trR trR .-- *--~rAR=-QAR-$d(Rln]detg,p]), (3.9.5) 

where r = r,” and R = dr,". As can be seen from (3.9.4), CRR can be decomposed into an 
SL(4, R)-part ‘CR, and a dilation piece as given in (3.9.5). Hence (3.9.5) represents an independent 
Chem-Simons term for dilations. 

These are the Chem-Simons three-forms proper which are independent of the metric. 3o Neverthe- 
less, in the sense of our unified affine approach, 3’ we may also expect Chem-Simons type terms 
attached to the translation. And indeed, a translation Chem-Simons type term (cf. [ 449,280] and 
references therein) can be found according to 

cp := ~ga#Ya A P = & (6, A d6" - 6, A 6P A rpa) = +c,. (3.9.6) 

With respect to the Clifford algebra-valued one- and two-forms y := 6”y,, u := (i/2)y A y, and 
Dy = T”y,, respectively, cf. [ 449,282], the translational Chem-Simons term can be rewritten as 

C, = &Tr(yDy) = &Tr(Dg). 

s” In odd dimensions n = 2k - 1, the Chem-Simons term for the Lie algebra-valued linear connection (3.5.1) can be written 

in rather compact form as Cik-’ = -(k/2)~$fzTr{TA(zdT-~~~Af)~-‘}, cf. [725]. 

” There may also be a InMi-Wigner type contraction approach, where one does not use the Cartan connection (3.3.3), 
but instead starts off with a s1(5, R)-valued i.e. trace free connection on a four-dimensional manifold: f = ~~~~ *a = 
r,pLmP + T,/L4B + Ta4La4 =: T,pLa’B + ( l/l)dPL4p + (l/l)B,L”4, where A, B,. . . runs from 0 to 4. The SL(5, R) 
Chem-Simons term reads c = -+ ( fAB A dra* - fT,+B A TB’ A TcA). Not surprisingly, it contains the Chem-Simons 
term (3.9.3) corresponding to GL(4, R)-gauge transformations. In order to isolate the remaining terms, we perform an 

expansionandfind~=C~~-(l/2l2)[68Ad6p+B~Ad6a-~(~,BAB~A6”+8aA6YA~y”+68A~~YA8,)l= 

CRY- (1/212)[~PAddBp+8,Ad6a+28~AATSaA68] =C RR - ( l/21*) [i@ A DBp + 8, A T”] . After a Inonii-Wigner type 

group contraction, the one-forms rYB and 8, correspond to the p and *p part of the graded affine algebra, respectively. 

This suggests to construct a metric simply via g := 6” @J 0,. The metric acquires the usual form, if we identify 0,, after 

some symmetry reduction which eliminates the antisymmetric components of g, with the conventional coframe 6’ by 
means of tIa = guPbs. Thus one may speculate that the metric has a topological origin which is induced by a SL(5, R) 
Chem-Simons term. Since the term 6” A 19~ A Q+ which arises in the course of this construction, vanishes identically, the 

SL(5, R) Chem-Simons term decomposes finally into c = CRR - 2Crr. 
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In any case, it is metric dependent, and it is unclear whether it has any topological meaning without 
taking recourse to dynamical identifications, cf. (6.7.8) and (6.7.10). Nevertheless, as we will see 
immediately, its exterior derivative behaves in the standard manner. 

Namely, the exterior derivatives B = dC of these three-forms are GL(4, R) invariant and effec- 
tively constitute Lagrangians from which the three Bianchi identities (3.9.1) may be derived as 
Euler-Lagrange equations. [In order to obtain a non-trivia1 result from a boundary term, the struc- 
ture equations (3X1), (3.5.9), and (35.10) have to be added by means of Lagrange multipliers, 
see [280] for details.] By differentiation and by using the volume-preserving connection we find, 
respectively, 

B,=dC,=(l/2Z2)[g,,(tT"r\+TP++R,aA~YA6P)-+Q,pA6aA+TP], (3.9.7) 

B~~=~~~~=-;R,%R~~=-;(+R/A+R,~+$RAR). (3.9.8) 

B rrRrrR=dctrR11R=-~RAR. (3.9.9) 

Adding these boundary terms B to a dynamical Lagrangian does not affect the field equations, but 
may serve as generating functions for canonical transformations [449-4511 in an Ashtekar type 
Hamiltonian formulation, cf. section 5.10. 

By performing the variational derivative S/&P := a/a!P - ( - 1 )pd( i?/adP) of (3.9.6) and (3.9.4)) 
we find the beautiful formulae for the translation 

_ = i4’” /\+ TP’, SC, 

Gclp 21* 

scp 1 
-=F(g,P+TB+ ;6PA+Q,p), 
&?a 

- = ‘g SC, 
WnP 212 Py 

6” /j 67, 

and for the linear deformation 

SC,,/W/ = -R,". 

Again, Eq.( 3.9.13) can be split into a volume-preserving 

S+CRR - = -+&“, 6% trR -=- 

strap 

R 

sr ’ 

(3.9.10) 

(3.9.11) 

(3.9.12) 

(3.9.13) 

and a volume-changing piece: 

(3.9.14) 

These equations show that the field strengths torsion/nonmetricity, curvature, and curvature trace are 
reproduced if we vary the corresponding Chem-Simons (type) term with respect to the appropriate 
potential. This fact can be exploited in setting up three-dimensional topological gravity models, cf. 
[29,392], that is, in three dimensions “we have a Lagrangian without having a Lagrangian”. At the 
same time we recognize that, up to a sign, the constants in the definitions (3.9.3), (3.9.5), and 
(3.9.6) are reasonably chosen and that we were required to introduce a fundamental length 1 in 
(3.9.6) in order to guarantee for C r, CRR, and CtrR rrR the same physical dimension. 
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3. IO. Decomposing the linear connection into Riemannian and post-Riemannian pieces 

Although torsion and nonmetricity are genuine field strengths, .they can be reinterpreted as parts 
of the connection. The linear connection can be expressed in terms of metric, coframe, torsion, and 
nonmetricity. 

To this end, we use the anholonomity two-form which was defined in (3.4.7) 

Cp := d@ = ~C~y%Y~ A 6’, c, := g&p, (3.10.1) 

and display the formula (3.8.1) for the nonmetricity: 

QaB := -Dg,p = -&ap +Lyg,p + ~pyg,,. (3.10.2) 

This relation provides an explicit expression for the symmetric part of the connection 

T(np) = @gap + Qcqd. (3.10.3) 

Moreover, by means of (3.4.7), we can express the covariant torsion T, := g,$‘P in terms of the 
anholonomity two-form Ccl: 

T, = gap D@ = gap d@ + g,pryP A ?Yy = C, + f,, A 19~. (3.10.4) 

In analogy with (3.10.3)) we put the piece with the connection on the left hand side of the equation: 

Tpa A @ = -C, + T,. (3.10.5) 

Eqs. (3.10.3) and (3.10.5) represent [n2(n+ 1)/2] + [n2(n-- 1)/2] = n3 linear equations for the 
determination of the n3 components of rap in terms of the variables dgaa, QaP, C,, and T,. Using 
the algebraic relation (A.1.32) for @a = T, - C, and $as = fP,, these two sets of equations lead to 
the following expression for the connection: 

rap = @g,p + (ela]&Plr)fiY + erJCpl - ~(e,Jep]Cr)~Y (V,) 

- eta&l + ~(e,JepJTy)fiy (Ull) 

+ iQap + (e~ajQplr)~y (L",tT). (3.10.6) 

Note that ea]epj = -epJe,], so that the symmetric and antisymmetric pieces of rap are clearly 
displayed in (3.10.6). With the Schouten braces of (A.1.24), Eq. (3.10.6) becomes 

rap = i]e{,J&p,) + e{,]e,JCP) + e{,lQpa) - e{rJeaJTg)l~Y. (3.10.7) 

The components ( l/2) et,] dgP,) correspond to the Christoffel symbol of the first kind. In components, 
Eq. (3.10.7) reads [606]: 

r rap = $%GW + %a~ + QWI - %ad (3.10.8) 

The first line of Eq. (3.10.6) represents the Riemannian piece of the connection. It will be abbreviated 
as (see also [435]): 

Z$ := i &,p + (etJ&alr) @ + eiaJCpj - ~(e,]eplCy)fiY. (3.10.9) 
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The additional pieces in (3.10.6) are of a tensorial nature. Let us introduce the contortion one-form 
Kap = -Kpa implicitly by 

T” =: K”, A tip, (3.10.10) 

or explicitly, cf. (A. 1.23)) by 

&p = q,JTpl - i(e,lePJT,)@’ = 2q,JTpl - &JeJ(Tr A fly). (3.10.11) 

Observe that ( Ty A 67) in the last term is proportional to the irreducible axial piece of the torsion, see 
(B.2.7). Then our geometrical decomposition (3.10.6) of the linear connection can be summarized 
in 

rap = J$ - Kap + iQap + (q,lQply)fiY. (3.10.12) 

Since the Weyl one-form Q is explicitly given by (3.8.2) in any (L,, g), the following useful 
relation for the trace, i.e., the dilation part of the connection one-form can be derived which is itself 
neither a connection nor a GL( rz, R)-scalar: 

r Y = InQ + ‘g”Pdg 
Y 2 2 ap = $zQ + din \lldetg,pl . (3.10.13) 

Not unexpectedly, the torsion piece drops out. Alternatively, using the covariant exterior derivative, 
this formula can be written as 

(3.10.14) 

An (L,, g) with the constraints of a vanishing traceless nonmetricity gaP = 0 and a vanishing torsion 
T” = 0 is called a W,. In 1918, Weyl [ 7 16,719] used such a W4 as a framework for spacetime in which 
he unsuccessfully attempted to construct a field theory unifying electromagnetism and gravitation. If 
T” # 0, we call such a spacetime a Y,, see Fig. 2 and also (3.10.6) cum (3.8.3). An (L,, g) with 
QaP = 0 is called a Riemann-Cartan spacetime U,,. A U,, with T” = 0 corresponds to the Riemannian 
spacetime V, of GR. 

3. I I. Deformation of a connection 

Since any tensor-valued one-form A transforms homogenously with respect to linear gauge trans- 
formations, its subtraction from a connection can be regarded as a continuous deformation32 within 
the space C of connections: 

r,p + i+/ = T/ + EA /=r/+E ,A’/+b~A 
( n > 

, r, FCC. (3.11.1) 

The trace part A := A,Y represents the projective piece of the deformation. In order to retain pafi as 
a connection, AaP has to be tensor-valued. The deformation (3.11.1) , which involves no metric, can 

‘* These deformations may include the difference (3.53) of two gauge-equivalent connections as well as more general 
“gauge field copies” [ 1491 as special cases. Our concept of a deformation seems to be a special case of a prolongation, see 
[ 223, where also 3 = I?” + 8 is considered. 
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shear exclt. 

w +a+ 
Riemann 

Fig. 2. MAGic cube: Classification of a metric-affine spacetime (L4, g). g C tracefree nonmetricity, Q C Weyl one-form, 
and T 1 torsion. 

be turned on and off via the continous parameter E. In Ashetkar-like reformulations of GR and its 
teleparallelism equivalent [ 448,45 11, this parameter is allowed to become complex or, in particular, 
purely imaginary. 

Any such deformation induces corresponding relations for nonmetricity, torsion, and curvature: 

Qap = Qap + 2-4,ap, 7 0 = Q + 2eAYY/n, (3.11.2) 

Ta = T” + cApa A W, (3.11.3) 

i?/ = Rap + eDA (Y P - .s2A (I p A A/ = R/ + EDA/ + c2Aap A A/, (3.11.4) 

i&y = RyY + edA,? (3.11.5) 

These decompositions can be transferred to the Bianchi identities (3.9.1) in a straightforward way. 
It requires, however, tedious calculations. It turns out that the Bianchi identities are not sensitive 
to a deformation of the connection at all. 33 Formally the same identities hold after passing to the 

deformed field strengths and the modified exterior covariant derivative D arising from the deformed 
connection: 

D&l = 2&p), 
-- 

DT” = RPa A tip, LX/ = 0. (3.11.6) 

The deformations of the Chem-Simons terms (3.9.6), (3.9.3), and (3.9.5) are, respectively, given 

by 

” This excludes the possibility that Noether identities resulting from dilation invariance can ever be related to the Bianchi 
identities. In contrast, within the Einstein-Cartan theory, the energy-momentum and the angular momentum theorems can 
be formulated, via the field equations, in terms of the contracted Bianchi identities [286]. 
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~RR=c~R-~~[~nP~d~~[r+~~P~(~~p~-&EnpY~Ayn)], 

6 trR = C,rR trR - +d(A A f) - EA A R. (3.1 1.7) 

In the projective subcase A, p = St P of the deformation (3.11 .l ), the curvature transforms in a 
particularly simple way: 

(3.1 1.8) 

If a metric is available, the projective term can be written as gap dP, that is, it contributes only to 
proj. 

the symmetric part of the curvature. Thus R,,pI= RLap, , a result which is important in GR and in the 
EC-theory of gravity. 

The transposed connection (see [ 6071, [ 682, paper IV] ) 

F/ := T,P + eJTP (3.11.9) 

or, in components 

r,, p = fnyP + c P nY ’ (3.11.10) 

with C” = d6”, is another example of a deformation in an L,. In holonomic coordinates, and only 
then, we find, indeed, a transposition in the lower pair of indices. Moreover, in an (L,, g), we can 
introduce the modified connection 

F/ := r*p + f&J+ - @s,p (3.11.11) 

with the property that the corresponding covariant exterior derivative of the vector-valued g-volume 
form q);ln vanishes: 

fi)rln =o. (3.11.12) 

A certain deformation yields, for example, the Christoffel connection r,p = Z$)p. Then one should 

note, however, that the deformed nonmetricity and torsion vanish, i.e. Q$ = 0 and 7’{ja = 0, so 

that the first two Bianchi identities degenerate to the familiar algebraic conditions R&, = 0 and 

RkJa A@ = 0 of the Riemannian curvature R, {}p . This deformation process can also be understood in 
the following way: In an (L,, g) we have two classes of connections, the linear and the Riemannian 
one. Their difference ought to be a tensor-valued form, namely that corresponding to the contortion 
and nonmetricity pieces in (3.10.12). 

In an (L,, , g) , the most general jield redejnitions of the basic variables, metric, coframe and linear 
connection, generated by some (n - 2)-forms H, and H”, and an n-form map, read 

FLap = g,p + e(nlJeyJ *HlpjY + *map, 

X = 6” + ePJ *Hap, 

7 P=I’ P+e,] (Y n *HP. 

(3.11.13) 

(3.11.14) 

(3.11.15) 



EM! Hehl et al./Physics Reports 258 (1995) I-171 43 

In a dynamical approach these m and the H will be gauge field momenta canonically conjugated to 
the metric, the coframe, and the connection, respectively. Due to the semidirect structure of the affine 
group, the gauge field momenta contribute just to the intertwined gauge potentials. The field redefi- 
nition (3.11.13) of the metric generalizes ‘t Hooft’s ansatz [ 3051, used in an attempt at perturbative 
renormalization of GR. For a general counterterm AV in the effective gauge Lagrangian, our geo- 
metrical variables become redefined according to the “intertwining relations” (3.11.13), (3.11.14), 

(3.11.15). In the four-dimensional Poincarg gauge theory, the Hodge star for gauge field momenta H 
can be dismissed, cf. [455]. However, in the coupling to matter, the field redefinitions may induce 
violations of the macroscopic principle of equivalence, cf. Brans [ 801. Incidentally, our construction 
is more explicit than the rather formal field redefintion of Dixon [ 1591 for non-Abelian gauge theories 

Ti = A + SG/Sj, (3.11.16) 

where j := 6G/6A is the gauge current (n - 1)-form of a generating n-form G. 

3.12. Volume-preserving connection 

An example of a deformation of a connection is provided by the construction of a volume- 
preserving connection +raP. By definition, it should leave the volume n-form 7, or the associated 
q-basis, covariantly constant under parallel-transport: 

+D%,...& = O’* +Ddm = d,/a - $l\/lG = 0. (3.12.1) 

This merely determines the trace of our new connection. By means of a comparison with (3.10.14) 
we find the standard volume-preserving connection: 

(3.12.2) 

Consequently, the new connection is related, via A = -( n/2)Q, to the linear connection r,” by a 
projective transformation. 

Note that a connection is not a gauge-invariant object. Instead, the vanishing of the contracted part 
of the curvature built from the connection +rap, i.e., 

+RyY = 0, (3.12.3) 

is a necessary and sufficient condition that scalar densities and, in particular, the volume n-form r], 
are teleparallel under transport by means of this connection (cf. Schouten [ 6061) . The indeterminacy 
of the volume-preserving connection of an (L,, g) is related to the fact that, in an (L,, g), DILCURV 
R,Y as such is not an irreducible piece of the curvature, but surfaces as an independent quantity only 
on the level of a Weyl-Cartan space Y,. The vanishing of the DILCURV distinguishes a Riemannian 
v, from a Weylian W,, and, as shown in Fig. 2, this is, mutatis mutandis, also true for a U,, and a U,, 
respectively. 

The new volume-preserving nonmetricity 

+ Qcp = Qmp - Qgap =: &,+ + Q = o (3.12.4) 
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is traceless, and the new torsion and its trace read34 

+Ta = T” - ;Q A fi”, e,J +T” = e,JT” + ;(n - 1)Q. 

For the curvature we have 

(3.12.5) 

+R/ = R/ - $3: dQ , (3.12.6) 

where dQ denotes the dilation field strength derived from the one-form Q (Weyl covector). In a 
metric-affine spacetime (L,, g), there arise two possible types of contractions of the curvature: One 
with respect to !?e frame indices (cf. Eddington [ 174, p.2153 ) and, after raising one index, a further 
contraction involving twice the interior product of the two-form: 

+Ryy = R,Y - in dQ = 0, f?,] epj ( +Rap - R@) = 0. (3.12.7) 

The last relation is valid for any projective transformation, cf. (3.11.8). 
For an arbitrary tensor-valued p-form density of type (f) of anholonomic weight w, see (A.l.2), 

the exterior covariant derivative (3.5.5) splits into a volume-preserving piece and a dilation piece: 

D$ = +D!@ + (p - v - .,,;Q& (3.12.8) 

We will call 

d:=p-v-_-c-d (3.12.9) 

the dilation weight of 9, see (A.l.4). If we compare (3.12.8) with (3.12.4) and (3.12.5) for Dgap 
and Do”, respectively, we find w; = -2 and CL& = 1. 

3.13. Local scale transformations 

Let us first turn to local scale transformations35 in a single (L,, g) : Following partly Komar and 
Bergmann [ 358,359,53], such a scale transformation arises naturally from a local action (3.4.5) of 
the general linear group GL(n, R) = [T K SL(n, R)] x R+ on the frames. Inasmuch as these gauge 
transformations do not change the metrical relations of spacetime, they may be regarded as passive 
transformations. A mere scale transformation36 corresponds to the subcase 

i,@(X) = n(x)s: (3.13.1) 

which generates the volume-changing part of the GL(n, R)-gauge transformation. Then we have 

e, + e& = iUy(x)ey = fie, (e”, = fie’,), 

6” --i $P =A -‘ya(x)#Y = n-16” (f?ia = K’ej”), 

&p + g&p = k&3%)&s = fin2 gap. 

(3.13.2) 

(3.13.3) 

(3.13.4) 

‘A A related result has been found by Bregman [82]. 
” They are also called dilations or homothetic transformations. 
X6 With respect to the nomenclature, we follow the thesis of Kastrup [336] in which, for instance, 1 m = Rem, with 

fI = 100, is a transformation of the scale that leaves the length 1= ( oap #‘us) ‘I* invariant, 
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By applying the inhomogeneous transformation law (3.5.2) for the linear connection, we find in 
the special case of local scale transformations: 

I :‘,P=r~P+S~dInO. (3.13.5) 

For later purposes we note also the local scale transformation of the trace of the connection, namely 

fkY=fyY+.dlnf2. (3.136) 

These rules determine the local scale properties of the other geometric objects uniquely: The 
nonmetricity and the Weyl covector are invariant under local resealing: 

QiP = Q/t C+Q>? = +Q/ Q’ = Q. (3.13.7) 

This is what one would expect anyhow for tensor-valued forms with respect to a subgroup of local 
GL(n, R)-transformations. (In contradistinction to this local scale invariance, the Weyl covector will 
turn out to transform inhomogeneously under conformal changes.) For the translational field strength 

and the curvature we have 

T’” = a-IT”, R’P=R i3 n (I , (+R)‘k n +R p n * (3.138) 

It is straightforward to deduce the corresponding formulae for the various contractions of the curvature 
tensor. 

3.14. Conformal changes in an (L,, g) 

It is a consequence of the GL(n, R) gauge approach that local scale transformations are almost 
trivial for scalar- or tensor-valued forms. However, we may generalize local scale transformations 
(3.13. I ) by admitting arbitrary exponents in the 0 factors. Thereby we arrive at a conformal change of 
the metric, which generalizes the original approach of Weyl [ 7161. Let us compare cwo metric-affine 
spacetimes (L,, g) and (L,,, S) which have conformally related metrics, but invariant g1( n, R)-valued 
curvatures. Since the second requirement does not fix the connection completely, but still allows it to 
be related via Einstein’s A-transformation r,p -+ r,p + St d A ([ 180, appendix 21, [52], see also 

Smalley [ 6381)) we consider the combined transformations: 

This puts a conformal equivalence structure on (L,, g) in which g and S = fiLg are conformally 
related. Due to 

~~~@&&= (3)‘” CG (7F)‘P (i)‘@ = flLg, (3.14.2) 

the conformal change of the anholonomic frame is determined only up to local GL(n, R) transfor- 
mations. Consequently, the weights L, F, and C for the conformal change of metric, coframe, and of 
the connection will, in general, be independent of each other. 
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Let us now consider the consequences of our combined conformal change (3.14.1) : The curvature 
is invariant for a projective transformation which is, as in (3.14), constructed from an exact form, 
cf. (3.11.8): 

iT/ = Rap, (F) 0 = a tR p n . 

For the nonmetricity and the Weyl covector, we find 

(3.14.3) 

QUp = -fi& = 0nL-2F[ QnP - (L - 2F + 2C)gaP d In a], (3.14.4) 

(F),, = aL-2F +Qap, Q=Q-(L-2F+2C)dlnJ& (3.14.5) 

respectively. For the translational field strength T” and the torsion trace one-form 7’ := e,JT”, we 

obtain 

T”=~FIT”+(F-C)dln~~r\U] (3.14.6) 

~~)“=RF[~+lLdlnaAB”], Y=T+(C-F)(n-1)dlnn. (3.14.7) 

Note that the inhomogeneous term in (3.14.7)* parallels the corresponding term in (3.14.5)* for the 
Weyl covector [ 144,528]. As expected, the conformal change of the volume-preserving connection 
(3.12.2) is independent of C: 

Fap = trap + i(L - 2F)Si dlnn. (3.14.8) 

For the translational Chem-Simons term C, we find 

c,=n”c,. (3.14.9) 

The volume-preserving Chem-Simons term is conformally invariant 

(ERR = +CRR, (3.14.10) 

whereas the corresponding dilation piece transforms as 

&RtrR = CrrRtrR + ;nCRAdlnR. (3.14.11) 

By adjusting the weights L, F, and C appropriately, we can recover all subcases earlier discussed 
in the literature. Formally, the local scale transformations are included in this scheme as a special 
case with L = 0, F = C = - 1. 

The A-transformation of the linear connection in (3.14.1) does not influence the conformal change 

of the Riemannian part (3.10.9) of the connection. In view of 4, = gap $ = fiLPF6,, we find 

F$=r$,,+ ~(L-2F)nL-2F[g,pdlnn+2(e,,Jdlnn)g~,r~Yl 

- ;(L- F)0L-2F[(e,Jep~(dln~A~y))@‘-2et,](dln~A~~~)l. (3.14.12) 

Moreover, from the transformation formula (3.14.1) of metric and coframe we find the relation 

z&I’) = fp4IJW *&I’) (3.14.13) 
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for the Hodge dual of a p-form. Thus for an exterior form in the “middle dimension” p = n/2 for 
n even, the Hodge operator is conformally invariant, cf. Dray et al. [ 1701 for the four-dimensional 
case. 

In order to further clearify our notion of conformal change, let us consider the space M of all 
(pseudo)Riemannian metrics g [ 501. The infinite-dimensional superspace S is defined as the coset 
space S := M/(Diff( Iz, R) ) and, consequently, identifies all metrics g which are equivalent with 
respect to diffeomorphisms Diff( n, R). This infinite-dimensional group, which acts as transformation 

group on M, can be enlarged to the group of conformorphisms %?ff( n, I?) := CT g Diff( IZ, R), 
where CT denotes the Abelian group of all positive, infinitely differentiable functions 0. The group 

Ef(n, R) acts on M by pulling back conformally eqivulent metrics g = a*( @g), where u denotes 
a cross section. If J = {J1’} E Diff( y1, R) are the (passive) diffeomorphisms of appendix A.1, the 

left action of (J, a) E I%f( II, R) on a metric g E M is more explicitly given by (.I, R)g(x) := 
.JL@(x)g( x) = @- (Jx)g( Jx). In accordance with the pull-back notion, J acts directly on the coor- 
dinates X. Applying this rule twice, we obtain 

where x’ = &J,x. Thus the group multiplication [ 1971 resulting from the composition of transforma- 
tions, denoted by 0, is determined by (J, , L2, j o ( J2, LZ2) = (J, o J2, L$( Ll, o J;’ j j. This reveals that 

mf( It, R) is, under composition, the semidirect product of Diff( Iz, R) with the Abelian group CT. 

In the conformal superspace 3 := M /l%f( n, R) c S, conformally equivalent metrics are identified, 
see also Swift [ 6641. It should be pointed out that the (12 + 1 j (n + 2)/2-parameter isotropy group 
C ( M,,, g) c Diff( n, R) of conformal transformations of space-time such that g = g can be regarded as 
an isometry within the conformal superspace S ([ 4421, see Giulini [225] for the homotopy groups 
of S). 

3.15. Orthonormal, holonomic, conformal, and pure gauges 

There exist certain gauge conditions on the frame field for which the description of our geometrical 
arena simplifies considerably. 

The most obvious gauge condition is the orthonormal gauge. We choose the frame to be orthonor- 
mal, i.e. 

e’ 
* 0; 

a=e n. (3.151) 

The ‘star equal’ sign indicates a specific gauge that has been introduced. Because of (3.7.3) and 
(3.7.5), we then have the ‘metrical’ subsidiary condition 

(3.15.2) 

(which resembles those known from nonlinear (T models [ 5561 j. Geometrically, this gauge condition 
is intimately connected with the celebrated ‘reduction theorem’ for linear frame bundles [ 356, p.881. 

A much more stringent condition is the holonomic gauge [406] which one imposes ordinarily in 
GR: 
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C” := dfl” Gi 0 or & f a*. (3.15.3) 

Then the frame is a natural frame and looses its independent degrees of freedom. No linear gauge 
transformation of the vielbeins are permitted anymore. What remains is the action of the diffeo- 
morphism group and, along with it, a differential identity for energy-momentum. With metric and 
holonomic connection as remaining geometrical variables, we can derive two field equations (ZE- 
ROTH and SECOND of section 5.5) and one Noether identity from diffeomorphism invariance. The 
2nd Noether identity, however, would then be concealed since the holonomic hypermomentum identity 
would be implicitly contained in the momentum identity. This gauge should not be confused with 
the harmonic or Hilbert gauge dTn = d*6, g 0 which appears, for instance, in the formulation of the 
Cauchy problem in GR. 

In the framework of two conformally related spacetimes (L,, g) and (L,,, g), we may pick in each 
spacetime a natural frame field, that is, we impose the conformal holonomic gauge 

C,=d6,=d&:O =+ L=F: (3.154) 

Then, according to (3.14.12), the Riemannian piece of the linear connection reduces, to 

(3.15.5) 

Since, according to (3.14.1) , the contravariant components of the metric change as gkl + g”’ = &gk’, 
we recover for the holonomic components, i.e., the Christoffel symbol, the familiar transformation 
law under a conformal change of metric: 

F!/” = r(,)’ - iL{f$d,j + Srd; - g,ja”} In 0. (3.15.6) 

In order to study conformal properties in a Riemann-Cartan space U,, or in the purely holonomical 
framework (cf. [ 2871) of the Riemannian spacetime (V,), one has to fix again a ‘gauge’. In order 
to achieve the passage from the natural (L,, g) to an U, (or even to a V’), let us require, besides 
vanishing nonmetricity (and torsion), the conformal gauge (cf. Lindstriim et al. [ 3981) in which the 
conform&y invariant metric density is identified with the Minkowski metric: 

&Pp := 1 &tg,, I’/ng”p & gap, gap := 1 detg,,l-““g,p g onp. (3.15.7) 

This gauge is qualified by the fact that the local Minkowski metric becomes conformally invariant, 
i.e. 

5a”P = fyLi~rflLo4 = @ &p = O@. (3.15.8) 

Incidentally, in the context of SDiff( n, R)-invariant models (diffeomorphisms with determinant one), 
metric densities of the type gap/ 1 det g,, 1 have been considered [ 891. 

In the parlance of Yang-Mills theories, one speaks of a pure gauge connection when its field 
strength vanishes. Take a flat and uncontorted Minkowski spacetime. According to (3.10.9), in 
curvilinear coordinates and arbitrary frames, its connection reads 

$ = i dg,p + (elJdgp]r)fiY + elaJCPI - i(e,JepjCr)fiY. (3.15.9) 

It has to fulfill the constraint 

R$ = 0. (3.15.10) 
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Eqs.(3.15.9) and (3.15.10) represent a pure gauge. Suppose we pick on top of that an orthonormal 
gauge. Then (3.15.9) specializes to 

f$ g el,JCpl - L(enJePJCr)6Y. 
2 (3.15.11) 

In these orthonormal frames, the anholonomity C’, looks like a torsion -TP, as a glance at (3.10.6) 
will tell, In the orthonormal pure gauge, a torsion can locally be simulated by an anholonomity. In 
the sense of the equivalence principle, this supports the existence of torsion as long as one has reason 
to believe in the fundamental meaning of a local SO( 1, n - 1) . 

By the same token, in a holonomic pure gauge we have 

(3.15.12) 

A comparison with (3.10.6) shows that a nonmetricity Qap, in this holonomic gauge, can be simulated 
by a non-vanishing dgap. Thus by means of a non-orthonormal frame locally a nonmetricity of the 
pure gauge type can be generated. 

4. Matter fields: manifields and world spinors 

4.1. Existence of a double covering of the special Linear group 

For a long time, progress in affine gauge models of gravity was delayed by an error. Throughout 
the community of researchers in GR, there was a prevailing belief that the linear groups possess no 
non-trivial universal covering, 37 i.e. that it is impossible to construct spinor states, i.e. states carrying 
two-valued unitary representations of (in the Euclidean case) the SO(n) compact subgroup, or in 
Minkowski spacetime, of the spin, i.e. the mathematical “stability subgroup” (for massive states this 
is the subgroup SO(n - 1) of spatial rotations) and thus also of the linear groups themselves. For 
the same reason, it was thought that it is impossible to construct spinor jelds transforming linearly 
under GL( n, R) or SL( n, R) . As a result, it was also thought that there could be no “world” spinors, 
i.e. that Diff( It, R) too has no universal (double for IZ 2 3) covering group. Statements of that 
nature exist (and unfortunately continue to appear) in almost every textbook in GR and should be 
disregarded (see the examples cited in Ref.7 of [495]; we refer the reader to that article for proofs 
of the algebraic and topological theorems in the following discussion). The existence of a universal 
covering of the entire group inclusion 

SL(rz, R) c GL(n, R) c A(n, R) c Diff(n, R) (4.1.1) 

was first pointed out in [ 476,477] and proved in [ 4781, This result has only recently been incorporated 
in a textbook on spinors [ 941 and noted in a corrective footnote in another text [ 6171. 38 

” An exception is Post [MS] who was aware of the double covering of the linear group; Bargmann [36] had even 
constructed the unitary representations of the (infinite) universal covering of SL(2, R), but this remained unknown in 
the GR community, where the supposed inexistence of such representations for SL(2, R) was quoted as a mathematical 
argument in physical discussions. 
7X Although no such structural error appears in the mathematical literature, very little attention was given to the representa- 

tions of the double-covering of the SL(n, R) for n 2 3, prior to [648], in which the physically motivated [623] is referred 

to; see also 16641, paper II, using [6283. 
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The misunderstanding was due to the fact that representations [702] of the universal covering 
groups of the GL( ~1, R) exist only as infinite matrices (this is no worse than in the case of the 
Heisenberg algebra, for which the same statement is true). The inexistence of @rite representations 
was misconstrued as implying the inexistence of any representations. 

Let us remember that any semisimple Lie group G can be decomposed according to the Iwasawa 
decomposition, which reads 

G=KxAxN, (4.1.2) 

where K, A, N are analytic subgroups of G: K is the maximal compact subgroup, A is an Abelian 
subgroup, and N is a nilpotent subgroup, i.e. one with “triangular” matrices, whose non-vanishing 
matrix elements are all on one side of the diagonal. Since A and N are simply connected [ 296, 
p.2341 and, by definition, are such as to be trivially deformable to the identity, the first homotopy 
group nTTI of the Lie group G is the same as that of its maximal compact subgroup K. In other words, 
the topology of a non-compact Lie group G is that of its maximal compact subgroup K. 

If, as happens for the special linear groups, K is the group SO(n) c SL( n, R), then we know that 
there is a covering group for K, namely E = Spin(n); in any case in which K itself is not yet simply 
connected, we can replace it by its universal covering group K, and, in the wake of it, we shall have 
thus defined and constructed the universal covering of G, namely ?? = ?? x A x N. 

In general, the connectivity properties of the connected component SO,(n) of the orthogonal group 
is marked by the first homotopy groups [ 296, p.3461 

1 

z2 for n = 2k+ 1 

g,(SO,(n)) = z, CB z2 for n=4k (4.1.3) 

z4 for n = 2(2k+ 1), 

where Z, is the group of integers module k, with respect to arithmetic addition, or the group of the 
k complex kth roots of the identity. These homotopy groups determine the types of spinors existing 
in each case [94] - namely Weyl, Majorana, or Weyl-Majorana - and the structure of the related 

supersymmetry. - 
Thus, to define and construct the universal covering groups SL( n, R), remembering that for the 

special linear group SL( IZ, R) we have the Iwasawa decomposition, SL(n, R) = SO(n) x A x N, we 
have 

- 
SL(n, R) := Spin(n) x A x N, (4.1.4) 

and applying the relationship between GL(n, R) and SL(n, R) as described in equation (3.1.8), this 
extends to 

GL(n, R) = [T cx z(n, R)] x R+, (4.1.5) 

A(n, R) = R” cx GL(n, R) . (4.1.6) 

In a playful spirit, with m(n) = Spin(n), the mathematicians have adopted the notation a(n) =: 
Pin(n). Thus, for the covering group ?%?( II, R), the maximal compact subgroup is denoted by 
G(n) = Pin(n). 

The infinite-dimensional group Diff(n, R) is Einstein’s covariance group, realizing the passive 
symmetry under general coordinate transformations, which is trivially represented in our exterior 
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form notation. According to Stewart’s theorem [ 6571, in the neighborhood of the identity, it can be 
decomposed 39 

Diffb(n, R) M GL(n, R) x H x R" , (4.1.7) 

where the subgroup H is contractible to a point. As a result, O(n) is the deformation retract of 
Diff (rz, R) , and there exists a double covering group 

Diff,(n, R) M m(n, R) x H x R”, (4.1.8) 

i.e. we shall be able to construct “world” spinors, in addition to the possibility of having anholonomic 

spinors under a GL(4, R) or A(4, R) gauge group acting on local frames. We shall name the 
latter “afine frame spinors”, generalizing the conventional finite Dirac (Lorentz) frame spinors as 
introduced by Tetrode, Wigner, Weyl, as well as by Fock and Ivanenko (see, for example, [ 4471 for 
references). Affine frame spinors undergo, in addition to local Lorentz-rotations, deformations which 
have the shear current as conjugate Noether current. 

It is not proven that Diff( n, R), as given by (4.1.8)) represents the full universal covering group, 
when considering transformations which are not close to the identity. It is possible that much richer 
structure exists globally (cf. [ 46 1 ] ) , especially in four dimensions, where an infinity of exotic R4 has 
been demonstrated to exist [ 208,162], no two of which are globally diffeomorphic to each other and 
to the standard one [ 8 11, even though they are globally topologically equivalent. However, Eq.( 4.1 .S) 
is all that we shall need in the following. 

4.2. The deuniturizing automorphism A: covuriunce and equivalence as algebraic constraints 

For the construction of our so-called muni$eld representations, a decomposition involving the 
(n - l)-dimensional subgroup SL(n - 1, R) c SL(n, R) is instrumental. For U, u, w = 1, . . . , n - 1 
let us define 

s :=,I? u = -$” B, (4.2.1) 

With respect to these boost-like generators, S acts as 

(f) CT) 
[S, B,l = B,, 

(4.2.2) 

(4.2.3) 

which will give rise to an inner automorphism. 
Since we are distinguishing between the time index 0 - we assume Ind(g) = 1, i.e. the signature 

(- + ++) - and the space indices denoted by u, u.. ., we can now identify more directly the 

following generators: 

” Note that active Diff(n, R) is isomorphic to the infinite-dimensional group of local translations, i.e. Diff( n, R) M 7” := 

C” (A( M) XM R”), where A(M) is the affine bundle on which the translations R” act via the adjoint representation 
[ 656.4471 with respect to GL( n, R). 
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I 
J..., = ; E~...,~.,,~“” angular momentum (compact) 
(+) 
B N = -&,, time-space shears (compact) 

L”, : TTCW, spatial shears (non-compact) 
(-) 
B N = -$,a,, Lorentz boost (non-compact) 

S=-/$j time shear (non-compact). 

(4.2.4) 

The important subalgebras and the relevant generators are 
- so(n - I ): the spatial rotations, generated by the J...,, 
- sl( n - 1): the (n - 1 )-dimensional volume-preserving algebra of the J..., and $‘~U~,j, 
_ R+: a one-dimensional Abelian algebra generated by S, 

(+I 
- so(n): the maximal compact subalgebra, generated by J..., and B U, 

(-) 
- SO( I, n - 1): the n-dimensional Lorentz algebra, generated by J..., and B u. 

The following First Munifiield Theorem, proved in [628], is an immediate consequence of the 
commutation relations: For any sl( II, R), n > 3, there exists an inner automorphism 

A = exp( :1’rS), 

which leaves the subalgebra [R+ x sZ( n - 1, R) ] invariant and transforms 

AJ . ..I. A-’ = J...,, A$,,v A-’ =$‘u,., ASA-’ = S, AVA-’ = V, 

(4.2.5) 

(4.2.6) 

(+) 
A B .A-’ = i(i),,, 

(-) 
A B ,,A-’ = i(h),,, (4.2.7) 

(+) (-) 
i.e. it replaces the compact B u by i B u, i.e. an imaginary (and thereby formally compactified) 

(-) 
Lorentz-boost, at the same time replacing the noncompact B u by an imaginary (and thereby decom- 

(+) 
pactified) time-space shear i B ,,. 

The automorphism A is the key to the construction of physically fitting infinite-component fields, 
our mani$elds from the infinite unitary irreducible (“bandor”) representations of SL( n, R), including 
the two-valued spinorial ones (cf. appendix C.3). The fields have to be non-unitary, like ordinary 
tensors [these are constructed as finite and thus non-unitary representations of SL(n, R)] or Lorentz 
spinors [finite and thus non-unitary representations of SO( 1, n - 1) 1. 

To understand the interplay between the homogeneous and inhomogeneous groups, it is important 
to remember that the algebraic foundations of relativistic quantum jield theory (RQFT) stand on 
Einstein’s two principles of covariance and equivalence, a fact which is generally glossed over in 
textbooks in RQFT, when these are not group-oriented or specifically related to GR. 

The principle of covariance requires the physical fields to appear in expressions invariant under 
the group Diff(n, R). In order to realize this principle and a smooth transition to curved spacetime, 
fields (differential forms) are therefore constructed as representations of the homogeneous, holo- 
nomic, linear group SL (n, R) H c Diff( n, R) ; in Minkowski space, the symmetric spin two tensor 
field 4;; (x), for example, includes all ten components of the relevant finite irreducible representa- 
tion of SL(4, R), reducing under the orthogonal subgroup W(4) (or under the pseudo-orthogonal 
SO(1,3)) as 10=9+1, i.e. (l,l)@(O,O), when seggregating the trace. Note that in holonomic 
constructions, the linear group plays a specific auxiliary role: As the in-educible linear subgroup 
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of the diffeomorphism group, it provides a standard “realization” of that group, with the quotient 
Diff( II, R) /SL( IZ, R) being represented non-linearly over the matrices of the linear subgroup. 4o For 
Lorentz spinor fields, with a finite number of components, there is ‘no linear embedding in SL( 12, R), 
and the non-linear action of the diffeomorphisms is transmitted through the local frames; in this case, 
the linear subgroup action is that of the Lorentz group %?( 1, n - 1) c Diff(n, R), acting on the 
(tangent) frame indices, and the non-linear realization of the quotient group is given by the frame 
fields themselves. 

At the same time, the principle of equivalence is embodied in the ufJine properties of the tangent 
space. It requires the physics of GR and PG to contain the transition to a frame which now carries 
the gravitational degrees of freedom and the kinematics is that of special relativity (SR), i.e. that of 
the Poincare group, now acting in Minkowski spacetime. Reciprocally, in flat spacetime and RQFT, 
this kinematics is such as to provide, here too, a smooth transition. It is realized through the structure 
of the particle Hilbert space: It carries the representations of the inhomogeneous Lorentz group, i.e., 
the Poincare group. When returning to GR and PG, this action, though hidden by spacetime curvature 
and torsion, is nevertheless omnipresent in the anholonomic frames, as constrained by the equivalence 
principle, cf. sections 3.2 and 3.3. 

Note, however, that in metric-affine gravity (MAG), we have to consider a two-step transition. 
The action on the frames (in curved spacetime) is that of the affine group A(n, R); this cannot be 
applied as a symmetry to flat spacetime, when extinguishing the gravitational field. The complete 
treatment [496] thus requires the intermediate stage, e.g. the long-range or low-energy regime, still 
within curved spacetime, of section 6.5, corresponding then to the Riemannian case, as in Einsteinian 
GR. 

RQFT requires a smooth overlap between the algebraic realizations of the two principles, as 
examplified by the following case: 

The constraint of non-unitarity of the field representations is imposed by the physical requirements, 
stemming from the above: With the physical gap c o,~ identification of the metric g, the Lorentz 
boosts become non-compact generators. Should we use unitary representations, the Lorentz subgroup 
would be represented by the unitary infinite-dimensional representations of Gel’fand and Naimark 

C-1 
[ 218,219]. These are representations that excite the spin degree of freedom: Acting with B ,, on a 
state of spin j, we get states with spins j - 1 or j+ 1, ad infinitum. After all, these are representations 
of the (homogeneous) Lorentz group, i.e. a group that does not include translations and, consequently, 
the momenta, and can only excite that which it contains, namely spins. 

Such representations for the fields, however, do not give the correct overlap with the representations 
of the particle Hilbert space, which are those of the Poincare group, the inhomogeneous group that 
does induce the momenta. In practice, indeed, the spin-exciting representations for the boosts do 
not fit our understanding of the known particles or states corresponding to the known fundamental 
fields (quarks and leptons, W and Z bosons, etc.) and their particle realizations on a Hilbert space. 
Observationally, we find that the Lorentz boosts act to accelerate a particle, i.e. to modify its mo- 
mentum and its kinetic energy, without changing its spin, which is in fact one of the permanent 
characteristics identifying a particle: It is the quantum number describing the representation of the 

‘) This is the reason for the appearance of the SL(4, R) matrices in the covariant derivative, even though Riemannian 
gravity is not the Yang-Mills gauge theory of that group [ 1561. 
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stability subgroup, SO( 3) for massive states, over which one induces, following Wigner and Mackey, 
the unitary representations of the Poincare group, cf. [ 381. 

For ordinary tensors and for Lorentz spinors, the representation is finite and thus non-unitary. 
The Lorentz boosts’ intrinsic action is realized by antihermitian operators. When derived from a 
Noether theorem, they just cancel, because the physically acceptable Lagrangian four-form L itself is 
guaranteed to be hermitian (or made hermitian by taking i( L + h.c.), i.e. adding to it the hermitian 
conjugate). The surviving piece of the boost is then its orbital part, such as tPZ - zP,. It is unitary 
because it acts in the infinite-dimensional Hilbert space of momenta; its effect is, indeed, to change 
the momentum and not the spin. 

To achieve the same result when using infinite-dimensional “bandor” type representations, whether 
spinorial or tensorial, we apply the deunitarizing automorphism A in the following manner: 

(1) 

(2) 

(3) 

We first apply A to the generator algebra sZ(n, R) and get an sl(n, R)A algebra in which the 
(+I (-) 

Lorentz boosts are given by i B ,, and the time-space shears by i B p. 
(-) 

We construct unitary irreducible representations for this algebra sl( IZ, R)A: the i B u generators 
close with the J..., on the compact sag and will be represented by an infinite sum of finite 
unitary representations, those corresponding to the maxima1 compact subalgebra, onto which 

(+) 
one induces the entire sl( IZ, R) A unit-rep. The noncompact SO( 1, II - 1)~ , formed by the i B u 
with the J...,, will be represented by infinite unit-reps a la Gel’fand and Naimark. 
After the construction of this unirrep of sZ(n, R)A, we apply A-'. As a result, we regain 
the original identification of the generators of sZ(n, R), as defined by taking the Minkowskian 

(-1 
signature for gap; the boosts B u are given by finite and non-unitary (they are multiplied by 
1 /i) representations of so(n), precisely as it is in ordinary tensor and spinor fields; the time- 

(t) 
space shears B u are represented by non-unitary (because of the same l/i) infinite Gel’fand- 
Naimark representations. They too, like the boosts, will have their intrinsic action cancelled for 
a hermitianized Lagrangian and will therefore only act orbitally. The construction is thus given 
by the sequence 

L+ A-'[U(dLd-')]A, 

where U denotes the unitary irreducible representation. 

(4.2.8) 

Returning to our considerations as based upon covariance and equivalence, we note that in the above 
construction, we have managed to produce a consistent overlap of the two principles’ application: The 
selection of the representations of the covariance subgroup a(4, R) has been fitted to the constraints 
imposed by equivalence, namely having a Poincare group particle Hilbert space. 

4.3. Manijelds and some of their applications 

In flat spacetime, structureless particles are thus represented by induced unitary representations of 
the Poincare group P = R“ K SO,( 1,3) or, in the case of spinor fields, by its simply connected 
covering group F = R“ E SL( 2, C). In the presence of gravity with its curved spacetime, this 
group then functions “vertically”, i.e. as a structure group, acting on the local frames ( “anhofonomic 
tangent group ‘I). 
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The study of the phenomenological systematics of Hilbert space representations shows that such a 
description in terms of the Poincare group (with spin and mass squares as invariants) is sufficient 
for the leptons, even though even in this case there is a need for other “internal” algebraically 
defined quantum numbers, to explain interactions (such as “weak” isospin and hypercharge) and 
phenomenological conservation laws (the various types of “lepton numbers”, chiralities, etc.). For 
the various gauge fields, we require in addition the quantum numbers corresponding to the adjoint 
representation of the relevant gauge groups. On the other hand, for hadrons and nuclei - states in 
Hilbert space which do not coincide with the simplest materialization of a fundamental field - aside 
from “internal” symmetries, such as JEavor-isospin SU( 2) and unitary symmetry SU( 3)) there is an 
extremely rich struture of correlated dynamical excitations (tens of thousands of states in nuclei, tens 
in hadrons) which have been shown to emerge from the dynamics, like the spectrum of states of a 
hydrogen atom or of a harmonic oscillator. 

For the hadrons, the basic phenomenological description, to begin with, was in terms of the S- 

matrix poles along a Regge trajectory in the analytically continued complex angular momentum 
plane. It was then shown that an appropriate algebraic description could be provided by the action 
of a spectrum generating group (SGG) [ 166,167,39,68], emerging from the dynamics and corre- 
lating an infinite sequence of representations of the Lorentz group (i.e. energy levels). SR and the 
O’Raifeartaigh/Coleman-Mandula theorems [ 539,126] do not allow an embedding of the Poincare 
(or, for massless systems, of the conformal) group in larger symmetry groups (except for supersym- 
metry [ 2531) but the SGGs are not symmetries of the S-matrix, they only correlate a sequence of 
dynamically related Poincare group representations. 4’ 

The most obvious choice [ 166,167] for the description of Regge sequences appeared to involve 
the infinite-dimensional unitary bandor representations of SL( 3, R), with an SO( 3) subgroup defined 
as the difference between the total angular momentum of a hadron and the “quark spin” contained in 
SU(6), the latter being given by current algebra [ 2201. With the post-1974 picture, as given by the 
standard model of the physics of particles and fields, such sequences represent the system of bound 
and resonant states, either of three quarks (the baryons), of quark-antiquark structures (the mesons), 
or of three antiquarks (the antibaryons). 

At the time, there appeared, however, to be one difficulty with the use of SL(n, R) systematic% 
either as a SGG for the hadrons in Minkowski space, or as an anholonomic local tangent group for 
metric-affine gravity - in which the “vertical” group acting on the frames is enlarged by embedding the 
Lorentz group SO,( 1,3) in SL(4, R) c GL(4, R) (or of the Poincare group in SA(4, R) c A(4, R)). 
Since SL(4, R) or the affine group SA(4, R) := R“ cz SL(4, R), respectively, were (erroneously) 
considered to possess no double covering, this seemed to restrict the applications of both the hadronic 
SL(3, R) in flat spacetime and of metric-affine gravity to bosonic matter. The issue was settled, first 
for E(3, R) [ 324,708], and then for all z(n, R), when the existence of the covering group was - 
demonstrated [478] and when Ne’eman et al. could show that SL(4, R) possesses “bandor” type 

unitary infinite-dimensional representations. - 
For the hadrons, although there exist several other candidate SGGs [68], note that SL(4, R) is 

unique, in providing the only possible$eld representation (“muniJields”), thus allowing for a covuriunt 

4’ Dothan [ 1651 has shown that the SGG can be considered as coordinate-dependent (time-dependent, in a non-relativistic 
context) symmetries of the S-matrix, which, on the other hand, do not commute with the Hamiltonian, their generators thus 
raising and lowering the energy levels, somewhat like Lorentz boosts. 
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description, within the context of phenomenological field theory. The same description in terms of 
manifields fits the needs of metric-affine gravity. Moreover, the manifield description of the hadrons 
lends itself in the usual way to the replacement of flat Minkowski space by curved spacetime, in 
the presence of gravity, whatever the nature of the manifold (Riemannian torsionless V,, torsion 
containing Uq, metric-affine ( Lq, g), etc.). 

A similar need exists in the description of nuclear excitation systematics, except that the nuclear 
structure methodology makes much less use of field methods. The application of these ideas in 
that domain therefore exploits the Hilbert space representation structure and the action of transition 
operators between them, rather than manifields. Moreover, it is often practical in nuclei to truncate 
the infinite bandors and replace them by finite unitary representations of a compact real form with 
the same algebra, i.e. replace SU( 2) c SL( 3, R) by SU(2) c SU(3) [ 681. 

In sections Cl, C.2 and C.3 of the appendix we list the unitary (infinite-dimensional) irreducible - 
representations of SL( n, R) for 2 5 n < 4, which we also apply, using the automorphism A, as non- 
unitary field representations. In appendix C.4 we also present the unitary representations of SA(n, R) 
in a particle Hilbert space and explain the possible induced representations, see also appendix C.6. 
For spinor matter fields and for infinite tensor fields - in other words, for maniJields, assuming they 
create massive particles, the Hilbert space will support unitary infinite-dimensional representations 
of SA( n, R), actually given by the little group’s representations (in Wigner’s nomenclature). These - 
will be unitary irreducible representations of SL( n - 1, R), unmodified by A, or “bandors”: Bands 
of states with mounting spins; in the cases of %?( 3, R) as a stability subgroup of SA(4, R), in the 
simplest representations the spin intervals are restricted to AJ = 2; otherwise we encounter AJ = 1 
or 2. 

Returning to the Minkowski space dynamics of hadrons and nuclei, we note that the bandor 
or manifield algebraic structure suggests that the mounting levels can be excited by the action 
of a tensor field such as gravity - or of an effective tensor field originating elsewhere, but with 
properties resembling gravity (“strong gravity” [ 587,588,445,570] ) . Several different approaches 
[ 448,499,205,41,415] have pointed to the emergence of such an effective tensor field in QCD, thereby 
explaining the latter’s geometrical features, 42 as expressed in color confinement. The approach also 
fits the fact that in string theory, while the open string reduces under truncation (doing away with the 
Planck mass sector) to a Yang-Mills theory (such as QCD), the closed string reduces in the same 
truncation to gravity. Indeed, the closed string is a contraction of two open strings (summed over the 
color index) and appears in the quantum corrections of the open string - in just the same manner as 
happens in QCD for chromogruvity or pseudogravity in the models discussed by the above authors, 
with the tensor field appearing as a bilinear in the Yang-Mills field (either the potential or the field 
strengths, depending on the model). 

Note that in the Ne’eman-SijaZki approach, the geometric effects are limited to the infrared region 
[499,501,500], whereas the other approaches appear at this point to cover the entire energy spectrum 
- although still indirectly linked with the IR region through the fact that the description does not 
involve the color index. Several effects in hadron [ 6291 and nuclear [ 6301 physics can be attributed to 
such a “chrumogravity”. Among the features explained by chromogravity in hadrons are the observed 
Regge trajectories [ 1661, corresponding to the unitary irreducible representations of the little group 
x( 3, R), thus fitting the relativistic treatment based on SA(4, R). The key question with respect to 

‘* For the W(2)-Yang-Mills case, as mapped to a Riemann-Cartan space, see 14581. 
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the spectrum is to know whether or not there are kinematical constraints on the “Regge trajectories”, 
i.e. the spin versus mass square correlation, within a given representation. In the past, such constraints 
have either made it extremely hard to construct a physical representation (e.g. the “angular condition” 
for local current algebra [ 2201) or shown the field representation to have properties which clash with 
experiment (e.g. the Majorana equation). This is the main reason for our being interested in the 
Casimir invariants of SA(n, R) and for including them in appendix C.4. 

The most important result we have in this context is that for the representations used in our 
manifields (world spinors and infinitensors), i.e. the representations of class IIA, cf. appendix C.4, 
the Casimir invariant C (4) vanishes, and there are ~to constraints. Representations of class IIB 2b, 
for instance, have a non-vanishing Casimir - but we do not use them in physics at this stage. 

In the corresponding excitation bands in nuclei, cf. [708,579], the SL(3, R) has been enlarged 
to Sp (3, R) . The theory has also provided for the first time a derivation of the j = 0,2 ground 
state of the successful interacting boson model (“IBM” [ 131) in nuclei. In hadrons, aside from the 
direct mathematical demonstration of the emergence in QCD (in the infrared region) of a system of 
pseudo-diffeomorphisms4’ for which the “chromogravity” effective tensor field acts as a Riemannian 
metric, the notion is heuristically justifiable by the geometric, bag-like nature of color confinement. 
The energy levels represent the deformation-pulsation frequencies of these compound systems. Note 
that SL(4, R) is then the invariance group of a bag-like extended structure evolving in spacetime 
(just as an evolving string is X(2, R) invariant [600] ) and the little group SL(3, R) represents 
the invariance of the three-volume of the color-confining bag, throughout its vibrations-pulsations. 
The theory is also unique in providing a derivation of the observed linear relation in hadron Regge 
trajectories between the spins and squared masses 44 [ 499,501]. 

In gravity, aside from providing for matter fields affine and metric-affine theories, the new structures 
can be used for phenomenological studies and calculations in Einsteinian gravity, when protons or 
neutrons, for instance, are involved. In a fundamental Lagrangian, we would have quark fields and 
QCD gluons. From these it would be almost impossible to calculate precise effects on their bound 
states, the protons and neutrons. In the past, the method used was to treat the protons and neutrons 
as phenomenological Dirac fields; this, however, is an incorrect prescription, since nucleons are not 
Dirac particles. Not only do they have large anomalous magnetic moments, but in addition, they 
possess a large sequence of excited states for which there is no description in the Dirac equation. 
The correct covariant formalism is that described in this chapter. - 

Returning now to our algebraic constructs, we note that the simplest SL(4, R) manifields are the 
multiplicity-free ones (appendix C.3). In particular, the two conjugate representations in the discrete 

series 

(4.3.1) 

” Recently it has been proved [500] that the exchange of n-gluon sets with the color index contracted (example: 
(i,,hc B,“Bj” dCde BI~B,’ etc . . ., with a, b, . . . S./(3) indices and i, j, . . . indices for spacetime) generates a representation 

of the n-dimensional Ogievetsky algebra. 

61 This relation also emerges in a different context - perhaps related through gravity/chromogravity parallelism - namely 
for the Kerr-Newman metric in CR [342,503], as pointed out by Salam [587], [also in a personal communication to 
Y.N.] and made more exact in [443,445,447] by employing the Christodoulou-Ruffini notion of the irreducible mass of a 
black hole. Chromogravity and the other treatments of QCD as a geometrical theory will be reviewed in greater detail in a 
coming review of the applications of QCD to the understanding of the hadron spectrum [ 5011. 
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Fig. 3. The basic spinor manifield V$‘fh,Rj ( i, 0) @ D@,Rj ( 0, i), extending the Minkowski space Dirac spinor field of 
the same ‘name’ into X.(4, R). This reducible SL(4, R) representation is the direct sum of two infinite, A-deunitarized 
irreducible representations, denoted by hollow and full circles respectively, cf. [477,481,628]. 

contain, as representations of the little group SL(3, R), sequences of ‘D~$i;,,,(i = i; cr2 = 0), the 
special unirrep of (C.2.4). This unirrep reduces to an infinite sum of SU( 2) representations (j, j + _- 
2 ) , . . . 

(4.3.2) 

The ;Df&,RJ (i, 0) @ Z7$&R) (0, .$) is the direct sum of two finite, chiral, and non-unitary represen- 
tations of the Lorentz group, related by parity. In the Dirac case, this describes the Lorentz behavior 
of the Dirac field; for the SL(4, R) representation, this is the behavior of the lowest Lorentz sub- 
multiplet. Thus it contains a Dirac-like spinor at the lowest level. In a region where the shears and 
dilations are switched off, with no tensor field to relate the various Aj = 2 levels, this ground state 
decouples and becomes a true Dirac spinor field. 

Other important manifields appearing in the ladder series in (C.3.10) are 

JX$.dP4.R) (1 = 0, edT e2 E R, m = n = j, j %i(modl), 

those yielding bosonic bands corresponding to the SL(3, R) bandors in (C.2.4) 

D:$j,R) (i = 0; a21 7 a2~ R, {j"}={j,j+Z...}, 

(4.3.3) 

i.e. j=O@2@4@..., (4.3.4) 

~~~&, (j = lif-721, 3 - 
a2~ R, {j”}={j,j+Z...}, 

and the manifield 

i.e. j=1@3@5@... , (4.3.5) 

D$!&R) (i = +, e2>, e2 E R, m = n = j, j Zi(modl), (4.3.6) 

yielding the same SL(3, R) bandors as (4.3.4) and (4.3.5). - 
These infinite-dimensional representations of SL(4, R) are realized by infinite component spinor 

fields, i.e. spinoriuf munijklds; taking first the case in which the action of the group is defined 
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on the frames, i.e. representing the anholonomic z(4, R)A, the manifield is p”(x), where the 
anholonomic (upper case Greek) indices Z, IL, 0 = 1,2, . . . , cc run over the countable infinity of 
the components of the manifield representations, namely, in the usual case, the quantum numbers 
of the representations of the Spin( 1,3) = m( 1,3) - finite and non-unitary, by construction - 
isomorphic to the (finite) unitary representations of s0(4, R) . For example, we may have a sequence 

(O,O),(l,l),(2,2),..., i.e. single-valued representations, in the case of the injnitensor (4.3.3), 
or the sequence ( l/2,0), (3/2,1), (5/2,2) . . ., double-valued representations, for one of the two 
“ladders” in the spinorial manifield in (4.3.1) . 

For these spinor representations, the group-structure can be stepwise enlarged, e.g. according to a 
subgroup chain, beginning with the Lorentz group, 

SL(2, C) c P = R+’ K SL(2, C) c SA(4, R) c Dlff(4, R). (4.3.7) 

This is, however, an inclusion in the abstract. To realize, for instance, the covariance group, we have - 7 
to specify SL(4, R) H, the holonomic special linear subgroup of Dlff(4, R) ; in addition, we shall have 
to correct for the action of the covariance group on the coordinates in the argument of the manifield. 
We shall study one such construction in the next section. 

If we lift the Lie generators L’,; of the linear connection Ti.j to the manifield representation, denoting 

it by p( L’,;) = { ( L’,i) PQ} (for this holonomic case we use upper case Latin indices), we can introduce 
the exterior covariant derivative 

(4.3.8) 

The manifield representation is irreducible, because the shear generators (still in the holonomic case) 

Z(i,) 9 i.e., the generators of the coset space z( IZ, R)/‘SO(n), connect all these various substates over 
the lAj( = 2 intervals. Physically, it is the gravitational field (or the effective field of “chromogruvity”, 
in the flat spacetime physics of the hadrons) which connects these substates, since they are coupled 
through the covariant derivative by means of the matrices {(Lij)QP}. Note that to the extent that we are 
treating (in MAG) the case of an anholonomic action of SL( 4, R) A on the frames, a similar covariant 
derivative can be defined, with the indices P, Q replaced by 8,Z7; the manifield (infinitesimal) 
variation, in that case, does not directly involve the variation xi + xi + e(x). 

4.4. World spinors and world injnitensors, new concepts in$eld theory 

- - 
The relationship between SL(4, R)A and SL(4, R)H is somewhat less straightforward than the one 

existing between the Lorentz groups in the anholonomic and holonomic physical realizations. We 
have mentioned previously that SR does not allow a symmetry larger than the Poincare group. Thus, 
the frames over which the anholonomic group is acting are not the orthonormal frames as in GR. 
We shall however have occasion to use the anholonomic linear group and its double-covering in flat 
space; in such situations, the manifield breaks down and reduces to an infinite sum of Minkowski - 
spacetime fields. Phenomenologically, SL(4, R) is then used as a SGG [ 681. 

There are, however, other physical situations in which the frame manifield remains irreducible - 
e.g. in models of quantum gravity in which the high-energy (above Planck mass) regime is non- 
Riemannian. In either case, we can introduce a local manibein frame [493], by lifting the usual 
frame fields ein (x) - (4 x 4) field-valued matrices, relating here SL(4, R)A to SL( 4, R)H in their 
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( l/2, l/2) four-vector representations 4s - via the manifield representation, to the infinite-dimensional 
matrix EP ,,(x). As a result, we can define holonomic world spinors, 

P’(x) = EP,,(x)ly”(x), EP,,(x) := E(d,)‘,,, (4.4.1) 
- 

where P”(x) is now a spinorial manifield under the action of SL(4, R)H; with the action of the co- 
variance group double-covering Diff( 4, R) following the usual prescription of a non-linear realization 
over its linear subgroup, we have thereby obtained a field which will carry faithful representations 
of that covariance group’s double-covering, fitting the “world” spinor description. Before dealing in 
detail with the !ansformation properties of both world spinors and affine-frame spinor manifields, 
we note that for a general world tensor field a)%:::, there are two ways of describing the trans- 
formations under SL( 4, R) : (a) As a direct product of p covariant and q contravariant four-vector 
“fundamental” representations, or, (b) after contractions over indices of complementary types, and 
symmetrization and antisymmetrization over indices of the same type, the (now irreducible) tensor 
carries an irreducible representation of SL(4, R). There is one single type of manifield, constructed 
as a ladder representation (see appendix C), which can be considered as a limiting case of some 
types of ordinary tensors - namely the totally symmetric contravariant P’,.P and its covariant analog 
_ when the number of indices goes to infinity (for a spinor, @ itself is a Lorentz spinor). In that case, 
option (a) is available. In the general case, however, we have to use option (b), i.e. we deal with 
the field as the carrier of an irreducible (non-unitary) representation. For an ordinary tensor field we 
have the infinitesimal variation, 

Sf’(X) = -id;C$‘(X) [P(L’.,)]“‘fl@( (dj)-‘X) + [‘d;v(X), (4.4.2) 

where c’(x) = 6x-i, the indices m, n denote components of the field representation, p(L) is the 
appropriate matrix representation and a(,?‘) is the (4 x 4) matrix representation of the inverted 
action of that generator. The SL(4, R)” matrix is multiplied by a parameter which is the relevant 
component of the gradient of xi, resulting from the Jacobian determinant [ 1561 and producing the 
non-linear action of Diff(4, R) /SL(4, R)H quotient. 

The infinitesimal variation of the world spinor manifield under the action of the diffeomorphism 
xi -+ xi’ = X’ +e will be very similar, except that the action on the spinorial manifield will be realized 
through the infinite matrices of s(4, R)H, 

61U”(X) =-ia;~j(X)[p(L’~j)]“~~N((~i,j)-‘X) +pC3iP”(X). (4.4.3) 
- 

We note that the generators of SL(4, R) H are given, in terms of the anholonomic ones, by 

(L’,j)“, = E”E(~)(Lnp)P,,HN”(~), (4.4.4) 

where H = E-’ is the inverted manibein, lifted from the one-form basis. 
The “infinitesimal” parallel-transport of a manifield under a one-parameter subgroup of I” sz 

Diff(n, R) with generator 5 is provided by the GL(n, R)-gauge covariant 

I+“(X) = l$JDP’~(x) + D~J!P”(X) . 

” We denote the finite unirreps of SL(4, R) by the largest unirrep of its compact SO(4) 
unirrep of SO( 1.3) in the Minkowski case. 

Lie derivative 

(4.4.5) 

subgroup, or by the non-unitary 
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Holonomically, i.e., for world spinor PM(x), Eq. (4.4.5) simplifies to the usual covariant Lie deriva- 
tive &=tJd+d[1. 

Fermionic holonomic manifields (with half-integer Lorentz subgroup spin) are world spinors, to be 
clearly distinguished from bosonic ones. The bosonic ones contain the same information as ordinary 
tensor fields, in as much as they belong to Diff(n, R). They are thus better known as injinitensors. 
The fermionic world spinors, on the other hand, display the action of the covering group Diff(n, R) 
faithfully and are therefore more general. 

In order to introduce covariant differentiation for world spinors, the linear connection (3.5.1) has 
to be lifted to the manifield and then written holonomically. Similarly as in (3.5.2), we find the 
following inhomogeneous relation 

YVp) ,P = E’,, rik ( Ljk) pT HTH - E’,,dH,” (4.4.6) 

between the anholonomic (Greek indices) and the holonomic (Latin indices) connection for a 

manifield with respect to a manibein transformation. 
In the minimal coupling prescription, the coupling to the connection, is then achieved by means of 

the covariant manifield derivative ( Dj := aiJ D) ) 

Djp”(x) = [8taj f rljk(i!Tik)NM] p’“‘(x) . (4.4.7) 

Then, in our first order formalism, the world spinor matter Lagrangian reads 

L - L,,,(HL~(x),~~~(x),D;~~/~(x)). mat - (4.4.8) 

The applications of our new concepts - the world infinitensors and spinors, especially the latter 
- range over a number of areas, which we touched upon in section 4.3. The above mentioned 
gauge coupling to gravity provides the key for applications in gravity itself and in theories involving 
a phenomenological or effective field resembling gravity, aside from providing for matter fields 
in affine and metric-affine theories. We mentioned phenomenological studies and calculations in 
Einsteinian gravity, when protons or neutrons, for instance, are involved. Nucleons should be treated 
as components of a phenomenological world spinor, coupled to gravity through the connection as in 
(4.4.7). Falling into a black hole, for instance, they might well get their sequences of resonances 
excited by the strong gravitational field of the hole. In the case of chromogruvity (QCD induced), 
the dynamics provide mass formulae for the Regge sequences, for instance. 

4.5. Manijield equations 

For the rest of section 4, we will assume the dimension of the differential manifold to be rz = 4, that 
is, we will consider spacetime. Two key theorems constrain the construction of manifield equations 
[99], the First Munijield Theorem of section 4.2 and the - 7 
Second ManiJeld Theorem: In SL(4, R) or Diff(4, R) covariant equations, the mani$eld cannot 
correspond to a multiplicity-free representation. 

This can be readily seen in Fig. 4: In a curved space and covariant equation of motion, the ‘y-type 
matrices’ X, span a four-vector representation ( l/2, l/2) under sZ( 4, R), i.e. L?‘” P, X,] = 6FXP, cf. 
(3.1 S). Taking the commutator between states connected by the X,, we find that for the left hand 
side not to vanish, T“ p has to act (non-trivially) as a (0,O) transition. 



62 EN! Hehl et al./Physics Reports 258 (1995) l-171 

l/2 312 5R 7R 912 II/2 1312 J, 

Fig. 4. The action of the ( I, I ) ‘symmetric’ algebraic generators spanning the quotient s1(4, R) /so( I, 3) - and the second 

algebraic theorem for world spinor dynamics, the curved space multiplicity theorem [99]. The ( IAji I, lAj21) = ( I, I ) 
ninefold action of the shears spans a ‘Union Jack’ - eight arrows and the central point itself, namely (in the helicity 

representation), (I,I,),(I,O),(I,-I),(O,I), (O,O),(O,-I),(-I,]).(-I,O), (-1,-I) representing the raising and 
lowering action on the so( 1,3) (Lorentz) subgroup representations. Of these, naturally, only (0,O) preserves a state’s 
eigenvalues. Multiplicity-free representations, by definition, do not leave a state unchanged and always connect it to higher 

or lower states; here, the Lorentz submultiplets are connected by the ‘St.Andrew’ x-like transitions to higher or lower 

Lorentz submultiplets. The (0,O) transitions’ action is thus trivial here; this is also true of the ‘St.George’ ( ‘+‘-like) 
transitions, acting trivially, in both the ‘ladder’ and in these specific ‘discrete’-type representations. 

Fig. 5. The action of the infinite (constant) ‘y-matrices’ X,. 

An sZ(4, R) generator, such as S = -j2’” 6, maps the infinite matrices X, through [S, X,] = 

--@,X6, since X, is a four-vector under s1(4, R). Since S is a spin zero object (as a time-time 
component of the shears), this requires S to couple a state to itself, so as to get the same bra 
state on both sides of these commutation relations. However, in a multiplicity-free representation, the 
generators take you only up or down, by definition. 

Thus equations for “holonomic” or world spinors, being SL(4, R)H invariant, exist only for man- 
ifields which are not multiplicity-free. This is an inconvenience in any approach in which one tries 
to use the simplest manifields. Mickelsson [440] first wrote down such a covariant equation. The 
Mickelsson equation, however, for vanishing gravitational field (i.e. in the flat limit), remains in- - 
variant under global SL(4, R) and thus does not reduce to simple SL(2, C)-invariance. This can be 
remedied through a mechanism of spontaneous symmetry breakdown with a Goldstone-Higgs field 
or manifield. We shall discuss such a model in section 6.4. The 
Third Manijeld Theorem: In the absence of the gravitational field, a Lorentz invariant equation 
decouples the states of Df&Rj ( l/2,0) @ D~~;l~,R, (0, l/2) outside of the main diagonal. 

This can be seen in Figs.3 and 5: the infinite y-like matrices Xi are still a Lorentz four-vector, i.e. 
a ( l/2, l/2) representation. Such operators cannot connect a state to any other state, except between 
both sides of the main diagonal “alley”. 

The constraints imposed by these two theorems notwithstanding, there is a simple method [99] 
in which one can still use the simplest (multiplicity-free) manifields, which we listed in section 
4.3, and can construct a holonomic equation, i.e. one describing a world spinor. We first construct a 
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Lorentz-invariant (i.e. flat space) equation, e.g. for the manifield E!F$R, ( l/2,0) @ D$i;i,R) (0, l/2) 
(while applying the deunitarizing automorphism of section 4.2), 

[i o’kX;dk - m(p)] w = 0. (4.5.1) 

- 
The anholonomic X, are constructed in the following way [493]: first we embed SL(4, R) in - 

SL( 5, R) and then select a pair of parity conjugate principal series representations which are contained 
in the SL(4, R) reduction of our spinorial representations. Let the generators of x(5, R) be TAB, 
A, B =0;..,4. We define 

- 
xl = JQ4+ a = 0, 1,2,3, (4.5.2) 

which yields an SL(4, R) four-vector. Note that the X, operators constructed in this way yield, upon 
commutation, the SL(2, C) generators, generalizing a property of Dirac’s y-matrices. The holonomic 
matrices in (4.5.1) are then given by Xi = eiaXa. 

In the presence of gauge transformations (or of curvature), the partial derivative of the world 
spinor PM(x) is replaced by the covariant exterior derivative (4.4.7), in which (Lik)NM is an infinite 
z(4, R) matrix. This matrix will connect states outside of the diagonal alley, with A J = 0, 1,2. 
Note that even though X; = ei”Xa will now contain a tetrad field, it is still a four-vector under the 
holonomic SL(4, R)H c Fff(4, R). In addition the Minkowski metric has, of course, to be replaced 
by the relevant metric. 

The third mani$eld theorem, for world spinor dynamics, the “flat space disconnection” theorem: 

The @j~l, IAj,l> = (1/X l/2) ac ion t of the X,, namely, in the helicity representation, the four pos- 
sible transitions ( l/2, l/2), ( l/2, -I/2), (-I /2,1/2), (-l/2, - l/2), is represented in two cases: 
Acting anywhere within the 2, $&iR) ( l/2,0) @ Z)$~~~,R) (0, l/2) representation, e.g. on the (2,9/2) 
submultiplets, it yields nothing (entirely trivial action). However, when acting within the shaded 
zone, a non-trivial action becomes possible, connecting submultiplets belonging to the two different 
irreducible components. As a result, in flat space, the states lying outside of the shaded zone discon- 
nect, in a Dirac-like Lorentz invariant equation [481]. In the presence of a gravitational field, the 
covariant derivative in (4.3.8) replaces the ordinary derivative in the Dirac-type equation. It involves 
the connection, contracted with an infinite representation of the ,P @I with the ‘Union Jack’ action 
described in Fig.4 - and all states become connected. 

In the following section, we shall see that the above special-relativistic anholonomic equation is 
transformed into a covariant equation for a world spinor by means of the application of infinite frames 
(manibeins). 

4.4. Manibeins 

In accordance with the principle of equivalence, we construct first the equation for a spinor manifield 
anholonomically, i.e. in a local frame, and then holonomize it [99]. 

We start with a manifield, which is an A-deunitarized representation of SL(4, R), but we impose 
Lorentz invariance only, as for an ordinary finite spinor. We thus have a direct sum of an infinite 
sequence of spins l/2, 3/2, etc.. If we use (4.3.1), i.e., a multiplicity-free representation 

(4.6.1) 
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then the y-matrices are just the infinite direct sum of corresponding Bargmann-Wigner y’s for the 
special-relativistic equation at each level. In curved space, the “minimal coupling” prescription, i.e. 
replacement in the Lagrangian of the partial derivative by a covariant derivative, will connect the 
levels within A J = 2. 

To go over to a world spinor field, we use “manibeins”, i.e. tetrad-like infinite4’j components 
EP,,(x) := E(e’&, of the local frame, cf. [493]. We denote by P’(x) the P-component of the 
holonomic manifield, carrying a realization of Diff(4, R). According to the second theorem of above, 
this is no more a multiplicity-free representation. This is not surprizing, considering that the manibein 
EP ,, (x) represents the translational part of the gravitational field. 

In the local (anholonomic) frame, the components P’“(x) of the discrete series representation of 
above correspond to its reduction over the A-deunitarized (Lorentz) subgroup SO( 4). We have 

Q+‘(X) = E”,,(x)@‘(x), p, /f=l,...,cm. (4.6.2) 

The E’,,(x) and their inverses, the components H p”(x) of the coframe, are thus infinite matrices 
with the infinitesimal transformation properties 

(J!Z~,+~)E~I,(X) =-w,‘(x)(P p),j’EP~(x) + (Die’ +E~T~~‘)~~~)N~E~II(x), (4.6.3) 

7 
where E is the generator of a one-parameter subgroup of Diff(4, R) and ,P P the generators and wnp 
the infinitesimal parameters of the SL(4, R), cf. (3.6.10). 

The conventional transition between holonomic and anholonomic indices for tensors is mediated by 
the vielbein coefficients eln such that gij = e,“e$gap. Denoting by p the constant yO-like matrix in 
the Xi set, we can form the Dirac-type adjoint !P := !P + ?? and find similarly from the scalar product 

of world spinors, 

UP := ‘PtM(.x)HM~HN”(X%,,lYN(x) =: PtM(~)GMN(x)?PN(x), (4.6.4) 

where the symmetric infinite-component tensor G ,+,,,,(x) is a functional of the gravitational field 
realizing the metric gi, on the world spinor components. After spontaneous symmetry breakdown to 
Riemann-Cartan or even to Riemannian spacetime, as discussed in section 6.4, we expect to get, in 
accordance with the principle of equivalence, a “weak” equation for “low energy states”: 

(l.e.s.lDIGMN(x)]l.e.s.) G 0. (4.6.5) 

In writing the !P-Lagrangian, we thus have to use coframes. In this case, the coframes have their 
components’ labels ranging over a countable infinity. Such coframes are matrix-valued translational 
potentials, relating GL(4, R) A to a(4, R)” [ 991. For bosonic manifields, the double covering is 
collapsed and the coframe can then be given [490,491] in terms of the conventional coframes 0fl by 

(4.6.6) 

where the C”, and GJi are rectangular y1 x 00 transition matrices of SL(2, C) and SL(4, R), respec- 
tively, connecting the 4 (i-index) and ( l/2, I /2) (P-index) to the infinite-dimensional representations 

4h Instead of tetrads we now have “No-ads” 
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(3 and J indices, respectively). The C’, consist of a reduced infinite sum of rectangular matri- - 
ces. They relate, within one single A-deunitarized representation of X(4, R)A, the A, B labels of 
the finite (non-unitary) representations of SL(2, C) - replacing here the m(4) compact subgroup 
representations in the A-deunitarized representation of ?%(4, R)A itself - to the four-dimensional a, 
p indices of the local Lorentz group, also saturating a four-dimensional representation of SL(4, R)A. - 
The GJi relate the four-dimensional i, j indices of X.(4, R) H to the infinite-dimensional I, J indices 
of the A-deunitarized representation of that group. 

Having followed the transition from the anholonomic to the holonomic equation, we can understand 
how the manibein frames transform a representation of the discrete series, which is multiplicity-free, 
into a representation with multiplicity, presumably a reducible sum, following a Clebsch-Gordan 

expansion. 
However, if we are interested in a holonomic equation, we can, following Mickelsson [ 4401, also 

start out directly with an appropriate non-multiplicity-free pair of parity-conjugate representations. 

4.7. Conformal properties of world spinor densities 

In a metric-affine spacetime, the exterior covariant derivative for the manifield takes the general 
form of (4.3.8). In the context of Lagrangians, the manifield as a SL(4, R) representation has to be 
lifted to a GL(4, R) representation and thus to be regarded as a density @ of appropriate dimension 
dW. Thus, following Schouten [ 6041, it is more natural to consider (world) spinor densities, cf. 
section A. 1.1, of a suitable dimension dP. Then (4.3.8) converts, according to the prescription 
(3.5.7)) into 

(4.7.1) 

Here the first piece on the right hand side denotes the covariant exterior manifield derivative as if the 
P did not carry a hat. 

We adopt the convention that a (mani-)field density @(x) transforms under a conformal change 
g = @g of the underlying metric structure, cf. section 3.14, according to 

4(x) + $(x) = n(x)“‘l’2@(x) 

( 

d,, :=n volume density 7, 
do := -i(n - 2) scalar field U, (4.7.2) 

dr/2 := -i(n - 1) spinor field @. 

In n = 4 dimensions, the dimension of a scalar field is given by do = -1, whereas d1j2 = -3/2 holds 
for a conventional Dirac spinor. For the weight L = 2 of the metric, this corresponds to the canonical 
(physical) dimensions which, for a scalar field, e.g., is (length)-‘. For a world spinor density we 
are assuming that it transforms as 

$3(x) = ,-ww/4~qX), (4.7.3) 

which, for L = 2 and n = 4, is in conformity with the canonical dimension d = -3/2 of conventional 
Dirac fields, cf. [419,733]. Then the trace of the connection acts as a compensating potential in the 
manifield derivative (4.7.1) for densities, which suffices to ensure conformal covariance. In a (L,, g), 
according to (3.14.1)) the exterior covariant derivative (4.7.1) of a world spinor density (cf. [ 7261 
for the Riemannian case) transforms under conformal changes as follows (cf. also [ 145,515,5281): 
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&(,) = fJ-(“-‘)L/4{D + [ (n(+, - I)C - t(n - I)L]dln~}P(x). (4.7.4) 

Consequently, conformal covariance of the exterior GL( ~1, R)-gauge covariant derivative can be 

achieved: 

@(,) =n-‘+““‘“of”(X), w,=(l/n)[l+&P-l)L./C]. (4.7.5) 

Let us consider a Dirac-type Lagrangian L,,, and take into account the definition 

X(x)“,, := (X#y,, =+ x(xy,, = ilFX(x)“,, (4.7.6) 

of the vielbein-deformed y-type matrices X,, together with the conformal property (3.14.1) of the 
coframe 6”. Moreover, we employ the transformation formula (3.14.13) for the Hodge dual of a 
p-form. Take n t ogether, this implies that the Dirac-type hermitian Lagrangian 

L$ = ;i[!P&x(x)s,, /l*DP’(x) - D?&(X) A’ X(#,, ?P’(x)] (4.7.7) 

for massless world spinor densities is conformally invariant in any dimension, 

z, = @-L/2&, = L ly? (4.7.8) 

provided the conformal weight of the coframe is given by F = L/2, which, for L = 2, is the canonical 
value. 

Compared to a conventional Dirac field carrying only spin, the hypothetical manifields, in addition, 
supply a shear and a dilational current, which will become the source of a symmetric connection 
field. 

These world spinors cannot be equipped with a rest mass4’ in a conformally invariant manner. 
However, we may introduce a Yukawa-type coupling to the dilaton field G such that the resulting 
interaction Lagrangian is conformally invariant in IZ = 4 dimensions: 

L,,tp = -CT!@(x) !@‘z(x)q i<_ = fp-4)L/4L 
CT*. (4.7.9) 

The manifield equation, resulting from the combined Lagrangian (4.7.7) and (4.7.9) by variation 
with respect to !@‘, reads (cf. [447,282, p.1141 for the Riemann-Cartan case): 

i[XA *D+;(D*x) +ia77]!&=0. (4.7.10) 

A constant mass term m x (a) for world spinors can be induced as a result of the breaking of the 
local scale symmetry by means of a non-trivial vacuum expectation value (a) = Jx/ZO of the dilaton 
field u, see sections 6.4 and 6.5. 

In a model of Audretsch et al. [ 181, which was devised in order to understand the relation between 
a Weylian and a Riemannian spacetime, a condition Dm(x) = 0 for a so-called mass function m(x) 
is necessary and sufficient for the existence of geodesic particle trajectories in the WKB-limit. The 
manifield mass of our model, however, will be induced by a breaking of the dilation symmetry, see 
section 6.4. Thereby the corresponding condition Da = 0 should surface as a requirement for the 

” To us, a mildly spacetime dependent mass m = m(x) & la Hayashi et al. [261] and Audretsch et al. [ 181 seems to be an 
inappropriate device, since, according to Coleman [ 1241, “...scale transformations do not change numerical parameters - 
that is to say, they stay within a given physical theory”. 
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groundstate. As it turns out, this implies the vanishing of the dilation current and, accordingly, the 
emergence of a preferred pseudo-Riemannian structure as well. 

5. Lagrange-Noether machinery 

5.1. The external currents of a matter field 

The external currents of a matter field are those currents which are related to spacetime symmetries. 
On a fundamental level, we adopt the view that tangible matter is described in terms of infinite- 
dimensional spinor 48 or tensor representations of SL(4, R), the manijelds IP of the preceeding 
section. 

In a first order formalism we assume that the material Lagrangian n-form for these manifields 
depends most generally on Y’, d!P, and the potentials gap, 6”, r,p. According to the minimal 
coupling prescription, derivatives of these potentials are not permitted. We usually adhere to this 
principle. However, Pauli type terms such as R,fiq La, *(up), where u := (i/2)X, Xv W A W, 
and the Jordan-Brans-Dicke type term I@( Rap A qap may occur in phenomenological models or in 
the context of symmetry breaking. Therefore, we develop our Lagrangian formalism in sufficient 
generality in order to cope with such models by including in the Lagrangian also the derivatives 
dgnp, da”, and dT, P of the gravitational potentials: 

L=L(g,p,dg,p,9”,d~“,T,P,dT,P,~,d~). (5.1.1) 

As a further bonus, we can then also read off the Noether identities for the gravitational gauge fields 
in y1 2 2 dimensions. 

The requirement of invariance under the local affine group d(n, R), as we will discuss at the begin- 
ning of section 5.2 below, means that the Lagrangian L should be invariant under both, linear gauge 
transformations of the frame and (active) diffeomorphisms. Invariance under frame transformations 
leads immediately to the result that L depends on r,p only via the exterior covtiant derivative D 
(or via the nonmetricity Qap, torsion T”, and curvature R,p in Pauli type terms). To see this, one 

simply has to note that we can always choose the coframe field 6” such that r,p g 0 at a given 
event P, in which case 

Lk_+, dgap, a”, d6”, rap, dr/, ?P, dp) g L(g+ Qap, 6”, T”, R/, ?P, Dlu) (5.1.2) 

at P. Now, since the right-hand side of (5.1.2) is a scalar-valued n-form constructed from tensorial 
and spinorial manifields, it is invariant under linear frame transformations. Also the left-hand side is 
similarly invariant by hypothesis. It follows that, at an event P, Eq. (5.1.2) holds in general for an 
arbitrary frame field. Applying the same argument at every event P of spacetime, the result (5.1.2) 
follows quite generally. Here the GL(n, R)-gauge covariant exterior derivative is given by 

D?J+(x) = [@d + r/(Lap),,E]p”(x). (5.1.3) 

4x In treating the matter Lagmngian L, the covering groups of GL(n, R), SL(n, R), and A(n, R) or SA(n, R) occur and 
thus should be overlined, since the matter fields are spinor manifields. Only for the gauge Lagrangian V, it can remain 
non-overlined. For convenience, we often drop the overline, if it is clear from the context anyways. 
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where (Lap) ,,? denotes a lifting of the GL( n, R) generators to the manifield representation. 
Independent variations of gmp, Qap, 6”, T”, RnP, ?P, and DP yield 

(51.4) 

where the partial derivatives are implicitly dejined by (5.1.4). Note that for a tensor-valued p-form 
QaP which is symmetric or antisymmetric in CY and p, expressions like 6@,, A (aL/aQap) are only 
formal. In order to avoid counting the nondiagonal components twice in the variation procedure, a 
strict ordering of the indices is necessary. This is to be understood in the first two terms of (5.1.4). 
Since we assume that the variation 6 and the exterior derivative d commute, i.e. 18, d] = 0, we can 
transform the variations with respect to Q,@, T”, and RmP defined by (3X1), (3.5.9), and (3.5.10), 
via “partial integration”, into variations with respect to the original variables gap, 6”, and rap. We 

find 

SL = ;Sg,&+ + SiY’ A & + W/ A A”, + &P A (SL/SP) 

where the variational derivative 

(5.1.5) 

(5.1.6) 

for a gauge-invariant Lagrangian L, becomes identically the GL(n, R)-covariant variational derivative 
of L with respect to the p-form P. The matter currents in (5.1.5) are given by49 

sL aL 
,np ;= 2---- x2--- aL 

agcc? agap 
+2D-----_, 

JQap 
(5.1.7) 

A”, := 
aL 

+ 2gf3,---- 
aQq 

+;t-,g+D-&. 
(I 

(5.1.8) 

(5.1.9) 

Since DraP is not defined, the variational derivative SL/Sr,P in (5.1.9) cannot be understood 
according to the covariant version of (5.1.6). Rather, it is just an abbreviation of the right-hand side 
of (5.1.9), which is the outcome of the transition from (5.1.4) to (5.1.5). The last term on the right 
hand side of (5.1.5) is an exact form which does not contribute to the action integral because of the 

49 In some textbooks, see Thirring and his associates [674,704], the matter currents are defined with the Hodge star 
introduced on the left-hand sides of these equations, such as *& := . . Then the currents are one-forms by definition. 
The price one has to pay for this “convenience” is that the matter currents % = * (. . .) etc., via the Hodge-star, become 
explicitly contaminated with the gravitational potential gnu. There is, however, no need for such a convention. We try to 
keep matter and gravitation cleanly separated in order to get insight into their structural interdependence. 
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usual assumption that SgaB = 0, &Y” = 0, Sr,p = 0, and Sly = 0 on the boundary dM of the domain 
M of integration. 

A classical convective model of the matter currents (5.1.7), (51.8)) (5.1.9) has been developed 
by Obukhov and Tresguerres [ 5321 following the pattern of the Weyssenhoff ansatz. 

5. I. I. Energy-momentum 

The n-form (r”p and the (n - I)-form 2, are the metrical (Hilbert) and the canonical (Noether) 
energy-momentum currents, respectively. These currents occur, though in a more restricted sense, 
also in GR. In Lagrangian field theory, a current is fundamentally an (n - 1)-form (some quantity 
spread over a hypersurface) and not an n-form such as the metric energy-momentum “current” given 
by (5.1.7). This suggests that we consider the equivalent (n - 1 )-form 

up := ea]cnp, epJoP 3 0. (5.1.10) 

Later, when we will have the Noether theorems at our disposal, we will relate the symmetric uar via 
a Belinfante-Rosenfeld type formula, to the canonical current &. 

From the canonical energy-momentum current we can extract its truce SaA& with one independent 
component 5o according to 

Ja:= & - ( l/n)e,J(zYY A X7) (5.1.11) 

such that ,.ZO is traceless: 

6” r\/.Y3‘,= 0. (5.1.12) 

The antisymmetric piece 4,, A -C,, has n( n - 1)/2 independent components, exactly as the (n - 2)- 

form 

2 := gaPellJ Z;, = e,J z”. (5.1.13) 

Via some contractions, we find 

6,, A zp, = is, A 6, A 2. (5.1.14) 

Consequently, the irreducible decomposition of the canonical energy-momentum (n - I)-form & 
into a symmetric tracefree, trace, and antisymmetric piece reads 

2Za =,?, + ( l/n)e,](fiY A 2,) + $9, A 2% (5.1.15) 

where this equation can be understood as defining 
1) (n + 2) /2 components. For the symmetric piece 

the symmetric tracefree piece ,Z’, with its (n - 

(5.1.16) 

“’ It is called the trace because in terms of the components la LI of the conventionally defined energy-momentum tensor 
density, with _& = 7BOep, we have 6” A & = 19” A TP,ep = Irrae. Here l is the (metric-independent) Levi-Civita four- 

form density and Ed = e,] E, see (A. 1.18) and (A. 1.19). Analogously, the expression g,1~6~ A &q = 61, A 2~1 = qapl E 
represents the antisymmetric piece. 
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we find 

f?,];a = 0, 6”Aj,=O, -a e&Y = 0. 

Moreover, in analogy to (5.1.14)) we have 

(51.17) 

%a A &, = %a A& + (l/n)g,,(6YA 2,). (51.18) 

5. I .2. Hypermomentum 

A rather new concept [277,278] is that of the hypermomentum current which is given by the 
(n - I)-form d”,. According to the direct product structure GL(n, R) = [T CI SL( n, R)] x R+ of 

the general linear group, its trace 

A := Ayy = GL/WYy, (5.1.19) 

the dilation current, can be split off, leaving over the traceless hypermomentum current 

4”” p := A* p - (l/n)SzA. (5.1.20) 

This separation is somewhat reminiscent of the decomposition (3.12.2) of the connection into volume- 
changing and volume-preserving pieces. 

In an (L,, g), a metric is available which allows us to lower the index (Y and to split (5.1.9) into 
a symmetric and an antisymmetric piece. Then we arrive at the decomposition 

A + = 7uP + (I/n)g,pA + >,p 

N spin current @ dilation current $ shear current, 

where 

rap := A laPI = 6 Ia A PPI 

is the (dynamical) spin current and 

(5.1.21) 

(5.1.22) 

Nap := A cap) - (1 /n)g,pA (5.1.23) 

the symmetric and tracefree shear current. Since rap = -rPa is an (n - 1 )-form, it can be equivalently 
expressed in terms of a vector-valued (n - 2)-form p,, as displayed in (5.1.22). The explicit form 
of the spin energy potentia15’ (n - 2) -form ,u,, according to (A.l.26)) reads 

pu, = -2epJraP + +Ya A (epJeyjrPY). (5.1.24) 

The symmetric piece of (5.1.21) , namely 

&:= A cap) = (l/n)g,pA + pap, (5.1.25) 

we will call the strain current. 

” In comparison to [ 3661, our conventions with respect to p differ by a factor of -2. Incidentically, in some earlier articles 
[454,288,280] we have erroneously claimed that the trace enl,# of the spin energy potential vanishes. 
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Observe that the decomposition (5.1.21) is only irreducible with respect to the Lie-algebra indices 
LY and /3. In contrast to the decomposition (5.1.21), which will turn out to be useful in section 5.3, a 
further decomposition of the components d, ,,.. eL,_,cIp of d+ = (l/(n- l)!)d, ,... ll._,ap@l A. + +A@‘-‘, 

in analogy to section B.6, has found no natural application so far. 
The dynamical spin rap is a source term which, besides the energy-momentum current &, is 

crucial in the Poincare gauge theory of gravity [272,273,434,447], whereas the dilation current d 
is an essential ingredient of conformal models of gravity based on a Weyl geometry [287,288] and 
familiar from canonical field theory [ 124,404]. For gravity with its Planck scale, only the shear 

>,p seems to be more remote from direct physical experience 52. In the manifield approach of 
Ne’eman et al. [ 284,480,490,491], it manifests itself indirectly by the occurrence of states within the 
infinite-dimensional representations which are lying along Regge trajectories. The shear current has 
an analogue in the three-dimensional continua with microstructure, see [ 246,267,462]. 

The field equation for the manifields p is given by the familiar Euler-Lagrange equation 

SL/SP = 0. (5.1.26) 

If it is assumed to be fulfilled in the derivation of identities, we call them weak identities in the 
following (“on shell” in the parlance of particle physicists). 

5.2. Noether identities for material energy-momentum and hypermomentum 

According to the Noether theorem, the conservation identities of the matter system result from the 
postulated invariance of L under a local symmetry group, here the group of local affine transforma- 
tions. Actually, this is only true “weakly”, i.e., provided the Euler-Lagrange equation (5.1.26) for the 
manifield is satisfied. A direct gauging of the affine group A(n, R) := R” K GL(n, R) would yield a 
Yang-Mills type “internal” interpretation of local spacetime symmetries, as explained in section 3.2, 
and would lead to one (combined) Noether identity within a “motor calculus”. Here we follow the 
more conventional route and consider the reduced or “parallel-transport” version of affine gauge trans- 
formations, cf. sections 3.3 and 3.6, in which the infinite-dimensional group 7 := Coo( A( M) x Ad R”) 

of local translations is replaced by the group of Diff(n, R) of diffeomorphisms on the spacetime 
manifold M, itself. Then invariance of L under the group of local affine transformations means that 
L is invariant under (i) diffeomorphisms on M,, and (ii) GL( n, R) deformations of the frame field 

according to (3.4.5). First we consider the invariance of L under . . . 

5.2. I. Diffeomorphisms 
Let 5 be the generator of an arbitrary one-parameter group ?; of diffeomorphisms. In order to obtain 

a covariant Noether identity from invariance of L under a one-parameter group of local translations 
?; c 7 z Diff(n, R), it would be sufficient to use the conventional Lie derivative II := r]d + d&J on 
M with respect to an arbitrary vector field 5 (cf. [ 3631). Since our Lagrangian L is also required to 

‘* On a much higher length scale, however, back in 1965 already Dothan et al. [ 1661 showed that the shears represent 
(orbitally) the time-derivatives of “gravitational” quadrupoles, cf. [291]. For a fixed volume, e.g. a nucleus, we obtain 
the very physical picture of pulsation changing it from looking like a pear to looking like a cigar (these are the “deformed 
nuclei”. cf. [ 5791). The time-derivatives mean that we are considering the pulsation rates for these quadtupoles, i.e., for 

the various bulges or departures from spherical shape. 
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be a scalar under GL( it, R)-gauge transformations, we can equivalently replace 1, by the GL( YZ, I?)- 
covariant Lie derivative t, := 61 D + 061 (cf. [479,488,504,506,510,674] ). Then we will obtain 
directly a GL( n, R) -gauge covariunt Noether identity by substituting Lt into (5.1.4) : 

(5.2.1) 

Recall that SJ, which formally acts analogously to a derivative of degree -1, obeys a Leibniz rule. 
Since the Lagrangian L is an n-form, its Lie derivative reduces to t,L = D&l L. After expanding the 
Lie derivatives and performing some “partial integrations”, we equivalently get 

(5.2.2) 

By collecting those terms which form variational derivatives, we obtain, following Kopczynski 
[ 363,364], 

A+dB=O, 

where 

(5.2.3) 

6L 
+ (5jT”) A G + (dRaY) A & 

P 

+ (-1)qCJW AD$ 

B :=SJL - ((5JQqd-& 
8L 

a 
+ ct]W”)j$ + (5JW A g + (SJR/) A - 

C9RaP 

dL 
+ (51W A $ + (51DW A -). 

dD?P 
(5.2.4) 

The functions A and B have the form 
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A = FA,, B = 5”B,. (5.2.5) 

and hence, by (5.2.3), 

5”(A,+dB,)+d5nAB,=0, (5.2.6) 

where both 5” and dp are pointwise arbitrary. Hence we can conclude that both B, and A, vanish 
so that 

A = 0, B =O. (5.2.7) 

From B = 0 we can read off the identity 

After replacing the vector field by the vector basis, 
form of the canonical energy-momentum current 

(5.2.8) 

5 -+ e,, Eq. (5.2.8) yields directly the explicit 

2, =e,jL - (e,jD?P) A -$& - (e,jF) A $ 

- (ed(?,)~ - 
Y 

(e,]T’> A g + DE - (e,jRpY) A $. 
PY 

(5.2.9) 

The first line in (5.2.9) represents the result known in the context of special relativistic classical field 
theory. In the Maxwellian case, for example, the T stands for the electromagnetic potential one-form 
A = Aj dxi, with the field strength two-form F = DA = dA. Then, by (5.2.9), we find directly 
Minkowski’s U( 1 )-gauge invariant canonical energy-momentum current of the Maxwell field. 53 The 
last p-dependent term in the first line of (5.2.9) vanishes for a zero-form, as is exemplified by the 
Dirac field; however, for a Proca field, for example, we get a contribution. Furthermore, our formalism 
is general enough to account also for a Rarita-Schwinger type spinor-valued one-form field @. The 
second line in (5.2.9) accounts for possible Pauli terms as well as for Lagrange multiplier terms in 
variations with constraints and is absent in the case of minimal coupling. 

From A = 0, we can read off the first Noether identity 

D& = (e,]TP> A Z;, + (e,jRpY) A dp, - ~(e,jQp,)dy + W, 

G (e,]TP) A 2~ + (ea]RpY) A Ap, - i(e,jQPr)aPy, 

where 

(1st) (5.2.10) 

W, := (e,jDP)g + (-l)“(e,]W) A Dg. (5.2.11) 

“The definition of the canonical energy-momentum tensor of the Maxwell field 1 la Landau-Lifshitz [386] does not 
yield a gauge invariant quantity, since they pick the componenrs A, of A, that is covector-valued zero-forms, as their field 
variables. Because of A = Ami?“, the relation F = DA = dA = DA, A 8” + A,T”, see [364], links the gauge invariant 
field strength F = DA = dA, which is assumed to occur in the Lagrangian, see (5.1.2), to the gauge dependent field DA,. 
Therefore the “canonical” Landau-Lifshitz tensor has to be fixed up by an ad hoc procedure. 
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Our first result in (5.2.10) is given in the strong form, where no field equation is invoked. s4 
In the differential identity (5.2.10) for the canonical energy-momentum current there occur, on the 

right-hand side, Lorentz-type forces of the general structure field strength x current. The translational 
force 55 (B la Peach-Koehler, see [ 28 I,4371 ) and the Mathisson-Papapetrou type force are already 
known from the Poincark gauge theory [ 272,275]. The contribution from the nonmetricity is a new 
feature of the gauge approach to local spacetime deformations; it arises because of the non-vanishing 
strain piece of the connection. The Lorentz-type contribution (5.2.11) from the matter field p itself 
is, in quantum field theory, known as the functional differential operator W, of the Ward-identity for 
translation invariance, cf. [ 1221. 

On the other hand, in a new formulation of the “He superfluid with a Lagrangian L = L( p, s), 
depending on the particle current (II - 1 )-form p and the entropy (II - 1 )-form S, the material 

Lorentz-type forces in the Noether identity (5.2.10) are given by 

W,=(--l)“-’ eRJ$ dp-pAe,] Dg 
( 1 ( 1 

+ (-l)“_’ 
( 1 

eOjg ds- sA e,J D$ . 
( ) 

(5.2.12) 

By putting these two forces successively to zero, we recover the force n-form constraints of Carter 
and Khalatnikov [ 1041. Accordingly, the keeping of these off-shell terms in (5.2.10) yields a better 
understanding of classical as well as quantum-field-theoretical results. 

5.2.2. Linear transformations 

The invariance of L with respect to local linear transformations (3.4.5) of the frames gives rise to 
a further identity: Under an infinitesimal GL(n, R)-transformation 

w/(x) := A/(x) - SE, (5.2.13) 

the geometrical objects and the matter fields vary according to 

agap = 2+p,, 66” = --Wp%V, 8rap = Do p a 3 s?P = -w,PL”,P. (5.2.14) 

If we insert (5.2.14) into (5.1.5), we obtain 

‘a If the Bianchi identities (3.9.1) were not assumed, the term (e,J B’O ) A ( aL/ZP) + (e,J BP”~) A (dL/dRpY) would, 
in addition, occur on the right-hand side of (5.2.10), cf. [280]. The weak identity, which is denoted by E, holds only 
provided the matter field equation SL/W = 0 is satisfied, cf. [ 3031. 

” The difference of the left-hand-side of (5.2.10) and the translational force, by means of the transposed connection 

(3.1 1.9). can be written in the compact form DZ, - ( eajTp) A 2~ ~6 &,. For the special case of a Riemann-Cartan 

space U, - that is, if the nonmetricity Qap vanishes - we find by using the contortion one-form K,p, see (3.10.11): 

6 Z, 2 D{}& + (eaJKPY)8LD A &I = D{}& + [T, + teuj(@ A7’p)] A 2. Sometimes this formula (see [456]) is 
very useful: Should the energy-momentum current be symmetric, then, in a II,,, merely the Christoffel derivative is left over 
[439], in spite of the possible presence of torsion. 
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+ d 
kJL 

WaP(Aap - (LyP) A ~ 
dL 

a(Dp) 
- 2&Y--- - 

dQa, 
i?“+D-$ (5.2.15) 

n 

The boundary term vanishes by virtue of the explicit expression (5.1.9) for the hypermomentum 
current A”,. Then, from the arbitrariness of w np, there follows the second Noether identity 

DA”, + 6” A & - gp, cfY 3 -(L,“@) A @L/M) = 0. (2nd) (5.2.16) 

Again, the weak Noether identity holds provided the matter field equation (5.1.26) is satisfied. 56 
In Yang-Mills theory with the internal indices of the gauge potential A suppressed, the Noether 

identity takes the form 

DJ E P A (6L/M), 

where the internal current of a field theory with optional Pauli terms reads 

(5.2.17) 

(5.2.18) 

Needless to say that this structure is, for the GL( n, I?), also displayed in (5.2.16) and (5.1.9)) 
respectively. In the gravitational case, however, additional terms generated by the translational group 
occur. 

A relation between the metrical (“Hilbert”) and the canonical (“Noether”) energy-momentum 
currents aap and &, respectively, which generalizes that of Belinfante and Rosenfeld [ 46,47,578], 
can rather straightforwardly be derived in a metric-affine framework: To this end, recall the definition 
(5.1 .lO) of the “auxiliary” energy-momentum current up. Then, the original second Noether identity 
( 5.2.16), simply by interior multiplication, supplies us with the prototype of the Belinfunte-Rosenfeld 
relation in a metric-affine spacetime: 

‘TV ?Z Z;, + e,j DA”, with 6t, A aP1 z 0. (5.2.19) 

The first formula can be understood as a symmetrization of an otherwise asymmetric energy- 
momentum current (see, for example, [ 27 1,366] ) . We will come back to this question in section 
5.6. 

5.3. Decomposition of the Noether identities 

The dilational part of the second Noether identity can be easily extracted from (5.2.16) by sheer 
contraction: 

dA + 6* A 2, - @, 3 - ( Lyy?P) A (6L/W) = 0. (5.3.1) 

Note that we have here DA = dA , since A is a scalar-valued (n - 1 )-form (with vanishing weight). 
Only the trace piece 6” A 2, in the decomposition (5.1.15) of the energy-momentum current 

Se If we had not assumed the structure equations (3.8.1) , (3.5.9)) (3.5.10) in the transition from (5.1.4) to the the variational 
expression (5.1 S), we would, in addition, get the term 2& A (Z/aQnv) - S’” A (JL/@) - Sy A (dL/i9RyP) + S&” A 

( dL/dRaY) on the right-hand side of (5.2.16). 



76 EU! Hehl et al./Physics Reports 258 (1995) I-171 

contributes to this dilational identity. The approximate Bjorken scaling57 discovered in hadron deep- 
inelastic electron scattering off nucleons is such an example of the conservation ofthe dilution current 

in flat spacetime, cf. also [ 277,283]. 
In order to perform the (anti-)symmetrization of the second Noether identity, we have to use the 

metric and to lower an index. We obtain 

(53.2) 

Having also decomposed the nonmetricity into its trace and tracefree pieces according to (3.12.4), a 
straightforward antisymmetrization of (5.3.2), together with (5.1.21)) yields the metric-affine angular 
momentum identity 

hp + 61, A &I + @raly A7Ylp, + Q’rnly A&‘p, + Q A 7ap = 0, (5.3.3) 

in which the first two terms (spin and orbital part) are already known from a Riemann-Cartan 
spacetime [273]. As could have been expected, the dilation current is not involved in this total 
angular momentum balance, whereas the shear current contributes a new term to the orbital angular 
momentum. The symmetric part of (5.3.2) reads 

DA cap) + tica A &, - gap 
_-_ 

+GTcnly MfYp) + Q A ikp + chap AA + ;g.se A A + @caly A~~lp) = 0. (5.3.4) 

Observe that in this balance of the total shear plus dilation current in metric-affine spacetime there 
occurs a correction term carrying the spin current. 

Since (5.3.1) does not depend on the Abelian part of the connection, i.e. the Weyl one-form Q, 
we may apply the definition (3.12.2) of the volume-preserving connection to (5.2.16) and find 

+DA”,+8”A~,-~“,~o. (5.35) 

If we use (5.3.1) to project out the trace of (5.3.5), then the tracefree intrinsic hypermomentum 
current 

J.P p := A” p - ( 1 /n) 6;Ayy = zap + fp 

obeys the identity 

+D&‘““,+6”A&- It p 18”tiy A z; - 
( 

gup - &r’, 
n 

We lower the index cy in (5.3.7) and find, see (5.1.11), 

+D&, ++Q,a A 4’“” p + 6, A,& -@& 0. 

(5.3.6) 

“0 - . (5.3.7) 

(53.8) 

” The other issue, which motivated Coleman [ I23,124] (and before that Feynman and Huggins) to consider scaling laws, 
is renormalizability. As is mentioned already in section 2, for a field theory to be renormalizable, the amplitude has to be 
cut-off independent, which implies scale invariance. This necessarily occurs at the energy of the cut-off, which could be at 
any level (even at Planck mass). 
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Here we introduced the tracefree piece fap:= gTnP - g+aY,,/n of the 
asp. The decomposition of (5.3.8) into its symmetric tracefree and its 
the remarkably compact formulae 

metrical energy-momentum 
antisymmetric pieces yields 

(5.3.9) 

(5.3.10) 

Accordingly, Eq. (5.3.1) represents the law for the dilation current, Eq. (5.3.9) that for the shear 

current, whereas (5.3.10) is the general version of the angular momentum law. 
From the dilational part (5.3.1) of the second Noether identity we find, alternatively to (5.1 .I 5), 

the weakly equivalent decomposition of the energy-momentum current (see [ 268,289,365,366] ) 

& = j,, + ( I /n>e,] (aYy - dA) + ;& A 2, (5.3.11) 

which subsequently will be instrumental for the derivation of an improved energy-momentum current 
which is required to have a “soft”, i.e. derivative-free, trace for scalar fields [ 96,713]. 

Let us now turn to the $r.st Noether identity (5.2.10). If we use (5.3.1) and express the first 
Noether identity in terms of the volume-preserving connection (3.12.2), we get 

+D& z (e,JtTP) A Sp + (enJtRpY) A p7p ,, - i(e,JtQp,)$Dy 

+ ~[(eaJdQ)r\A-(e,JQ)dAl. (5.3.12) 

The terms in the last line represent the explicit Weyl-pieces. 
From the first Noether identity, we will also derive, for the sake of completeness, relations for 

the covariant exterior derivatives of the antisymmetric and the trace pieces of the energy-momentum 
current, respectively: 

DC= (e,JTP) A (e”J_CP) + (e,JRPY) A (e”J&,) 

+ ~(e,lQp,) (e"J@') - eaj(QaP~Xp) +L,,T, 

D[e,J(@ A Xp)] 2 LCu(Gp A -I&). 

5.4. Gauge jield momenta and Noether identities for the gauge Lagrangian 

(5.3.13) 

(5.3.14) 

In a gauge approach to gravity such as in the Poincark gauge theory [272] or in supergravity 
[ 206,207,155], the total Lagrangian L,,, is given by 

L,,, = v + L, (5.4.1) 

where L is the material Lagrangian dealt with in sections 4.1 and 5.1, while V is the gauge field 
Lagrangian. We assume that the n-form V depends on the potentials g,p, I?“, rap and their first 
derivatives, dgap, da” and dfap. By an argument similar to the one used in section 5.1, it may be 
shown that invariance of V under tetrad deformations requires V to be of the form 

V = V(gap, Qc+ -9-“, T”, R/) . (5.4.2) 
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Consequently, we can use the results of section 5.2 and transfer them to the gauge Lagrangian 
simply by replacing L by V and by dropping all q-dependent terms in the outcome. For an eas- 
ier bookkeeping we condense our notation and introduce, according to the conventional canonical 
prescription, the following gauge jeld momenta: The ( n - 1 )-form 

dV 
M”P:=2_=- 

av 

a4cYp 
2- 

aQ@ 

and the (n - 2)-forms 58 

(5.4.3) 

Hm:=---$-$, Hapy.__$=_~ 
n 

a dR,P * 
(5.4.4) 

Moreover, the metrical energy-momentum n-form 

maYP := 2av/ag+ (5.4.5) 

the canonical energy-momentum (n - 1 )-form 

E, := av/asa (5.4.6) 

and the hypermomentum (n - 1 )-form 

E”, := av/ar/ = -6” A HP - gp,A!P (5.4.7) 

for the gauge fields themselves will also occur. If we apply the variational principle with respect 
to the independent variables gap, 6”, and f,p and compare it with (5.1.7)-(5.1.9), the following 
relations are obtained: 

2SV/6gup = -DA@ + map, (5.4.8) 

SV/SS* = -DH, + E,, (5.4.9) 

cYV/M,~ = -DH”, + E”,. (5.4.10) 

The Noether procedure may be applied to the gravitational Lagrangian (5.4.2) in precisely the 
same way as it has been applied to the material Lagrangian in section 5.2. 

(i) Diffeomorphism invariance yields the explicit structure of the canonical energy-momentum 
(n - I)-form 

E, = e,JV + (e,]TP) A HP + (e,]RPY) A HP, + i(e,JQpy)MPy (5.4.11) 

of the gauge fields (cf. (5.2.9) for the material case), which implies for its trace piece 

6” A E, = nV + 2TP A HP + 2RPY A HP, + iQpy A Mpy. (5.4.12) 

Furthermore we find the first Noether identity 

6V 

Dl38a - 
- = (en]TP) A -/& + (ea.jRPY) A $--- 

6V 

PY 
- (edQp,J r 

@Y ’ 
which completely parallels the identity (5.2.10) for the matter Lagrangian. 

(1st) (5.4.13) 

5X In Maxwell’s theory the gauge field momentum H = -c?VM,,/C?F, with the field strength F := dA is also called “excitation” 
field. 
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(ii) Invariance with respect to (infinitesimal) GL(n, R)-transformations yields the second Noether 
identity, 

D ‘” ma+*/\ 
6” 

- - 2gp,- = 
66P 

13” 0 
n ag,, - * 

(2nd) (5.4.14) 

Observe that the Noether identities for the gravitational gauge fields are both strong identities, 
since no field equation is involved in their derivation. By inserting (5.4.8)-( 5.4.10) into the second 
Noether identity (5.4.14)) we obtain the following explicit expression for the metrical gauge energy- 
momentum current: 

~~c”~=~YAE~+Q~~AM”~- T” A HP - Ryn A Hr, + RJ A H”,. (5.4.15) 

Consequently, its trace is given by 

mn ,=6”AE,+Q~I,AMaP-TaAHH, 

= nV + iQp, A MPy + TP A HP + 2RPy A HP,. (5.4.16) 

In conformally invariant four-dimensional Lagrangians, this identity explains why quadratic La- 
grangians in the curvature are admitted, but not those quadratic in nonmetricity or torsion. For 
the special choice L = 2F - 2C and/or F = C of the conformal weights L, F, C, as given in section 
3.14, quartic Lagrangians in nonmetricity and/or torsions could, however, be viable from this point 
of view. 

5.5. Metric-afJine field equations 

Now we are in the position to formulate the action principle in complete generality: The total 
action of gravitational gauge fields and minimally coupled matter fields reads 

W = 
J 

[“(gap, a”, Qap, T*, Rap) + Ugap, 6”, P, DV) 1. 

The a priori independent variables for the application of the variational 
r,p. Their independent variation yields, by means of (5.4.8)-(5.4.10) 
(5.4.7) and (5.1.6) -( 5. I .9), the Yang-Mills type gauge field equations 

principle are !P, gap, a”, and 
and the definitions (5.4.3)- 
of metric-affine gravity: 

SL/SP = 0, (MATTER) 

DM”” _ ,& = gap 1 (ZEROTH) 

DH,- Em=&, (FIRST) 

DH”, - E”, = A”,. (SECOND) 

(5.5.1) 

(5.5.2) 

(5.5.3) 

(55.4) 

(5.5.5) 

Already the gauge covariant exterior derivatives D of the gauge field momenta are of Yang-Mills 
type. s9 Due to the universality of the gravitational interaction, there arise additional self-couplings 
which involve the currents of the metrical energy-momentum m @, the canonical energy-momentum 

5’) Recall the inhomogeneous Yang-Mills equation -D(~V~M/~F) = DH = J. 
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E,, or the hypermomentum E”, of the gauge fields, respectively. They, together with the corresponding 
material currents (T@, &, and A”,, act as sources of the gauge field potentials. 

This dynamical framework is very general. It contains the field equations of GR and those of 
the Einstein-Cartan theory [273] as special, but dynamically degenerate cases. The Poincare gauge 
theory [ 2721 results by requiring, by means of a Lagrange multipliers, the connection to be metric 
compatible, see section 5.8. 

As soon as an explicit gauge Lagrangian V is specified, all we have to do is to partially diflerentiate 
this Lagrangian with respect to the field strengths Qap, T”, and Rap, respectively. Thereby we find 
the gauge field momenta in (5.4.3) and (5.4.4). If we substitute those into (5.4.7), (5.4.1 l), and 
(5.4.15) and, afterwards, into the field equations (5.5.3)-( 5.5.5), then we can display the field 
equations in their explicit form. Our framework allows to investigate different gauge Lagrangians in 
a straightforward way. Note, in particular, that we do not need to vary the Hodge star, a computation 
which would complicate things appreciably. 6o The explicit introduction of the gauge field momenta 
as operationally meaningful quantities in their own rights - together with the temporary suspension 
of the relations between the momenta and the field strengths - this is our trick, taken from the 
Kottler-Cartan-van Dantzig representation of electrodynamics (see [ 282]), which does the job. 

Compared to the earlier work on this subject, cf. [ 406,407], including our own work [ 279,277,273], 
in which only two field equations occur, we have obtained a system of three gauge field equations 
for the gravitational potentials [ 287,288]. This can be traced back to the assumption that the coframe 
field 6” is not assumed to be orthonormal, as one usually does. This allows for more flexibility in 
the process of the eventual solving of the field equations. 

Instead of the geometrical variables (gap, i?“, r,fl), used in (5.5.1), one can also turn to the set 

(g+ fi”, Q+ 7’“) or (s+ @“, Q,p, Knp), see [730] and [275,284,285], although this distracts 
from our Yang-Mills type approach. 

The second Noether identities (5.3.2) and (5.4.14) reveal that one of the field equations, ZEROTH 
or the symmetric part of FIRST, i.e. 

can be deduced from these combined second Noether identities, provided the remaining two field 
equations, i.e. FIRST or ZEROTH, both together with SECOND, are satisfied. Since the matter field 
equation (5.5.2) is a prerequisite for the validity of the differential Noether identity, we obtain the 
important result that one of the first two metric-affine field equations is “weakly” redundant. 

Not unexpectedly, SECOND does not follow from the other field equations, merely the weaker 
conditions 

D( A”, + SV/Sl-,p) E 0, 

(e,] Rpy ) A ( Apy + SV/S~Py) = 0 

(5.5.7) 

(5.5.8) 

can be derived under these premises. 

” This is only correct cum grano salis. In calculating mu0 explicitly according to (5.4..5), we have to determine the partial 
derivative with respect to gap of an expression which contains a Hodge star * in general. However, provided FIRST and 
SECOND are fulfilled, ZEROTH is redundant, see below, and we can dismiss it as independent field equation. 
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5.6. Belinfante-Rosenfeld relation via change of variables 

In order to exploit further properties of the Belinfante-Rosenfeld type symmetrization relation 
(5.2.19), we consider the minimally coupled matter Lagrangian 

L=L(g,p,iY,P,DP). (5.6.1) 

Then the terms dL/dQap , aL/dT” , and c~L/c?R,P in (5.1.7)-(5.1.9) vanish. 

Next we want to go over from (gap, Tap) to an equivalent set of geometrical variables by expressing 
the n3 components of the connection r,p, occuring in the covariant derivative D, in terms of the 

n2( n - 1) /2 components of the torsion T” and the n2(n + 1) /2 components of the nonmetricity Q+ 
compare (3.10.7): 

C/’ = r/(g,,, dgNvr a”, dap, TLL, Q& (5.6.2) 

Then we have (gap, rap) + (g,p, Q+ T") . Because this change of variables involves implicitly also 

derivatives of the metric and the coframe, it is not simply a point transformation of the Lagrangian 
formalism. Formally, we thereby leave the minimal coupling prescription. However, we can apply our 
general formalism of sections 5.1 and 5.2 and, as a bonus, we obtain momenta which are conjugate 
to the tensor-valued forms QnP and T”, which have a more direct physical interpretation. 

In order to perform this change of independent variables in an consistent manner within the 
variational procedure, we supplement the matter Lagrangian ( 5.6.1) , applying Lagrange multipliers, 
by the structure relations Sap := Q+ + dguP - r,yg,, - rPYg,, and S’” := T” - d6” - rP” A fi@ 
which, for Sap = 0 and S’” = 0, yield the definitions (3.8.1) and (3.5.9) of nonmetricity and torsion, 
respectively. Thus (cf. [ 285,346] ) 

i = i%gnp, dgap, 6”, d6”, C/, T”, Qap, P, dP, E‘? PCL,) 

=L(g,p,~“,ly,D~)+3S,BA~~P+S’“A~,, (5.6.3) 

in which the (n - 1)-form Bap = BCap) and the (n - 2)-form pu, feature as Lagrange multipliers. 

The variation of the original Lagrangian L is given by (5.1.4). From the variations of the structure 
equations for nonmetricity and torsion we obtain (cf. [ 2801) : 

&, = aQnp + Nag& - gpyC2’ - gay&’ (5.6.4) 

6s’” = ST” - D( 66”) - Sr$’ A ap. (5.6.5) 

After shifting exterior derivatives to boundary terms, the variation of the equivalent Lagrangian e 
yields the result: 

Si = iSgaP ( asp - DES ) + S6” A (2, - D,ua) + WaP /I (A”, - 4” A ,up - Fp) 

+ 6T” A ,uu, + ;8Qap A Eap + SP A g + ; Sap A 6Eap + S’” A s/& 

> 
. (5.6.6) 

The “constraints” SnP = 0 and S’” = 0, arising from the variations S,CL, and SE@ of the multipliers, 

are nothing but the geometrical definitions (3.8.1) and (3.5.9) of nonmetricity and torsion. Now the 
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Lagrange multipliers P and pu, acquire the status of truely dynamical field momenta which are 
canonically conjugated to nonmetricity QaP # 0 and torsion T” # 0. Moreover, the new relocalized 

currents are, in accordance (5.1.7)-(5.1.9), given by 

&“P = @P _ DS=““@ , (5.67) 

&=&-D&, (56.8) 

a”p=A”,-6”/lpu,-~~,. (5.6.9) 

Let us derive from (5.66) the Noether identity which results from a frame transformation. Under 
an infinitesimal GfZ(n, @-transformation (5.2.13), we find, in addition to (5.2.14), the response of 

nonmetricity and torsion 

8Qnp = 2~~4yQp~~, 6T” = -qnTP. (5.6.10) 

Then, similarly as in section 5.2, we get the modijied second Noether identity 

Dan, + 6” A jP - gpyVy + T” A pB - Qay A f; = 0. _YP - 
(5.6.11) 

It is again crucial to note that this identity holds weakly (“on shell”), i.e., provided the matter field 
equation is fulfilled. 

Up to now, all variables in (5.6.6) are on an equal footing. Let us now perform the change of 
independent variables according to (5.6.2). Then the relocalized matter Lagrangian i does not depend 
on the connection r,fl anymore. Consequently, the relocalized hypetmomentum (5.6.9)) conjugate to 
the connection, has to vanish, and we can read off from (5.6.6) that 

&=O H A”p=iYApUp+& (5.6.12) 

The n*( n - 1) /2 components of its antisymmetric piece read 

rap := Al”,f’Y = 6’” /, pygPIY = 6’” /j #‘. (5.6.13) 

If we compare this result with (5.1.22)) we recognize that we can identify the Lagrange multiplier 
,xu,, defined in (5.6.3)) with the spin energy potential (5.1.24). 

The metrical energy-momentum ( IZ - 1 )-form g,, corresponding to the set of variables (5.6.2), 
can be derived by substituting (5.6.12) directly into (5.2.19) : 

uTp = zp - ~~~ + e,J (T” A pup) + gpre,lDgOy - e,J (QP~ A zay). (5.6.14) 

This relation represents the central result of this section. 
The ,!I,-limit can be recovered by adding, similarly as later on in (5.8.1)) the term ( l/2) Q,,&.@ to 

the relocalized Lagrangian (5.6.3). Then we find QnP = 0 as a constraint and the canonical conjugate 
strain current Eap + pap replaces EaP in (5.6.14). Thereby we recover the Belinfante-Rosenfeld 
relation 

up = 2~ - D,up + e,] (T” A ,q> 

of the Poincare’ gauge theory [ 268,366,456]. The Einsteinian VI-limit 

(5.6.15) 

(5.6.16) 

which is the historical Belinfante-Rosenfeld formula [ 46,47,578], can be obtained in a similar manner. 
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The decomposition of the hypermomentum current d”, in (5.6.12) can be understood as an 
alternative to the decomposition (5.1.21). As displayed in the second line of (5.6.6), the spin energy 
potential ,uu, couples to torsion T” and the strain type current L? to the nonmetricity Qnp: 

& 1. . . + 6T” A pL, + ;&& /\ FP + . . . . (5.6.17) 

The quantities torsion and nonmetricity both have an obvious geometrical interpretation. Thus they 
lend support to the fundamental importance of the “potential” ,uu, and of the current Pp. In contrast 

to P, the strain current d cap) = d(“#u does not directly couple to a simple geometrical quantity. 
Both currents are interrelated according to 

;i (UP) = 6’” A @) + gap. (5.6.18) 

5.7. Energy-momentum and hypermomentum complexes 

From the field equations (5.5.3)-(5.5.5) one can readily construct energy-momentum and hyper- 
momentum complexes in which the gauge field momenta feature as “superpotentials”: 

&“P := gap + map _ 2r,(” f\ MY\@) N dM”P 3 (5.7.1) 

,!?a := 2, + E, + rap A HP N dH,, (5.7.2) 

“a E p := A”, + E*, - rYa A Hy, + rPy A H; N dH”,. (5.7.3) 

The complex lieu@ is an n-form and, as such, not really a current. By similar arguments as above, 
it is redundant. Consequently, we can concentrate on the canonical energy-momentum complex & 
and the hypermomentum complex Eap, which are both (n - 1 )-forms. Both complexes consist of a 

tensor part, the sum of the corresponding material and gauge currents, and a gauge part of the type 
connection /\ jiefd momentum, that is, they are not gauge-covariant with respect to 5;L.( n, R) . If the 
gauge field equations (5.5.4) and (5.5.5) are fulfilled, we get “weakly” (now in the sense that the 
gauge field equations are satisfied) the right hand sides of (5.7.2) and (5.7.3). Then the complexes 
are exact forms and the gauge field momenta Mop, H,, and H”, feature as “superpotentials”. Hence 
we find the local conservation laws 

d& N ddH, = 0, d,$z ddH”, = 0. (5.7.4) 

Therefore these complexes are locally conserved (n - 1)-forms which, upon integration over a 
spacelike hypersurface, provide the corresponding “charges” of the metric-affine gauge theory. 

For metric-affine gravity, Eqs. (5.7.2) and (5.7.3) were given already in [23,26] and rewritten in 
exterior form notation in [609,450], for example. In the proper teleparallelism model of section 5.9, 
the “superpotential” H, becomes the Freud complex of GR, cf. [ 468,450,707]. 

If the geometry admits a global Killing symmetry, there exist conserved currents in metric-affine 
gravity, cf. [ 2681. More precisely, we require [ 5241 5 = 6 aen to be a Killing vector field for metric 

and connection, 

&g = @(gap + 2g,(,epjJt@Y) fi” @ @ = 0, itrap = 0. (5.7.5) 

According to (A.l.38), (3.5.14), and (3.5.16), these conditions can be recast into the form 

grcaepJ 05’ - $$JQap = 0, D(e,JD& + tJ]Rap = 0. (5.7.6) 
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Note that the first equation of (5.7.6) can be written alternatively, in terms of the Riemannian 
derivative, 6’ as e(,J D{)tp, = 0. 

Let us define the current (y1- 1 )-form 

(5.7.7) 

We compute its exterior covariant derivative, substitute the two Noether identities (5.2.10) and 
(5.2.16), and reshuffle the emerging expressions: 

&,,A = (05”) /\&+~D&+D(ePj:~Y) AAPy+(epj&Y)DAPy 

g (05”) A z;, + (5jTp) A SP + ([J&T) A AP, - ~(~~QPy)crpy 

+ D(ep]&Y) A A@, + (epl;[~)(uPy - GP A-c,) 

= [D? - @(ePjDS”)] A zb + [(De/&) +[jRPY] A AP, 

(5.7.8) 

While transforming the exterior derivative into the gauge covariant derivative, we assumed that E has 
zero weight, which is in accordance with the zero weight for the Lagrangian and a usual vector field 
5. Moreover, we recognize that the expression in the first square bracket vanishes identically because 
of the relation pfi = 6” A (e,j $), which is valid for any p-form. In view of the generalized Killing 
equations (5.7.6), also the other expressions in the square brackets vanish. Thus, the current (5.7.7) 
is weakly conserved 

d&M/j = 0. (5.7.9) 

For the Riemann-Cartan spacetime of the EC theory a similar result has been obtained by Trautman 
[ 6821 and, for the linearized case, by Tod [ 6771. The corresponding current reads 

(5.7.10) 

where the spin current is defined according to r fly := ALPyJ. In Audretsch et al. [ 191, this current was 
used to construct a Hamiltonian for the Dirac field. 

Provided a timelike Killing vector field exists, we obtain, via (5.7.9), a globally conserved energy 

S s~MA. Our deduction of this expression follows the pattern laid out in GR, but generalizes it to 
a metric-affine spacetime. Some steps of this deduction resemble Penrose’s local muss construction 
[552], except that we refrain from using spinor or twistor methods at this stage. 

5.7.1. Conserved dilation and proper conformal currents 
If the metric-affine spacetime admits even a conformal symmetry, an important generalization of 

(5.7.7) can be constructed as follows: Let 5 = Fe, be a conformal Killing vector field such that the 
Lie derivative of the metric g and the connection r,p read6* 

” For the second equation, but only in the restricted case of a Riemann-Cartan space, we find &] RmB + D(e,j$?) s 

TjRi” + D{}(e,] D{}tp) - tfKmP. 

‘* Eq. (5.7.11 )Z implies the vanishing of the tracefree part of (5.7.6)~. The same would hold, too, by requiring (5.7.11 )Z 
for the volume-preserving connection instead. 
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The same algebra as that leading to (5.7.6) yields 

(57.11) 

(5.7.12) 

compare with (5.7.6), which we recover for w = 0. It follows from (5.7.1 l), that 5 generates a 
transformation, parametrized by w, of the spacetime manifold such that the metric undergoes the 
special [442] conformal change g + S = eLwg. For a given geometry, the scalar function w = o(x) 
is determined by the trace of (5.7.12) Ir i.e. by 

0 = (2/n)eyJD5Y - [JQ. (5.7.13) 

Thus, in metric-affine spacetime the conformal Killing equation for the metric reads 

LTY(U e&y - (~laLp~yl~5y = ;!fJ@ap? (5.7.14) 

where gap:= QaP - gaaQ is the tracefree part of the nonmetricity. 
Going through a similar analysis as in the context of the metric-affine current (5.7.7)) we obtain, 

see [268] for details, the conform1 current 

(5.7.15) 

For conformally invariant gauge theories, such as the Maxwell or the Yang-Mills vacuum theory, 
the trace 6” A & of the energy-momentum current vanishes and (5.7.15) provides the conserved 
quantity 

dcC % ;+Y A &) = 0. (5.7.16) 

Thus we have found generalizations of the well-known dilation and proper conformal currents in 
Minkowski spacetime [ 3171 to a metric-affine spacetime. Such a spacetime provides the most natural 
gravitational background for these currents. 

Imposing conformal invariance on a metric-affine spacetime is, however, an extremely strong condi- 
tion. According to the Ogievetsky theorem [ 5331, a metric-affine spacetime, which admits a conformal 
symmetry, will have its frames locally invariant (in the active operational sense) under the group of 
analytical diffeomorphisms, cf. [486] for further details. This result overlaps with the fact that we 
have included in our affine gauge approach local translations, i.e. active diffeomorphisms, except that 
whereas the latter are only infinitesimal (their generators do not form a Lie algebra anyhow), the 
Ogievetsky transformations can be integrated to finite diffeomorphisms, without involving an infinite- 
component connection, since the algebraic generators are multiplied by constant parameters solely: 
the local dependence has already been taken care of through the generating Taylor expansion itself. 

The emergence of an explicit infinite-dimensional Lie algebra may make it possible to treat con- 
formal fields in four dimensions similarly to what is done in the special case of two dimensions. 
In n = 2, there is an infinite-dimensional conformal algebra which is isomorphic to the algebra of 
analytic two-dimensional diffeomorphisms [ 3301. In two dimensions, this feature constrains the fields 
and leads to the highly restrictive “fusion” rules [ 3301, which have recently put two-dimensional 
conformal field theory into the focus of interest of statistical mechanics and string theory. Note that 
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the Ogievetsky algebra in four dimensions should possess a quantum extension with central 
as in the case of its two-dimensional analog, the Virasoro algebra. Neither this extension 
representation theory have been investigated to date. 

charges 
nor the 

5.7.2. Noether identities from conformal changes in an (L,, g) 

The conformal equivalence structure introduced in section 3.14 compares nyo different metric-affine 
spacetimes (L,, g) and (L,, 2). Therefore it is not a local symmetry in the strict sense. However, 
in its infinitesimal version we can regard it as a Noether symmetry and derive the corresponding 
Noether identities. This was done in the recent work of Obukhov [530] which we follow closely. 

We start from a conformal change of the metric in its combined, most general form (3.14.1) and 
expand the arbitrary conformal function fi according to 

n=expo 21 I +w. 

For the variation of the basic fields, this implies6” 

(57.17) 

&ap = (I- 2F)wg+ 66” = FOP, Sr/ = -C@dw (I 9 w = I&P. (57.18) 

Here I is a matrix necessarily diagonal, the elements of which describe the conformal weights of the 
individual components. 

The variation of a Langrangian which is invariant under such infinitesimal conformal changes reads 

CA-IPr, 
dL dL 

~ + (I- Wg,,j- - Ffi”A%_@DdL 
a dR,P )I ’ a(Dp) dQC7p aT” 

(5.7.19) 

Let us proceed, similarly as in the derivation of the GL(n, R) Noether identities in section 5.2.2, 
and assume that w and dw are pointwise arbitrary (A + dB scheme). Then, from dB = 0, we obtain 
the following identity for the dilation current 

l3L 
CA=I?FiA------ 

a(Dp) 
(1- 2F)g4& 

dL 

n 
+ FW A g + CSfD- 

aRaP ’ 

whereas A = 0 yields the strong conformal Noether identity 

CdA+F~“AZh_+(~l-F)a”,~-~A/\L/S~~O. (5.7.21) 

After integrating out the matter field P in the effective Lagrangian, the left hand side of (5.7.21) is 
proportional to the conformal anomaly, see Deser and Schwimmer [ 153,632] for the Riemannian case. 
The conformal changes (3.14.1), for I = 0 and F = C = 
(3.13.2)-(3.13.4). Thus, for this choice of conformal 
(5.3.1) for the dilational current. 

63 The ‘weight’ factor L, defined in (3.14.1), will in this subsection 
this factor with the Lagrangian. 

- 1, contain the local scale transformations 
weights, we recover the Noether identity 

be denoted by 1 in order to prevent a mixing up of 
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Let us now require, as we will do in more detail in section 6, a theory to be invariant under both, 
the GL( it, R)-gauge group and the group of conformorphisms. Then we can insert the explicit form 
(5.1 .19) cum (5.1.9) of the dilation current into (5.7.20) and find quite generally 

(1- 2F + 2C)&$ 
dL 

dQL$ 
+ (C - F)S” A -$ = (I - CL”,)P A ~ 

a(DP)’ 
(5.7.22) 

This identity provides us with a constraint for possible Pauli-type terms in a matter Lagrangian which 
depends on the Weyl covector Q and the trace or the axial piece of the torsion, cf. section B.2. The 
dilational Noether identity (5.3.1) and the conformal version (5.7.21) yields the “weak” relations 

I/, 111 -2(C - F) dA , Z7YAzb, N -(Z-2F+2C)dd. (5.7.23) 

For pure gravitational Lagrangian (without the manifield p), the identity (5.7.22) implies that 
terms depending on the Weyl covector and/or the vector or axial vector pieces of the torsion are 
proportional to each other or are even not permitted, unless 1 = 2F + 2C and/or C = F. The 
geometrical meaning of these special choices of conformal weights is rather clear from inspecting 
the conformal transformations (3.14.5) and (3.14.7). In these specific instances, the Weyl covector 
and/or the torsion trace one-form T = e,JT” become conformally invariant and are, consequently, 
qualified as generic concommitants of a conformally and GL (n, R) -gauge invariant Lagrangian n-form 
V. Then, according to (5.7.23), the trace of the metrical and/or the canonical energy-momentum 
will vanish. 

5.8. Variational principle with constraints 

In order to make contact with gravitational gauge theories on spacetimes with restricted geometrical 
degrees of freedom in a dynamically consistent manner, we use the method of Lagrange multipliers 

and will (successively) enforce the constraints of vanishing nonmetricity, torsion, or even curvature, 
cf. [ 361,272,276,285,346,364]. 

A word of caution seems to be in order here. We will find, e.g., that PG can be consistently derived 
from such a variation principle with constraints and fits nicely into our metric-affine scheme. However, 
the constraint of vanishing nonmetricity is ad hoc, provided matter generates a non-vanishing strain 

current A+ see (5.1.25). In such a situation, which is assumed to occur at very high energies, the 
vanishing of the nonmetricity, which couples to the strain current, must not be postulated. Instead, 
the complete metric-affine framework with the Lagrangian (5.5.1) should then be applied. 

Our method of specializing the general metric-affine field equations to more restricted spacetimes 
can also be inverted. If we had started from a Riemannian spacetime and had incorporated the 
constraint T” = 0 and Q+ = 0 via Lagrange multipliers as in (5.8.14) or (5.8.1), the passage to 
an (L,, g) could have been achieved via the relaxation of constraints as described in [285]. In 
quantum gravity, we expect anyways that these constraints hold at most as vacuum expectation values 
(O]@]O) = 0, (O]&]O) = 0 for the corresponding operators, whereas the vacuum expectation values 
of the torsion and nonmetricity operators squared may very likely pick up nonvanishing values due 
to quantum fluctuations [ 73 11. 



88 EN! Hehl et al./Physics Reports 258 (1995) 1-171 

5.8. I. Vanishing nonmetricity: Poincare’ gauge gravity 
Let us first enforce the vanishing of the nonmetricity which results in PG: To this end we consider, 

instead of (5.5.1) , the total Lagrangian 

&=o) = V + L + ;Qap /Y ,x? (5.8.1) 

where the Lagrangian multiplier ,u‘@ = ,up” is a symmetric (n - 1 )-form. By varying with respect to 

&p, fi”, U. and the Lagrange multiplier, we obtain the modified gravitational gauge field equations: 

D,$,f”P _ ma@ _ D LL 9 
ai3 = go@ (5.8.2) 

DH,-E,=&, (5.8.3) 

DH”, - E”, - gpr/fY = A”,, (5.8.4) 

!&3 = 0. (5.8.5) 

Since the nonmetricity vanishes, we can freely raise and lower indices. We resolve the symmetric 
part of the second field equation (5.8.4) with respect to the Lagrange multiplier, 

ILL 
@ = DH’“P’ _ E’“P’ _ A(+, 1 

and insert this expression into the zeroth field equation. This results in 

DM*P _ maD _ DDH(+V + DE(@) + DA(“P) = a+* 

(5.8.6) 

(5.8.7) 

By inserting the definition (5.4.7) of E”, , we get 

-map _ DDH’“P) _ D[ 6’” A HP)] = crap _ DA(“p), 

or, together with the first field equation (5.8.3) and the constraint (5.8.5), 

(5.8.8) 

-_ma’P _ R’“, A HYiP) + R,‘” /, HYiP) _ T’” ,‘, HP) + 6’” /j ,@) 

= @‘P _ DA’“P’ _ 6’” A zfi’ 2 0. (5.8.9) 

According to (5.8.5) and to the symmetric part (5.3.4) of the second Noether identity for matter, 
this reduces weakly to the explicit relation (5.4.15) for the metrical energy-momentum current of 
the gauge fields. Thus in a Riemann-Cartan spacetime, the zeroth field equation drops out altogether, 
and we are left with the first field equation 

DH,-E,=&, 

and the antisymmetric part 

(5.8.10) 

DH [apj - Elapl = DH,,@j + a,, A HP1 = 7ap, (X8.11) 

of the second field equation. This finding is also consistent with our previous results on the redundancy 
of the zeroth field equation. 

Within the framework of PG, the subtle interplay between gauge field equations and Noether 
identities shows up again. As we saw, the field equation (5.5.3), which is symmetric in cr and 
p, degenerates to a non-propagating one and can be regarded as one of the redundant equations. 
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Moreover, one can deduce from the antisymmetric part of (5.4.15) and the second Noether identity 
(5.3.3) for Qap = 0 that the antisymmetric part of the FIRST field equation of PG 

= DDH,ap, + 7’,, A HP, - 6,, A ED, - Drap = 6,, A &,, (FIRST, 1) (5.8.12) 

is redundant as well. This redundancy [275] has proved to be instrumental in the reduction of the 
quadratic Poincare gauge field equations to an effectively Einsteinian system by means of a modified 
double duality ansatz, cf. [ 446,221. It also simplifies the formulation of the Cauchy problem [ 1581 
of this model. 

At low energies (in terms of the Planck energy), when the strain current cannot be excited, the 
matter Lagrangian is restricted to be locally Poincare invariant instead of being invariant under the 
full affine group. In other word, if PG is supposed to apply, the strain current should vanish, 

dnp = A,,p, = 0. (5.8.13) 

Actually the constraint (5.8.5) of vanishing nonmetricity allows to impose (5.8.13) a posterori, 
because of the redundancy of (5.8.9). Poincare gauge covariance is left over and the considerations 
of this section 5 can easily be redone under these auspicies. Clearly, the connection one-form is no 
longer an independent variable, rather it is constrained to be metric compatible. Obviously, the field 
equations [ 2721 turn out to be (5.8.10) and (5.8.11)) and from the decomposed second Noether 
identity only the antisymmetric piece is left over. Moreover, in analogy to (5.2.19), it is possible to 
derive, in the framework of PG, the generalized Belinfante-Rosenfeld formula (5.6.15)) cf. [ 3661. 

We will see in section 6.5, in which manner the condition (5.8.5) and (5.8.13) can be derive from 
a dynamical model of symmetry breaking. 

5.8.2. Vanishing torsion 
As a second example, which contains generalizations of Einstein’s GR to a (L,,, g) with symmetric 

connection, we enforce the vanishing of torsion and consider the toy Lagrangian 

L{r=,,) = V + L + T” A A,. (5.8.14) 

Here the Lagrange multiplier A, is a (n - 2)-form. Then the modified gravitational gauge field 
equations read: 

DM*P _ map = gap 9 

DH, - E, - DA, = S,, 

DH”, - E”, - 6” A A, = A”,, 

T” = 0. 

The antisymmetric part of (5.8.17), with (5.4.7) inserted, i.e. 

DH,ap, + Q[al, A WI,, + a,, A HPI - &a A A,, = hap, 

has n2 (n - 1) /2 components and thus completely determines 
resolution with respect to A,, we employ the algebraic identity 

(5.8.15) 

(5.816) 

(5.8.17) 

(5.8.18) 

(5.8.19) 

the Langrange multiplier A,. For its 
(A.l.26) and obtain 
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A, = H, - 2ePj (DH,,,, + Q[+ A H'lpl> + $%&Yk61(Wy~l + Q[,ls AH'ld - pa9 (58.20) 

where ,uu, is again the spin energy potential (5.1.24). Then the first field equation (5.8.16) reduces 
to 

-E, + 2D[ePj(DH WI + Qlaly A HYlpd - .$LeYJesj(~H~y~~ + Qryle A H'pdl 
=&-Dpu,. (5.8.21) 

The new energy-momentum current 

.$a := & - Dpu, (5.8.22) 

contains, due to the constraint (5.8.18) and the decomposed Noether identity (5.3.3), in general the 
antisymmetric piece 

5.8.3. Riemannian spacetime and general relativity 
However, if additionally the nonmetricity is required to vanish, we will recover from (5.8.22) the 

Belinfante-Rosenfeld symmetrized energy-momentum current [ 46,47,578] in Riemannian spacetime, 
cf. [268,364,456]. There is a corresponding expression for the gravitational gauge fields: If we 
consider topological gravity in y1 = 3 dimensions and use in the Lagrangian, as a supplement to the 
Hilbert-Einstein term, the Chern-Simons three-form for the curvature, the Cotton tensor surfaces in 
the first field equation, cf. [452,29]. This demonstrates that the constraint of vanishing torsion is not 
as innocent as is usually surmized; in particular, it does not only change the variables but also the 

order of differentiation from one to two. Moreover, solving the constraint d6” + I$ja A @’ = 0 for 
the connection is possible only for a non-degenerate coframe [ 4291. 

More precisely, the Riemannian case is obtained from the Lagrangian 

L{+o,r=o) = V + L + ;QaP A pap + T” A A,. (5.8.24) 

We can go through both previous reduction procedures and eventually obtain as the only field equation 

-E, + 20 (e”JDH lapi - ~fi,eY]e”_/DHly~,) = zb, - Dpu,, 

together with the constraints 

Qa/3 = 0, T” = 0. 

Incidentically, Eq. (5.8.25) applies also to the higher-derivative models 
singularity-free cosmologies. Einsteinian GR is obtained from (5.8.25) 
Einstein Lagrangian 

v,, = -- 1 RI)@ A qap ==+- 
21”-2 

H, = 0, H,ap, = 

(5.8.25) 

(5.8.26) 

[ 335,601] entertained for 
by means of the Hilbert- 

(5.8.27) 
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Since Dr],, = 0 for vanishing torsion, we find, by substituting the identification (5.4.1 l), 

or 

J-R{}flY A 7j,gy 
21”-2 

= 2, - D{$uu,. 

(5.8.28) 

(5.8.29) 

The current on the right hand side of the Einstein equation is the momentum current of (5.6.16). 

5.9. Teleparallelism 

As our last example, we consider the case of vanishing curvature which is a constraint in (extended) 
teleparallelism models. We start with the total Lagrangian 

L{R=o) = V + L + R/ A A”,, (5.9.1) 

where the Lagrange multiplier A”, is a gl (n, R)-valued (II - 2) -form. Then the modified gravitational 
gauge field equations read: 

DM”P _ map = gap , (5.9.2) 

DH,-E,=&, (5.9.3) 

DH”, - E”, - Dhap = A”,, (5.9.4) 

R/ = 0. (5.9.5) 

In this case the resolution with respect to the Lagrange multiplier is not unique due to the occurrence 
of the exterior covariant derivative in front of A”, in (5.9.4). 

A further differentiation merely leads to the trivial identity: 

-R”, A Ar, + Ry, A A”, 

= DA”, + 6” A & - gpyaaY -T”AHp+FAEp+QpyAMay 

-R,” A Hy, + RPY A Hay - gpymaY 

z 0. (5.9.6) 

Observe that the left hand side is trivial due to the vanishing of the curvature, whereas the right hand 
side reproduces the second Noether identity (5.2.16) together with the explicit formula (5.4.15) of 
the metrical energy-momentum current. 

Teleparallelism models in the limit of vanishing nonmetricity (Riemann-Cartan spacetime) can be 
described by the total Lagrangian 

L{Q=O,~=o} = v + L + ;Qap A ,uap + R/ A A”,. 

The field equations turn out to be 

(5.9.7) 

DM”P _ map _ Dp”“fi = gap, (5.9.8) 

DH, - E, = S,, (5.9.9) 
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DH”, - E”, - gprpay - DA”, = A”,, 

Q/ = 0, R/ = 0. 

The symmetric part of (5.9.10) can be resolved with respect to ,u”p with the result of 

(5.9.10) 

(5.9.11) 

P 
afl = DH’“P’ _ E’“P’ _ DA’@’ _ A’“P’. (5.9.12) 

If we substitute this into (5.9.8) and use the constraints (5.9.11), we find, similarly as in (5X9), 
that the zeroth field equation drops out completely: 

-,#p _ T’” A HP’ + 6’” ,j EP’ = a‘@ _ DA’@’ _ 6’” ,j ZP’ g 0 (5.9.13) 

The remaining equations are 

DH, - E, = a&, (5.9.14) 

DH,,,, - Et,,, - DA,,,, = 7np. (5.9.15) 

The proper teleparallelism model in Riemann-Cartan spacetime is singled out by its effective 
equivalence to Einstein’s GR. In order to prove this equivalence, one contracts the curvature i?,P 
built, according to (3.11.4), from a deformed connection Tap = r,P + Ano, by qap. For n 2 2, this 
provides us with the following identity: 

Rap A qap = R”” A qap - Asp A A/ A qnp - Qap A A/ A rlap 

-2A”Pr\Qr\r],p+AaP~TyA~apy+d(Aapr\~,P). (5.9.16) 

Incidentally, the term proportional to qnpy would vanish in it = 2 dimensions. Moreover, if the 

deformed connection is identified with the Riemannian piece l$, we find from (3.10.12) that the 
deformation one-form takes the form 

Aa, = Kap - ;Qap - (e,,]Qp,y)8y. (5.9.17) 

Hence, for vanishing nonmetricity, we recover the geometric identity 

R{bP A qap E Rap A qnp - K”’ A Kpp A rlap + KaP A TY A vapv + d( KaP A rlap) 

= Rap A qap + T” A* (-“‘r, + 2’*)Ta + ic3ka) + 2d(Sa A*T,) (5.9.18) 

for the Hilbert-Einstein Lagrangian (multiplied by the dimensionful factor -2P*). For the telepar- 
allelism condition R”fi = 0, the first term on the right-hand side drops out. Thus we arrive effectively 
at the teleparalZeZism Lagrangian (see [ 272,292,293,439,45 1,580,613,614,672,673] ) 

VI = VT2 + R,@ A A”,, VT2 := - &Ta A* (-“‘r, + 2’*‘r, + f’3?U). (5.9.19) 

Via (5.9.19) and (5.9.18) the resulting field equation (5.9.3) can be shown to be equivalent to 
(5.8.28) or (5.8.29), see [451]. &lie Cartan showed that the Einstein equation in the teleparallel 
version GRli of general relativity forms an involutive system, cf. [661,662,535,536,670]. In the 
framework of GRll the Cauchy problem and the coupling to non-scalar matter were thought to be 
problematic [524,363,2691. Recently Maluf [ 425,426] was able to show that, by fixing a suitable 
gauge, the Hamiltonian and the Cauchy problem are well-behaved in vacua. 
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5. IO. Ashtekar type complex jield momenta generated by Chern-Simons terms 

In four dimensions, we were able to determine the Chem-Simons terms of metric-affine spacetime 
in section 3.9. Multiplying each term with a dimensionless coupling constant Bi, the corresponding 
boundary term reads [ 2801: 

= $ [ g+(T” A TP + R,” A fiy A ~9~) - QaP A 6” A Tp] 

- ;8,R/ A R,” - i&R A R. (5.10.1) 

If we decompose the connection, according to (3.12.2), into a volume-preserving and a volume- 
changing part, we find 

dCwnc=$[gas(iT. AtTP+tRynA4Y A@) -tQcYp AI?” A+TP] 

- ;e,+R/ A+ RPa - z#?~+~&)RA R. (5.10.2) 

Observe already here that the generic Lagrangian of the metric-aftine gauge theory is expected to 
have the same overall structure as (5.10.2) : Merely one Hodge star should be distributed appropriately 
to each term in (5.10.2), and, in addition, there could occur different irreducible pieces of the field 
strengths multiplied with suitable dimensionless coupling constants. 

Then we may supplement the original gravitational gauge Lagrangian V with the boundary term 

idCMAf;, where i denotes the imaginary unit, i2 = -1. Subsequently we consider the complexified 
Lagrangian 

(f) 
V = VfidC,,,AG. (5.10.3) 

The purely imaginary character of the additional piece is necessary if we want to preserce CP, i.e. 
the combined charge and parity transformation, as an exact symmetry in gravitational interactions, cf. 
[ 390,45 I]. 

(f) 
Clearly, the new Lagrangians V yield field equations which are equivalent to the old ones, 

since we have merely added a boundary term to the original Lagrangian. However, the new field 
momenta [ 2801, which are canonically conjugate to real nonmetricity, torsion, and curvature, become 
necessarily complex: 

(f) 
(*I dV 
M”P := -2- = 01 

dQ0p 
M”P f i---6(” A TP) 

12 
, 

(*I 
(f) dV 
n, ;= -- 

dT” 
= H, F i$T_, 

(rt) 
(+I IJI” .- JV 

Pa--dR,P= HaP T ie2Rpa F ie$R. 

(5.10.4) 

(5.10.5) 

(5.10.6) 

In the special case of PC, with the normalization oi = 1, these field momenta read 
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(f) 

n, = H, T bp2>L, (510.7) 

(+I 
m a~ = Hap T iR,o. (5.10.8) 

In particular, the case of a self-dual curvature can be understood in terms of the (complex) SO( 3,C) 
formalism of Brans and others, see [78,79]. 

Following the general lead of Ashtekar [ 151, it has been shown [ 449,707] that this change of 
variables yields already on the Lagrangian level a very efficient Yang-Mills type formulation of the 
teleparallelism equivalent GRll of Einstein’s theory: 

(It) (i) (+I 
V ,, = r(i/4)i2 L7 “A I7 n. (5.10.9) 

Applying a (3 + 1 )-decomposition, the gravitational Hamiltonian for GRll becomes polynomial in 
c+_) C&t) 

the Ashtekar type variables A, := EL, given by the three-dual of the tangential field momenta 
(5.10.7). In this Hamiltonian formalism, the normal part F = nJCWAG with respect to a timelike 
vector held n turns out to be the true generating function for an Ashtekar type pair of new variables 
and their canonically conjugated momenta [ 151. This approach has been generalized [450,451] to 
the Poincare gauge theory. 64 

6. Dynamics 

6. I. Conformal gravity: quadratic model Lagrangians 

Let us consider a primordial world which is invariant under arbitrary local GL(4, R)-deformations 
of the frame. In particular this implies that each single piece of our Lagrangian has to be invariant with 
respect to a local (positive) scale transformation (R+ gauge transformation). Moreover, we require, 
with Weyl, an additional invariance 65 of our primordial Lagrangian with respect to conformal changes 
of the underlying metric structure. In section 3.14 we discussed such conformorphisms which extend 
the diffeomorphisms by C,?, the Abelian group of all positive, infinitely differentiable functions 0. 
This Abelian part we have already applied actively in the conformal Noether procedure. 

According to the covariance under conformorphisms, the Lagrangian, which specifies the dynamics, 
should be independent of any dimensional coupling constant. Furthermore, for a Yang-Mills-type 
description, we want the field equations to be linear in the second derivatives of the gauge potential. 
Then, at most quadratic terms in curvature, torsion, and nonmetricity are admitted.@j At this stage it 

w The GL(4, R)-gauge approach of Floreanini and Percacci [ 199,200] is different from ours: Their GL(4, R) does not 
contain the physical Lorentz group. The latter one comes rather “in addition” to the “internal” GL(4, R); in other words, 
their GL(4, R) does commute with the Lorentz group. 
es This is roughly the situation at the onset of the big bang when no particles are frozen out which, with their masses and 

other dimensionful properties, could provide a length scale. 

he If we required the theory to be also supersymmetric, superconformal curvature-square Lagrangians would arise in the 
study of the “low’‘-energy limit of superstring models in n = 10 dimensions, see Bergshoeff, Salam, and Sezgin [ 541. 
Moreover, in the string expansion, besides the graviton, a massless scalar field, the dilaton g, will be the most relevant field 
in the bosonic sector [ 5.51, see also [ 1671. 
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is not necessary to restrict ourselves to a Weyl spacetime, rather we are able to unveil our point of 
view in the general metric-affine framework. 

According to the irreducible decompositions of appendix B, see also [ 626,287], the field momentum 
linear in the curvature can be expanded in terms of the irreducible curvature pieces as follows: 

(6.1.1) 

The number of irreducible pieces depends on the dimension n of the spacetime: For II > 3 we have 
eleven pieces , but ten for IZ = 3, and three for 12 = 2. 

Since for n > 3 there are three irreducible torsion pieces, as in the restricted case of the Poincare 
gauge field theory (2721, we obtain for the translational gauge field momentum linear in the torsion 
the expansion 

(6.1.2) 

Let us exhibit, for arbitrary dimensions rz, the conformal properties of these gauge field momenta 
in the case of an (L,, g). Then the curvature, together with its irreducible pieces, is, contrary to, e.g., 
its behavior in a purely Riemannian space, conformally invariant, compare (3.14.3). The formula for 
conformal transformations for the Hodge dual of a p-form is given in (3.14.13). Consequently, we 
have 

j+ 
P 

= an(n-4w 77” 
P. 

(6.1.3) 

Apparently, this is invariant in II = 4 dimensions, and we can construct therefrom the quadratic 
curvature Lagrangian which is likewise invariant in four dimensions: 

(6.1.4) 

In contradistinction, the classical Hilbert-Einstein term as well as the Einstein-Cartan Lagrangian V;:,. 
are not invariant under conformal changes, except for the trivial case with 12 = 2. They involve the 
Hodge dual, the metric, and the coframe for their construction: 

v,. := -;gaYRaP A vyp = -;gpy Rap A *(&’ A iYy), v 
1.C 

= fp-w/2 V 
IX . (6.1.5) 

Let us turn to possible contributions from the contortion of the world: According to (3.14.6), 
(3.14.7)) the axial and the tensor torsion two-forms defined in (B.2.7) and (B.2.8). respectively, 
transform in a conformally covariant manner, whereas this is true for the trace torsion only for the 
choice C = F. Under this condition, the translational momentum (6.1.2) inherits, with respect to 
conformal changes of the metric, the modified transformation law 

jj 
(I 

= &+2V/2-F Ha, F = c (6.1.6) 

Consequently, the most general quadratic torsion Lagrangian transforms as 

V, := -+T” /I?&, VT = fp-w2 VT , (6.1.7) 
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Even for the choice above of F = C, it would only be invariant in n = 2 dimensions.67 Therefore, as 
long as the dimensionality rz = 4 of our macroscopic world is not reduced in the high-energy region, 
a quadratic torsion Lagrangian would not be admissible as a conformally invariant piece. 

Let us compare the Lagrangians considered so far with those which would be obtained by dis- 
tributing one Hodge star in the general boundary term (5.10.1) of an (L,, g) . We then observe that 

the mixed nonmetricity terrn(j8 

VQT := c C(K) ( K)+Q,p A 8” A H, gyp (6.1.8) 
K=l 

is missing. From the conformal properties (3.14.4), (3.14.6) of the gauge fields involved, we find 

v 
QT 

= fpw2 
vQT * (6.1.9) 

Analogously to the torsion-squared Lagrangian (6.1.7)) this piece is conformally invariant only for 
n = 2. 

It has been pointed out earlier that the ZEROTH field equation is redundant on shell. Nevertheless, it 
is instructive to exhibit the corresponding conformally invariant contributions to quadratic Lagrangians. 
Again in the metrical gauge field momentum only the irreducible pieces of volume-preserving69 
nonmetricity are allowed to occur 

However, the corresponding quadratic nonmetricity Lagrangian transforms as 

VQ := -‘+Qap A $f”fl 
4 7 

VQ = fpW2VQ~ 

(6.1.10) 

(6.1.11) 

Accordingly it has to be excluded in the four-dimensional world. 
Summing up, in four dimensions, the most general conformally invariant “gravitational” Lagrangian, 

under the premises of quasi-linearity of the gauge field momenta, is of the Yang-Mills type, i.e., it 

involves only the curvature, but explicitly neither the torsion nor the nonmetricity. Neither a Hilbert- 
Einstein type term is admissible, nor a “cosmological” term AT proportional to the volume density 77 
of the world, which would transform as q = U’L~2~. 

” In view of the invariance of (6.1.7) in two dimensions, such a term is a possible candidate for the bosonic part of the 
superstring action (see [338,339,237] ). For n = 2 torsion is irreducible such that (6.1.7) is equivalent to a term quadratic 

in the trace T of the torsion (TRATOR). On the other hand, the Hilbert-Einstein term is trivial in two dimensions since it 
degenerates to an exact form - ( l/2) I?{}@ A ~~0 = d [ - ( l/2) (r{f‘@ A qap) 1. This is due to Dvnp = 0 and the Abelian 
nature of the SO(2) part flaPI = ( -l)‘“d’8’r]“Pr* o t f h e connection. However, if one supplements the Hilbert-Einstein 
Lagrangian by a boundary term d(&’ A *T,), one recovers the Yang-Mills term (5.9.19) that is quadratic in the torsion. It 
turned out that not only this constrained model but also the general PG theory is completely integrable in two dimensions 
(cf. [453] and refs. given). A constrained GL( 2, R) gauge model is analyzed in [ 3501. 
6X We drop the contributions from the Weyl covector piece (4)Qao = Qgap since, for L # 2F - 2C, the Weyl one-form 

Q transform inhomogeneously under conformal changes of the metric, cf. (3.14.1) and (3.14.5). This excludes also the 

term Q A “T which, due to an intriguing coupling of the Weyl covector to the torsion trace 7’ = eU]Ta, could possibly be 
responsible for a symmetry breaking from Weyl to Riemann-Cartan spacetimes, cf. section 8 of [ 2801, 
” The quadratic Weyl covector piece Q A ‘Q, which is related to a boundary term via D *Q - Q A *Q = d ‘Q, in general 

does not transform homogeneously under conformal changes. 
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Our conformally invariant quadratic curvature Lagrangian V, contains volume-preserving and 
volume-changing parts. In order to exhibit this on par with the corresponding decomposition (3.12.6) 
of the curvature, we split the deformational gauge field momentum as follows: 

H”, = +zPp + ( l/n) 6;; H . (6.1.12) 

The trace part of H”, is, up to proportionality, nothing but the field momentum canonically conjugate 
to the Weyl one-form: 

(6.1.13) 

Then the conformal Lagrangian (6.1.4) may as well be rewritten as 

V,=-;(+R,h +Hap+;dQA H), (6.1.14) 

which clearly displays the separation into a volume-preserving and a volume-changing dynamics. 
This is also reflected in the following splitting of the second field equation which may be deduced 
from (6.1.12) by independent variations of the volume-preserving connection and of the Weyl vector 
or, simply, by decomposing (5.55) into its tracefree and trace part, respectively: 

to tHaP - tEaP = tQ, (6.1.15) 

DH+TYAH,+M~,=DH=A. (6.1.16) 

Since H, = 0 and M”P = 0 for (6.1.14), the volume-changing part of our theory is determined, 
not unexpectedly, by an inhomogeneous equation which formally resembles the Maxwell equation. 
Observe that the Weyl one-form has become a truly dynamical, i.e., propagating degree of freedom, 
even for a vanishing dilation current d. Incidentically, Buchmtiller and Dragon [ 901 take the vanishing 
of DILCURV, i.e. the tensor relation tRyY = 0, as the gauge fixing condition for volume-preserving 

coordinate transformations. In this condition, an overlap between holonomic GL( IZ, R) H c Diff( IZ, R) 
and the anholonomic GL(n, R) occurs. 

In our primordial world, in which no explicit torsion terms are present in the Lagrangian, the first 
field equation is purely algebraic in the curvature, i.e., non-dynamical: 

- E, = 2, . (6.1.17) 

According to (5.4.12) and to (6.1.4) with (6.1 .l ) , the trace of the deformational energy-momentum 
reads: 

~“AE,=~V+~R,~~~~=~V--R,PA~= (n-4) v. 
a 

(6.1.18) 

Observe that this relation is contained as a special case in the general formula (5.4.16). Its material 
counterpart is given by (5.7.23). 

As a consequence of (6.1 .lS), for rz = 4, as one would expect for a conformally invariant Yang- 
Mills type theory, the energy-momentum trace 6” A .& vanishes70 and only matter with vanishing 

“’ For the Lagrangian V = K RaB A RpY A . . A RYa’, this is also true in n dimensions, provided n is even. 
\ / 

n/2 fxtcton 
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trace can consistently couple to GL(4, R) gauge fields. In Riemannian spacetime, the quadratic Weyl 
curvature piece in (6. I. 14) is frequently considered as a model of conformal gravity, see [ 329,447] 
and refs. therein. Recently, by calculating the independent deformations of conformally self-dual 
gravitational instantons [for Euclidean signature, i.e. for Ind(g) = 01, Perry and Teo [ 5601 found a 
topological invariant which resembles the first Donaldson invariant [ 1621, [ 1631 in the Yang-Mills 
case. 

6.2. Coupling to the dilaton 

So far our world is ruled from the beginning solely by primordial, conformally invariant defor- 
mational gauge fields (“conformal gravity”). Following Isham et al. [ 3101, e.g., we may immerse, 
in addition, a primordial scalar field, the so-called dilaton field a(n), into this world. 7’ The intro- 
duction of scalar fields into gravity has already a long history, see [ 310,311,577,211,43 1 ] ; in our 
approach, in contrast to that of Jordan, Brans, and Dicke [ 322,771, the crucial feature is the onset of 
a possible symmetry breaking, following, for example, Englert et al. [ 184,185], Minkowski [464], 
Smolin [ 639,640], Gregorash and Papini [ 239,240], Zee [ 733,734], Nieh [ 5 151, Sijacki [ 6251, and 
German [ 2211, see also the related work [ 145,528]. More recently, Flato and Raczka [ 1981, as well 
as Cheng [ 111 ,I 121, cf. [ 34,591, have suggested to couple gravity via the isodoublet (complex) 
Higgs field +J (J = 1,2) to the Weinberg-Salam mode1 such that the dilaton field u is included as 
one of the four scalar degrees of freedom. 

Since the Higgs field of the standard model couples very strongly to fermion matter - it makes 
the mass of the electron, muon, quarks, etc. - it cannot be related to the dilaton as Flato and Raczka 
[ 1981 surmised. Had it been a Jordan-Brans-Dicke field, it would be 104’ times stronger than gravity. 
Also, the present thinking about the dilaton in stringy and other inflation is that the scalar field was 
active in the first 10p4” seconds and then became so weakly coupled as to obey the upper bounds on 
Brans-Dicke couplings - whereas the Higgs is expected to be produced at the LHC (Large Hadron 
Collider) because it is strongly coupled to all massive matter. 

On the classical level, we can assume that the scalar field carries canonical dimensions, i.e. 
(length) -’ in n = 4 dimensions. Therefore, with respect to a conformal change (3.14.1) with weight 
L of the underlying metric structure, the scalar field is really a density which transforms [693] 
according to 

(T(X) + 2;(X) = 0( +,‘* a(x) = n(X) -(n-2)L’4 U( X) . (6.2.1) 

In order to account for possible propagating modes of this scalar field, we have to construct a 
conformally invariant term for the kinetic part of the dilaton Lagrangian. Since the dilaton carries the 
dimension d, = (2 - n) /2, cf. (4.7.2), the gauge-covariant exterior derivative reduces to the usual 
exterior derivative amended by a connection trace term r = rcrn as a compensating “potential”. In an 
(L,, , g) , the conformally covariant derivative of a scalar field is then given by 

” According to Adler [ 21, e.g. the dilaton is not elementary, but should rather be regarded as a fermion condensate, i.e. 
u k (@P)(“-2)12(n-‘). In the literature, there are various parametrizations of the dilaton field in use: According to Coleman 
[ 1241, the prescription to render a theory dilation or scale invariant is to replace each mass scale p by a field 8, the dilaton, 
such that the dilaton couples in a universal way to these mass terms via jX = p e&If, where f is the dilaton decay constant 
[ 871. In other conventions, the dilaton is related via V(X) = f [ (n +2)/n] ‘I* In O(x) to the conformal part R of the metric 

g,p = f2”* s,p. 
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Dir=(d-wJ)a. (6.2.2) 

For w, = - (Ld,/2nC), the conformal covariance of Du follows from (6.2.1) and the transformation 
formula (3.14.1) for the trace of the connection: 

fij,= (d _ @,r) fin-(n-2)L/4, 

=K(‘-2)L’4[-$(~-2)LdlnD+d-w,T+nCw,dln0]a 

= fin-(n-2)L/4 Da. (6.2.3) 

Note that, contrary to the description of Nieh [ 5 151, in our approach the constant in front of the trace 
connection one-form is fixed by the dimension d, of the scalar field relative to that of the metric, cf. 
(6.2.1) and (3.12.8). Thus an (L,, g) provides a rather natural framework to accommodate conformal 
changes of metrics; in particular, there seems to be no need to define anew a “conformally covariant” 
derivative (cf. Bregman [ 821, Smolin [ 6391). Observe also that the conformal variation [ 3 18,622] 
of a scalar field is, in our formalism, simply obtained by the gauge-covariant Lie derivative, cf. 
(A.1.38): 

(6.2.4) 

For a p-form (Y (P), the GL(n, R) gauge-invariant d’Alembertian operator reads 

O&J’ := (_l)Pf.T [*D*D+(-l)nD*D*]&). (6.2.5) 

(In a Riemannian space, a related operator for an arbitrary tensor is explicitely constructed by Yano 
[ 729, p.671.) For a zero form, i.e. a scalar field U, the second part in the definition (6.2.5) would 
lead to an ( IZ + 1 )-form and, consequently, drops out. Then the gauge-invariant d’ Alembertian can 
be rewritten as 

~a= (-l)s*D*Da=ii~- (-l)“w,*(d*r-o,rA *r)a, (6.2.6) 

where E := (- 1)’ *d *d denotes the usual d’ Alembertian operator in curved spacetime. Due to (6.2.3), 
the operator •I is also conformally invariant. In a Riemannian spacetime, the known conformally 
invariant wave operator (cf. [442,726], e.g.) reads: 

4 
q a=Oa+ (n_ 1) ~ (e,jepJR{~“~) u. (6.2.7) 

In view of (6.2.3) and (3.14.13), our procedure implies that the kinetic part of the dilaton 
Lagrangian is conformally invariant in any dimension: 

Ln := -$l) indcg) Dcr A “Du, i, = fin(Ldc+WW) Ln = r, . (6.2.8) 

By variation of (6.2.8) with respect to U, we obtain the conformally invariant scalar wave operator 
(6.2.6). 

The dilaton Lagrangian with a polynomial self-interaction n-form U( Ial) is given by 

L, = J&+ W-+7. 

By variation of (6.2.9) with respect to U, we obtain the scalar wave equation 

(6.2.9) 
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SL,, 
aa -(-I) hid(x) D *Du + au(H) 77 = 0 

da 

SL,, 
** Sa ( > =~u+(-l)‘“d(“’ au Wl4) =o 

. (6.2.10) 

6.3. tmproved energy-momentum current 

The trace of the dilaton’s energy-momentum current, i.e. 

6” A &(a> = (n - 2) L=+ nU( lal) 7l (6.3.1) 

does not vanish. Therefore, we need to improve & in this respect. As an intermediate step, we could 

proceed from the identity 

up = -C, + e,J DA” P + 4 ( p(Lap) P A $T$ > (6.3.2) 

for the metrical energy-momentum (y1- I )-form defined by (5.1. lo), which follows from the strong 
Noether identity (5.2.16). For the dilaton field carrying canonical dimensions d, = (2 - n) /2, only 
the trace of the hypermomentum current and of the linear generators contribute: 

Consequently, Eq. (6.3.2) simplifies to 

(6.3.3) 

(6.3.4) 

Since the kinetic part of the dilaton Lagrangian (6.2.8) explicitly depends on the connection trace 
one-form rry, the scalar field does also provide an intrinsic dilation current. According to (5.1.19)) 
the latter is dynamically defined by 

SL 
A:=&’ =-- 

y ar,y 
= _(_l)‘nd(x) ?&? U"DU, d=A. (6.3.5) 

The trace of the metrical energy-momentum current u, does not vanish either; but for II > 3 it 
depends also on kinetic terms (which would become “hard” in the momentum representation) as 
fol1ows 

6”~~,=6”~~~(a)+Dd+d, (02) 

= cn- 1)(n-2)~ 
q 

+(_])'"d(fi)(n- 1)(n-2)uD’Du 
rl 2n 

n-2 Xl()u)) 
+ nwd> - -jy du ( 1 7. (6.3.6) 

In our formalism we may define a “new improved” energy-momentum current for scalar fields by 

a, :=u,+ (n- 1) 
----ee,j DA. 

n 
(6.3.7) 
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For its trace we find the “strong” relation 

( n-2 au(Icrl> 
6”Aa,=fiaA(T,+(n-1)Dd= nU(lal)-2a do 

> 
rl. (6.3.8) 

Compared to (6.3.1) and (6.3.6), kinetic terms such as Ln are now absent in (6.3.8). In contradis- 
tinction to our ealier “weak” result in [268], this is now a strong improvement, because no field 
equations have been employed in our derivation; cf. Kraus and Sibold [368] for the related case of 
flat spacetime. 

Moreover, due to Euler’s theorem for homogeneous functions, the G*~‘(~-*) piece in the potential 
U( 1~1) drops out. For a polynomial potential U( Ial) of degree p 2 2n/(n - 2), the operator 
dimensionality is then smaller than it (for n 2 3). Therefore, the new trace is indeed “soft” in a 
momentum representation in the sense of Jackiw ( [ 317, p.2133 ; cf. Kopczyfiski et al. [ 3651). Note 
that a pure (T*~‘(~-*) model is, in flat spacetime, known to be renormalizable according to the criteria 
of power counting [ 6931. Moreover, the left hand side of (6.3.8) is related to dilation anomalies 
which are measured by the deviation of the effective self-interaction potential U from its conformally 
invariant form, compare [ 7 15, Eq. (3.4) 1. 

It is a further consequence of (6.3.5) that a necessary and sufficient condition for a vanishing 
dilation current is the covariant constancy of the dilaton field, provided it is non-zero: 

Du=OWA=O. (6.3.9) 

In the wake of a symmetry breaking, to which we will turn in the next section, there occur “mixed” 
terms involving, besides u, also the curvature scalar. Due to its projective invariance, cf. (3.11.8)) 
such a term does not contribute to the dilation current. 

By construction, the kinetic part (6.2.8) of the dilaton Lagrangian is independent of the tracefree, 
that is, volume-preserving nonmetricity (3.12.4). Thus the dilaton field u does not contribute to 
the shear current, and we may infer from the field equation (6.1.15) that the ground srute of 
our metric-affine world is undeformed by material shear so far. Only for such violent spacetime 
fluctuations which break up the metrical continuum into a possibly non-causal “spacetime foam” 
and create “baby universes” and “wormholes” ( [ 1251, cf. [441] ), the shear degrees of freedom of 
the gravitational gauge fields could get excited by self-interaction, yielding, due to the essentially 
dynamical character of (6.1.15), propagating modes. 

6.4. Breaking of the dilation symmetry: induced Einsteinian gravity 

Local scale invariance of fundamental non-gravitational interactions is valid only approximately in 
the high energy limit of Bjorken scaling. For gravity we expect the same at the onset of the big 
bang (or at extremely high energies). After a very short time lag, the Weyl group of local scale 
invariance would have broken down to the Poincare group. In order to model this symmetry breaking 
in our post-Riemannian framework, further dynamical ingredients have to be added to our highly 
symmetrical, but for these reasons rather unphysical, Yang-Mills like gravitational world. 



102 EM! Hehl et al./Physics Reports 258 (199.5) l-171 

As in Goldstone’s model field theory [ 2311, nonlinear terms in the dilaton field u provide the 
essential means to achieve this. Let us consider the nonlinear self-interaction potential 72 

U(lul) = -$P’% U( 101) = K(n-4)y2U( Ial). (6.4.1) 

In four dimensions, we find that the (renormalizable) a4-term of the completed dilaton Lagrangian 
is conformally invariant. 

On the dynamical part of the geometrical gauge fields, the curvature scalar term (6.1.5) and the 
explicit torsion-squared terms (6.1.7) had been prohibited by the requirement of conformal invariance. 
With the advent of the dilaton field, this is no longer true. In fact, the “mixed” n-form73 

v*,- = a2 
( 

; v,, + v, + vo 
> 

, (6.4.2) 

which represents a “contact’‘-type interaction of the deformational and scalar degrees of freedom, 
aquires invariance with respect to conformal changes of metric in any dimensions: 

e,,, = v,,. . (6.4.3) 

Therefore it should be included in our canon of at most quadratic Lagrangians, although such contact 
type coupling to the dilaton is perturbatively non-renormalizable [ 901. 

In the derivation of the Noether identities for the total Lagrangian, such contact terms of the 
Brans-Dicke type have formally been accounted for by the generalized definitions (5.1.7) -( 5.1.9) of 
the matter currents. In effect, these terms just provide us with the following additional field momenta 
of translations and deformations: 

lPP(ur) = g2M”B, H,(crT) = a2Ha, H”, ( aI’) = ( 1/2x) u2g0y77yP . (6.4.4) 

The degenerate form of the GL(n, R) gauge field momentum is pertinent to the Hilbert-Einstein or 
Einstein-Cartan type Lagrangian. 

The complete Lagrangian for the so-called dilaton field, including these mixed terms, eventually 
assumes the form 

L, = Ln + U( /al> + v,,-. (6.4.5) 

An extremum (preferable a minimum) of this gravitationally coupled nonlinear scalar field La- 
grangian necessarily occurs for 

6L 

( 

1 
2=0u+2 -v,,+vr+v, a+ 
6U X ) 

au( Ial) 
&T 

= 0, (6.4.6) 

provided the scalar field equation is satisfied. Due to the presence of the connection trace one-form 

in the derivative D and in CI, the specification of the ground state configuration is more involved than 

” Although this term is usually introduced ad hoc in a purely Riemannian geometry, it may itself be the result of a 
conformally resealed and then “frozen in” gravity, cf. [44]. 
73 In (6.4.2). due to its conformal invariance, we could also include the term d VQT with the novel mixing of nonmetricity 

and torsion. 
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in an uncoupled model. Similarly as in the Abelian Higgs model, cf., e.g., [ 1145661, we may seek 
configurations for which 

(6.4.7) 

hold asymptotically. According to (6.3.9), the dilaton current vanishes too, i.e. d N 0. 

For a model of massless scalar electrodynamics, Coleman and E. Weinberg [ 127,709] have shown 
that radiative corrections induce a spontaneous symmetry breakdown of the U( 1) gauge symmetry. In 
the first loop approximation, there arises an effective self-interacting potential, which has a minimum 
away from the origin: 

(6.4.8) 

It is tempting to adopt the hypothesis that a similar mechanism applies to the dilatons of our 
gravitational model also in a non-flat background, in particular, since there is a relation [328] 
between chiral and scale invariance for extended models. 

However, a dimensional transmutation [ 1241 appears to be a general feature of such an induced 
symmetry breaking: The dimensionless parameter A, is transmuting into a dimensional one, i.e. (a), 
which breaks conformal invariance explicitly. By comparison with the macroscopic world in which 
Newton’s gravitational constant GN is inherent, the physical scale is then necessarily determined by 

(u) = A&q, (6.4.9) 

where I = ,/m denotes the Planck length. In this setting, Newton’s gravitational constant in 
Einstein’s GR is a result of such a symmetry breaking (cf. [ 185,464] ) of conformal gravity. 

Let us consider the “induced” gravitational world in the vicinity of this ground state. In this crude 
approximation, we obtain 

In this order of approximation, the kinetic part of the scalar field vanishes. Thus we end up with an 
Einstein-Car-tan Lagrangian plus possible explicit torsion terms of teleparallelism type theories and 
optional nonmetricity terms. In the conformal gauge Lagrangian (6.1.14)) only the volume-preserving 
part survives, due to dQ 21 0, which follows from (6.4.7). Having started from a gauge theory of 
local GL( n, R)-deformations, we find that the gravitational vacuum structure of spacetime gets broken 
down from an (L,, g) to a Riemann-Cartan spacetime U, with its associated Poincare group. The 
induced “cosmological” constant /lind, is really of microscopic origin and is notoriously large, cf. 

[712]. 
A constant mass term m = (a) for world spinors is induced as a further result of the breaking 

of the local scale symmetry through the non-trivial vacuum expectation value of the dilaton field cr. 
In view of the small length scale induced by (6.4.9)) the rest mass m of world spinors obeys the 
relation 

8rGNm2/( iic) - x. (6.4.11) 
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By adjusting the coupling constant x in the Einstein-Cartan part of the Lagrangian, the manifield 
mass m can be shifted to a value far below the superheavy Planck mass MPlanck. 

If we had admitted the term a2Q A *Q in our gauge Lagrangian, a superheavy Weyl vector boson 
would occur after symmetry breaking [ 6441. So far, dilation or Weyl invariance has not offered a 
solution of the cosmological constant problem [ 712,129], i.e. its vanishing in the present epoch. 

6.5. Triggering spontaneous symmetry breakdown of E(4, R) 

The discussion of renormalizability, which we touched upon in section 2.2, made it clear that 
the very-high-energy (VHE) regime (i.e. higher than Planck energies) of our theory of quantum 
gravity has to be ruled, instead of the Brans-Dicke type terms (6.4.2) of the previous section, rather 
by dR’ = -4 terms and that the gauge field appearing in these terms should represent physically 
independent degrees of freedom. This has forced us to enlarge the (anholonomic) gauge group 
in its homogeneous part beyond SL(2, C). In this section, we are going to discuss a model in - 
which a spontaneous symmetry breakdown (SSB) occurs in the volume-preserving part SL(4, R) A c 

GL(4, R)A. The breakdown occurs either directly or indirectly. The indirect process is induced by the 
same mechanism we described in section 6.4, which triggered the breakdown of local scale invariance, - 
i.e. of the R+ part in GL(4, R) = (T cx SL(4, R)) x R+. 

Continuing in our quest for renormalizability, we use the Yang-Mills model for our gauge theory. 
Our d = -4 VHE Lagrangian should be quadratic in the m( 4, R) ,., curvatures. According to (6.1.4) 
and (6.1.1) , the most general quadratic Lagrangian four-form reads: 

II 

V sym. = V, = -& c bCNjgaYgpsCN)RnP A *( cN)RrS). 
N=l 

(6.5.1) 

This Lagrangian would encompass the “SKY” (Stephenson-Kilmister-Yang) 74 Lagrangian [ 6541, 
were it not for the addition of spontaneous m(4, R),.,-symmetry breaking terms. The confor- 
ma1 gravity Lagrangian has non-vanishing nonmetricity Q+ = -Dgap # 0 contributed by the - 
SL(4, R),/SL(2, C) components of the connection, as can be seen from (3.10.12). 

In fact, the Schwarzschild-Einstein-Newton component and the related macroscopic horizons will - 
be provided by the dR = -2 terms corresponding to the SSB of m(4, R) A and of its SL(4, R) A 
subgroup in the low energy region, underneath the Planck energy, i.e. at distances much larger than 
the Planck length 1 = 1O-33 cm. 

The terms that will dominate the low-energy region will effectively generate a vanishing non- 

metric@ and reproduce the Hilbert-Einstein Lagrangian (or equivalent macrocopic Lagrangians) . It 
will correspond to the “Higgs sector” in a Weinberg-Salam type model: Although the --,u~+* term 
that generates the SSB in those theories has precisely the same dimensionality as the Einstein and/or 

74 It will be remembered that criticism of the SKY Lagrangian [654,348,728] had centered on its unsuitability for a theory 
of gravity in the large, since it has no Birkhoff theorem, i.e. the exterior Schwarzschild solution is not the unique spherically 
symmetric vacuum solution. Moreover, there is no decent Newtonian limit because of the surfacing (from the Riemannian 
connection) of 3rd derivatives of the metric (Baekler et al. [25] ). However, the physical requirements are different in our 
case: The Lagrangian (6.51) of the renormalizable Yang-Mills type dominates the VHE regime, but needs to be amended 
by symmetry breaking terms in order to cope with the macroscopic, low energy region. Thus, the Newtonian limit is 
reproduced by other (dimension 2) terms. 
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the ( torsion)2-terms in gravity, explicit mass terms are not favored in our conformal approach to 
gravity. In our approach, the effective Hilbert-Einstein Lagrangian a2VE will have the same structure 
as the effective W mass term (@‘) W2 of SSB in Yang-Mills-Higgs theories. 

The low energy (broken m( 4, R) A gauge symmetry) region preserves a subgroup of m( 4, R) A, 
and this is precisely the Lorentz group, thus ensuring that the long-range component corresponds to 
a Riemannian geometry and has Einsteinian features. 

The symmetry breakdown could occur “spontaneously” through the assignment of a non-vanishing 
vacuum expectation value, 

(@cm) + 0 (6.5.2) 

for the (0, 0)-component of a manifield @, i.e. an infinite-component field behaving as an “d- - 
deunitarized” representation of SL(4, R)A, cf. section 4. 

We deal with manifields in the context of the matter fields in MAG. Here, however, Cp is a bosonic 
manifield, behaving as an A-deunitarized representation of GL(4, R)A. Indeed, to treat the breakdown 
of the Yang-Mills-like gauge symmetry appropriately, the Higgs field has to transform as a non-trivial 
representation of that group, with a component that has the Lorentz group (on the frames) as its 
stability subgroup; this is @ 00, a component behaving as the (0, 0), i.e. scalar representation of the 
Lorentz deunitarized subgroup, and it acquires a non-vanishing vacuum expectation value. 

In other words, @ is reduced over the “apparent” compact subgroup SO(4), which is physically 
just the A-transform of the Lorentz group, the SO( 1, 3)A = SL(2, C), subgroup of a(4, R)A. It 
has finite non-unitary representations, just as in finite tensors (in which the GL(4, R) representation 
itself is “naturally” non-unitary, and so are those of the SL( 2, C) subgroup). 

In writing the @-Lagrangian, we thus have to use coframes. In this case, the coframes have their 
component’s labels ranging over a countable infinity. Such coframes are gravitational-field valued 
matrices, relating GL(4, R)A to m(4, R)H, cf. [ 991. For bosonic manifields, the double covering is 
collapsed and the coframe can then be given in terms of the conventional coframes by 

oB = CB,@ = HJBGJi dx’ 
HJB = CB e.fi#’ PJ J 
E’* = Gt. e’ C” 

l a AI 

(6.5.3) 

where the CBP and GJi are transition matrices of SL(2, C) and SL(4, R), respectively. The CEO 
consist of a reduced infinite sum of rectangular matrices that relate, within one single A-deunitarized 
representation of E(4, R)A, the A, B labels of the finite (non-unitary) representations of SL(2, C) 
- replacing here the SO(4) compact subgroup representations in the A-deunitarized representation of 
SO(4, R)A itself - to the four-dimensional LY, p indices of the local Lorentz group, also saturating 
a four-dimensional representation of SL(4, R)A. The GJi relate the four-dimensional i, j indices of - 
SL(4, R)H to the infinite-dimensional I, J indices of the A-deunitarized representation of that group. 

We take the following conventional Lagrangian for the @ manifield, together with the dilaton field 
u that breaks GL(4, R)A but is invariant under the traceless z(4, R)A and under conformal changes: 

where 

U(@, U) = ~[A@(@+@)2 + 2A(@+@)(T2 + h,a4] (6.5.5) 
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represents a self-interaction, and 

Ly” = ( f..cP@P + VdP)~ 
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(6.5.6) 

a Yukawa coupling to the fermions. In the presence of the dilaton, we do not have to assume the 
nonvanishing vacuum expectation value for Cp o. as a separate ansatz. Rather the A term in (6.5.5), 

representing an interaction between @* and a*, when, as in section 6.4, 

(a) = u, # 0, (6.5.7) 

will provide an effective negative mass-squared term for @*. Writing 

u(x) = UV + gHiggs(x). (6.5.8) 

we find, cf. (6.4.9)) 

1 = Jx/u,, GN = x/8?rv,*. (6.5.9) 

The @*o-* term contributes to the U(@, c)-potential, which, up to the constant term A&, becomes 

U(Q2) = ~[2Av,*@* + A@(@*)*]77, (6.5.10) 

where @’ = @t@ := Ce @g@‘, B := (j,, j,). A sufficient condition for a minimum is 

(6.5.11) 

- 
so that for A < 0 we get a SSB of SL(4, R). Applying a suitable z(4, R)/SO( 1,3) transformation, 
within an irreducible subspace, i.e. after a choice of a gauge, we have 

(6.5.12) 
B 

thus obtaining 

QB (X) = Uis,B + @iggs ( x> (6.5.13) 

v; = 4 / -A A@ v,. (6.5.14) 

The spinorial manifield ly acquires a mass 

M(?V) = /_LL$ + VU, (6.515) 

also of the order of the Planck mass (up to the coupling constants ,u and Y) . 

Returning to the @ manifield, above its lowest level (0,O) we find the three representations 
(2,0), ( 1, I ) , (0,2). The (2,0) and (0,2) cannot be reached from (0,O) by a single application 
of the s1(4, R)/s1(2, C) generators ,E:crrpj, while 

If l,l)> =,&3, I(O*O)i, (6.5.16) 
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i.e. the ( 1,l) components have the quantum numbers of the s1(4, R)/sZ( 2, C) generators and supply 
longitudinal components to the shear connections, These components of the connection (contributing 
via (3.10.3) to the nonmetricity) are thus massive. 

Performing a gauge transformation 

A cnp) = expV+@’ w(&, @(a~) - (1, l), (6.517) 

we find for the infinitesimally gauge-equivalent connection, 

Qnp) = &3, - @op), (6.518) 

cf. (3.6.9) for the precise relation. The mass matrix of the shear part of the connection itself is given 

by 

V (np) U@)U&(YG)) (6.519) 

with the v(aP))BC matrix elements corresponding to the transitions (0,O) --+ (1, 1) --t (0,O). Using 

the 3-j coefficients [ 6254961 of the s1(4, R), we obtain 

(6.5.20) 

with (Y, p = 1, 0, -1 (the spherical basis). 
The mass of the dilational part FYy of the affine connection turns out to be 

M2( Fry) = !Jk’. 

The Lorentz connection does not acquire mass and for the Higgs manifield we find 

(6.5.21) 

M2(@&@) = -4Auk2, A < 0, (6.5.22) 

where the (j,, j,) # ( 1,l) have become the longitudinal components of the shear part of the 
connection. 

This model has been studied further, first by constructing the appropriate BRST equations [388] 
and then proving that it is renormalizable [387,389]. Its renormalizability does not derive from 
( 1 /P4)-propagators as in the case of quadratic Riemannian Lagrangians [ 6521, but is rather akin 
to renormalizable Yang-Mills theories, whose proof of renormalizability is followed in [387,389], 
except for the complications induced by the diffeomorphism gauge. What remains unanswered is the 
question of unitarity. One would have to prove that in higher orders, no effective dipole-ghost terms 
would ever emerge, etc. 

6.6. Extended irzflation 

The inflationary model, see Linde [ 3961 and Guth [ 2521 for recent overviews, is a modification 
of the standard big bang model which is aiming at providing answers to such cosmological issues as: 
( 1) large scale uniformity, (2) flatness [near to the critical density], (3) absence of magnetic GUT 
monopoles, (4) almost scale-invariant spectrum of the microwave background as seen by COBE, 
etc.. 
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The standard as well as the inflationary model is based on the isotropic Robertson-Walker metric75 

ds2 = -dt2 + a2( r) & + y2 (de* + sin* Bdcp2) I (6.6.1) 

of Einstein’s equation with effective cosmological constant 4ff. induced by the “false” vacuum density. 
(An open, flat, or closed universe is characterized by k = - 1 , 0, + 1, respectively.) For the metric 
(6.6.1) , Einstein’s equation reduces to the Friedmann equation 

82 a = -k + ;a2(E2p + A,,) (6.6.2) 

together with the Raychaudhuri equation of energy conservation. 
The inflationary period lasts only for a small fraction of a second and provides really a model for 

the “bang” itself. After this period, the de Sitter type exponential inflation with 

a = a0exp[ (4ff./3)1/2tl, k=O, p=O 

is supposed to join smoothly onto the standard model based on the Friedmann solution (k = 0, (ieff. = 
0) of Einstein’s equation (“graceful exit” problem). The possible effects of a primordial anisotropy 
on inflation have also been discussed in the literature [ 3011. 

What is important in our context is that almost all mechanisms for inflation depend on a dynamical 
scalar field that has a sufficiently long flat region in its potential to allow for the de Sitter phase. The 
interaction with Einsteinian gravity is of the Jordan-Brans-Dicke type [ 771 and, therefore, resembles 
the dilaton model of section 6.4. Moreover, in the extended inflationary model of La and Steinhardt 
[ 3821 and in the “eternal” modification of Linde [ 3971, cf. [301,558], the graceful exit problem 
is attacked by introducing two scalar fields with a specific selfinteracting potential U($, g) similar 
to our manifield potential (6.55) of SSB: After singling out and identifying one component of the 
bosonic manifield @ with the Brans-Dicke scalar 4, the structure of the inflationary Lagrangian is 

=-(~/~x)~*R”PA~~,~+~D~A*D~+~D~A*D~-~(~,~T)~~. (6.6.3) 

The dilaton is the one which can be in practice the Brans-Dicke field. The inflaton is generally the 
GUT Higgs field, and it is generally not coupled to gravity in the Brans-Dicke fashion. In extended 
inflation, the dilaton-Brans-Dicke field is coupled to the curvature scalar and causes a change in the 
effective value of Newton’s constant; this in turn changes the Hubble “constant” which is proportional 
to the square-root of G, and this helps the transition from false to true vacuum. If these two scalar 
fields were related via u = i [ (n + 2) /n] ‘i2 In 4, as in [ 1201, the dilaton could play, at the same 
time, the role of the “inflaton”. 

For Rap = R{}“p, such Hilbert-type Lagrangians coupled to a scalar field C$ have been analyzed in 
various models before, see [44,45,139], [239,638] and references given. 

75 In such a geometry, CR coupled to a scalar field allows [ 1831 also a smooth change of the signature which may be 
important in quantum cosmology. 
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Extensions of inflationary models to Riemann-Cartan spacetime [ 190,28,6,576] as well as to Weyl 
spacetimes [333] have been discussed in the literature. 76 Therefore, it seems to be appropriate to 
expose the common geometrical features of these models. To this end, we vary (6.6.3) with respect 
to 4, U, gap, P, and rap. Since Map and Ha in (6.4.4) vanish, the following field equations are 
obtained: 

(matter) (6.6.4) 

-( 1 /,y)~*(gapR,” A qys + R’+ A T+~)) = crap, (0th) (6.6.5) 

( 1 /2xM2Rpy A rlPyn = -Xx, ( 1 St) (6.6.6) 

( l/2/$) D( 4*77”p) = 0, d = 0. (2nd) (6.6.7) 

From the 2nd Noether theorem we know that (0th) is redundant, provided (1 st) and (2nd) are 
fulfilled. Moreover, we see that 4 SL~/Sq5 = 9" A Z,, which is the strong dilation identity (5.3.1) 
for dd = -1, cf. [ 7121. Hence we only have to solve SL,/& = 0 and the ( 1 st) and (2nd) field 
equations. In vacuum, none of the gauge field equations determines the scalar field 4. The situation 
changes, however, if we consider the full dilaton type Lagrangian (6.6.3). 

According to (3.8.5), the second field equation, which is a result of the vanishing of the dilaton 
spin, reads explicitly: 

w QP” A 7P,p - 2Q A qap + Ty A qnpy = -2vap A T. (6.6.8) 

In a Weyl spacetime, the torsion and the volume-preserving nonmetricity tQnp, cf. (3.12.4)) both 
vanish. Then we can resolve (6.6.8) with respect to the Weyl covector: 

(6.6.9) 

Incidentally, putting the torsion to zero already in the Lagrangian, would lead to the same result. 
According to (3.10.12)) we find a Weyl spacetime with the connection [ 6381, cf. [ 4321: 

rap = r:; + (l/d (gapW + WW - R-J@). (6.6.10) 

After applying a conformal change of the metric-according to (3.14.5) with the identification 0 = 4 
and L - 2F + 2C = 2, the new Weyl one-form Q will vanish. 

Alternatively, if we put nonmetricity to zero and work in a Riemann-Cartan spacetime [ 2211, then 
(6.6.8) determines the torsion as 

D@ T" = 6" A T w Kap = f&, D,,#. (6.6.11) 

Now we perform the conformal change (3.14.1) with F = 1, C = 0, and a = 4 of the orthonormal 
one-form basis: 

6” -$=@a. (6.6.12) 

” In the paper [ 1901 there are minor algebraic slips (see Assad and Letelier [ 161) which, however, do not touch the main 
conclusions of the paper. 
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According to (3.14.6) and (3.14.3) we obtain for the resealed torsion 

(6.6.13) 

whereas the curvature remains invariant. Therefore, in both cases nonmetricity and torsion are almost 
of the pure gauge type, cf. also [ 561, and can locally made to vanish by a conformal change of metric 
and/or coframe. Globally, however, such solutions may still have crucial imprints on cosmology and 
galaxy formation, see the next section. 

For the full dynamically coupled Brans-Dicke type model (6.6.3), the energy-momentum three- 
form 

&$>a = ;P$ A (eal*W + (ea]W A 'WI - U(~)TJ, (6.6.14) 

of the scalar field 4, for instance, has to be taken into account. Then, in contrast to the procedures 
of Smalley and German, the scalar field 4 is determined dynamically by the field equation (6.6.6), 
see also [ 2871. 

In order to symplify the dynamics, we may reparametrize the Brans-Dicke scalar 4 according 

to @ = x(1 + 151P2)/P-* and apply a conformal change of the metric and of the scalar field 4 
following (6.2.1) . Since the covariant exterior derivative transforms according to (6.2.3)) this implies 
for the reparametrized field p the conformal relations 

s = Q-g = (1 + ([1$)*‘+2,g, &?=a (*-n)L/4& (6.6.15) 

Then, using (6.1.5) and (3.14.3), the inflationary Lagrangian (6.6.3) for u = 0 can be rewritten in 
terms of the conformally related structures as 

(6.6.16) 

where the new selfinteraction is implicitly given by W( 40) = U(p) (1 + ~~I+J*)-“‘(“-~). Hence the 
transformations (6.6.15) map the original Brans-Dicke type Lagrangian (6.6.3) into the Einstein- 
Klein-Gordon Lagrangian (6.6.16). The same is true for the corresponding field equations. For a 
suitable quartic Higgs type potential U(p), we simply obtain W(p) = 4R., i.e. a minimally coupled 
Einstein-Klein-Gordon Lagrangian with cosmological term (ieff., and vice versa. In Riemannian 
spacetime, the transformations (6.6.15) still hold and, due to D~J = dp, we recover the (restricted) 
Wagoner-Bekenstein-Sturobinsky transformation, see [ 44,703,335], generalized here to n dimensions: 

fi@=: d0 3 0 = J 12n(2-n)L/4 dqo = (1 /fi) Arsinh( ficp). (6.6.17) 

If we put 9 = C/r, we obtain a similar structure as in the exact scalar solution of Baekler et al. [ 281. 
According to our preliminary analysis, such solutions bifurcate with respect to the vanishing and the 
non-vanishing of the parameter 4ff.. 

Albanese and de Ritis [ 61 used this procedure for the derivation of a de Sitter type solution of an 
Einstein-Cartan Lagrangian coupled to a scalar field with asymptotic constant scalar field and damped 
torsion, cf. [ 6681. The inflationary solution of Kao [ 3331 starts from (6.6.3) in a Weyl spacetime 
and breaks the symmetry via the pure gauge solution (6.6.9) to a (Riemannian) de Sitter spacetime. 
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An exponential potential [ 7311, such as W( 0) N exp8, may, for instance, result from extra 
dimensions after a Kaluza-Klein reduction of a higher-dimensional Einstein-Cat-tan Lagrangian with 
torsion, cf. [ 447, p.1461 and [ 2221. For such an exponential dependence there exists an exact solution 
[575] with an asymptotic expansion factor 

u(r) -t 4/(n-‘) for small t 

N f2”“-1) for large t. (6.6.18) 

Thus, for I < IZ 5 4, we obtain a power-law inflation. The t 2/3 behavior indicates a “graceful exit” 
to a matter-dominated universe. Potentials which induce inflation are classified by Barrow [ 371. For 
a (conformally) flat universe there exists now a formal solution in terms of the Hubble parameter as 
a new time coordinate, from which the inflaton potential W( 40) with an almost flat or scale-invariant 
COBE spectrum can be reconstructed, cf. [ 611,381,460]. There exists also attempts [ 688,689] (see 
also Minkevich [463] ) to derive cosmological solutions in the quadratic MAG. After the inflationary 
period, the previously existent shear and dilation currents die out, and the final fate of the model 
consists in a rudimentary Poincare gauge invariance. In such a scenario the transition from metric- 
affine gravity to Poincare gauge gravity is achieved by exploiting the similarity between the Weyl 
vector solution (6.6.9) and the vector torsion solution (6.6.11) via the ansatz T” = ( l/2) Q A6”. After 
the inflationary period, the condensation of such primordial scalar fields may give rise to absolutely 
stable boson stars [459,379,380,610] as possible contributions to the hypothetical dark mutter. 

6.7. Cosmic strings with non-trivial Wql vector or with torsion? 

The breaking of local scale (or dilation) invariance is intimately connected with a quantum- 
theoretical groundstate configuration which violates parity and has asymptotically the structure of a 
Weyl vector vortex (6.4.7), i.e., 

g 2 (o.), Da-O. (6.7.1) 

After the expansion of the universe, these relics of the dilaton field may give rise to “cosmic 
strings” (see, e.g., the instructive review of Straumann [ 6591)) which at times are advocated for the 

explanation of apparent double quasars. In the outside region of this stringlike vortex configuration, 
which comes about by “freezing in” classical Riemannian gravity, we find from the requirement 

(6.4.7) of a covariant constant dilaton field, because of (6.2.2)) that 

(6.7.2) 

This is the analog of the Meissner-Ochsenfeld effect, or the Nielsen-Olesen vortex solution [ 5 181 
in a Weyl spacetime, cf. [287], the corresponding dilational field strength dQ is expelled from the 
“superconducting” gravitational “ether”, inasmuch as the trace of the connection is a pure gauge field. 

However, for cosmological solutions on spacetime manifolds which are not simply connected (i.e., 
which have non-trivia1 Betti numbers) a non-trivia1 winding number” 

” A non-trivial winding number for the trace part of the torsion, in an Yq, has been taken into consideration by Gregorash 
and Papini [ 2401. Moreover, the torsion kinks of PC theories with scalar field coupling may be of interest in this respect 

[281. 
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(6.7.3) 

may arise ( c2 denotes a two-dimensional space-like hypersurface, i.e. a two-cycle with boundary 
&). For example, this is the case in the conical metric of the Vilenkin string [701] for which 

dln(detlg& ‘I* = d In r except for the singularity at the location r = 0 of the string. Moreover, a 
further contribution would occur, if u is not single-valued for a loop ac2 enclosing the “singularity” 
line of the string. This is typically the case for a functional behavior of the scalar field such as 

~ = ,+arcsin(lnl) (6.7.4) 

Other examples of manifolds with a non-trivial global topology are “wormholes” 

M” = R x s’ x P-2, (6.7.5) 

and a “torus universe” 

MT = w x ,s’ x ‘,’ x $. (6.7.6) 

( n - I ) factors 

The idea to consider the gravitational analogue of the Meissner effect and to allow Abrikosov 
vortices in spacetime, has been developed by Hanson and Regge [ 2571. However, their example of a 
“torsion vortex” constructed via a conformal change of the metric should apply to a Weyl geometry, 
rather than to a Riemann-Cartan spacetime. 

The pure gauge solution (6.6.9) of the conformally invariant Brans-Dicke type model (6.6.3) 
formally had the structure (6.7.2) which could yield a non-trivial “Weyl charge” NQ. 

When we solve the same model alternatively for the torsion, we obtain (6.6.11). Although the 
torsion is of the pure gauge type, i.e. 

TN = 6” ,+, 2 
4 ’ 

(6.7.7) 

the translational Chem-Simons term does not yield a topological charge, but vanishes globally: 

(6.7.8) 

However, the torsion one-form 

T := e,]Ta = (n-l)y=(n-1) (din+--Wbdlnda) 

would lead to the topological “torsion charge” 

(6.7.9) 

NT := ’ 
27r(n- 1) 

/ T=& { (dine-o,dlnda) =N,, 

iiL2-0 r?cz -0 

(6.7.10) 

which becomes identical to the “Weyl charge” for 4 = u. Torsion solutions of the type (6.7.9) are 
considered [ 301 in the conical background of the Vilenkin cosmic string, see also [ 7221 and [ 6781 
and, in [ 5681, some speculative aspects of charge quantization in the Weinberg-Salam model coupled 
to the Weyl spacetime are discussed. 
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Appendix A. Differential geometric formalism 

Some differential geometric formalism which we are using in the body of our article is collected 
here. There exists a detailed mathematical literature on these structures. We found Choquet-Bruhat et 
al. [ 1211, Loomis and Stemberg [402], Schouten [ 6061, and Trautman [ 6861 particularly useful. 
In theoretical physics, Sex1 and Urbantke [617] and Thirring [674] are highly informative and 
stimulating, see also the ‘evergreen’ [607] of Schrodinger. 

A.I. Exterior calculus on the ‘bare’ manifold M, 

We assume a connected n-dimensional differential manifold M, as the underlying structure. A 
vector basis e, of its tangent space Tp( M,) is dual to the one-form basis fip of the cotangent 
space Tp* (M,) . On the manifold there acts the group of diffeomorphisms Diff( n, R) and in the 
(co)tangent space the general linear group GL(n, R). The geometric objects will be characterized by 
their transformation behavior under these two groups. 

A. 1.1. Geometric objects 
Group representations with infinite many components have been separately discussed in section 

4, those with a finite number are listed here. Under a non-degenerate, differentiable coordinate 
transformation xi + x”(xj) with Jij := dxj/dx” (passive diffeomorphism) and under the GL( n, R)- 
frame transformation e, + e& = (i,p ep (deformation) with the respective Jacobians 
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n := det( nap), (A.l.l) 

the components Wj ,_.. ;,,’ al.‘.n~p ,,,, pU of a p-form/vector density transform as 

X (A-‘)y,“’ “‘(A-‘)ypa’ Ap,61 “‘A,su Pj ,.,, j,,ty’-.‘y’a ,_.. 6,. (A.1.2) 

We assume that Yr is totally antisymmetric in its lower coordinate indices: P,,+, . 1 + E P~;,...i,,I . . . . 

Furthermore, we have P, 7r E (0, I} and w, w E I?. If P = 1 and/or r = 1, we speak of a 
holonomically and/or an anholonomically odd parity of P. If w # 0 and/or w # 0, we call P a 
holonomic and/or an anholonomic density of weight w and/or w, respectively. We shall be primarily 
concerned with the following type of quantities: 

(i> 
(ii) 

(iii) 

(iv) 

(v) 

Tensor-valued p-forms” of representation type p = (z) (with k = 0 and P = T = w = w = 0 ). 
Vectors (withp=p=v=Oand P=n=o~=w=O). 
Scalar densities of anholonomic weight w (with p = k = p = Y = 0 and P = 7~ = w = 0 ). 
Connection one-forms with values in the adjoint representation of GL( 12, R). In this case an 
inhomogeneous term has to be added in (A.1.2), exactly as in (3.2.8). 
Manifields which have infinitly many components and thus are not covered by (A.l.2). They 
will be introduced in section 4. 

The transformation formula (A. I .2) is conventionally used in the literature, see [ 606,692]. How- 
ever, group theoretically one would approach the transformation of geometrical objects from a slightly 
different angle. The group of diffeomorphisms Diff(n, R) and the linear group GL(n, R) are decom- 
posable groups, i.e., they split into the direct product of the Abelian subgroups R’ = {.I} and R = {A}, 
respectively, and the special groups with determinant plus one: 

J/ = JJ’ E Diff(n, R) = R’ x -SDiff(n, R), 

A/ = /l/i/ E GL(n, R) = R x SL(n, R). (A.1.3) 

In view of the formula det M = efrM, we distinguish the elements of the special groups with a ‘check’ 
from those of the general groups. Therefore (A.l.2) can be understood as a product representation, 
i.e., as a tensor representation of the special groups times a representation of R+ with arbitrary weight 
times the sign of the relevant determinants: 

$P;,,,,;,,kal~.~Q P,...P~=(sgnJ)P+” (sgn/i)“+C”-“IJI”+“I/II”+~“-” 

x j;.,jl . . . J,,j,, (j-l),” (/i--l),,“1 . . . (/i-l)y,+ 

X /i@,” ” ‘A,,,” !P, ,__. j I’ ““‘.“g ,,,, 6,. (A.1.4) 

Observe that thereby the weights and parities, as defined in (A.1.2), get shifted. Clearly, both points 
of view are possible, but the latter one is more natural if seen from the theory of group representations. 

” For capital P = I we have odd (or twisted) differential forms A la de Rham [ 5721, see also [ 69,951. They are necessary 
for integration on nonorientable manifolds, which is not possible with ordinary (even) forms with P = 0. Note that the de 
Rham p-currents P are in general distribution-valued, i.e. defined only for test (n - p)-forms P of compact support via 
the integral p(P) := s,,, p A !P. 
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A. I .2. Exterior multiplication 
With the p-forms, for p = 0, . . . , n, we can build up the graded exterior algebra of forms. A p-form 
P can be expanded with respect to its anholonomic components according to 

(A.1.5) 

The exterior multiplication A has the following properties: 

(i) (@+?P)Al7=@Al7++AA, 

(ii) (a@) A17=@A(al7) =a(@AZ7), 

(iii) (@An) A B=@A(~A~), 

(iv) @A ZZ = (-1)“4(17 A@), 

where @ and !P are p-forms, 17 is a q-form, B an r-form, and a a factor. 

(A.1.6) 

A. 1.3. Interior multiplication 
If, in addition, vectors u, v, w.. . are available, we can define a (metric independent!) interior 

multiplication j of a vector with a p-form. For a zero-form f we have uJ~ = 0. The further properties 
of J are: 

0) VJ (@ + ?P’> = vJ@ + up, 
(ii) (v+u)]@=v]@+L+R 

(iii) (au)]@ = a(vJ@), 

(iv) VjUJCP = -UJVJ@, 

(v) vJ(@An) = (vj@) A17+(-l)P@A(vj~). 

where @ and P are p-forms, n is a q-form, v and u vectors, and a a factor. 
The ‘duality’ of frame and coframe implies 

e,] 7V = 79P( e,) = 8:. 

Hence, for 

the application of the interior product with the properties listed above yields 

epJP = 
1 

(P - I)! 
ly.,2...‘l,,~a2 A . . . A asp. 

A.1.4. Volume elements and orientation 
The nonzero elements of an arbitrary n-form 

(A.1.7) 

(A.1.8) 

(A.1.9) 

(A.l.lO) 

(A.1.11) 
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are called volume elements. We put a hat on numbers which represent anholononic indices. A linear 
transformation (3.4.5) of the frame yields 

811 A . . .*#“=~-‘~i~...f@. (A.1.12) 

Since ?j in (A. I. 11) remains invariant, its components transform according to 

;irif fi = @,...i,. (A.1.13) 

The manifold is orientable, if there exists a nowhere vanishing n-form. An orientation is defined by 
choosing a definite volume element v. If a basis e, is given with a cobasis tip, then ?j is expressible 
as 

?;i= f&j.../&. (A.1.14) 

The basis is said to be positively oriented if f > 0. 

A.1.5. Levi-Civita n-form density 
The Levi-Civita n-form density E with weight w = -1 and odd r-parity transforms as follows: 

E’ = (l/n)~ = (sgnn)‘lnj-‘E. (A.1.15) 

In terms of its components we have 

(A.1.16) 

and an analogous relation for the unprimed components. We substitute these decompositions into 
(A. 1.15) and take care of (A. 1.12)) then the components of E turn out to be invariant 

I 
Ei...jj = Ei...jj. (A.1.17) 

In other words, the transformation law (A.l.15) of the Levi-Civita density is prescribed such that its 
components do not change under frame transformations. This property of the Levi-Civita density is 
only shared by the Kronecker Sf, a zero-form of type (1). We normalize (A. 1.17) according to 

Ei...fi = fl (in spacetime ~6...~~._t, = +l ). (A.1.18) 

By executing successively the interior product on E, another representation of the bases is induced 
which span the graded algebra of exterior form densities on each T” (M,) : 

E,,...,,, = e,,,] . . .Je,,JE. (A.1.19) 

This so-called e-basis can be used to define a metric independent duality operation. 
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The exterior product of the coframe with the e-basis satisfy the following relations: 

,9-p A E,, = Sf,E, 

?.F A E,,,* = -a:, Eo* + a:* E,, 7 

fip A E,,,m = ~~,cwq - q&qaj + ~~,eqaz, 

TTP A E,,...,,, = (-1) n-18$E,z...a,, + (-l)n-*S~~~~,~.j...a,,. . *+ SE,/“. ,.” (1,,_,. (A. 1.20) 

A.1.6. Equivalence of a two-form @, and an antisymmetric one-form ITap 
We expand these forms with respect to their holonomic components: 

@a = i@ija dx’ A dx’) I7ap = I7iap dx’. (A.1.21) 

Since the number n*( n - 1) /2 of independent components of CD, and Z7+ = -Z7,, is equal, we can 
make the ansatz 

@, = 17,.p A iV. 

By repeated contraction of Qj, by means of the frame ea, we find the reciprocal of 

17ap = +&3l - ~(e&pl@r)~Y = ~(e{,Je,J@Pp))fiY. 

Here we introduced, as convenient abbrevation, the Schouten braces according to 

MYI := @Y - PYQ + Y@ * 

Torsion T, = gap Tp and contortion KaP are an example of such equivalent forms. 

A. 1.7. Equivalence of an (n - 2) -form ,u”” and an antisymmetric (n - 1) -form r@ 

(A.1.22) 

this formula: 

(A.1.23) 

(A.1.24) 

The arguments with respect to the number of independent components of the last subsection 
translate, mutatis mutandis, to the forms ,uff and 7nfi = -@. With 

we can interrelate both forms. Again we contract twice with the frame and find 

pa = -2epJ@ + $9” A ( epJey]7Py). (A.1.26) 

The spin current and the spin-energy potential are an example of such two equivalent quantities. 

A.1.8. Expressing a one-form POP in terms of a two-form @a 
Let us consider a one-form Pap which is related to a vector-valued two-form Qa via 

w,, /I@ = CD,. (A.l.27) 

We will resolve this equation with respect to PQ. 
Note that P,,, in contrast to 170p in (A.1.22), carries no symmetries. Then from counting the 

components it is immediately clear that W,,,, has n* (n - 1) /2 components, exactly the same number 
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as the two-form Q,. Since P,,P, # 0 in general, this piece of P will enter the formulae in its own 
right. 

By repeated interior multiplication of (A.l.27) with e, we find as an intermediate step 

eaJq,y - e,JFa, = e,l~l@~. (A.1.28) 

In order to obtain a partial solution for the antisymmetric part of Paa, we apply again the Schouten 
braces of (A.l.24). Thereby we find 

%QI =ed@p1 - ~teaJepJ@yWy + tq+%,) - eaJp(py))fiY 
= ~tqyJc&%3~)~Y + tepJp(,,) - ea_l~(py))fiY. 

By adding to (A.l.29) the symmetric part of PUP in the equivalent form 

w,,p, = (e,J~‘c,p)WY? 

(A.1.29) 

(A.1.30) 

we finally arrive, for n > 1, at the general formula 

pap = i(e{,Je,l@fi))fiY + (e{,Jp(,pj)W = &YJ (4%) + 2%P~J~y. (A.1.31) 

For computer algebra programs [ 609,435,650], however, it is more time saving to evaluate the interior 
products as far as possible. Then we have the alternative formula 

A.l.9. A scalar density simulates the determinant of the metric 
Clearly, if we prescribe a scalar density field with the weight o = +l and odd r-parity, then it 

transforms as 

cr’ = (sgnA)‘IAj’a, 

and, in view of (A.l.15)) the field 

E” := EG 

is a ‘pure’ n-form. Then, in analogy to (A.l.19)) we can construct the ‘pure’ p-form basis 

(A.1.33) 

(A.1.34) 

(A.1.35) 

Thus by means of a suitably chosen scalar density field - in our applications in section 6 it is the 
dilaton field, see also [712,88,169,101] - we can devise the E-basis and the corresponding duality 
operator without need of a metric, cf. [ 2581. And again we find formulae analogous to (A.l.20). 
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A. 1. IO. Exterior derivative 
The exterior derivative maps a p-form into a (p + I)-form. It has the following properties: 

(9 d(P+@) =dP+d@, 

(ii) d(PA17)=dP’A+(-l)PPAd17, 

(iii) &(u) = u(f) 

(iv) d(dP) =O. 

Here ?P and @ are p-forms, 17 a q-form, f a zero-form, and u a vector. 

(A.1.36) 

A.I.11. Lie derivative 

The Lie derivative I,, of a scalar-valued p-form @ with respect to a vector field v had been defined 
in (3.4.9). If v and u are vectors, W and CD p-forms, and ZZ a q-form, then the properties of the Lie 
derivative read as follows (cf. [ 2651) : 

(9 l,,(P + @p> = Z,,P + I,,@, 

(ii) Z,.(?PAn) = (Z,P) AZZ+PA (Z,,Z7), 

(iii) Z,.(dP’ = d(Z,,?P), (A.1.37) 

(iv) I, Z,P = I, Z”P + I,,,,,% 

(v) UJZ,,W = Z,(UJW) - [v, U] JP. 

For a tensor-valued form 17 - we suppress the indices - one can take the Lie derivative operator 

i(, of Ricci calculus [ 6011 as a lead. Then one finds: 

.&Z7 = ZJ7 - (epJZI,P) p(L”,)Z7. 

This ‘ordinary’ Lie derivative we only use in the context of Killing symmetries, 
(5.7.11). However, the gauge covariant Lie derivative of (3.5.13) has a much 
application. 

A.2. Derivatives of the bases in a linearly connected manifold 

(A.1.38) 

see (5.7.5) and 
broader field of 

If we determine the covariant exterior derivative of the e-basis (A.l.19)) we do need a linear 
connection r,p but no metric: 

DE,, = TP A ~a,~, DE,,,~ = TP A E,,,+ . . . , DE, ,... a,, = 0. (A.2.1) 

For the scalar-modified E-basis the computations run on the same track, 

DE,, = z A g,, + T” A P,,,, DC,,,, = E A I,,,, + TP A &,a2P, 
Cr u 

DE”,,...,,, = Da . . . . 
U 

AZ, ,... a,,, (A.2.2) 

the advantage being that this basis is composed of pure forms. Eq. (A.2.2) should be compared with 
(3.10.14). Then, if a metric is given, it becomes evident that 0 = (det ]g+]) I/’ and (A.2.2) thereby 
specializes to (3.8.5). 
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A.3. Euler four-form and generalized Bach-Lanczos identity 

If we allow, in a metric-affine spacetime, the Lagrangian to involve also the dual with respect 
to the Lie algebra, we can extend the list of admissible boundary forms in section 3.9. In a four- 
dimensional Riemannian manifold, an important example is the integrand of the Gauss-Bonnet integral 

J I+ A RI*P) - x~u~er. Since its integration over a closed manifold yields the Euler number as a 
topological characteristic, the integrand is also known as the Euler four-form. In a metric-affine 

spacetime the corresponding four-form 79 reads 

B RR’*’ 
= -;R/ A RF’” = +~,“~Y&fi r\ R,‘. 

The Lie dual (*) interchanges the Lie-algebra indices according to 

(A.3.1) 

In (A.3.1), because 
the curvature, whereas 
out. In the framework 
BAR’*’ = dCRR’+’ with 

of the action of the star, only the antisymmetric piece RIapl is left over of 
the symmetric piece R,,pj, which is so characteristic for the (Ld, g), drops 
of the Riemann-Cartan spacetime and using orthonotmal frames, we have 

CRR’*~ = i7fpy6(RaP A ryF + +r,p A rye A r,“). (A.3.2) 

If we perform the variational derivative of BRRc+I with respect to r,p and gap (there is no explicit 
dependence on P) in the context of the general metric-affine geometry, we obtain 

SBRRc*j /&9” = 0, (A.3.3) 

(TBRp*l/6g,p = igap R’“” A RpJ - 2R’“” A R(*)IP’,,, (A.3.4) 

ERR”’ /arap = ;77,&s [ w’ - 2Q g”““) A Ry” + g”” QYA A R/l. (A.3.5) 

Invariance of B RR,*’ under linear transformations of the frame leads to the 2nd Noether identity [ 2801 

(A.3.6) 

which we write out fully as 

gaPRb”” r\ R,, (*) _ 4R’“tY /, R’*’ tPjy 

= ~pPy~[2R(“p’ ~RY”+ga~(2R(YPbIRp6-RARyS)], 

where R := RyY. 

(A.3.7) 

This is the Bach-Lanczos identity of GR generalized to a metric-a&e spacetime. In a Riemann- 
Cartan spacetime and in the Riemannian spacetime of GR the right-hand side of (A.3.7) vanishes 
and we obtain the familiar form of the Bach-Lanczos identity [ 21,384]. A derivation of this identity 
for GR by means of variations was given earlier by Ray [ 5691, who used a similar Lagrangian but 
a much more involved argumentation (see also [ 201 and [ 4291) . 

“In five dimensions, the term B,,c.) = $vAeCo R.4’ A RcD, with A, B, ... = O;.. ,4 is the simplest Lagrangian in the 
SO( 3.2) gauge model of gravity, see [ 2341 and references given. 
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Appendix B. Irreducible decompositions 

The irreducible decompositions of nonmetricity, torsion, curvature and Bianchi identities invari- 
ant under both, the general linear and the pseudo-orthogonal group, are presented here. For the 
decompositions with respect to the (pseudo) orthogonal group, see also [ 4361. 

B. I. Irreducible decomposition of nonmetricity 

Since the nonmetricity is already a metric-dependent object, we can raise one index and split the 
nonmetricity QaP into its tracefree and trace parts, as is already done in (3.12.4), 

alp =fz+ + e gap, (B-1 .l) 

where Q?,,’ = gyp Qyp = 0. The Weyl covector Q = ( l/n) Qaa cannot be reduced any further. Applying 

the Young diagram method to the components @Yap = y e ] ,Qap together with forming traces yields 

three further irreducible pieces, provided n > 2. We may express the resulting decomposition in terms 
of exterior forms as follows: Let us define 

& := ePJ i&3, A := A, 9”, 

0, := ‘(& A iP), O:=PAO,, ila::=@a-&e,JO. (B.1.2) 

Then the irreducible decomposition of QUP invariant under the (pseudo)orthogonal group is given 

by *O 

Q+ = (‘)Qap +(2)QoP +‘3’Qap +‘4)QaPr (B.1.3) 

= TRINOM + BINOM + VECNOM + CONOM, 

in2(n+ 1) = in(n-- l)(n+4) ++n(n2-4) +n+n, (B.1.4) 

where 

(2)Qcrp=(-_l)n-‘+‘nd(g)~*(~(nr\~~))r (B.1.5) 

‘3)Qap = 2n 

(n- l)(n+2) > 
9 (B.1.6) 

“‘Qcxp = gapQ, (B.1.7) 

” 'Qap = Qap - (2)Qap - (3)Q,p - (4)Qap, (B.1.8) 

and ( - 1 )Ind w = (det gapI /Idet gap I. Note that, for any p-form 0, double application of the l-lodge 
star operator yields 

**@ = (-1) p(n-/t)+Ind(g) Q. (B.1.9) 

“’ In four dimensions, the components (‘)Qvap have a spin content of maximal three (“TRI”) etc.. These names are used 

in our computer programs [433,435,609,650,294] which automatize the irreducible decompositions inter alia. 
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Table 2 
Irreducible decomposition of nonmetricity: Number of independent components in four, three, and two dimensions. 

n Qd TRINOM BINOM VECNOM CONOM 

4 40 16 16 4 4 
3 18 I 5 3 3 
2 6 2 0 2 2 

There are two types of vanishing traces 

(I&n = (Z&a = (3&a = 0, epj (‘)Q@ = eP] (*)Q@ = 0, 

whereas the Young symmetries of those parts for which both traces vanish read 

(B.l .lO) 

6, A (‘)Qap = 0, ec,] (*)Qp,,) = 0. (B.l.l 1) 

If we had started by applying the Young diagram procedure directly to the components QraP = 
e,]QUp, two of the four irreducible pieces obtained would not have been canonical. They would have 
been arbitrary combinations of c3)Qap and c4)Qap above, while the other two pieces would have been 
“‘Q ap and (*)Qap as in (B.1.8) and (B.lS), see [278]. The initial splitting (B.l.1) with respect to 
the indices on the nonmetricity one-form has ensured that the four irreducible subspaces which we 
have obtained are uniquely defined (cf. also [ 6841) . 

The four irreducible components defined by (B. 1.5)-( B. 1.8) have an interesting “orthogonality” 
property. Suppose that for any two rth order tensor-valued p-forms A,,.,.,, and B,,.,,,, (0 5 r 5 n) 
we define a (pseudo) scalar product by 

It is 

A 1 B := *(A,,,_ A *Ba'+) . (B.1.12) 

clear that the scalar product so defined is symmetric, A . B = B . A, and it may be verified that 

(‘IQ .‘.l’Q # 0 for i = j; ci’Q -(j)Q = 0 for i # j, (B.1.13) 

so that 

Q . Q = 2 ci'Q ."'Q. (B.1.14) 
i=l 

In two dimensions 0, = 0 and hence ‘*QoP drops out leaving three irreducible pieces. This is also 
clear from (B.1.5). Thus 

QaP = “‘QnP + (3)Qap + “‘QnP, rz = 2. (B.1.15) 

B.2. Irreducible decomposition of torsion 

For II > 2, the torsion in an L, has two irreducible pieces invariant under the general linear group, 

T” = (I$‘-” + ‘“‘T”, (B.2.1) 

+*(n - 1) = i(rz - 2)n(n+ 1) + 12, (B.2.2) 
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Table 3 

Irreducible decomposition of torsion: Number of independent components in four, three, and two dimensions. 

n T” TENTOR TRATOR AXITOR 

4 24 16 4 4 
3 9 5 3 1 
2 2 0 2 0 

where 

(II)Ta (I)Ta = T” _ (“)T”, (B.2.3) 

and T := e,jT” is the trace torsion one-form. In two dimensions, T” is irreducible and of a pure 
vector type, cf. appendix B of [453]: 

T” = (If)Ta. (B.2.4) 

In an (L,, g) the torsion has the same algebraic structure, and hence the same irreducible de- 
composition with respect to the (pseudo)orthogonal group, as in a Riemann-Cartan spacetime (see 
[ 103,260,389,705,278] for the case of four dimensions). For 12 = 2, the torsion T” is already irre- 
ducible and for IZ > 2 we may write its irreducible components as follows: 

T” = ‘1’7’” + (+a + (317-a (B.2.5) 

= TENTOR + TRATOR + AXITOR, 

$22(n-l)=~n(rz2-4)+n+~n(n-l)(n-2), 

where 

(+a = --& 6” A (epjTB> , 

c3)Ta=(-l)S;*{6aA *(TPAtYp)}, 

(l)Ta=Ta _ (2)Ta _ (39-a. 

Again here, the irreducible pieces are canonical. They satisfy 

(B.2.6) 

(B.2.7) 

(B.2.8) 

“PAzYa=o, e,j (lP =O, 

(2!ra A 6, = 0, e,J (3Ta = 0. (B.2.9) 

In four dimensions the Hodge dual *T” of the torsion is also a two-form and a parallel decomposition 
of it is given by 

*T” = (I)*TQ + (2)*7= + (3)*7-a, (B.2.10) 

where ci)*Ta (i = 1,2,3) are defined by substituting *Ta for T” in (B.2.6)-( B.2.8). These are related 
to the irreducible pieces ci)Ta of T” by the relations*l 

” These relations, together with the corresponding ones (B.4.35) for the antisymmetric part of the curvature, were first 
pointed out by Hecht [ 2651. 
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(I)*y = *up, (2)*7-n _ * (3 T”, (3yro = * q-a_ (B.2.11) 

For other dimensions, the most straightforward way to write the irreducible pieces of the Hodge dual 
is 

*T” = 5 (i) *T”, 

i=l 

(B.2.12) 

with (‘) *T” = * (‘)Ta (i = 1,2,3), a numbering which could equally have been used in four dimen- 
sions. 

It may be verified that, with the scalar product as defined by (B.1.12), (‘Pa (i = 1,2,3) satisfy 
an “orthogonality” property similar to that possessed by the nonmetricity, 

“T .(.j)T # 0 for i = j; (‘T .(j)T = 0 for i # j, (B.2.13) 

and hence 

T . T = 2 “‘T. “‘r. 

i=I 

(B.2.14) 

In four dimensions we can define another (pseudo) scalar product (A, B) for any two tensor-valued 

two-forms A,, ...a, and &, ...n, by 

(A,B) := ‘(A, ,... n, A B,‘...,‘) . (B.2.15) 

It follows from these definitions that it has the following properties: 

( *A, B) = (A, *B) = A. B, 

*A. B = (*A, *B), A . *B = ( -l)“+‘“d(g)(A, B), 

*A. “B = (_ly+‘“WA. B. 

(B.2.16) 

(B.2.17) 

The “orthogonality” relations for the irreducible torsion components with respect to this additional 
scalar product take the form 

(“‘T,“‘T) # 0, 

((2)T,(3) T) = ((3)T,(2) T) # 0, 

(( i)T,‘j’T) = 0 otherwise, 

(B.2.18) 

so that 

(T,T)=(‘1T,“T)+2(‘2’ir,(3T). (B.2.19) 

It should be noted however that the scalar product (B.2.15) is invariant only under (pseudo)orthogonal 
transformations of determinant + 1. 



EW Hehl et al/Physics Reports 258 (1995) I-171 125 

B.3. irreducible decomposition of curvature in an L, 

As a first step in deriving the irreducible decomposition of the curvature in an L,, invariant under 
the general linear group, we can split the curvature two-form R,p into its trace and trace-free parts. 

RaP =Fjp + (l/n)StR, R = RyY. 

Let 

u, :=eyJ KY, u,p := ,9.p A u,, u := uyy, 

VP := 6YA pp;p, Vtip := e,J VP, v := v,y. 

be given. Then, the curvature decomposes as 

R/ = A/ + B/ + COP + D/ + E/, 

in”(n - I) = in*(n* -4) + $n(n* - I)(n - 3) 

+~n(n+l)+~n(n--I)+in(n--I), 

where 

The symmetries and trace properties are 

6” A A/ = 0, ePJ AaP = 0, A,” = 0, 

BaP - ienj (Gy A ByP) = 0, B,” = 0, 

6” A Cap = 0. 

EaP= (l/n)6tR, 

A/ = R/ - B/ - C/ - D/ - E/. 

In the case n = 2, we have A,fi = B,P = D,p = 0 and 

RUP = Cap + Eap for n = 2, 

4=3+1. 

When n = 3 we have B,P = 0 and 

R/ = A/ + C,” + D/ + E p a ? 

(B.3.1) 

(B.3.2) 

(B.3.3) 

(B.3.4) 

(B.3.5) 

(B.3.6) 

(RICSYM) (B.3.7) 

(RICANTI) (B.3.8) 

(DILCURV) (B.3.9) 

(B.3.10) 

(B.3.11) 

(B.3.12) 

(B.3.13) 

(B.3.14) 

(B.3.15) 

27= 15+6+3+3. 
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In four dimensions, we can define a symmetric (pseudo) scalar product for any gZ(4, R)-valued 
two-forms F,P and G,P, taking values in the one-dimensional space of four-forms, by 

FOG := FOP A Gpn. (B.3.16) 

It is found that the products of the two-forms A, B, C, D, E defined by (B.3.6)-(B.3.10) are all 
zero except for A l A, B l C, D l D and E l E, so that 

RoR=AoA+2BmC$DeD+EeE. (B.3.17) 

B.4. Irreducible decomposition of curvature in an (L,, g) 

If we now pass on to an (L,, g), we may lower the second index on the curvature two-form and 
consider the irreducible decomposition of R,, under the (pseudo) orthogonal group. The first step is 
to separate it into its antisymmetric and symmetric parts, 

R,, = Kp + -G/J, (B.4.1) 

W,,=R,,,,, Zap = R,ap,. (B.4.2) 

The irreducible decomposition of WUP is the same as for the curvature of a Riemann-Cartan spacetime 
(see [ 2781 for four dimensions). In two dimensions Wap cannot be reduced any further, but for n > 2 
we get 

w”P = (r)w@ + G)w@ + (%I+& + (4)wN3 + (Qw@ + Wj,@ 

= WEYL + PAIRCOM + PSCALAR + RICSYMF + RICANTI + SCALAR, 

in2(n- 1)2=+j(n+2)(n+ l)n(n-3) + $(n+2)n(n- l)(n-3) 

++(n-l)(n-2>(n-3)+~(n+2)(n-l)+~n(r2-1)+1, 

where 

(B.4.3) 

(B.4.4) 

(B.4.5) 

(B.4.6) 

(B.4.7) 

(B.4.8) 

(B.4.9) 

(B.4.10) 

with 
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Table 4 

Irreducible decomposition of the curvature in four dimensions. 

96 Lj 96 (Lj,g) 42 K, 36 Ur, 20 vj 

IOC 
6D 

(lOC)+ 

6E 

10 “‘W (WEYL) 
9 (‘) W (PAIRCOM) 
1 (3) W (PSCALAR) 

9 (4) W (RICSYMF) 
6 (‘I W (RICANTI) 

1 (‘)W (SCALAR) 

30 “‘Z 

9 Q’z 
(3) Z 

: cr)Z (DILCURV) 
9 (5)Z 

IO “‘w IO “‘w 10 “‘w 
9 (2) w 9 ‘2’w 

, mw 
I 

(3) w 

9 (4) w 9 (4) w 9 (4) w 

6 (s),,, 6 (s)W 

1 (6) w I (h)w 

_ _ 

6 “)Z _ 

W” := epJ W”P, w := eJ W”, X” :=* ( WP” A S,), x := e,JX”, (B.4.1 I ) 

and 

@, := w, - 1 wi?-, - ie_J (iv A W/j). (B.4.12) 
n 

The trace and symmetry properties of of the various irreducible components are summarized by 

ePJ (‘)Wnp =O, i= 1,2,3; eUJePJ (‘)Wnp = 0, i = I, 2,3,4,5, (B.4.13) 

6” A ( ePJ “)Wup) = 0, i = 1,2,3,4,6, (B.4.14) 

@A (i)W,p=O i= 1,4,6; -9”AzPA (i’w,p=o , i= 1,2,4,5,6. (B.4.15) 

As indicated by (B.4.4), (‘)Was, (2)Wnp, and (3)W,p are all vanishing when n = 3. In two dimensions, 
the single irreducible component is 

W@ = (@w ffp, n= 2. (B.4.16) 

Turning to the symmetric part Zap of the curvature two-form (cf. [684,287]), we first of all split 
it into a tracefree and a trace part, 

Zap =zp + (I /n)gap Z Z = ZYy, (B.4.17) 

so that Z;’ = 0. In two dimensions no further reduction is possible. For n > 2, Z is still irreducible 
but ,Z+ may be decomposed into further irreducible pieces. The full irreducible decomposition for 
ZnB may be displayed as follows: Let 

ra := 4 ZP, 
1 

A ‘= (n _ 2) ___ (fiaA zx), Y, := *(jzp A 8% (B.4.18) 
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z”, := pa - +e,] ( 7YyA py), 
1 

ra := r, - (n _ 2) GJ (fly A y,> 

be given. Note that Em and LY, satisfy 

e,] P = 0, E* A 6” = 0, 

e,JrCI =O, r,Ai+“=o. 

The irreducible decomposition of Zap may then be written as 

zap = (‘)Z@ + (2)zap + (3)z,rp + (4)zUp + (5)z+, 

$z2(n2-I)=+2)(n+4)(n2-l)+$(n+2)n(n-I)@-3) 

++(n-l)+;n(n-l)+;(n+2)(n-l), 

(B.4.19) 

(B.4.20) 

(B.4.21) 

(B.4.22) 

(B.4.23) 

where 

(29 np=~(-1)5*{~(aArp)}, (B.4.24) 

(3)zap = &in% A (%]A) - 2gap A}, (B.4.25) 

(4%p = (1ln>sapZ 9 

(s)znp = (2/n)&, A ED,, 

( I ‘z @ = zap - (2)zap - (3)zap - (4)zafl - (5)zap. 

The Young symmetries of the various irreducible pieces are displayed by 

(B.4.26) 

(B.4.27) 

(B.4.28) 

6P A (‘)znp = 6P A C5)zap = 0, 

while the trace properties are 

(2)zap - iecaJ {tiy A “‘ZPj,} = 0, (B.4.29) 

e,J 
(l)Z& = e,J (2)ZaP = 0, (B.4.30) 

(i)Zn= (QZa= (3)zn= G’zn=o. 
n n a a (B.4.31) 

By (B.4.23), the second irreducible piece (2)Zup vanishes for n = 3. The two irreducible components 

in the case of two dimensions are given by 

zap = @)z*p + (5)z aP9 n = 2. (B.4.32) 

With regard to the uniqueness of the decomposition, a remark similar to that made in the case of 
the nonmetricity applies here. If we simply apply the Young diagram procedure to the components 
Z ,+,+ of Zap and take traces, three of the five irreducible pieces obtained are (‘)Zaa, (*)ZmB, and c5)ZaP 
as above, but the remaining two pieces are arbitrary combinations of the two irreducible subspaces 
involved in (3)Zap and (4)ZaP above and hence are not canonical (see [ 103,287]). Here, however, the 
initial decomposition (B.4.17) with respect to the indices on the two-form Zap has led to a unique 
canonical set of irreducible pieces. ‘* 

X2 The irreducible decomposition of SijaEki [626], invariant under GL(4, R), starts with two abstract tensors of type (y) 

and (‘i) which carry the symmetries of torsion and curvature, respectively, see his table on page 394. However, his results 

are are not comparable to ours, except for the SO( 1,3)-subcase. 
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The orthogonality property noted in the cases of the nonmetricity and torsion holds also for the 
curvature. With respect to the scalar product (B.1.12) the 11 irreducible pieces of the curvature are 
mutually orthogonal, i.e. 

{ 

(;)W .(j) w = 0 for i # j, 
(Q .C.i)z = 0 for i # j, (B.4.33) 
(i)W.(j)z = 0 fori= 1...6, j= 1...5. 

Hence 

R . R = f: (i)W. (9~ + 2 (AZ . Wz . (B.4.34) 
i=l .j=l 

In analogy with the equations (B.2.11) for the torsion, we note the following relations (omitting 
the indices) which hold in four dimensions 

*(1$/j/ = (U*w *ww = (4)*u: *(4W = w*w 

*(3)w = (6)*~ *(6$,7 = C3,*% *(5$/y = (5)7/y (B.4.35) 

and 

*(l)z = (l)*z 
9 

“39 = (3)*z, “49 = (4)*z, 

*wz = (5)*z, *‘5’z = w*z_ (B.4.36) 

Similarly as in the case of the torsion, there is an additional (pseudo) scalar product in four 
dimensions defined by (B.2.15). For this product the “orthogonality” properties are summed up by 
the equation 

(R, R) = ( “‘u: “‘W) + 2( ‘2’u: (4)W) + 2( ‘3N (@W) + ( ‘5)W (5)W) 

+( “‘Z, “‘Z) + 2( “‘Z, (5)z) + ( ‘3’2, (3)Z) + ( “‘z, (4)z). (B.4.37) 

B.5. Irreducible decompositions of the zeroth andfirst Bianchi identities 

If we treat the 0th Bianchi identity 

B$ E D Qap - 2RCmp, G 0, (B.5.1) 

as a 2nd order symmetric tensor-valued two-form, it splits under the general linear group into two 
irreducible pieces, 

B’O’ = (c,B$ + (“,B$ 
aP 9 (B.5.2) 

in2(n2- 1) =$n(n2-l)(n+2) +in(n2- l)(n-2), (B.5.3) 

with 

(“)B$ = ieCu] (B$‘, A ay), (~,B(o) = B$ _ (“)f+.$, 
UP (B.5.4) 
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provided n > 2. (‘J@$ satisfies the symmetries 

(“Bl;op’ /j _9p = 0 (B.5.5) 

and is the only piece that survives in two dimensions. 
Since the 0th Bianchi identity is a second order symmetric tensor-valued two-form, which, 

by construction, is already metric dependent, its irreducible decomposition invariant under the 

(pseudo)orthogonal group is the same as the corresponding decomposition for the symmetric part of 
the curvature given in the previous section. 

The 1st Bianchi identity is 

B’” E 0, (B.5.6) 

B’” = DT” - R n A @ P ’ (B.5.7) 

B’” is a vector-valued three-form and hence, in two dimensions it is zero, while in three dimensions, 
it is irreducible, with respect to both, the general linear and the (pseudo)orthogonal group. In an L,, 
(n > 3) its irreducible decomposition invariant under GL( n, R) is given by 

B’” = (,)B’” + (/I)B’“, (B.5.8) 

in*(n-l)(n-2)=in(n*-l)(n-3)+in(n-I), (B.5.9) 

where 

(II)B’” = --&Y A (eyJB’Y), (I)Bla = Bf” _ (“)B’“. (B.5.10) 

(‘) B’” clearly satisfies 

e,J 
(‘,B’” = 0. (B.5.11) 

In an (L,,, g) the irreducible components with respect to the (pseudo)orthogonal group 

B In = (l)B/” + (2)Bln + (3)Bh 
9 (B.5.12) 

in*(n- l)(n-2) 

=$(n+2)n(n-l)(n-3)+in(n-l)+&n(n-l)(n-2)(n-3), (B.5.13) 

with 

(B.5.14) 

(I)BI” = B’” _ (2$/a _ (3)Bla. (B.5.15) 

The symmetries and trace properties are given by 

6” f, (r)B’ = 6” /, (*)j3’ = 0, 
(I II e,J (‘)P = e,] (3)B’0 = 0. (B.5.16) 

One may also verify that (i)B’” (i = 1,2,3) are mutually orthogonal with respect to the scalar product 
(B.1.12). In three dimensions we have (l)B’a =c3) B’* = 0 and, consequently, 

B’” = (*&‘a , n=3. (B.5.17) 
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B.6. Irreducible decomposition of the second Bianchi identity 

The left-hand side of the 2nd Bianchi identity 

B;@ G 0, (B.6.1) 

B”p = DR fl a a (B.6.2) 

is a second order tensor-valued three-form, so we need only to consider dimensions greater than two. 
With respect to the general linear group, and for n > 3, we obtain five irreducible pieces as follows: 

Let 

VP := 67 A&P, Vap := e,J VP, v := V,“, (B.6.3) 

be given, where 

#zp = BiP - ( l/n)8iB;ly. (B.6.4) 

Furthermore, let us define 

C;p := $&lP - $v,“, (B.6.5) 

X, = eyJCiY, X,P=7VAXxa, x = X,O. (B.6.6) 

Then 

B;P = (I,B;P + (Il)B;P + (“‘)B&lP + cN)B;P + (v)B’$, 

in”(n- l)(n-2) 

=in*(n+2)(n-l)(n-3)+&n(n*-l)(n-2)(n-4) 

+in(n-l)(n-2)+in(n*-l)+in(n-l)(n-2), 

where 

(B.6.7) 

(B.6.8) 

(ii)B”P = i V’P _ 
a 4 ( 

-&jje,(@ A V) , 
> 

(B.6.9) 

(B.6.10) 

(Iv) Bl’p = 
a 

(‘) B&‘O = ( 1 /TZ)S~B;~, 

(I)@@ _ B” _ (ii)@+ _ (iIi)B” _ (w)B”P _ (v)BzP. 
12 - a (1! (I 

It may be verified that these satisfy the following properties: 

(B.6.11) 

(B.6.12) 

(B.6.13) 

(K)@‘a = 0 7 K = I, II, III, ZY 
fi@ ; (KfBh,P = 0, K = I, ZY 

e,J (@ A cK)B;p) = 0, K = I, II, IY 

(B.6.14) 

(B.6.15) 

(B.6.16) 
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4 (K)B;jln = O K = I, II, 

79 A (e,J (K)&) = 0, K = I, II, IV 

Note, however, that (B.6.16) is a consequence of (B.6.14) and (B.6.18). 
In four dimensions 

(B.6.17) 

(B.6.18) 

(/I) g/P = 0 
n 1 n=4 (B.6.19) 

leaving four irreducible pieces. In three dimensions the number of irreducible components is two, 

B;P =$;P + (v)B;P, (B.6.20) 

or equivalently 

B,@ = (/v)B’Ip + (v,B;P, 

9Ts+1. 

n (B.6.21) 

(B.6.22) 

As a first step in deriving its irreducible decomposition, we split it into its antisymmetric and 

symmetric parts, A,, = B;‘,,, and &p = B/,‘ap,: 

B Il@ = Ad + ‘$@, (B.6.23) 

in’(n - l)(n - 2) = hn*(n - l)*(n - 2) + &n*(n* - l)(n - 2). 

In three dimensions A,, cannot be reduced any further. 
For the case of dimension n > 3 the irreducible components may be exhibited as follows (cf. 

[287] for n =4): Let 

A,, = AaP A ifB, A = A,, A 9” A 6@, AaPrs = e,] ePj A+. (B.6.24) 

Then A,, has three irreducible pieces invariant under GL(n, R): 

A,, = (‘)Anp + (“)Anp + (“‘)Aap, (B.6.25) 

hn*(n- l)*(n-2) = &jn(n- l)(n-2)(n-3)(n-4) 

+&n(n*-l)(n-2)(n-3)+$n2(n2-l)(n-2), 

where 

(‘)A@ = -$e,]epJA, 

(“)Anp = $(e,,lApl + Aaprs A iffy A @ + 2A,p), 

(“‘)Aap = A UP - 
(/)Aop _ (“)A 

4P . (B.6.26) 

To get the irreducible components under (pseudo)orthogonal transformations we take traces. All 
traces on (‘)Aap are zero, and there is just one independent trace on each of (“)AnP and (“‘)AaP. Let 

7, = eY] (“‘)&,, (B.6.27) 

be a vector-valued two-form of the same algebraic structure as the torsion, but with vanishing axial 
piece, i.e.7, A -9-O = 0. Hence 
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7, = (‘)T, + (*ha, (B.6.28) 

(*jr, = & 4, A (epJ@), “‘7, = 7, - (*jr,. (B.6.29) 

On the other hand, (“)AaP has got only an axial piece and is therefore not reducible any further. We 
therefore obtain 

A,, = (‘k+ + (*hap + (3kqap + (4&p + ‘5k,p + ‘?A,~, (B.6.30) 

+?(n - 1)2(n - 2) = &n(n+2)(n2- l)(n-4) +$z@-4) +n 

+$r(n-l>(n2-4)(n-4)+~n(n-l)(n-2) 

++(n-l)(n-2)(n-3)(n-4), (B.6.31) 

with 

2 (*)A -_p 
@- (n-3) 

?Y,, A (‘)T PIT 

(3)A 
1 

- 

OP- (n-2) 
61, A (*jr PI, 

(4)A ap = (“)Aap - ‘5’A,p, 

(5,A - 
ap - -&at. A {eYj (“)AP,~}, 

(6)~ np = (‘)A+ 
(‘)A ap = A,, - (*)A,, - (3)AaP - (4)Aaa - c5)AaP - @)A+ 

We note the following properties: 

(B.6.32) 

(B.6.33) 

(B.6.34) 

(B.6.35) 

(B.6.36) 

(B.6.37) 

(i)AnpA6P =O, i= 1,2,3, (B.6.38) 

epJ (i)Aap = 0, i = 1,4,6, (B.6.39) 

emJepJ (i)Aap = 0, i = 1,2,4,5,6, (B.6.40) 

“‘A,pA6”A9P=0, i=1,2,3,4,5. (B.6.41) 

It is clear from (B.6.31) that (‘)Aap, (4)AaP and (@Amp vanish for IZ = 4. In three dimensions, the 
single irreducible piece is given by 

A,, = ‘3’A OP, n = 3. (B.6.42) 

To find the irreducible pieces of the symmetric part Sap of the 2nd Bianchi identity (cf. [ 6841 for 

n = 4)) we first of all split the three-form Sap into its tracefree and trace parts: 

&, =,Xp + ( l/n)g,& S = SYy. (B.6.43) 

In three dimensions these are the only irreducible components. For dimension n > 3 the second term 
in (B.6.43) is clearly irreducible and, under GL(n, R), the first term yaa has two irreducible pieces 
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(‘) xp = $?&3,? 

where 
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(‘I) &? =gp - (‘) $np, (B.6.44) 

u, = WA J&. (B.6.45) 

On taking traces each of these splits into two so that, when we take S of (B.6.43) into account, the 
eventual result for S,,, and for n > 3, is 

&p = Ysap + Ysap + (3)Sap + (4)Sap + @)&p, (B.6.46) 

+22(n2 - l)(n - 2) 

=$n(n+I)(n+4)(n-2)(n-3)+&z(n-l)(n2-4)(n-4) 

++(n-l)(n-2)+$(n2-4)+$(n-I)+2) 

where 

(B.6.47) 

(5)&+ = (~laLp~1 
Qap = sap - (2)sap - (3)sap - (4)sap - ‘5’sap, 

and 

(B.6.50) 

(B.6.51) 

(B.6.52) 

F - eYj X,, -a - a= I”, A??“, P, = Ea - ie,jE. 

These satisfy the following properties, 

(B.6.53) 

(i)S,pA?P=O, i= 1,4, (B.6.54) 

@_j (i’s - 0 ap- 7 i= 1,2, (B.6.55) 

(i$*a = 0, i= 1,2,3,4. (B.6.56) 

(B.6.48) 

(B.6.49) 

According to (B.6.47), the term (2)&p drops out in four dimensions. In three dimensions U, = 0, 
B = 0 and the irreducible piece yaa may be written as 

$“P = ‘4’Ls OP, n = 3, (B.6.57) 

where the right-hand side is that of (B.6.50), with Pa = Ea. 
To sum up, the left-hand side of the 2nd Bianchi identity in an n-dimensional metric-affke space- 

time ( IZ > 3) may be written in terms of its 11 irreducible parts as follows: 

B llap = ( 1 ‘Ad + @)A4 + (3),4d + (4)Ad + (5)Ad + (6)~d 

+ (Ikp + (2)pP + (3)pP + (4)gM + (5)yS (B.6.58) 
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Here (“)Anfi (n = 1, . . . ,6) are defined by (B.6.32)-(B.6.37), while (nt)SuP (m = 1,. . .,5) are 
as given by (B.6.48)-(B.6.52). The number of independent components in each of the irreducible 
pieces is as indicated in (B.6.31) and (B.6.47) and from these it is clear that in four dimensions the 
number of irreducible parts reduces to seven. In three dimensions there are three irreducible pieces, 

B” =c3)AaP + t4)& + 
nP ‘5’,$ 0P for n=3. (B.6.59) 

Finally one may verify that 

(i)Aap A *(j)Aap = 0, for i # j, 
(i)Aap A *(.i),‘jap = 0, for i = 1 . . .fj, j = 1 . . .5, 

(i)5np A *(.i)sap = 0, for i # j 
(B.6.60) 

so that, once again, the irreducible pieces are mutually orthogonal with respect to the scalar product 
(B.l.12). 

Appendix C. Group representations 

- 
C. I. Unirreps of the SL( 2, R) 

The unitary infinite-dimensional irreducible representations (unirreps) of x( 2, R) were con- 
structed and catalogued by Bargmann [ 361. The two-dimensional linear group SL( 2, R) is special 
insofar as it has infinite coverings: The maximal compact subgroup W(2) is, regarded as a manifold, 
isomorphic to the circle S’, which is infinitely often covered by the line. 

Bargmann listed four classes of representations, defined by 7, the eigenvalue of the quadratic 
SL( 2, R) Casimir operator 

c, := ;J?- & pa= ((jq2+s2_ ((g)2=_T2, 

and by m, the (helicity-like) eigenvalue of the normal subalgebra generated by J,,: 
( i) Principal series E$f;,, (m, 7) : 

l/4 L 7, r E R; 

m=O, - {m} = {O,fl,f2,f3 ,... }, i.e. {m} = 2, 

or 

a= l/2, {m]= { *1 *2 *I. 
2’ 2’ 1 2’“’ ’ 

i.e. {m} = Z/2, 

(ii) Supplementary series Dyf$;R, (m, 7) : 

O<T< l/4, 

m=O, {m}={O,fl,f2,&3 ,... }, i.e. {m}=.Z, 

or 

m= l/2, m 1 I={ *i,*S,*g ,... , i.e. 
> 

{m} = 212, 

(C.l.1) 

(C.l.2) 

(C.l.3) 



with the (h’ as the only compact generator. 
Note that besides being a real form of SU( 1, 1)) the group SL( 2, R) is in itself the double- - 

covering group of SO( 1,2). As a result, for instance, SL( 2, R) is the quadruple covering of SO( 1,2). 
Bargmann’s point of departure 83 is derived from the SO( 1,2) -realization, rather than the SL( 2, R) . 
Following Bargmann and making our physical identifications at the SO( 1,2) level, i.e. on a three- 
dimensional Minkowski space, we find, going directly over to the spinor representation [i.e. SL( 2, R) 
as double-covering of SO( 1,2) ] : 

(C.l.4) 
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(iii) Discrete series (mounting) DfLFi,R, (g) : 

T=t?J(l-tLz); {m}= ;,1,;,2,; ,... }, 
{ 

{m}= {m,m+ 1,1?2+2 ,... }, 

(iv) Discrete series (descending) Df$i,Rj (m) : 

7=-rn(l +m>; {m} = 
{ 

*, -- 

(m)=( . . . . (E-2).E--I,%;. 

-1+-2,-; )... ) 
1 

(C.1.5) 

In these formulae, 122 and H are the minimal or maximal eigenvalues of (i’ in a representation in 
which m is mounting or descending, respectively. The names of the various series refer to the values 
of 7. 

Consider the SL( n, R) . Preserving for n = 2 the identification gap = oap, but regarding the algebra of 
the SL( 2, R) as acting on a two-dimensional Minkowski space, we could represent the corresponding 
generators (4.2.4) in terms of the Pauli matrices (yielding real values in the exponentiation ep) : 

9 (C.1.6) 

J -+ iia,, 
(-) I (-) 
B I + -~3, 2 B2+ ia,. (C.1.7) 

The representations with half-integer m in the supplementary series are thus two-valued in SO( 1,2) 
and single-valued in SL(2, R), but they are not faithful representations of the double covering of that 
group itself. The representations of the double-covering group E(2, R), displaying the structure 

- 
W2, R)/zz = W2, R) ? (C.l.8) 

are of class (ii), i.e. are DyuLqe:;Rj (h, 7), with h = l/4. More generally, the representations of the 
multiple covering have h = l/ (2~) , where c denotes the order of the covering. 

*j Although Bargmann had constructed these representations of the multiple covering in 1947, these results were not 
assimilated by the physics community, who continued to assume the inexistence of a covering group of GL(n, R) even 
for n = 2. The fact that SL(2, R) is itself a double covering of SO( 1,2) added to the confusion and strengthened the 
impression, throughout 1928-1977, that linear groups have no double covering (see the discussion of n = 2 in [477], 
including the examples of Ref. 11 in that article). 
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C.2. Unirreps of the SL( 3, R) 

There are four series of unirreps 84 
- 

of SL( 3, R) . Denoting by j the angular momentum eigenvalue 
corresponding to the maximal compact subgroup SO( 3) = SU( 2), and k an additional quantum 

number of this rank two group, by j and k the minimal values of J and ‘;‘E K in a unirrep, and n _ 
the multiplicity, we have 

(i) Principal series Dyi;S.R) (j 4; u2,&) : 1 _’ 

a2,S2 E R; k=O, l/2, 1; 

k=O+j_=O, {j”}={0,22,3,43,52,64,73 ,... }, 

&=; ,j=- ‘, {jn}={i,(i)‘,(3)‘,...}, 
- 2 

k=O,l --fj_=l, {j”}={1,2,32,42,53,63,74 ,... }, 

(ii) Supplementary series Dy4t;R) (j, k; ~2, &) : - 

~2 E R, 0 < I&/ 5 l/2, k= l/2 or 0 < ISi1 < 1, k=O, j =O, 1; - 

k=O-+j=O, {j”}={0,22,3,43,52,64,73 ,... }, 

k= 1/2--+i= l/2, {j"} = {k, (i)‘, (g)‘,... }, 
k=O,l-+j=l , {j”}={1,2,32,42,53,63,74 ,... }, - 

(iii) Discrete series F$@j,R, (1; az) : 

o-2 E R, j=k, i=3/2,2,5/2,3 ,..., 

{j”>={~~~+l,(~+2)2,(j_+3)2,(~+4)3,(j_+5)3,...}, 

(iv) Ladder series D&‘&, (i; a2) : 

j = 0,l --+ u2 E R, J= l/2 --+ (T2=0; - 

(C.2.1) 

(C.2.2) 

(C.2.3) 

{j”}= {J,i+2,iS4,j+6,j_+8 ,... }, i.e. Aj=2. (C.2.4) 

In terms of the unirreps of the maximal compact subgroup, the last sequence consists of those 
multiplicity-free representations which are known as the “ladder representations”. 

In addition, there are two discrete quantum numbers E and E’, in the principal, the supplementary, 
and the discrete series. For the principal series, they are E = f 1 and E’ = fl. In the supplementary 

x4 After many years in which the double covering was not mentioned and the study and classification had dealt with 
SL(3, R) proper only (by Gel’fand and Graev, G. Rosen, Dothan, Gell-Mann, and Ne’eman, etc. - see [ 1661). the double 
covering was discovered by Joseph and Ne’eman and reconfirmed by several groups (see [ 3241, referred to in [ 581) . This 
established also the existence of spinor representations; see also [ 5331. SijaEki published a complete classification [ 6231. 
The complete unitary complement (i.e. listing of representations) of SL(3, R) was published in [648], referring to [623 ] 
for those of the double covering. 
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series, they are E = + 1 (only) whereas E’ = f 1. For the discrete series, they are again both E = f 1 
and E’ = f 1. They do not exist in the ladder series. These quantum numbers are related to the 
occurence of even or odd values of k and j. 

- 
C.3. Unirreps of the SL(4, R) 

Since rz = 4 is where our main interest lies, we remind the reader of the results of our construction of 
field representations, using the inner automorphism A. Our otherwise unitary representations should be 
reinterpreted as nonunitary, after the reidentification of the SO( 1,3) and SO(4) subgroups according 
to (4.2.7). In fact, conventional finite representations of SL(4, R) (ordinary tensor fields) also reduce 
into direct sums of representations of the compact subgroup SO (4)~. We use the corresponding index 
for the d-transformed subgroups, after the mapping (4.2.7). Physically, this SO (4)~ represents 
nonunitary finite-dimensional representations of the physical Lorentz group ?%( 1,3), rather than 
unitary finite-dimensional representations of the true compact subgroup SO(4) that would have been 

(+I 
generated by the J, and B ,, of (4.2.4). That SO(4) is represented in our bandor field representations 
by nonunitary infinite-dimensional representations of S@ 1,3). 

In the systematics of finite SL(4, R) representations, a symmetric tensor Zap, for example, is a lo 
under SL(4, R) ; it reduces (in the Riemannian case) to 9 + 1 under SO (4)~; and it then reduces 
further into 9 --+ 5 + 3 + 1 and 1. under J,, i.e. SO( 3) c SO(~ The same picture now holds for 
our infinite-dimensional representations. - 

It is useful to gain a better understanding of the structure of the double covering SL(4, R) by 
studying its center, and those of SL(4, R) and SO( 3,3). Indeed, as in the case of SL(2, R), the - 
group SL(4, R) is itself also a covering group, SL(4, R) = SO(3,3). The group SL(4, R) is thus the 
quadruple covering of SO(3,3). The compact subgroup is 

SO(4)_4 = so(3) x SO(3) = SU(2) x SU(2). 

For each SO(3) subgroup, we can also write 

(C.3.1) 

SO(3) = w(~M21. (C.3.2) 

In SO(3,3), the compact subgroup is SO(3) x SO(3), and the center is trivial. In SL(4, R), the 
compact subgroup is 

SO(4) = [(SU(2) x w2>>/&3 I (C.3.3) 

where Zt is the diagonal discrete subgroup whose representations are given by 

z; : (1, (-l)*.” = (-1)2”}, (C.3.4) 

and where j, and j2 are the Casimir labels of the two SU(2) representations. 
In z(4, R), the center consists of both Z, centers, one in each SU( 2), 

z* x z, : (1, (-1)2”) x {l,(-l)2”). (C.3.5) 

The structure is best described by the exact sequences: 
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01 35/zng k 

k 20 J =o 
722 222,2 

- k+ 
- I_=?_ 

01234567k 

(a) k=O L’l - 

IjI 0 0 0 0 

6@ l l 

5m 0 l 

4 l 

I___- 

0 

3. l 

2 l 

I l 

01234567k 

k=l i =I 
- 

II/2 l l l 

912 0 l 

312 i l 

712 l 0 

512 , 

O 3 7 n 
(b) 1: 3/2 ‘? 7 2 

4 
1 

2 

i - 

j=o 

oJ------ 
(cl I23 

912 
i 

512 

L- 

i= l/2 

l/2 
0 

I 2 3 

5 

3 

L 

j :I 
I - 

0 
2 3 

Fig. 6. Sample unirreps of E( 3, R): (a)Principal and supplementary series with the continuous parameters ~2, &, and 61 
suppressed, see Eqs. (C.2.1) and (C.2.2). (b)Discrete series with the continuous parameter u-2 suppressed. We have the 
same pattern for j = 2,5/2,. . ., see Eq. (C.2.3). (c)Ladder series with the continuous parameter (~2 either suppressed, or 
uz = 0 for the spkorial case i = l/2, see Eq. (C.2.4). 
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1 i 
1 + zz” + 2;” --+ 2, -+ 1 

I 
I ---f z2” --+ SL(4,R) ---t SL(4,R) --t 1 

1 1 
W3,3) SW37 3) 

1 1 
I 1 

(C.3.6) 

- 
The SL(4, R) unirreps reduce into infinite sums of finite-dimensional S0(4)~ representations. The 

multiplicity-free ones, i.e. those with one single representation of SO( for each type appearing in - 
the reduction of an SL(4, R)A representation, were constructed and finalized in [ 6281. We list first 
the multiplicity-free set 

(i) Principal series 2X$&) (m, tz; e2) : 

a= (0, I}, fl= 0; el = 0, e2 E R; 

{(m, n)} : m + n g m (mod 2). 

(ii) Supplementary series Dg$;Rj (0,O; el) : 

05 lell < 1, e2=0; 

{(m,n)}:m+nrO(mod2). 

(iii) Discrete series D$&,, ( (1, 0) or (0, j) ) : - 

el = 1 -j, e2 =O; 

{(m,n)):m+nZi(mod2), Im-nl >i; j= l/2, 1, 3/2, 

(iv) Ladder series D!$& (1, e2) : 

j= 0, l/2, el = 0, e2 E R, 

(C.3.7) 

(C.3.8) 

(C.3.9) 

m=n= j; j E i (mod 1) for j = l/2; j Z 1 (mod 2) for j = 0. (C.3.10) - 
- 

The enumeration and classification of SL(4, R) unirreps have been recently completed [ 6271. First, - 
let us make up a list of three types of quantum numbers of SL(4, R) : 

A : el = 0; e2 E R, 

B, : d, = 0; d2 E R, 

B2 : d, = m + n, d,=O; m+n=1/2,1,3/2 ,..., 

B3:OId, 5 1, d2 = 0; m + n = 0, f2, f4, . . . , 

Bq:05dl 5 l/2, d,=O; m+nSl/2 or 3/2 (mod2), 

C, : cl = 0; c2 E R, 

C,:c, =m+n, c2=O; m-n=1/2,1,3/2 ,..., 
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c3:o 5 C] 2 1, c2 = 0; m - n = 0, f2, f4,. . . , 

cq:o<c, 5 l/2, c2=0; m-n% l/2 or 3/2 (mod2). (C.3.11) 
- 

There are 16 series (or subseries) of SL(4, I?) unit-reps (or nonunitary A-transformed representa- 
tions) having nontrivial multiplicities, given in the above by the set 

(A, B,, C,) : {I-J= 1,2,3,4}; Jo > lml, j2 > 14 (C.3.12) 

for all choices of r and s. - 
The eigenvalues of the second-order Casimit operator of the X(4, R) are given by 

C, := -J?” &+ n = 4 - t (er + ie2)2, 

cf. [ 628 1, where, however, the notation is different: our ,Y*” p = iQep of [ 6281. 

(C.3.13) 

C.4. Casimir invariants of the SA(n, R) 

The fundamental particles in Minkowski spacetime correspond to the unitary irreducible represen- 
tations of the Poincare group. For PJ and massive states, the eigenvalues of the two Casimir operators 
classify these representations uniquely. According to the Wigner classification [ 7241, fundamental 
particles in Minkowski spacetime are classified by mass and spin. For massless particles, we need, in 
addition, the eigenvalue helicity of the Casimir operator of the Weyl group. Do similar results hold 
in theories which are invariant under the GA(n, R) or SA(n, R) groups, repectively? 

Casimir invariants of real low-dimensional Lie algebras were evaluated by Patera et al. [ 5461, and 
the invariant of SA(2, R) was listed as As,40. The next basic advance in the study of the Casimir 

invariants of the affine and related groups followed the work of Sternberg [ 6551. Rais [ 5671, Perroud 
[559], as well as Demichev and Nelipa [ 1421 finally demonstrated that the SA(n, R) have a single 
such operator (whereas the GA(n, R) have none) which, using the Cat-tan-Weyl basis of the related 
gZ(n, R), i.e. 

(V&y = s;s;, 

is given by 

(C.4.1) 

C (n) = Sym [E”[~..‘~~I-’ Pa,, (L”‘,, Pp,,) ( Lyon2 Lalyo Ps, ) . . . (L”“,,,_, L”’ K,, . . . L”J’-‘,,_, PK,,m2 )] , 

(C.4.2) 

where Sym denotes the symmetrization of all generators. Eq. (C.4.2) is equivalent to the determinant 

9 (C.4.3) 

Pi-i L’fi_iPp LY,_iL8y Ps ’ ’ ’ 

or, in shorthand notation, to 

C(n) = det (P, LP, (L)2P, .., (L)“-‘P) , (C.4.4) 



142 EW Hehl et al. /Physics Reports 258 (1995) 1-l 71 

thus involving powers of the basis L in the Lie algebra gZ(n, R) ranging from 0 to y1 - 1. Hence 
the invariant C(n) is a polynomial of degree at in the translations p and of degree n( n - 1) /2 in 
the sl( ~1, R) generators; altogether it is thus of degree n(n + 1)/2. Although written in terms of the 
Cartan-Weyl basis (C.4.1)) the formula (C.4.2) automatically takes care of the tracelessness of the 

sl(n, R) generators fl “p = L”, - 6EDo/4. Th erefore the Casimir operator can also be represented as 

j?(n) =det(P,,X’ P,(JT?)~P,+~~,(,E’)“-‘P) . (C.4.5) 

This can explicitly be demonstrated by inserting the decomposition (3.1.9) into (C.4.2) and employ- 
ing successively the commutation relations (3.1.10) and (3.1.4)) respectively: 

C(n) =J? (n) + Sym E [ n”...n,,-l Pa, ( $qpPpo) 

. . . + APa” L?T” n, Ppo ?/@ a,&,lPp, .*. 
> 1 =P (n>. (C.4.6) 

Observe that the last but one term, after applying the commutation relation (3.1.5)) yields [Pa,, Pa,] = 
0. Proceeding further by induction, higher order terms can likewise be shown to vanish. 

Let us also sketch the proof that C(n) is a Casimir operator of the special affine group SA( II, R) = 
R” c~ SL( II, R) : The determinant is built up from the it vectors {P, LP, ( L)2P, . . . , (L)“-‘P}. The first 
of these vectors, on commutation with the generator Pa of translations, becomes linearly dependent 
on the second one (see [ 3931 for details, also Eq. (6.11) of [ 3911). In order to conclude the proof, 
we recall that the determinant gives the volume of a vector space. Since SL(n, R)-transformations 
are volume-preserving, the operator C(n) is also invariant under the rigid SL( n, R). 

For the construction of the eigenvalues of C(n), let us first consider the simplest non-trivial 
dimension’” , namely that for IZ = 2. Let @p(x) = @(t, x) be a field which transforms according to: 

Q’(x) := D(A) @[ii_‘(x - a)]. 

(i) In the scalar representation D(A) = 1 we obtain for the generators 

A’() = -xa, , A’ I - Aoo = td t - xd x 3 no’ = -td, ) 

PO=-d, ) P’ = -d, . 

(C.4.7) 

(C.4.8) 

(C.4.9) 

Inserting this into (C.4.2) yields C (2) = 0. 
(ii) For the vector representation D(A) = A we have the generators 

X5 These examples were provided by Jiirgen Lemke (Cologne). 
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0 1 A’, = -xa, + o o , ( 1 A’, - A00 = td, - xd, + i1 ( > ‘: , 
0 0 A01 = -ta, + 1 o , ( > 

PO = 4, , P, = -a, . 

Thus we obtain for the Casimir operator 

The eigenvalues A are given by 

det 
K 

that is, the unique solution is A = 0. 

Analogously to the Poincare group, the orbital parts of the generators do not contribute the the 
Casimir operator. Already for IZ = 3, one better uses computer algebra [ 6501 in order to calculate the 
eigenvalues of the full Casimir operator for a given representation. 

(C.4.10) 

(C.4.1 1) 

(C.4.12) 

(C.4.13) 

C.5. Classification of the unirreps of the SA(4, R) 

We now go over to the particle aspect and follow for the representation theory of a( 4, R) Wigner’s 
classical treatment [724] of the Poincare group’s Hilbert space and projective representations (for 
quantum mechanics). The induction (+-) is done over the stability subgroup (Wigner’s little group), 
whereas the inclusion sequence is denoted by c . For the special affine group 

- 
SA(n, R) = R” g SL(n, R) , (C.5.1) 

there is an affine subgroup inherent, in which the new ‘translations’ in SA(n - 1, R) correspond to 
the generators ,!? OU in SA(n, R), cf. section 4.2. At some stage, for k = 0, . . . , n - 2, there occur two 

possibilities: 

(i> 

(ii) 

The ,Z’O N (n - k) are trivialized 

To u (n - k) Iphys.) = 0, (C.5.2) 
- 

and the representation is induced over the infinite unitary linear representations of SL( II - k, R) . 
This happens, for instance, in matter manifields, i.e. their particle states will correspond to - 
‘Regge trajectories’ described by unitary infinite-dimensional representations of SL( 3, R) , see 
Ref. [ 1661. 
If the SL(n - k, R) representation is not linear and infinite, the SA(n - k, R) is induced over 
the finite unitary linear representations of SO(n - k). Example: The gauge field of a( ~1, R) 
will end up being induced over the transverse %?( n - 2)) with the CPT conjugate representation 
added. 

The group SA(n, R), acting on the space of momenta, has two orbits: 

Orb, = {0}, Orb:! = R” - (0). (C.5.3) 
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For the null orbit, i.e. when we select states for which all n components of the momenta vanish, 
the Casimir operator vanishes, since it is a homogeneous symmetric polynomial of degree y1 in the 
momenta. In the second orbit - which, incidentally, is invariant under the entire GL(n, R) - for 
small values of the momenta, the invariance of the Casimir operator implies that the eigenvalues of 
the SL( IZ, R) homogeneous operators must grow fast. 

These two orbits provide for a classification [393] of the unitary irreducible representations of 
n(4, R). We have a hierarchy of stability subgroups over which the unirreps are constructed as 

induced representations. The four-vector i either vanishes, ;= 0 (case I) and C (4) = 0, or it does 

not, ; # 0 (case II) and C (4) - (; )4 = m4, where m denotes the particle’s mass. 
Case I: Physically, it is useful to think of this case as the very-low frequency limit of a massless 

particle including its Regge excitations. The little group is z(4, R). The unirreps of this group 
have been classified [628,627]. They are rather unphysical in that the Lorentz subgroup will 
appear in unitary infinite representations, the unirreps of Gel’fand and Yaglom [ 2191. These 
contain all spins, and the action of the Lorentz boost on a state with spin j connects it with 
those of spin j + 1 and j - 1. Such ‘particles’ are thus not characterized by definite spins, as 
phenomenologically required. Note that we do not encounter this difficulty with the fields and 
manifields, since these are constructed [628] with the deuniturizing automorphism A. In a non- 
unitary and finite representation, the Lorentz boosts stay anti-Hermitian and cancel. 

Case II: The little group is SA(3, R)‘. This affine group consists of the semi-direct product of - 
the spatial SL( 3, R) with a ‘fake’ set of three ‘translation’ momenta p’, in fact representing 
contributions of the spatial shears to the 0 direction. We now have two subcases: - 
Case II A: All three components p’ = 0. The effective little group is then SL( 3, R). The unirreps 

are induced over this subgroup, they can be reduced to infinite discrete sums of spins, fitting the 
hadron situation and also providing an interesting model for primordial fermion fields (in fact 
manifields) . This picture has been studied in [492,493,498]. It fits all applications mentioned in 

section 4. Note that C (3’) = 0, and, as a result, C (4) = 0 as well, since the multiplier of (;)” 

is precisely the C (3’) Casimir invariant of the stability subgroup defined by i. 
Case II B: The fake momenta satisfy p’ # 0. We can select a frame in which only p’O does not 

vanish, a fake energy-like component. C (3’) N ( P’O)~ = (m') j, m’ a mass-like eigenvalue. The 
new little group is m(2, /?)“. Again, the ‘translations’ are fake momenta p”. We can have two 
subcases: 
Case II Bl: All components of p” = 0 and C (2”) = 0. In that case, we get again both C (3”) = 0 - 

and C (4) = 0. The effective little group is SL( 2, R) (i.e. the double-covering, in an infinitely 
covered group). The unirreps have been classified by Bargmann [ 361 and are useful in a 
variety of physical contexts. 

Case II B2: p” # 0, C( 2”) - ( P”)~ = (m")*. The little group is SA( 1, I?), with one fake 
momentum p”‘. Again we have two possibilities: 
Case II B2a: p”’ = 0, C( 1”‘) = 0. This is a scalar representation. As a result, C (2”) = 

C(3’) = C(4) = 0. 
Case II B2b: p”’ # 0, C ( 1”‘) = q = m”‘. Note that here C(2”) = (m")* m"', C(3’) = 

(m’)J (m/!)2ml” and C(4) = m4(m')3 (m")2m"'. 
To summarize, we have five classes of representations: 1, II A, II Bl, II B2a, II B2b; which are 
illustrated in the following diagram: 
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- 
SA(4,R) > SL(4,R) : I 

s;i(! R)’ - 3 3 SL(3,R) : IIA 

t - - 

SA( 2, R)” > SL(2, R) : IIB 1 

14.5 

(C.5.4) 

t 
SA( 1, R) 

Moreover, 

: IIB2a, IIB2b 

C(4) =o, for I, IIA, IIBl, IIB2a; C(4) = m4 (M’)~ (&‘)2m”’ for IIB2b . 

(C.5.5) 

At first sight, the Casimir invariant appears to constrain the masses and spins in a wrong manner, 
as in the Majorana [421] infinite-dimensional equation: the higher the spin, the lower the mass; 
this is the opposite of what we observe in hadron phenomenology and of what is assumed in the 
Chew-Frautschi plot for a Regge trajectory. However, considering that in the general case (including 
the most useful case II A) the invariant vanishes, the value of m4 stays unconstrained in all but case 
II B2b. Instead, constraints on the value of the masses may be derived dynamically [ 499,501]. It is 
remarkable that an evaluation based on the ‘pseudo-gravity’ approximation for QCD in the infrared 
region does reproduce the linear correlation between m* and the spin j. 

C.6. Induced representations of the a(n, R) 

We have seen in section 4 that the manifields are constructed out of the linear representations of the 
(homogeneous) SL( 4, R) - just like our conventional tensor fields (except for the involvement of the 
double-covering, for world-spinors). However, just as the Minkowski space particles’ Hilbert space 
spectrum is given by unitary representations of the (inhomogeneous) Poincare group R” K SO( 1, n - 

1 ), so is the particle Hilbert space in a metric-affine geometry given by unitary representations of - 
SA(n, R) = R” K SL(n, R), i.e. by those of SA(4, R) in our simplest physical situation. These 
representations have to be Wigner-Mackey induced representations, the induction being over the 
various stability subgroups, as they appear in the classification we have given in the previous section. 

We start with the somewhat unphysical - but mathematically edifying - case I in our classification, 
namely situations in which the little group is the full homogeneous subgroup, i.e. SL(4, R). This 
fits precisely the five-dimensional Mobius representation-space of section 3.1, when we point the 
translation parameter vector into the “fifth” dimension. Following Trautman [ 6811, the notion of 
G-vector bundles enables us to derive for this case the formula 

D(A)W(;) :=D(Ai’AAA_,;,:).(A-I;,. (C.6.1) 

According to section 3.1, the group element A := (0” ;) of the affine group acts on a vector i := 

(;) E R”+’ of the n-dimensional hyperplane R =“. The representation depends on the representative 
0 0 

vector i of the chosen coset space (“group orbit”). For the “zero section” vector f = (y ), the stability 
group (‘little group’ in the sense of Wigner) is the SL(n, R). By definition, the group element A;. 
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transforms this zero section vector into an arbitrary one according to Ai. f = i. Such an element is, 
up to an SL(n, R) similarity transformation, given by 

Moreover, we need 

0 
= .-I= 

(C.6.2) 

the group element with the transformation behavior 

f/i-‘(X - 7) \ 
A *_, ; x = A-’ x = 

\ 1 /’ 
(C.6.3) 

This condition can be satisfied, for instance, by 

AA_,; = ( :, A-‘(;-T) . > 
Thus the argument of the inducing representation 2, is given by 

/?_‘A X 
1 

*_,;=(:, ;“)(b’ ;)(A A-‘(;+)=(; !f). 

(C.6.4) 

(C.6.5) 

Since this is really an element of the little group SZ,(n, R) for the orbit chosen, we can write the 
induced representations in coordinate space simply as [cf. (C.4.7) ] : 

D(A,T)P(X) = D(A)P[K’(x - T)]. (C.6.6) 

Abandoning our mathematical Mobius space, we now return to spacetime with IE = 4 - and for the 
physical particles’ Hilbert space representations, to its Fourier transform - namely, momentum space. 
As explained in the previous section, the physical criteria point to case II A, with x(3, R) as the 
residual efiective little group (after putting p’ = 0 for the eigenvalues of the full stability subgroup 
SA( 3, R) ‘) . Note that the Fourier transform itself requires an SL( 4, R) -invariant measure d,u( p ) in 

p(x) = J&((p) exp(-ip . xl p(p). 
In the following, we apply the induced representation ‘D(/I, 7) on momentum states o{‘)(p, M), 

where {S} denotes the unirreps of z( 3, R), i.e. the (j, k, u2, 8,) of section C.2. By {M} we labeled 
the quantum numbers inside an SL(3, R) unirreps, Le. the spins j and helicities k. Let y(p), an 
element of the coset space, denote the special linear transformation which boosts, for a non-zero 

mass m, the momentum p to its rest frame i= (m, 0, 0,O). This boost is generated by the operators 
(+) (-) 
B ,o B N, and S of (4.2.4). From the Fourier transform.tV (p) one gets the Wigner function w(p) 

via w(p) := D(y(p))F(p). Then the induced representation acting on Wigner functions takes the 
form 

D(X 7) &S)( p, M) = erJ’-TC D$L (y(p)Zy_‘(K’p), “p) w{s)(pA, M’). (C.6.7) 
M’ 

In the case of the Poincare group, we would have pA = A-‘p in the argument of the right hand side 
due to the Hermitian property of Lorentz transformations. Then we recovered exactly Eq. ( 16.2) of 
Niederer and O’Raifeartaigh [ 5 121. 

If, instead of working with Wigner functions, we work with ket vectors, i.e. with the conventional 
hadron Hilbert space of particle physics, Eq. (C.6.7) is replaced by the formula (Bl) of [498], cf. 
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[626]. There, the “states” are Hilbert space Dirac ket vectors, labeled by the quantum numbers of 
the little group. For the Poincare case, this would be the semi-direct product T3 K SU(2) and the 
state is denoted Ip, a). The Poincare group element is represented by D(7i, 7) = 2>( 1,~) D(T, 0). 
Applied to the state, the Lorentz element ZJ(3,O) acts first, resulting in I&) where n is the SO( 1,3) 
correspondent to 7i (which is in the covering group SL(2, C)). The Wigner rotation thus acts on this 
state, which yields the exponential exp( ir - Ap), as in [498]. The Wigner functions w(p) of [ 5121 
do not represent the kets; instead, they are the matrix elements (p lco), with the momentum p labeling 
the dual (bra) Hilbert space. The action of D( 1, r)D(i, 0) is actually to the left! The translation is 
thus applied to (p 1 , becoming exp (i7 . p), which is then further multiplied by the Wigner rotation 
representation. As a result, the ordering of the decomposed operations is also inverted: The 2, y(p), 

y-‘(K’p) in (C.6.7) are in Eq. (Bl) of [498] replaced by A, L,, LAP, respectively. 
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