

Introduction to Neutrino Physics: Lecture 1 M. Shaevitz Columbia University

Neutrinos carry away 99% of the energy in a supernova explosion

Outline

- Lecture 1: Experimental Neutrino Physics
 - Neutrino Physics and Interactions
 - Neutrino Mass Experiments
 - Neutrino Sources/Beams and Detectors for Osc. Exp's
- Lecture 2: The Current Oscillation Results
 - Solar and Kamland Neutrino Results
 - Atmospheric and Accelerator Neutrino Results
 - Global Oscillation Fits
- Lecture 3: Present and Future Oscillation Experiments
 - The Fly in the Ointment: LSND and MiniBooNE
 - Searches for θ_{13} / Mass Hierarchy / CP Violation
 - Current Hints
 - Reactor Experiments
 - Longbaseline experiments
 - Combining Experiments
 - Future Plans for Oscillation Experiments

Standard Model of Particle Physics

Neutrinos in the Standard Model

- Neutrinos are the only fundamental fermions with no electric charge
- Neutrinos only interact through the "weak force"
- Neutrino interaction thru W and Z bosons exchange is (V-A)
 - Neutrinos are left-handed (Antineutrinos are right-handed)
- Neutrinos are massless
- Neutrinos have three types
 - Electron $v_e \rightarrow e$
 - Muon $\nu_{\mu} \rightarrow \mu$
 - Tau $v_{\tau} \rightarrow \tau$

The Standard Model

Highlights of Neutrino History

1930	Pauli Postulates ν existence	$n ightarrow p + e^- + ???$	
1953	ν Interactions	$ u + p ightarrow n + e^+$	
Nobel 1995	Observed		
	Reines & Cowan		1 st Observed
1957	$ \nu \text{ Oscillations Predicted} Pontecorvo $	$ u_A \rightarrow \nu_B ?$	$\pi \rightarrow \mu \nu \text{ decay}$
1962	ν_{μ} Observed	$ u_{\mu} + N \rightarrow \mu^{-} + X $	μ · · · ·
Nobel 1988	Lederman, Schwartz,		Na State
	Steinberger		T
1973	Neutral Current ν Interactions Observed Gargamelle	$\nu + N ightarrow u + X$	
1989	Only 3 light ν families! LEP Experiments	$Z \to \nu \overline{\nu}$	
1990's	Oscillations Observed?	$ u_A ightarrow u_B !$	
Nobel 2002	Observation of neutrinos from the sun and supernovae Davis (Solar v's in 1970) and Koshiba (Supernova v's 1987)		
2002	v_{τ} Observed		

Reines and Cowan at the Savannah River Reactor

The original neutrino discovery experiment, by Reines and Cowan, using reactor \overline{v}_e (1953)

Later the neutron captures giving a coincidence signal. Reines and Cowan used cadmium to capture the neutrons (modern exp. use Gadolinium) The first successful neutrino detector

arget tank A

arget tank B

Detector

Positron

Detector II

Detector III

6

Discovery of the Tau Neutrino

2000

An 800 GeV beam of protons from the TeVatron collides with a block of tungsten

Experimental Challenges:

- Very short lifetime of the τ .
- ν_{τ} is extremely non-interacting

(detector must have a very fine resolution). \Rightarrow Use Emulsion Tracker

 D_{s} decay into τ and ν_{τ} neutrino

 $D_s \to V_\tau + \tau$ $\tau \to V_\tau + X$

6,000,000 candidate events on tape 4 clean tau events

Neutrino Interactions

- W exchange gives Charged-Current (CC) events and Z exchange gives Neutral-Current (NC) events
- Discovery of "neutral current" interactions in 1973 was a triumph of the "electroweak" theory
 - Difficult to detect since no outgoing muon or electron so hard to separate from background (neutron or photon interactions)

Tagging a Neutrinos Type \Rightarrow Use Charged Current Interaction¹⁰

For oscillation experiments, need to identify outgoing lepton

Neutrino-Electron Scattering

- Inverse μ -decay: $\nu_{\mu} + e^{-} \rightarrow \mu^{-} + \nu_{e}$
 - Total spin J=0 (Helicity conserved)

- Point scattering $\Rightarrow \sigma \propto s = 2m_e E_v$

$$\sigma_{TOT} = \frac{G_F^2 s}{\pi} = 17.2 \pm 10^{-42} \, cm^2 \, / \, GeV \cdot E_v (GeV)$$

- Elastic Scattering: $v_{\mu} + e^{-} \rightarrow v_{\mu} + e^{-}$
 - Point scattering $\Rightarrow \sigma \propto s = 2m_e E_v$
 - Electron coupling to $Z^{\rm 0}$

$$-$$
 (V-A): $-1/2 + \sin^2 \theta_W$ J = 0

- (V+A): $\sin^2\theta_W$ J = 1

$$\sigma_{TOT} = \frac{G_F^2 s}{\pi} \left(\frac{1}{4} - \sin^2 \theta_W + \frac{4}{3} \sin^4 \theta_W \right)$$

Neutrino-Nucleon Processes

- Charged Current: W[±] exchange
 - Quasi-elastic Scattering: (Target changes but no break up) $v_{\mu} + n \rightarrow \mu^{-} + p$
 - Nuclear Resonance Production: (Target goes to excited state) $\nu_{\mu} + n \rightarrow \mu^{-} + p + \pi^{0}$ (N^{*} or Δ) $n + \pi^{+}$
 - Deep-Inelastic Scattering: (Nucleon broken up) v_{μ} + quark $\rightarrow \mu^{-}$ + quark'

- Neutral Current: Z⁰ exchange
 - Elastic Scattering: (Target doesn't break up or change) $v_{\mu} + N \rightarrow v_{\mu} + N$
 - Nuclear Resonance Production: (Target goes to excited state) $v_{\mu} + N \rightarrow v_{\mu} + N + \pi$ (N^{*} or Δ)
 - Deep-Inelastic Scattering (Nucleon broken up) v_{μ} + quark $\rightarrow v_{\mu}$ + quark

Neutrino Cross Section is Very Small

• Weak interactions are weak because of the massive W and Z boson exchange $\Rightarrow \sigma^{\text{weak}} \propto (1/M_w)^4$

$$G_F = \frac{\sqrt{2}}{8} \left(\frac{g_W}{M_W}\right)^2 = 1.166 \times 10^{-5} / GeV^2 \quad (g_W \approx 0.7)$$

- Examples:
 - 15 MeV Supernova neutrinos interacting in a Liquid Argon detector (v_e + ⁴⁰Ar $\rightarrow e^-$ + ⁴⁰K^{*}) ρ_{Ar} = 1.4 g/cm³
 - Cross section = 2×10^{-41} cm²

 \Rightarrow Interaction length = 1/($\rho \sigma N_{Avg}$) = 6 × 10¹⁶ m

- MiniBooNE Booster Neutrino Beam from 8 GeV protons in 500 ton mineral oil detector
 - Quasi-elastic CC cross section (v_{μ} + n $\rightarrow \mu^{-}$ + p) = 1 \times 10⁻³⁸ cm² @ 0.7 GeV
 - Flux = $2 \times 10^{11} \text{ v/cm}^2$ for 5×10^{20} protons on target

 $\Rightarrow v \text{ QE-CC events} = \text{mass} \times \sigma \times \text{N}_{\text{Avg}} \times \text{Flux} \\ = 600,000 \text{ events}$

Neutrino Cross Sections 14

Neutrino – electron scattering

Neutrino Mass: Theoretical Ideas

- No fundamental reason why neutrinos must be massless
 - But why are they much lighter than other particles?

Grand Unified Theories

- Dirac and Majorana Mass \Rightarrow See-saw Mechanism

Modified Higgs sector to accommodate neutrino mass

Extra Dimensions

Neutrinos live outside of 3 + 1 space

Many of these models have at least one Electroweak isosinglet v

- Right-handed partner of the left-handed ν
- Mass uncertain from light (< 1 eV) to heavy (> 10^{16} eV)
- Would be "sterile" Doesn't couple to standard W and Z bosons

How Big are Neutrino Masses? Direct Neutrino Mass Experiments

- Techniques
 - Electron neutrino:
 - Study E_e end point for ${}^{3}H \rightarrow {}^{3}He + v_e + e^-$
 - Muon neutrino:
 - Measure P_{μ} in $\pi \rightarrow \mu v_{\mu}$ decays
 - Tau neutrino:
 - Study $n\pi$ mass in $\tau \rightarrow (n\pi) v_{\tau}$ decays

(Also, information from Supernova time-offlight)

v_e Mass Measurements (Tritium β-decay Searches)

 Search for a distortion in the shape of the β-decay spectrum in the end-point region.

 $^{3}\text{H}\rightarrow^{3}\text{He} + v_{e} + e^{-}$

Current limit: $m_v < 2.2 \text{ eV} @ 95\% \text{ CL}$ (Mainz group 2000)

Next Generation β -decay Experiment (δ m \approx 0.35 eV)

Karlsruhe Tritium Neutrino Experiment (KATRIN)

next-generation experiment with *sub-eV* neutrino mass sensitivity

FH Fulda - FZ & U Karlsruhe - U Mainz - INP Prague - U Seattle - INR Troitsk

Arrival in Leopoldshafen: Nov 24, 2006

discovery potential: $m_v = 0.35 eV (5\sigma)$ $m_v = 0.3 eV (3\sigma)$ 0000

sensitivity: m_v < 0.2eV (90%CL)

Muon Neutrino Mass Studies

- Current best limit from studies of the kinematics of $\pi \to \mu \, \nu$ decay

$$p_{\mu}^{2} + m_{\mu}^{2} = (m_{\pi}^{2} + m_{\mu}^{2} - m_{\nu}^{2})^{2} / 4m_{\pi}^{2}$$

- Can use π -decay:
 - At Rest: Mass of π is dominate uncertainty
 - In Flight:

Resolution on p_{π} - p_{μ} limited experimentally

Best mass limit is from π-decay at rest
 < 170 keV at 95% CL

(Assamagan et al., PRD 1996)

Direct v_{τ} Mass Limits

 Look at tau decays near the edge of the allowed kinematic range

 $\begin{array}{l} \tau^- \rightarrow 2\pi^- \, \pi^+ \, \nu_\tau \qquad \text{and} \\ \tau^- \rightarrow 3\pi^- \, 2\pi^+ \, (\pi^0) \, \nu_\tau \end{array}$

- Fit to scaled visible energy vs. scaled invariant mass (e.g. hep-ex/9906015, CLEO)
- Best limit is m(ν_τ) < 18.2 MeV at 95% CL (Aleph, EPJ C2 395 1998)

massive ν_{τ} shifts the edge of the distribution

(Outer lines, mass=0; inner lines, mass=30 MeV)

One can reach very small neutrino masses using "Quantum Interference Effects" ⇒ Neutrino Oscillation Experiments

- Source of Neutrinos
 - Need to understand the rate and type of neutrinos hitting detector
 - Methods: Compare observation to prediction
 - Typically done by calculation knowing the production mechanism
 - For accelerator beams can have v monitor (v-detector near location before oscillation.)
- Neutrino detector
 - Measures the energy of outgoing particles \Rightarrow ~energy of neutrino
 - Determine the type of neutrino from the outgoing lepton in event
 - Since v cross sections are so low, need to maximize size of detectors within funding constraints.

Sources of Neutrinos for Experiments

Energy Ranges for Neutrinos Sources

But to identify the neutrino type, need to be above threshold to produce the charged lepton

$$l = e \quad m_e = 0.511 \text{ MeV} \quad P_{\text{thresh}} = 0.511 \text{ MeV}$$
$$l = \mu \quad m_\mu = 106 \text{ MeV} \quad P_{\text{thresh}} = 112 \text{ MeV}$$
$$l = \tau \quad m_\tau = 1.78 \text{ GeV} \quad P_{\text{thresh}} = 3.47 \text{ GeV}$$

Big Bang Neutrinos

- There are neutrinos all through the universe:
 - Density = $115/cm^3$ (v + \overline{v}) per neutrino type
 - Temperature = $1.95 \ ^{\circ}K = 2 \times 10^{-4} \ eV$
- Originally thought to be a good "Dark Matter" candidate
 - With a mass of 30 eV could explain dark matter and would be nonrelativistic
- Many experiments set up to measure neutrino oscillations and electron neutrino mass in the ~30 eV region
 - Now know that neutrino masses are much below this value
- But detecting these neutrinos is still one of the big experimental challenges for us
 - These neutrinos decouple a much earlier times than the CMB so would give new information at the 1 second time scale.

Neutrinos from the Sun

- Standard Solar Model (mainly John Bahcall)
 - Sun is in hydrostatic equilibrium.
 - Main energy transport is by photons.
 - Primary energy generation is nuclear fusion.
 - Elemental abundance determined solely from fusion reactions.
- Only electron neutrinos are produced initially in the sun.
 - Oscillations give other types
- Spectrum dominated by pp fusion chain which only produces low energy neutrinos.

Supernova Neutrinos

- In a super nova explosion
 - Neutrinos escape before the photons
 - Neutrinos carry away ~99% of the energy
 - The rate of escape for v_e is different from v_{μ} and v_{τ} (Due extra v_e CC interactions with electrons)

- $t_{obs} t_{emit} = t_0 (1 + m^2/2E^2)$
- Spread in arrival times if m≠0 due to ∆E
- For SN1987a assuming emission time is over 4 sec m_v < ~30 eV

Electron antinu luminosity (10^51 ergs/s)

100

10

0.1

2

4

6

Time after start of collapse (seconds)

(All arrived within about ~13 s after traveling 180,000 light years with energies that differed by up to a factor of three. The neutrinos arrived about 18 hours before the light was seen)

10

8

12

SNEWS -

- Coincidence trigger between world's ν observatories eliminates instrumental false alarms
- Confidence in such an automated signal allows for FAST enough alarm to beat the photons
- Running in test mode for $\gtrsim 1$ year, will release automated alarms sometime in 2000

What is to be gained from an early warning?

- $\bullet~{\rm UV}/{\rm soft}$ X-ray flash at shock breakout predicted.
- Environment near progenitor star is probed by the initial stages of the collapse.
- Possible unknown early effects. Who knows what we're missing when observing SN at Mpc distances starting days after the explosion?

SNEWS The SuperNova Early Warning Sytem

28

Atmospheric Neutrinos

- Interact in upper atmosphere to produce pions

• Produced by high-energy cosmic rays

Pions/muon decay chain gives v's

Predicted and Measured Atmospheric V_{μ} Flux

To calculate v flux • - Use measured primary CR fluxes combined with hadron production parameterizations (m⁻² sr⁻¹ GeV) Cosmic ray (p, He, ...) Proton Flux x E π μ 10 bp -10 v_{μ} ve × 'e

- Decays of radioactive elements in earth's crust and mantle lead to a flux of low energy neutrinos
- This provides the main portion of the Earth's heating source (~40-60% of 40 TW).
- First hints for geoneutrinos recently from the Kamland experiment.

Nuclear Reactors as a Source of $\overline{v_e}$'s

Where are the reactor \overline{v}_{e} 's from?

- Typical modern nuclear power reactor has a thermal power of: P_{therm} = 4 GW
- About e=200 MeV / fission of energy is released in fission of ²³⁵U, ²³⁹Pu, ²³⁸U, and ²⁴¹Pu.
- The resulting fission rate, f, is thus: f = 1.2 ×10²⁰ fissions/s
- At 6 \overline{v}_{e} / fission the resulting yield is: 7.1 ×10²⁰ / s.
- From reactor power, neutrino flux known to ~2% and the spectrum is known to ~1.5%

Example: ²³⁵U fission

$$_{92}^{235}U + n \rightarrow X_1 + X_2 + 2n$$

nuclei with most likely $^{94}_{40}Zr$ $^{140}_{58}Ce$

→ on average 6 n have to β-decay to 6 p to reach stable matter. → on average 1.5 \overline{v}_e are emitted with energy > 1.8 MeV

Accelerator "Beam Dump" Neutrino Beams

- At Los Alamos, high intensity 800 MeV proton beam goes into water/copper beam dump (also proposed at SNS)
- Protons produce:
 - $\pi^{\scriptscriptstyle -}$ mesons that are captured in nucleus before decay
 - π^+ mesons that decay into v_{μ} , \overline{v}_{μ} and v_e Very few \overline{v}_e in beam \Rightarrow Good for $\overline{v}_{\mu} \rightarrow \overline{v}_e$ oscillation search

Accelerator Neutrino Beams from π/K decay

- Produce pions and kaons from accelerator protons (8 800 GeV)
 - Focus mesons towards detector for higher efficiency
 - Beam is bunched in time so can eliminate many backgrounds recording data only during beam spill
 - Fairly pure beam of v_{μ} or v_{μ} neutrinos depending whether you focus π^+ or π^- mesons.

$$\pi^{+}(\text{ or } K^{+}) \to \mu^{+} \nu_{\mu}$$

$$\pi^{-}(\text{ or } K^{-}) \to \mu^{-} \overline{\nu}_{\mu}$$
Why little ν_{e} ?

- Some contamination (0.5% to 2 %) of v_e or \overline{v}_e from K_{e3} decay (K $\rightarrow \pi e v_e$)

Example: MiniBooNE Neutrino Beam

New Wrinkle: Offaxis Beam

- By going offaxis, beam energy is reduced and spectrum becomes very sharp
 - Allows experiment to pick an energy for the maximum oscillation signal
 - Removes the high-energy flux that contributes to background
- "Not magic but relativistic kinematics"
- Problem is reduced rate!
 - need large detectors and high rate proton source

Beta Beams

- Use accelerator protons to produce radioactive ions that will beta decay
- Capture these ions bunches and accelerate up to high energy (100 to 300 GeV).
- Put this ion beam in a storage ring with long sections where ions can decay giving you a pure $\nu_{\rm e}$ beam.
- Good for $v_e \rightarrow v_\mu$ oscillation search where detecting an outgoing muon is easier than detecting an outgoing electron.

 ${}^{6}\text{He} \rightarrow {}^{6}\text{Li} \ e^{-} \ \bar{\nu}_{e}$

1/2Life = 0.8 s Electron Anti-neutrino Source

$$^{18}\mathrm{Ne} \rightarrow ~^{18}\mathrm{F}~e^+~\nu_e$$

1/2Life = 1.7 s Electron Neutrino Source

Possible Future Step: Muon Storage Ring v–Factory

- Muon storage ring
 - Provides a super intense neutrino beam with a wide range of energies.
 - High intensity, mixed beam allows investigation of all mixings (v_e→v_{µ or τ})
- Flavor composition/energy selectable and well understood:

 $\mu^{-} \rightarrow e^{-} + v_{\mu} + \overline{v}_{e} \quad \text{or}$ $\mu^{+} \rightarrow e^{+} + \overline{v}_{\mu} + v_{e}$

- Highly collimated beam
 - Very long baseline experiments possible i.e. Fermilab to California

Neutrino Detectors

Early Experiments Used Bubble Chambers

Solar Neutrino Detectors

- Two broad categories of detectors:
 - "After the fact" detectors
 - "Real time" detectors

Radio-Chemical Experiments for Solar Neutrinos "After the Fact Detectors"

- Homestake: $v_e + {}^{37}\text{Cl} \rightarrow {}^{37}\text{Ar} + e^-$
 - Located in Lead, SD
 - 615 tons of C_2Cl_4 (Cleaning fluid)
 - Extraction method:
 - Pump in He that displaces Ar
 - Collect Ar in charcoal traps
 - Count Ar using radioactive decay
 - Never Calibrated with source

- Gallium Exps: $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$
 - GALLEX (Gran Sasso, Italy) uses aqueous gallium chloride (101 tons)
 - SAGE (Baksan,Russia) uses metallic gallium (57 tons)
 - Extraction method:
 - Synthesized into GeH₄
 - Inserted into Xe prop. Counters
 - Detect x-rays and Auger electrons
 - Calibrated with very large Cr source

Neutrino Events and "Real Time" Detectors

Neutrino event topologies

• Muons :

Long straight, ~constant energy deposit of 2 MeV cm2 / g

• Electrons :

Create compact showers. Longitudinal size determined by radiation length. Transverse size determined by Moliere radius.

• Photons:

Create compact showers after a gap of ~1 radiation length.

• Hadrons :

Create diffuse showers. Scale determined by interaction length

Specific technologies:

• Cherenkov:

Best for low rate, low multiplicity, energies below 1 GeV

- *Tracking calorimeters*: Can handle high rate and multiplicities. Best at 1 GeV and above.
- Unsegmented scintillator calorimeters: Large light yields at MeV energies. Background considerations dominate design.
- Liquid Argon TPCs:

Great potential for large mass with high granularity. Lots of activity to realize potential

Key Issues for Neutrino Osc Detectors

- Low energy searches (Cerenkov and Scintillation Detectors)
 - Single component signal
 - Background from radioactivity and cosmic-ray spallation
 - \Rightarrow Keep exp clean and shielded
 - Coincidence signals best
 - Electron followed by neutron
 - Muon followed by decay electron signal
- Appearance Experiments $(v_{\mu} \rightarrow v_{e})$
 - Major background is NC π^0 prod $\nu_{\mu} + N \rightarrow \nu_{\mu} + N + \pi^0 \rightarrow \gamma\gamma$ where 1γ is lost
 - Best to be able to separate γ from electron in detector
 - Best to have two detectors Near/Far
 - Near detector measures unoscillated flux and backgrounds

Cherenkov detectors

6000 mwe overburden

SNO

1000 tonnes D₂O

12 m Diameter Acrylic Vessel

1700 tonnes Inner Shield H₂O

Support Structure for 9500 PMTs, 60% coverage

5300 tonnes Outer Shield H₂O

Experimental Techniques

- Identify various event types by the Cerenkov ring configurations (single-ring e's or μ's multi-ring NC and CC)
- Sampling Calorimeters and Trackers (MINOS)
 - Electrons have short showers
 - Muons have penetrating tracks
 - Multi-particle events

showers

Unsegmented liquid scintillator detectors

- PMTs around the outside see scintillation light from the particle tracks
 - Time and pulse heights of hits in PMTs can be used to determine the energy and postion of tracks.

Liquid Argon TPC

50

But Very Low Energy and Very High Energy ν Hard to Detect

A synoptic view of neutrino fluxes. (from ASPERA roadmap)

Neutrino Astronomy

Neutrinos Needed to Probe Ultra-High Energy Universe

Universe opaque to to high energy (>10 TeV) photons

 $\gamma + \gamma_{EBL+CMB} \rightarrow e^+ + e^$ and protons (>10²⁰ eV) p+ $\gamma_{CMB} \rightarrow \Delta^+ \rightarrow n + \pi^+$

 $\rightarrow \mu^{+}+\nu_{\mu}$

Cosmogenic neutrinos

Protons deflected by magnetic field for $E < 10^{19} eV!$

Not pointing back to the source!

- 1) Need neutrinos for high energy (>10TeV) cosmic astronomy!
- 2) Neutrinos provide unambiguous evidence of hadronic acceleration

Possible Sources: Supernova, AGNs, Gamma Bursts

Neutrino Telescopes Old and New

54

IceCube In-Ice Array 86 Strings, 60 Sensors 5160 Optical Sensors

IceCube Detector at South Pole

Why do these people look so happy?

Answer: They were doing experimental neutrino physics

Extras

Neutrinos Probe Quark Structure

(Nucleon Structure Functions)

y = energy transferred to struck quark

• For an isoscalar target (# protons = # neutrons):

$$\frac{d^{2}\sigma^{\nu(\bar{\nu})N}}{dxdy} = \frac{G_{F}^{2}s}{2\pi} \left\{ \left(1 + (1-y)^{2} \right) F_{2}(x) \pm \left(1 - (1-y)^{2} \right) x F_{3}^{\nu(\bar{\nu})}(x) \right\} \right\}$$

$$F_{2}^{\nu(\bar{\nu})N}(x) = x(u(x) + d(x) + \bar{u}(x) + \bar{d}(x) + s(x) + \bar{s}(x) + c(x) + \bar{c}(x) = xq(x) + x\bar{q}(x)$$

$$xF_{3}^{\nu(\bar{\nu})N}(x) = xu_{Val}(x) + xd_{Val}(x) \pm 2x(s(x) - c(x))$$
where $u_{Val}(x) = u(x) - \bar{u}(x)$

Neutrino Structure Functions (Quark Distributions)

61

Why Neutrino Mass Matters?

Cosmological Implications

- Massive neutrinos with osc. important for heavy element production in supernova
- Light neutrinos effect galactic structure formation

Window on Physics at High E Scales

