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1.  What Makes Yang-Mills Gauge Theory Different from an Abelian Gauge Theory like QED? 
 
 In an Abelian Gauge Theory such as QED, a field strength two-form 

νµ
µν

νµ
µν dxdxFdxdxFF =∧= !2

1  is expressed in terms of a potential one-form µ
µdxAA =  for a 

field of vector bosons, in this case photons, using the compact language of differential forms, as: 
 

dAF = , (1.1) 

where ( ) νµ
νµ

νµ
µννµ

νµ
νµ dxdxAdxdxAAdxdxAdA ][∂≡∂−∂=∧∂= . 

 
 In Yang Mills theory, also known as non-Abelian gauge theory, there is an extra term in 
the field strength, and in particular, if the vector potential one-form is now µ

µdxGG = , then: 
 

2igGdGF += , (1.2) 

where [ ] [ ] [ ] νµ
νµ

νµ
νµ dxdxGGdxdxGGGGG ,,, !2

12 =∧== , and g is the group “running charge” 
strength.   
 
 The only difference is the existence of this extra term 2igG ! 
 
 
Mathematical Review Notes:  
 If you need a brief review of Yang Mills, remember that  µνµν

i
i FTF ≡  and µµ

i
iGTG ≡  

are NxN matrices for any simple Yang-Mills group SU(N).  The group structure is specified by 
[ ]kj

i
ijk TTiTf ,−=  and the Latin internal symmetry index 13,2,1 2 −= Ni �  is raised and lowered 

with the unit matrix ijδ .  Equation (1.2) can thus be expanded to the NxN equation 

[ ]νµµννµµν GGigGGF ,+∂−∂= , and, with all components explicit, to the commonly-written 
νµµννµµν

kj
ijkiii GGgfGGF −∂−∂= .  The iT  are often referred to as the group generators.  In 

subsequent discussion, to diminish cluttering, we shall omit explicit rendering of the wedge 
products. 
 Regarding differential forms, recall also, that p

p
dxdxdxdxHdH p

µµµν
µµµν �

�

21

21!
1 ∂=  

defines the differential operator d as applied to any p-form H. 
 Finally, we will often use the commutator notation [ ] BAABBA −≡, , and on occasion, 
the anticommutator { } BAABBA +≡, .
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2.  What Do Source Current Source Densities Look Like in Yang-Mills Theory, versus QED?   
 
 In QED, one has both an electric and a magnetic current source (probability and flux) 
density.  In forms language, the electric current source density is: 
 

dAdFdJ *** == , (2.1) 

which expands to the familiar νµ
µ

µν
µ

ν AFJ ∂∂=∂=  with the gauge condition 0=∂ µ
µ A , while 

the magnetic source current density is: 
 

0=== ddAdFP , (2.2) 

the latter vanishing because 0=dd  for any two successive exterior derivatives.  This expands to 
the familiar 0=∂+∂+∂= σµννσµµνσσµν FFFP : there are no magnetic charges in QED. 
 In Yang-Mills theory, the source densities are related to the field strengths in the same 
manner, i.e., FdJ ** =  and dFP = , but, because of the extra 2igG  term, we find in contrast, 
using (1.2), that: 
 

( )2*** igGdGdFdJ +== , (2.3) 

which expands to [ ] [ ] 0,, ≠∂+∂∂=∂+∂∂−∂∂=∂= ν
µ

µνµ
µ

νµ
µ

µν
µ

νµ
µ

µν
µ

ν GGigGGGigGGFJ  

using the gauge condition 0=∂ µ
µG .  We also find that: 

 
( ) ( ) 022 ≠=+== gGidigGdGddFP , (2.4) 

expanding to [ ]( ) [ ]( ) [ ]( )( )µσνσνµνµσσµννσµµνσσµν GGgGGgGGgiFFFP ,,, ∂+∂+∂=∂+∂+∂= . 
 
 While part of the magnetic source density still vanishes in the usual way because 

0=ddG , there is also a non-vanishing term in the magnetic source density: ( )2gGid .  Put 
differently: in Yang-Mills theory, magnetic sources do not vanish, as has been pointed out in the 
past by T’hooft & Polyakov and others.  The “Yang-Mills electric” current density three-form 

J*  in (2.3) also acquires an extra term 2*Gidg . 
 
 Might these non-vanishing magnetic three-forms (2.4) represent 
anything observed in the physical world? 
 
Mathematical Review Notes:  
 Recall that νµσ

σµν dxdxdxJJ ** =  and νµ
µν dxdxFF ** = , which makes use of the duality 

formalism τ
σµντσµν ε JJ =*  and ντ

σµντµν ε FF !2
1* =  first developed by Reinich and Wheeler and 

later applied to differential forms by Hodge.  Also, note that in Yang-Mills theory, µµ
i

i JTJ ≡ , 
σµνσµν

i
iPTP ≡ . 
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  3.  Boundary Integration Properties of Yang-Mills Magnetic Sources 
 
 Differential forms are tailor-made for examining surface and volume integrals over a 
closed boundary.  So, to try to understand the magnetic three-form P of (2.4), we first examine 
the volume and surface integrals over P. 
 
 Taking the 3-volume integral of the P in (2.4), using 0=dd , and applying Gauss’ law, 
enables us to rewrite (2.4) in integral form: 
 

( ) ( ) 0222 ≠+===+== ��������������������� gGidGFgGdigGdiddGdFP . (3.1) 

In part, the above employs Gauss’ law, in the form ( ) ����� = 22 gGgGd .  In further part, the 

above contains the expression ( ) ������� += 22 gGidGgGdi .  Combining these two parts of 

(3.1), enables us to deduce that: 
 

0=�� dG . (3.2) 

 Now, setting (3.2) into (3.1) yields a simplified version of (3.1): 
 

02 ≠== ������� gGiFP . (3.3) 

Further, using (1.2) in (3.2), in the form 2igGFdG −= , and again using Gauss’ law, now in the 

form ��� = GdG , yields an expanded version of (3.2): 

 
( ) 022 ==−=−= ��������� GgGiFigGFdG . (3.4) 

 Equations (3.3) and (3.4) tell us, mathematically, how these Yang-Mills magnetic sources 
behave at their boundaries.  These two equations will be a primary focus of the discussion to 
follow. 
 
 How do we physically interpret (3.3) and (3.4)? 
 
 
 
 
 
 
Mathematical Review Notes 
 Recall that Gauss’ law for a given p-form H states that �� −

=
1dd

HdH , where d is the 

dimensionality of the closed surface over which the integration takes place. 
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4.  An Important Gauge Symmetry over Closed Surfaces of Yang-Mills Magnetic Sources  
 
 Although perhaps not immediately apparent, equation (3.2), 0=�� dG , tells us that there 

is no net flux of non-Abelian vector fields µG  across any closed surface over the magnetic three-
form source density P.  To see this, subject the field strength two-form F to the transformation: 
 

dGFFF −=→ ' , (4.1) 

which expands to ][' νµµνµνµν GFFF ∂−=→ .  Now we ask: what effect does the transformation 
(4.1) have over a closed 2-dimensional surface surrounding the magnetic three-form P, as well 
as on the magnetic charge within the enclosed 3-dimensional volume? 
 Substituting (4.1) into (3.3), we obtain: 
 

( ) ��������������������� ==−=−==→= PFdGFdGFFPFP '' . (4.2) 

That is, under the transformation dGFFF −=→ ' , we find that ������ =→ FFF '  and 

��������� =→ PPP ' . 

 The above reveals a very important, apparently unknown, gauge symmetry of Yang-Mills 
field theory.  Consider, by way of contrast, that QED and related theories are invariant under the 
transformation Λ∂+=→ µµµµ AAA ' .  This means that the scalar “phase” Λ  is not observable.  
Consider also by way of contrast, the that the field equations of gravitation are invariant under 
the (similar to (4.1)) gauge transformation }{' νµµνµνµν Λ∂+=→ ggg .  This means that νΛ  is not 
a gravitational observable. 
 So, when ������ =→ FFF '  under the transformation ][' νµµνµνµν GFFF ∂−=→ , this 

means that the non-Abelian vector fields µG  are not observable over any closed 2-D surface 
defined around the magnetic three-form P.  More to the point: these is no net flux of non-Abelian 

vector fields µG  across any closed surface containing P.  In addition, ��������� =→ PPP '  tells 

us that under the same transformation ][' νµµνµνµν GFFF ∂−=→ , the total magnetic charge 
within the specified 3-volume also does not change.  More to the point: this transformations does 
not remove any net magnetic charge out of the specified 3-volume.  All of these consequences 
emerge from 0=�� dG . 

 Finally, let’s return to (3.3), which we expand to the form (see following (1.2)):  
  

[ ] [ ] 0,2 ≠−==== ����������� νµ
µννµ

νµ
νµ dxdxGGGGgidxdxGGgigGiFP . (4.3) 

This is non-zero, which means that there is a net flux across the 2-D surface in the above, of 
whatever physical entities are represented by 2igG ! 
 
 How might all of this relate to QCD confinement? 
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5.  Possible Parallels with Four Main Features of QCD Confinement 
 
 There are four main features of QCD confinement, which appear to parallel the 
development of the previous section.  These parallels are best specified with reference to 
baryons, as follows:  Establish any closed surface over a baryon source density P.  Then: 
 
1)  While gluons may flow within the closed surface across various open surfaces, there can be 
no net flux of gluons in to or out of any closed surface. 
 
This may possibly be represented by 0=�� dG , and the invariance of ������ =→ FFF '  under 

the transformation dGFFF −=→ ' . 
 
2)  While quarks may flow within the closed surface across various open surfaces, there can be 
no net flux of individual quarks in to or out of any closed surface. 
 
This may possibly be represented by the invariance of ��������� =→ PPP '  under the 

transformation dGFFF −=→ ' . 
 
3)  While there can be no net flux of individual quarks in to or out of any closed surface, there 
can indeed be a net flux of quark-antiquark pairs in to or out of any closed surface.  The 
antiquark cancels the quark, thereby averting a net flux, and in this way, quarks do flow in to or 
out of the closed surface, but only paired with antiquarks, as mesons. 
 
This may possibly be represented as 02 ≠�� gGi . 

 
4)  It does not matter how hard or in what manner one “smashes” a baryon, one can still never 
extract a net flux of quarks or a net flux of gluons, but only a large number of meson jets. 
 
This may be possibly represented by the fact that in all of the foregoing, the volume and surface 
integrals apply to any and all closed surfaces.  One can choose a small closed surface, a large 
closed surface, a spherical closed surface, an oblong closed surface, and indeed, a closed surface 
of any shape and size.  The choice of closed surface does not matter.  These mathematical rules 
for what does and does not flow across any closed surface, in fact, thereby impose very stringent 
dynamical constraints on the behaviors of these non-Abelian magnetic sources:  No matter what 
flows across various open surfaces, they may never be a net flux of anything across any closed 
surface.  The only exceptions, which may flow across a closed surface, are physical entities 
represented by 2igG . 
 
 Where is the author going with this? 
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6.  What the Author Believes can be Proven to be True  
 
1.  The magnetic three-form P, and its associated third-rank antisymmetric tensor σµνP , has all 
the characteristics of a baryon current density. 
 
2.  These σµνP , among their other properties, are naturally occurring sources containing exactly 
three fermions.  These constituent fermions are most-sensibly interpreted as quarks. 
 
3.  0=�� dG , or the surface symmetry ������ =→ FFF '  under the transformation 

dGFFF −=→ ' , tells us that there is no net flow of gluons across any closed surface over the 
baryon density. 
 
4.  The volume symmetry  ��������� =→ PPP '  under dGFFF −=→ ' , tells us that there is 

no net flow of quarks across any closed surface over the baryon density. 
 
5.  The physical entities represented by 2igG , when examined in further detail, have the 
characteristics of mesons. 
 
6.  02 ≠�� gGi  tells us that mesons are the only entities which may flow across any closed 

surface of the baryon density. 
 
 But, there is one remaining question of paramount importance: 
 
What about the “Mass Gap”? 
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7.  How do we Fill the Mass Gap? 
 The one question remaining is how the mesons may become massive, given the 
seemingly-massless nature of the gluons.  This is necessary to explain why the nuclear force is 
strong but short-ranged, thereby filling the so-called “mass gap.” 
 This problem may be solved starting with equation (2.3), ( )2*** igGdGdFdJ +== , 

which we have not yet explored in depth here.  Expanded, and with 0=∂ µ
µG , (2.3) is: 

 
[ ] [ ]ν

µ
µνµ

µ
νµ

µ
µν

µ
νµ

µ
µν

µ
ν GGigGGGigGGFJ ∂+∂∂=∂+∂∂−∂∂=∂= ,, , (7.1) 

which we abbreviate, functionally, as ( )νν GFJ = .   
 The trick to solving the mass gap, is to make use of the above-noted symmetries under 

dGFFF −=→ ' , and also, to exactly obtain the inverse relationship ( )νν JFG 1−= .  In QED, 
where the term 2igG  does not exist, and νA , νJ , and µp  are all simple four-vectors, this is 

trivial, because in summary, one starts with νµ
µ

ν AJ ∂∂= , uses µµ iq→∂  to turn this into 

νµ
µ

ν AqqJ −= , and then “inverts,” to obtain ν
µ

µ

ν J
qq

A
1−= , which is also connected in a 

known way to the photon propagator µ
µ

µν

qq

ig
− .  The term µ

µqq  is easily put into the denominator, 

because µ
µqq  is a scalar. 

 Non-Abelian gauge theory is trickier, because a) there is the extra term 2igG , b) the 
µµ

i
iGTG ≡  and µµ

i
i JTJ ≡  are matrices of four-vectors, and not the simple non-matrix four-

vectors νA  and νJ  of QED, c) the four-momentum vectors µµ
i

i pTp ≡  which are analogs of 
µq , are also matrices of four-vectors, and d) because of these matrices, one must be very careful 

to employ commutators when performing the analog to the µµ ip→∂  substitution. 

 But most importantly, the aforementioned matrix character of νA , νJ , and µp  means 

that the νµ
µ

ν AqqJ −=  of QED will migrate over to the form ( ) νν GJ MatrixNN ×=  for SU(N) 

in general, and that one must then obtain the matrix inverse of this MatrixNN ×  to obtain 
( )νν JFG 1−= .  For the special case of SU(2), this is a diagonal matrix with each diagonal 

element identical, so inversion is simple.  This is why it has proven possible to do accurate 
calculations of vector boson masses in weak and electroweak theory.  But for SU(3) and larger, 
this matrix is non-diagonal and non-trivial.  What one normally thinks of as the propagator, is 
now an MatrixNN × , specifically related to the inverse matrix ( ) 1MatrixNN −× .  So, when one 

finally gets to ( )νν JFG 1−= , one has an equation of the form ( ) νν JG 1MatrixNN −×= .  When 

used in amplitudes ( ) ν
µν

µ JgJ 1MatrixNN~ −×� , together with suitable SU(N) scalar 
multiplets which break symmetry similarly to how this is done in electroweak theory, the result 
is that the mesons become massive, they also obtain imaginary mass components which give 
them a short lifetime, the interactions become short range, and the mass gap can be filled.   
 What About Some Pictures?
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8.  Some Feynman-Type Diagrams that Result from all of this 
 
 While we will not show the detailed development here, the above can be developed into 
the following three Feynman-type diagrams: 

 

 

 
Thank you for listening! 


