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Abstract We review the structure of maximal D = 11 and D = 10 supergravities.
Upon dimensional reduction, these theories give rise to the unique maximal su-
pergravities in all lower spacetime dimensions D < 10. In D dimensions, maximal
supergravity exhibits the exceptional global symmetry group E11−D, part of which
is realized as hidden symmetries and only manifest after proper dualization of the
fields. We also briefly review the reformulation of D = 11 supergravity as an excep-
tional field theory which renders the appearance of hidden symmetries manifest.
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1 Introduction

The interest to study supergravity theories in higher dimensions D > 4, and their
dimensional reduction is (at least) twofold. On the one hand supergravity theories
appear as the low-energy effective action for string theories, which generically live
in higher dimensions. On the other hand, from a purely four-dimensional point of
view, the dimensional reduction of higher-dimensional supergravities can be con-
sidered as a powerful technique in order to construct extended D = 4 supergravity
theories, i.e., supergravities with N > 1 supercharges.
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Under dimensional reduction of a minimally supersymmetric theory (i.e., a the-
ory with a single supercharge), the spinor supercharge in general breaks into a num-
ber of lower-dimensional spinors, according to the fundamental spinor represen-
tations of the corresponding Poincaré groups.1 Minimal supersymmetry in higher
dimensions thus induces extended supersymmetry in the reduced theory. For glob-
ally supersymmetric theories, this led to the direct construction of maximally su-
persymmetric D = 4, N = 4 Yang-Mills theory upon dimensional reduction of the
ten-dimensional minimal N = 1 super Yang-Mills theory [2].

For supergravity, eleven is the highest dimension in which the minimal super-
symmetric extension of the Poincaré algebra allows for a supermultiplet of fields of
spin smaller or equal to 2 [3]. For fields with spin larger than 2, interacting theories
with a finite number of fields in general do not exist. Eleven is thus the highest di-
mension in which supergravity can be constructed. The associated interacting theory
is unique and has been found by Cremmer, Julia, and Scherk [4]. Upon dimensional
reduction to D = 4 dimensions, this theory gives rise to maximally supersymmetric
N = 8 supergravity [5, 6]. This is arguably the most remarkable extension of D = 4
Einstein gravity due to its high degree of symmetry and the finiteness properties of
its higher loop amplitudes [7–14].

The detour via eleven dimensions has in fact been an indispensable tool in the
construction of this theory [5, 6], in particular in order to determine the complicated
non-linear interactions between its 70 scalar fields, which had proven an extremely
challenging task within the D = 4 perturbative approach [15]. The other key ingre-
dient in the construction of N = 8 supergravity has been the seminal observation
that the theory admits an unexpectedly large global symmetry group, the exceptional
group E7(7) [5, 6].2 While part of these global symmetries can be understood from
the gauge symmetries of the theory’s higher-dimensional ancestor, a considerable
part of the exceptional symmetries has no direct higher-dimensional interpretation
and is often referred to as hidden symmetries. Their presence is essential for the
realization of the exceptional symmetry group which in turn allows to organize the
couplings of the theory in a remarkably compact way. For example, the scalar sector
of the theory is most concisely described as a non-linear sigma model on the coset
space E7(7)/SU(8).

Subsequently, the presence of hidden symmetries and the appearance of excep-
tional global symmetry groups in maximal supergravity were recognized as part of a
general pattern that has been dubbed the silver rules of supergravity [16–19]. Maxi-
mal supergravity in D = 11−d dimensions exhibits a global symmetry group Ed(d),
realizing the series of exceptional Lie groups in the Dynkin classification, with the
Dynkin diagram of the associated algebra given in Figure 1. For small values of d,
the exceptional series degenerates into the classical Lie groups

1 To get the correct counting, the reality conditions of spinors in the different dimensions of space-
time have to be taken into account, see e.g., [1].
2 The subscript in parentheses in this notation specifies the particular real form of the group: for
E7(7), the associated Lie algebra has 70 non-compact generators and 63 compact generators with
the latter spanning the compact Lie algebra su(8).
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d−1

Fig. 1 The Dynkin diagram of the exceptional Lie algebra ed .

E5(5) ≃ SO(5,5) , E4(4) ≃ SL(5) , E3(3) ≃ SL(3)×SL(2) , (1)

as can be found from properly extrapolating the general Dynkin diagram. Let us
also note that discrete versions Ed(d)(Z) of the exceptional symmetry groups of
supergravity survive in the toroidal compactification of the full string theories [20].

In this chapter, we review the structure of maximal supergravity in eleven di-
mensions, its dimensional reduction, and the appearance of hidden symmetries. To
this end, we first review in section 2 in some detail the field content and dynam-
ics of the maximal supergravities in ten and eleven dimensions. In section 3, we
discuss the toroidal compactification of these theories to lower-dimensional max-
imal supergravities. In particular, we determine the geometric symmetries of the
lower-dimensional theories, i.e., the global symmetries that descend from particular
diffeomorphism and gauge transformations in higher dimensions. Section 4 then re-
views the appearance of hidden global symmetries in lower dimensions. The central
example is D = 4, N = 8 supergravity with its global symmetry group enhanced to
the full exceptional group E7(7). Finally, in section 5, we review the formulation of
11D supergravity as an exceptional field theory [21], which highlights the role of the
full exceptional group in the full 11D supergravity before dimensional reduction.

Throughout this chapter, our discussion of hidden symmetries will mostly be re-
stricted to the bosonic sectors of the supergravity theories. Although the fermionic
field content and couplings are at the very origin of all these theories, the symme-
try enhancement and the appearance of the exceptional symmetry groups can be
realized and studied entirely within their bosonic sectors. In particular, even in pres-
ence of fermions, the exceptional global symmetry algebras do not extend to larger
superalgebras.

2 Maximal supergravity in D = 11 and D = 10 dimensions

2.1 Field content

The highest-dimensional supergravity theory lives in eleven spacetime dimensions
and was constructed by Cremmer, Julia, and Scherk [4]. Its field content is given by
the lowest massless representation of the supersymmetry algebra

{Qα ,Qβ} = 2PM
(
Γ

M
Γ

0)
αβ

, (2)
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where Qα are the 32 independent real supercharges in eleven-dimensional Minkowski
spacetime. PM with M = 0,1, . . . ,10, is the D = 11 momentum, and Γ M are the
so(1,10) gamma matrices. For massless states which fulfill PMPM = 0, the r.h.s. of
(2) describes a projector of half-maximal rank in spinor space. It follows that only
16 out of the 32 supercharges act non-trivially on massless states and satisfy the
Clifford algebra C16, which admits a 28 = 256-dimensional irreducible representa-
tion. The spacetime interpretation of these states is inferred from the embedding of
the massless little group

C16 ⊃ so(16)⊃ so(9) , (3)

according to
256 −→ 128s +128c −→ 44+84+128 . (4)

The 44 corresponds to the symmetric traceless product of two vectors: these are the
degrees of freedom of a massless spin-2 field, the graviton GMN . The 84=

(9
3

)
on the

other hand counts the degrees of freedom a totally antisymmetric massless 3-form
field CKMN , i.e., a field with local tensor gauge symmetry

δCKMN = 3∂[KΛMN] . (5)

The 128 finally corresponds to the degrees of freedom of a massless spin-3/2 field
in eleven dimensions, the gravitino ΨM . The full 11D supergravity multiplet thus is
given by

{GMN ,ψM,CKMN} . (6)

The interacting theory has been constructed in [4] and is reviewed in section 2.2.
The same reasoning shows why supergravity theories do not exist beyond eleven
dimensions: repeating the above analysis for, say, a twelve-dimensional spacetime
with 64 supercharges yields a minimal field content that includes fields with spin
larger than two. No consistent interacting theory for such fields can be constructed
(unless infinitely many fields are included).

A similar analysis yields the field content of D = 10 supergravity. In this case,
the smallest massless representation descends from the Clifford algebra C8 and com-
prises 24 = 16 states. In analogy to (4), they transform as vector and spinor under
the little group SO(8)

16 −→ 8v +8s , (7)

counting degrees of freedom of a ten-dimensional massless vector and a matter
fermion. This is the minimal N = 1 vector multiplet in ten dimensions. The higher
massless multiplets can be found by tensoring (7) with the fundamental representa-
tions of SO(8). This results in the N = 1 supergravity multiplet and two inequiva-
lent gravitino multiplets:

sugra : 8v ⊗ (8v +8s) = 1+28+35v +8c +56c ,

gravitino A : 8c ⊗ (8v +8s) = 8v +56v +8s +56s ,

gravitino B : 8s ⊗ (8v +8s) = 1+28+35s +8c +56c . (8)
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Similar to (4), the physical field content of these multiplets may be inferred from
the representations of the little group. The N = 1 supergravity multiplet carries
the metric, a scalar field (the dilaton) and an antisymmetric 2-form together with
a gravitino and a matter fermion. The interacting theory exists, and upon coupling
to the vector multiplet (7) in the adjoint representation of the gauge group, this
describes the low-energy effective theory of the heterotic string [22].

The first gravitino multiplet in (8) carries a spacetime vector and a 3-form to-
gether with a gravitino and a matter fermion of chirality opposite to the fermions
of the supergravity multiplet. Instead, the second gravitino multiplet carries another
scalar (the axion) and a 2-form together with a self-dual 4-form (the 35s in (8)),
see (30) below. Its fermions are a gravitino and a matter fermion of the same chi-
rality as the fermions of the supergravity multiplet. Coupling of a massless grav-
itino multiplet requires supersymmetry enhancement. The two resulting theories
exist as maximally supersymmetric interacting theories and are denoted as the non-
chiral N = (1,1) type IIA and the chiral N = (2,0) type IIB theory, respectively.
They are the low-energy effective theories for the massless spectrum of IIA and IIB
strings, respectively. The type IIA theory can be obtained by compactifying 11D su-
pergravity on a circle S1 as will be discussed in section 2.3. In contrast, the type IIB
supergravity does not have a higher-dimensional origin and has been constructed
in [23–25]. We will review it in section 2.4.

2.2 11D supergravity

The action of eleven-dimensional supergravity with field content given in (6) has
been constructed in [4]. To quadratic order in the fermions, its Lagrangian extends
the standard combination of Einstein-Hilbert and Rarita-Schwinger term

L0[E,ψ] = |E|R[ω]− 1
2
|E|ψ̄KΓ

KMND[ω]MψN , (9)

by a kinetic, a topological, and a fermionic interaction term for the antisymmetric
3-form field CKMN , given by

LC[E,C,ψ] = − 1
48

|E|FKLMNFKLMN +
1

1442 ε
N0N1...N10 FN0...N3 FN4...N7 CN8N9N10

+
1

192
|E|

(
ψ̄PΓ

KLMNPQ
ψQ +12 ψ̄

K
Γ

LM
ψ

N
)

FKLMN . (10)

Here, |E| denotes the determinant of the eleven-bein EM
A, related to the metric as

GMN = EM
AEN A , (11)



6 Henning Samtleben

with flat Lorentz indices A.3 The gauge invariant abelian field strength is defined as
FKLMN = 4∂[KCLMN]. The totally antisymmetric (numerical) εN0N1...N10 is the Levi-
Civita density. The Chern-Simons term F ∧F ∧C is invariant under tensor gauge
transformations (5) up to a total derivative. The appearance of such topological
terms is a generic feature in higher-dimensional supergravity theories. The full 11D
supergravity Lagrangian is given by

L11D = L0 +LC +Lψ4 , (12)

where the quartic fermion terms of Lψ4 can be formally absorbed into an appropri-
ate modification of the spin connection ω and the 4-form field strength im the ψ2

terms in (9), (10). The full Lagrangian (12) is invariant under the supersymmetry
transformations

δEM
A =

1
4

ε̄Γ
A

ψM , δCKLM =
3
4

ε̄Γ[KLψM] ,

δψM = D[ω]Mε − 1
288

FKLPQ
ΓMKLPQ ε +

1
36

FMNPQ Γ
NPQ

ε , (13)

given up to cubic terms in the fermions. In turn, supersymmetry uniquely fixes all
the terms in (12) and in particular requires the presence of the topological Chern-
Simons term in (10).

Let us still point out two interesting properties of the Lagrangian (12), which
will be important for the appearance of hidden symmetries. First, the field equations
descending from the Lagrangian (12), scale homogeneously under the following
transformation

δEM
A = ζ EM

A , δCKMN = 3ζ CKMN , δψM =
ζ

2
ψM , (14)

with constant ζ . In general spacetime dimension D, this so-called trombone symme-
try is not a symmetry of the action but rescales the Lagrangian as

δL = (D−2)ζ L . (15)

It still plays an important role, e.g., among the spectrum-generating symmetries for
the fundamental BPS solutions [26]. The trombone symmetry is present in all two-
derivative supergravity theories, but is in general broken by higher-order corrections.

Second, the field equations for the 3-form CKLM may be used as integrability
relations which ensure the consistency of the definition of an antisymmetric 6-form
potential CN1...N6 by means of the first-order duality equation

FN1N2...N7 =− 1
24

|E|εN1N2...N7M1M2M3M4FM1M2M3M4 + fermions . (16)

Here, the 7-form field strength is defined as

3 Throughout this chapter, we use spacetime signature (−++ · · ·+).
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FN1N2...N7 = 7∂[N1CN2N3...N7]+
35
2

C[N1N2N3 FN4N5N6N7] , (17)

with a non-trivial Bianchi identity

8∂[N1FN2N3...N8] = 35F[N1N2N3N4 FN5N6N7N8] . (18)

Indeed, hitting (16) with another external derivative and using (18), this equation
reduces to the field equations for the 3-form CKMN , obtained by variation of (10). In
particular, the contribution from the Chern-Simons term in (10) requires the second
term in (17). As a consequence, the 6-form CN1...N6 transforms non-trivially under
the gauge transformations (5). Specifically, its field strength (17) is invariant under
the gauge transformations

δCN1N2...N6 = 6∂[N1ΛN2N3...N6]−30C[N1N2N3 ∂N4ΛN5N6] , (19)

with a new gauge parameter ΛN1...N5 , and ΛMN from (5). This shows that the full
algebra of 11D gauge symmetries is actually non-abelian

[δΛ1 ,δΛ2 ] = δΛ12 , (20)

with the commutator of two 3-form gauge transformations (5), (19), resulting in a
6-form gauge transformation with parameter

Λ12,N1N2...N5 = 15Λ2,[N1N2 ∂N3Λ1,N4N5]−15Λ1,[N1N2 ∂N3Λ2,N4N5] . (21)

The introduction of dual fields, defined by first-order duality equations such as
(16) is a general feature of supergravity theories. In general spacetime dimension D,
the field equations for a given p-form allow the introduction of its dual form of de-
gree (D− p−2), in terms of which Bianchi identities and equations of motion be-
come exchanged. As a consequence, supergravity theories may admit different La-
grangian formulations, which are on-shell equivalent only after relating their fields
by means of duality equations such as (16).4 In particular, there is always a La-
grangian formulation of the theory in which all forms are dualized to the lowest
possible degree. It is in this form that the largest global symmetry group becomes
visible, as we shall see below.

2.3 IIA supergravity

Dimensional reduction of 11D supergravity on a circle S1 yields maximal type IIA
supergravity in ten dimensions [27, 28]. Explicitly, the reduction amounts to impos-
ing independence of all fields on the eleventh coordinate

4 Specifically, in dimensional reductions from 11D supergravity, the lower-dimensional duality
equations are precisely obtained by dimensional reduction of (16).
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∂10GMN = 0 = ∂10CKMN , (22)

together with a standard Kaluza-Klein ansatz for the eleven-dimensional metric5

ds2
(11) = e−φ/6 gµν dxµ dxν + e4φ/3 (dy+Aµ dxµ)2 , (23)

in terms of the ten-dimensional metric gµν , (with indices µ = 0, . . . ,9, labelling
the coordinates of the ten-dimensional spacetime), a dilaton φ , and a Kaluza-
Klein vector Aµ . Similarly, the components of the eleven-dimensional 3-form are
parametrized as

Cµν10 = Bµν , Cµνρ = Aµνρ +3A[µ Bνρ] , (24)

in terms of a 2-form Bµν and a 3-form Aµνρ . Under the eleven-dimensional gauge
transformations (5) these forms transform as

δBµν = 2∂[µΛν ] , δAµνρ = 3∂[µΛνρ]−6A[µ ∂νΛρ] , (25)

respectively, where we denote Λµ = Λµ10 . Accordingly, their gauge invariant field
strengths are defined as

Hµνρ = 3∂[µ Bνρ] , Fµνρσ = 4∂[µ Aνρσ ]+6F[µν Bρσ ] , (26)

where Fµν = 2∂[µ Aν ] denotes the abelian field strength of the Kaluza-Klein vec-
tor from (23). Plugging the reduction ansatz (22), (23), (24), into the supergravity
Lagrangian (12), yields the ten-dimensional Lagrangian of type IIA supergravity

LIIA = |e|R(10)−
1
4
|e|e3φ/2 Fµν Fµν − 1

2
|e|∂µ φ ∂

µ
φ

− 1
48

|e|eφ/2 Fµνρσ Fµνρσ − 1
12

|e|e−φ Hµνρ Hµνρ

+
1

1442 ε
µ0µ1...µ9 Fµ0µ1µ2µ3

(
3Fµ4µ5µ6µ7 Bµ8µ9 −8Hµ4µ5µ6 Aµ7µ8µ9

)
+ fermions . (27)

Here, |e| and R(10) are the determinant of the ten-dimensional vielbein, and the ten-
dimensional Ricci scalar, respectively. The topological term is invariant under gauge
transformations (25) up to a total derivative. The field content of (27) matches the
IIA supergravity multiplet of (8). In particular, reduction of the 11D gravitino gives
rise to two ten-dimensional gravitini of opposite chirality. The IIA supergravity La-
grangian may be equivalently expressed in terms of different fundamental fields
(e.g., using the original components Cµνρ rather than the Aµνρ of (24)). However,
all formulations share the property that the field strength Fµνρσ building the kinetic
term for the 3-form, satisfies a non-trivial Bianchi identity

5 Compared to the general Kaluza-Klein parametrization (45) given below, this ansatz uses a
rescaled dilaton φ → 2

3 φ in order to match some standard conventions of IIA supergravity.
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5∂[µ Fνρστ] = 10F[µν Hρστ] . (28)

Let us also note that the Lagrangian (27) admits a 1-parameter massive deformation
upon deforming the field strengths

Fµν → Fµν +mBµν , Fµνρσ → Fµνρσ +3mB[µν Bρσ ] , (29)

thereby inducing a mass term for the 2-form Bµν [29]. The resulting theory has
an equivalent description in terms of a 9-form gauge potential which reflects the
presence of D8-branes in IIA string theory [30, 31].

2.4 IIB supergravity

As shown in equation (8) above, the bosonic field content of the ten-dimensional
type IIB supergravity comprises the metric, two scalar fields, two 2-form gauge
potentials Cµν

α , α = 1,2, and a selfdual 4-form potential Cµνρσ . Specifically, the
latter satisfies a first-order selfduality equations

Fµνρστ =
1
5!

|e|εµνρστµ1µ2µ3µ4µ5 Fµ1µ2µ3µ4µ5 , (30)

in terms of the field strength

Fµ1...µ5 = 5∂[µ1Cµ2...µ5]−
5
4

εαβ C[µ1µ2
α Fµ3µ4µ5]

β . (31)

Here, εαβ is the antisymmetric tensor in two indices, and

Fµνρ
α = 3∂[µCνρ]

α , (32)

is the abelian field strength for the doublet of 2-forms. IIB supergravity has been
constructed in [23–25]. Selfduality equations such as (30) cannot be derived from
a standard action principle. As a consequence, these equations are often imposed
separately, while the remaining field equations of IIB supergravity are most conve-
niently derived from a so-called pseudo-action with Lagrangian given by

LIIB = |e|R(10)+
1
4
|e|∂µ mαβ ∂

µ mαβ − 1
12

|e|Fµ1µ2µ3
α Fµ1µ2µ3 β mαβ

− 1
30

|e|Fµ1µ2µ3µ4µ5Fµ1µ2µ3µ4µ5

− 1
864

εαβ ε
µ1...µ10Cµ1µ2µ3µ4Fµ6µ7µ8

α Fµ8µ9µ10
β

+ fermions .

(33)
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Here the matrix mαβ denotes a symmetric 2×2 matrix of unit determinant which is
parametrized by the two scalars, φ , C0, of the theory

mαβ =
1

ℑτ

(
|τ|2 −ℜτ

−ℜτ 1

)
αβ

, τ =C0 + ie−φ . (34)

Its inverse is denoted as mαβ = εαγ εβδ mγδ , such that the kinetic term in (33) de-
scribes the sigma model on the coset space SL(2)/SO(2), c.f. section 4.1,

1
4

∂µ mαβ ∂
µ mαβ =−1

2
∂µ φ∂

µ
φ − 1

2
e2φ

∂µC0∂
µC0 . (35)

Type IIB supergravity is manifestly invariant under a global SL(2) symmetry, act-
ing on all indices α,β , inducing a non-linear action on the scalars φ , C0 via (34).
Furthermore, the Lagrangian (33) is invariant under gauge transformations

δCµν
α = 2∂[µΛν ]

α ,

δCµνρσ = 4∂[µΛνρσ ]+
1
2

εαβ Λ[µ
α Fνρσ ]

β ,
(36)

up to total derivatives from variation of the topological term. It is straightforward to
verify that the integrability conditions of the selfduality equations (30) coincide with
the second-order field equations obtained by variation of (33). Various alternative
action principles for IIB supergravity have been put forward in the literature in order
to also derive the selfduality equations (30) from a variational principle, typically
at the expense of introducing additional fields and/or sacrificing manifest (9+1)-
dimensional Lorentz invariance [32–38].

The SL(2) conventions of (33), (34) can be translated into the SU(1,1)/U(1)
conventions of [24] by combining the real components of the doublet Fµνρ

α into a
complex field strength

Fµνρ ≡ Fµνρ
1 + iFµνρ

2 , (37)

and parametrizing the matrix mαβ in terms of a single complex scalar field B as

mαβ ≡ (1−BB∗)−1
(
(1−B)(1−B∗) i(B−B∗)

i(B−B∗) (1+B)(1+B∗)

)
αβ

. (38)

In terms of the complex combinations

Gµνρ ≡ (1−BB∗)−1/2 (Fµνρ −BF∗
µνρ) , Pµ ≡ (1−BB∗)−1

∂µ B , (39)

the kinetic terms of (33) translate into those of [24] with

mαβ Fµνρ
α Fµνρ β = G∗

µνρ Gµνρ ,
1
4

∂µ mαβ ∂
µ mαβ =−2P∗

µ Pµ . (40)
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Let us finally note, that the Lagrangians (27), (33) of type IIA and type IIB super-
gravity coincide when truncated to the common field content {gµν ,φ ,Bµν =Cµν

1},
which is the bosonic part of the N = 1 supergravity multiplet from (8) — or the
NS-NS sector.

3 Toroidal reduction

Maximal supergravities can be obtained by Kaluza-Klein reduction from 11D and
type IIB supergravity. In particular, the reduction of 11D supergravity on a d-
dimensional torus T d yields the maximal ungauged supergravity in D = 11 − d
dimensions. More precisely, for D < 10, this is the unique supergravity theory in
D dimensions with 32 real supercharges and no fields charged under the abelian
gauge group.

In this section, we first discuss the global geometric GL(d) symmetry appearing
after reduction to D dimensions as a remnant of the higher-dimensional diffeomor-
phisms acting on the torus T d . We explicitly perform the dimensional reduction on
a torus, first for pure gravity and next for the p-forms, which typically span the
matter sector of higher-dimensional supergravities. In section 4, we then discuss the
enhancement of the geometric symmetry group by the so-called hidden symmetries.

3.1 Geometric symmetries

The dimensional reduction of supergravity can be performed most conveniently by
using the vielbein formalism, see e.g., [39]. We will first consider the reduction
of pure gravity in an (D+ d)-dimensional spacetime on a d-dimensional torus T d

down to D dimensions. The coordinates of (D+d)-dimensional spacetime are split
according to

xM → (xµ ,ym) , µ = 0, . . . ,D−1 , m = 1, . . . ,d , (41)

and similarly we split the flat Lorentz indices as

A → (a,a) , a = 0, . . . ,D−1 , a = 1, . . . ,d . (42)

In toroidal dimensional reduction, all fields are taken to be independent of the coor-
dinates ym of the d-torus

∂mΦ = 0 . (43)

One may think of a normal mode expansion of the fields and drop all modes other
than the zero modes.

The local Lorentz invariance in (D+ d) dimensions can be used to bring the
vielbein into a triangular form
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E A
M =

(
E a

µ E a
µ

0 E a
m

)
, (44)

which breaks the Lorentz group SO(1,D+d−1) down to SO(1,D−1)×SO(d). It
turns out to be convenient to further parametrize (44) as

E A
M =

(
eγφ eµ

a eφ/d Vm
a Aµ

m

0 eφ/d Vm
a

)
, (45)

with a matrix V a
m ∈ SL(d) of unit determinant, such that eφ = detE a

m . The constant

γ =− 1
D−2

, (46)

is chosen such that plugging (45) into the (D+d)-dimensional Einstein-Hilbert La-
grangian, one finds

L
(D+d)

EH = |E|R(D+d) −→ |e|R(D) + . . . , (47)

where R(D) is the Ricci scalar computed from the D-dimensional vielbein eµ
a. I.e.,

the reduced theory is directly obtained in the Einstein frame (without a dilaton pre-
factor). The ellipsis in (47) represents the matter couplings in the D-dimensional
theory, i.e., the couplings of vector fields Aµ

m and scalar fields φ , Vm
a, from (45).

Before working out the explicit form of these terms, it is instructive to analyze the
symmetries of the lower-dimensional theory (47) .

The D-dimensional theory inherits a number of symmetries from its higher-
dimensional ancestor. Namely, with the vielbein (45) transforming under infinitesi-
mal diffeomorphisms as

δξ EM
A = ξ

N
∂NEM

A +EN
A

∂Mξ
N , (48)

it is straightforward to see that such diffeomorphisms survive in the truncated the-
ory (43) if the diffeomorphism parameter ξ M itself satisfies (43). In particular, dif-
feomorphisms of the type ξ M = {ξ µ(x),0} generate the D-dimensional diffeomor-
phisms on the fields eµ

a, Aµ
n, φ , and Vm

a. On the other hand, under diffeomorphisms
of the type ξ M = {0,ξ m(x)}, the fields Aµ

m transform as

δAµ
m = ∂µ ξ

m(x) , (49)

whereas the graviton and the scalar fields are left inert. This shows that the resulting
theory is an abelian U(1)d gauge theory with gauge fields Aµ

m, while none of the
matter is charged under the gauge group. Accordingly, the vector fields will couple
with a Maxwell-type term in the reduced theory.

A different type of symmetry can be inferred from internal diffeomorphisms lin-
ear in the compactified coordinates ym, i.e., of the form

ξ
m(y) = Λ

m
n yn . (50)
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Despite this dependence on the internal coordinates, the action (48) of such a dif-
feomorphism remains compatible with the truncation (43). Explicitly, this induces
a global symmetry SL(d) acting on the D-dimensional matter fields parametrizing
(45) as

δV a
m = Λ

n
mV a

n , δA m
µ = −Λ

m
n A n

µ , (51)

where we have taken the matrix Λ m
n to be traceless Λ m

m ≡ 0. The trace part of such
transformation is slightly more subtle. With the parametrization (45), an internal
diffeomorphism ξ m(y) ∝ ym also induces a non-trivial action on the D-dimensional
vielbein. It has to be accompanied by the action of the trombone rescaling symmetry
of the (D + d)-dimensional theory, c.f. (14), in order to yield a proper off-shell
symmetry of the D-dimensional theory. The combination of these transformations
induce the action

δφ = −λ , δA m
µ = λ β Aµ

m , β =
D+d −2
d (D−2)

, (52)

with constant λ , on the D-dimensional fields. Together, the transformations (51) and
(52) generate a global GL(d) symmetry of the D-dimensional theory. We will refer
to this group as the geometric symmetries of the theory, as they have their origin in
the diffeomorphisms on the internal torus. Let us stress, that the enhancement from
SL(d) to GL(d) requires the higher-dimensional scaling symmetry (14) and is no
longer realized in the presence of higher curvature corrections.

Finally, local Lorentz invariance is also a symmetry of the higher-dimensional
theory. As mentioned above, the upper triangular form (44) of the vielbein breaks
the original SO(1,D+d−1) down to SO(1,D−1)×SO(d), of which the first factor
acts as D-dimensional Lorentz transformation on eµ

a and the second factor acts as
an additional local symmetry on V a

m

δV a
m =V b

m Λ
a

b (x) , Λ(x) ∈ so(N) . (53)

This shows that not all components of the matrix V a
m correspond to physical scalars

as we make explicit in the following.

3.2 Reduction of pure gravity

For pure gravity, the fields of the D-dimensional theory are the various components
of the higher-dimensional vielbein (45). The global and local symmetries of the
D-dimensional theory, identified in the previous subsection, almost uniquely fix the
form of the resulting two-derivative action. Explicitly, plugging the ansatz (43), (45),
into the (D+d)-dimensional Einstein-Hilbert Lagrangian, yields the completion of
(47)
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L
(D+d)

EH = |E|R(D+d) −→ |e|R(D)−|e|Tr
[
Pµ Pµ

]
−β |e|∂µ φ ∂

µ
φ

− 1
4
|e|e2β φ Mmn Fµν

m Fµν n

+ total derivatives , (54)

with β from (52). The vector fields appear with abelian field strengths given by
Fµν

m = 2∂[µ Aν ]
m and a Maxwell term with the scalar dependent metric

Mmn =Vm
aVn

b
δab . (55)

The scalar fields V a
m describe a coset space sigma model

G/K = GL(d)/SO(d) , (56)

with the sl(d) currents defined by

δ
ac (V−1)c

m
∂µVm

b ≡ Qµ
[ab]+Pµ

(ab) , (57)

and decomposed into their antisymmetric and symmetric parts. The target space
SL(d)/SO(d) is given by

−Tr
[
Pµ Pµ

]
=

1
4

∂µ Mmn ∂
µ(M−1)mn , (58)

with the matrix Mmn from (55). Indeed, this kinetic term is invariant under the local
symmetry transformations (53), showing that the matrix V a

m carries

dim
(
SL(d)

/
SO(d)

)
=

1
2
(d −1)(d +2) , (59)

physical scalar fields.
Up to its relative coefficients, the Lagrangian (54) is the unique two-derivative

Lagrangian for this field content, which is compatible with the global symmetries
(51), (52), as well as with the gauge symmetries (49), (53), whose presence was
deduced from the higher-dimensional diffeomorphism and Lorentz symmetries.

3.3 Reduction of p-forms

The bosonic sector of higher-dimensional supergravities typically combines Ein-
stein gravity with p-form matter couplings, such as the 3-form couplings (10) of
11D supergravity. Upon dimensional reduction on a torus T d , this matter sector
gives rise to additional fields, couplings, and symmetries in the lower-dimensional
theory. Before performing the explicit toroidal reduction of the Lagrangian (10), it is
instructive to first study the behavior of the additional fields w.r.t. the global GL(d)
symmetry (51), (52).
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Although we will mostly be interested in the reduction of a 3-form from 11 di-
mensions, the analysis is straightforward in general spacetime dimensions. Let us
consider a p-form CM1···Mp in (D+ d) spacetime dimensions, such that its various
components give rise to D-dimensional p, p− 1, . . . , (p− d)-forms. The precise
reduction ansatz corresponds to a split in the flat basis (42), i.e., the D-dimensional
k-forms are built as

Aµ1···µk mk+1···mp = Pµ1
M1 · · ·Pµk

Mk CM1···Mk mk+1···mp , (60)

with Pµ
M ≡{δµ

ν ,−Aµ
m} . This ansatz (60) is such that the lower-dimensional fields

remain invariant under the Kaluza-Klein gauge transformations (49). The transfor-
mation behavior of these fields under the global SL(d) symmetry from (51) can be
computed from the action of diffeomorphisms (50) and follows from their index
structure in the internal indices m1, m2, . . . , e.g.,

δAµ mn = Λ
k

m Aµ kn +Λ
k

n Aµ mk , etc.. (61)

Their charge under the GL(1) symmetry from (52) is slightly more tedious to de-
termine, since it involves the (D+d)-dimensional trombone symmetry as discussed
above. One obtains (see e.g., [40])

δλ Aµ1···µk mk+1···mp = −λ

(
pγ +(p− k)β

)
Aµ1···µk mk+1···mp , (62)

with γ and β from (46), (52). The higher-dimensional tensor gauge symmetries

δCM1···Mp = p∂[M1ΛM2···Mp] , (63)

give rise to the lower-dimensional gauge symmetries of the k-forms. Due to the
reduction ansatz (60), these symmetries in general mix forms of different degree
with a non-linear action.

For a sufficiently large torus, i.e., for d ≥ p the reduction (60) adds
(d

p

)
scalar

fields Am1...mp to the scalar sector of the D-dimensional theory. In analogy to (50),
the higher-dimensional tensor gauge transformations linear in the compactified co-
ordinates

Λm1...mp−1(y) = ξm1...mp ymp , (64)

induce additional global shift symmetries

δξ Am1...mp = ξm1...mp , (65)

on these scalar fields. These symmetries enhance the global gl(d) from (51), (52),
to a non-semisimple algebra of the type

gnss = g0 ⊕n+ , (66)

where g0 combines the geometric gl(d) with other potential global symmetries of
the higher-dimensional theory, while the nilpotent n+ combines all the shifts of type
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(65). For example, for reductions from 11D supergravity, g0 = gl(d), whereas for
reductions from IIB supergravity g0 = gl(d)⊕sl(2). The algebra (66) is graded w.r.t.
the gl(1) ⊂ gl(d) of (52), under which g0 are the zero modes. Moreover, it follows
from (62) that all generators of n+ have positive charge under gl(1). We empha-
size once more, that all the global symmetries (66) of the lower-dimensional theory
have a direct geometrical origin by the higher-dimensional local diffeomorphism
and tensor gauge symmetries.

Let us also note that part of the shift symmetries (65) may arise from the dual
higher-dimensional p-forms. For example, we have noted in (16) the existence of
the dual 6-form in 11D supergravity. Upon toroidal reduction on a sufficiently large
torus T d with d ≥ 6, the associated gauge symmetries induce shift symmetries (65)
on the scalar fields descending from the 6-form. This indicates that the full sym-
metry algebra (66) in general is only visible after taking into account all the fields
together with their duals.

Furthermore, the symmetry induced by the gauge transformations (64) does not
only act on scalar fields via the shift (65) but may in general also have a non-trivial
action on some of the p-forms. Consider the gauge transformations (64)

Λm1m2(y) = ξm1m2m3 ym3 , (67)

in 11D supergravity. While they induce the shifts (65) on the scalar fields Am1m2m3 ,
they also have a nontrivial action on the p-forms descending from the dual 6-form
according to its gauge transformation (19). For example, the D-dimensional 3-forms
Cµνρ m1m2m3 , transform as

δCµνρ m1m2m3 =−3
2

Cµνρ ξm1m2m3 , (68)

and similar for the lower-rank forms.
As an illustration for the reduction of p-forms, let us perform the explicit reduc-

tion of the 3-form Lagrangian (10) of 11D supergravity. The reduction ansatz (60)
identifies the D-dimensional scalars, 1-forms, 2-forms, and 3-form as

Amnk = Cmnk ,

Aµ mn = Cµmn −Aµ
k Ckmn ,

Aµν m = Cµνm −2A[µ
n Cν ]mn +Aµ

nAν
k Cmnk ,

Aµνρ = Cµνρ −3A[µ
m Cνρ]m +3A[µ

mAν
n Cρ]mn −Aµ

mAν
nAρ

k Cmnk ,

(69)

in terms of the components of CKLM . The y-independent eleven-dimensional gauge
transformations (63) translate into

δAµmn = ∂µΛmn ,

δAµν m = 2∂[µΛν ]m −Fµν
n
Λmn ,

δAµνρ = 3∂[µΛνρ]−3F[µν
m

Λρ]m ,

(70)
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where the lower-dimensional gauge parameters have been embedded into ΛMN in
analogy to (60). Likewise, the gauge invariant field strengths in D dimensions are
defined via

Fµ1···µk mk+1···m4 = 4Pµ1
M1 · · ·Pµk

Mk ∂[M1C···Mk mk+1···m4] , (71)

and take the explicit form

Fµ nkl = ∂µ Ankl ,

Fµν mn = 2∂[µ Aν ]mn +Fµν
kAkmn ,

Fµνρ m = 3∂[µ Aνρ]m +3F[µν
nAρ]mn ,

Fµνρσ = 4∂[µ Aνρσ ]+6F[µν
mAρσ ]m .

(72)

They satisfy non-standard non-linear Bianchi identities

3∂[µ Fνρ]mn = 3F[µν
kFρ]kmn ,

4∂[µ Fνρσ ]m = 6F[µν
nFρσ ]mn ,

5∂[µ Fνρσλ ] = 10F[µν
mFρσλ ]m .

(73)

Putting everything together, the kinetic term for the 3-form (10) reduces to

L kin = − 1
48

|E|FKLMNFKLMN

= − 1
48

|e|
(

e−6γφ Fµνρσ Fµνρσ +4e−(6γ+2β )φ MmnFµνρ
mFµνρ n

+6e−(6γ+4β )φ MmnMklFµν
mkFµν nl

+4e−(6γ+6β )φ MmnMklMpq
∂

µ Amkp∂µ Anlq

)
,

(74)

with γ and β from (46) and (52), and the scalar dependent matrix Mmn denoting the
inverse of (55). The reduced Lagrangian provides the kinetic terms for the lower-
dimensional forms. It is straightforward to check that the dilaton powers precisely
ensure invariance of the action under the GL(1) scaling symmetry (52), (62). Also
the invariance under constant shifts (65) is manifest.

Finally, reduction of the Chern-Simons term in (10) gives rise to a lengthy topo-
logical term in D dimensions. It is most compactly described by writing the original
Chern-Simons term as the boundary contribution of some twelve-dimensional inte-
gral of

dLtop = F(4)∧F(4)∧F(4) , (75)

and to reduce the r.h.s. of this equation in terms of the different components (72).
The straightforward toroidal reduction of 11D supergravity thus gives a lower-

dimensional theory with a global symmetry group of the type (66) with semisimple
part g0 = gl(d). Before we discuss the further enhancement of the global symmetry
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group by hidden symmetries in the next section, let us briefly spell out the case
d = 2, i.e., the reduction to D = 9 maximal supergravity.

3.4 Maximal D = 9 supergravity

We first consider the case d = 2, i.e., the reduction of 11D supergravity on a two-
torus T 2. From (46) and (52), we find the values β = 9

14 , γ =− 1
7 . From the general

structure given in the previous sections, we read off the resulting Lagrangian in
D = 9 dimensions as the sum of (54), (74), and a nine-dimensional CS term as

L
(9)

EH = |e|R(9)−|e|Tr
[
Pµ Pµ

]
− 7

2
|e|∂µ φ ∂

µ
φ

− 1
4
|e|e3φ Mmn Fµν

m Fµν n − 1
8
|e| e−4φ Fµν Fµν

− 1
12

|e| e−φ MmnFµνρ
mFµνρ n −

1
48

|e|e2φ Fµνρσ Fµνρσ

+Ltop , (76)

where for convenience we have rescaled the dilaton as φ → 7
3 φ and furthermore set

Aµmn = Aµ εmn , Fµνmn = Fµν εmn . (77)

As discussed above, the global symmetry group of this theory is given by

GL(2) = SL(2)×GL(1) , (78)

and there is no further symmetry enhancement, as shift symmetries of the type (65)
are absent.

The remarkable property of the theory (76) is the fact that the very same theory
is obtained by reducing ten-dimensional IIB supergravity on S1. This is consistent
with the fact that only a single maximal supermultiplet exists in D = 9 dimensions.
For the IIB reduction, the origin of the global symmetry (78) is the geometric GL(1)
of the circle, together with the SL(2) symmetry of the IIB theory. The fields from
(76) have different higher-dimensional origin according to the scheme discussed in
sections 3.2, and 3.3 above, specifically

11D : metric:{gµν ,Aµ
m,φ ,Mmn} ,

3-form:{Aµ ,Aµν m,Aµνρ} ,

IIB : metric:{gµν ,Aµ ,φ} , scalars:{Mmn} ,
2-form:{Aµ

m,Aµν m} , 4-form:{Aµνρ} . (79)

The presence of Chern-Simons terms in (12) and (33) is indispensable for the
equivalence of the two theories after toroidal reduction. It gives rise to non-trivial
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Bianchi identities for dual fields (18) akin to those appearing after dimensional
reduction (73), thus allowing for the identification of fields of different higher-
dimensional origin (79). A detailed discussion of D = 9 supergravity and its higher-
dimensional embeddings is given in [41].

4 Hidden symmetries

We have seen in the previous section that toroidal reduction of higher-dimensional
supergravity theories induces lower-dimensional supergravity theories with mani-
fest global symmetries descending from higher-dimensional diffeomorphism and
tensor gauge symmetries, spanning an algebra of the type (66). It is one of the most
remarkable facts about these theories that on top of the geometric symmetries (66),
the lower-dimensional supergravities possess further so-called hidden global sym-
metries which only become apparent after toroidal reduction and proper redefinition
of the fields [6, 16–18].

As part of the general pattern, dubbed the ‘silver rules of supergravity’ [19], the
full algebra of global symmetries of the lower-dimensional supergravity is given by
the extension of (66) into a semisimple algebra

g= n−⊕g0 ⊕n+ . (80)

The hidden symmetries combine into a nilpotent algebra n−, which completes (66)
into a semisimple algebra. W.r.t. gl(d), the generators of n− transform in the rep-
resentation dual to the generators of n+. In particular, they carry negative charge
under gl(1)⊂ gl(d). The fact that the dimension and structure of the algebra of hid-
den symmetries precisely fits the expansion (80) depends of course strongly on the
field content and the couplings of the higher-dimensional supergravity theory. For
generic couplings, no such symmetry enhancement would occur. Already a differ-
ent pre-factor in front of the Chern-Simons term (10) of 11D supergravity would
prevent the symmetry enhancement in all lower-dimensional theories. This is where
supersymmetry comes to play its role, although here we only focus on the bosonic
sectors of theory. For example, the coefficients in (10) allowing the symmetry en-
hancement (80) are precisely the coefficients that were fixed by supersymmetry of
the 11D action.

The global symmetry algebra (80) acts on all fields of the theory. While on the
p-forms its action is necessarily linear as imposed by compatibility with gauge sym-
metry, the action of the hidden symmetries on the scalar fields is in general non-
linear. It is most elegantly described by the isometries of the coset space

G/K , (81)

with G = Lieg, and K its maximal compact subgroup. For maximal supergravity,
the resulting global symmetry groups G build the Ed(d) series of non-compact ex-
ceptional Lie groups in the Dynkin classification, with Dynkin diagram given in
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D G/K
9 GL(2)/SO(2)
8

(
SL(2)×SL(3)

)
/
(
SO(2)×SO(3)

)
7 SL(5)/SO(5)
6 SO(5,5)/

(
SO(5)×SO(5)

)
5 E6(6)/USp(8)
4 E7(7)/SU(8)
3 E8(8)/SO(16)
2 E9(9)/K(E9)

Table 1 Global symmetry groups G and their compact subgroups K in maximal supergravity in
the various spacetime dimensions. For D = 2, the group E9(9) is the (centrally extended) affine
extension of the group E8(8), K(E9) denotes its maximal compact subgroup.

Figure 1 above.6 For small values of d, the series degenerates into the classical Lie
groups

E5(5) ≃ SO(5,5) , E4(4) ≃ SL(5) , E3(3) ≃ SL(3)×SL(2) , (82)

as can be extrapolated from the general Dynkin diagram of Figure 1. The full set of
coset spaces is listed in Table 1.

Before going through the various cases, we first briefly review the structure of
such coset spaces and their isometries.

4.1 Coset spaces

After toroidal reduction, the scalar fields of maximal supergravity theories are most
conveniently described by a coset space sigma model. We have already encountered
this structure in section 3.2 in the reduction of pure gravity on a torus T d with the
scalars parametrizing the target space GL(d)/SL(d) according to (58). Including
the higher-dimensional p-forms, this space gets enhanced by the additional scalar
fields into a larger coset space

GL(d)/SL(d) ↪−→ G/K . (83)

Here, G is the Lie group associated to the algebra g in (80), and K denotes its
maximal compact subgroup. The coset space is described by a representative (or
vielbein) V ∈ G with local gauge invariance

δV = V k(x) , k(x) ∈ k , (84)

6 The subscripts in parentheses in Ed(d) specify the particular real form of the exceptional groups.
Specifically, it denotes the difference between non-compact and compact generators of the asso-
ciated algebra. For maximal supergravity the global symmetry groups always appear in their split
form, i.e., the maximally non-compact form of the group.
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with K = Liek . In analogy to (57), (58), the Lagrangian for the coset space sigma
model is built by decomposing the left invariant scalar currents as

V −1
∂µV = Qµ +Pµ , (85)

with Qµ ∈ k and Pµ ∈ p, according to the orthogonal decomposition

g= k⊕p . (86)

The Lagrangian

Lcoset =−1
2
|e|Tr(Pµ Pµ) , (87)

then is invariant under the gauge transformations (84), under which

δPµ = [Pµ ,k(x)] . (88)

The gauge symmetry (84) can be fixed by imposing a sufficient number of condi-
tions on the vielbein V , such that it is uniquely parametrized by

n = dimG−dimK , (89)

scalar fields, corresponding to a choice of coordinates on the target space (83). The
Lagrangian (87) remains invariant under the global symmetry

δgV = gV −V kg , g ∈ g , kg ∈ k , (90)

combining left multiplication on V with a compensating gauge transformation (84)
in order to restore the fixed gauge. The action (90) describes the infinitesimal action
of the isometry group G on the n coordinates of the target space (83). In particular,
it encodes the action of the global symmetry group G on the fermionic sector of
the theory. Before gauge fixing the local symmetry (84), the fermions of the the-
ory appear as singlets under G but transform under local K transformations (84).
Derivatives are covariantized with the composite connection Qµ from (85). After
gauge fixing, the fermions inherit a non-trivial action of the global symmetry group
G by means of the compensating k-transformation kg ∈ k of (90).

In the context of toroidal reduction of supergravity, a natural gauge fixing for the
vielbein V is the triangular gauge, in which this matrix is put to the form

V = exp(φ aNa)VG0 , VG0 ∈ G0 = Lieg0 , (91)

where the right factor VG0 lives in the Lie group associated with the algebra of zero
charge generators g0 in (80) and the Na denote the generators of the nilpotent alge-
bra n+. The matrix VG0 is built from the internal part of the higher-dimensional
vielbein Vm

a introduced in (45) (together with the other scalars of the higher-
dimensional theory), while the scalars φ a describe the scalars descending from the
higher-dimensional p-forms.
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As a result, the action (90) of g0 induces a linear action on the scalar fields φ a,
in accordance with the representation of the associated generators Na. The action
(90) of n+ does not require a compensating gauge transformation, kn+ = 0, and
induces shift symmetries on the scalars φ a, generating the transformations (65). In
contrast, the action (90) of the hidden symmetries n− induces a compensating gauge
transformation and thereby a non-linear action on the scalar fields.

As an illustration, let us evaluate the transformation (90) for the coset space
SL(2)/SO(2) which appears in the matter sector of various supergravity theories.
With the sl(2) algebra generators given by

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, (92)

the decomposition (80) of the algebra corresponds to

sl(2) = n−⊕g0 ⊕n+ = ⟨f⟩⊕⟨h⟩⊕⟨e⟩ . (93)

Accordingly, the matrix V in triangular gauge (91) can be parametrized as

V = exp(C e)exp( 1
2 φ h) =

(
eφ/2 e−φ/2 C

0 e−φ/2

)
. (94)

The action (90) then induces the transformation

δh φ = 2 , δh C = 2C , δe C = 1 , δf φ =−2C , δf C = e2φ −C2 , (95)

on the scalars φ , C. This shows how the algebra g0 = ⟨h⟩ acts as a scaling symmetry
on the fields, whereas n+ = ⟨e⟩ acts as a shift symmetry on C. The hidden symme-
tries in this example are generated by n− = ⟨f⟩, inducing a non-linear action on the
scalar fields. Let us also note, that the Lagrangian (87) for this example is given by

Lcoset =−1
4
|e|∂µ φ ∂

µ
φ − 1

4
|e|e−2φ

∂µC ∂
µC , (96)

which is invariant under the transformations (95).
This is the coset space that already appears in the ten-dimensional IIB super-

gravity (35) (with C0 =C, φ →−φ ). In lower-dimensional supergravities, this coset
space shows up, for example, in the reduction of D = 5 minimal supergravity on a
circle S1. The bosonic field content of the D = 5 theory comprises the metric and
a single vector field. Its S1 reduction follows the scheme described in sections 3.2,
3.3, with γ = − 1

2 ,β = 3
2 . In D = 4 dimensions, it gives rise to gravity coupled to

two vectors and two scalar fields. According to the symmetry enhancement (80),
the two scalars build an SL(2)/SO(2) sigma model, given by (96). The geometric
symmetries (66) in this example contain the

gl(1) = g0 = ⟨h⟩ , (97)
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whose action (52), (62) on the scalar fields is reproduced by − 1
2 δh in (95). The

same formulas show that the two vector fields arising in this reduction carry charges
(+ 3

2 ) and (+ 1
2 ), respectively, under gl(1). Together with their dual vectors (defined

via the duality equation F̃µν = 1
2 |e|εµνρσ Fρσ in D = 4 dimensions), they fill the

spin- 3
2 representation of SL(2). This illustrates the fact the realization of the full

symmetry group in general involves the original and the dual fields of the theory.
In a similar way, the coset space SL(2)/SO(2) appears as one of the factors of the

scalar target space in D = 8 maximal supergravity, c.f. Table 1, as we shall discuss
in more detail in section 4.2 below.

Yet another example featuring the same global symmetry group SL(2) comes
from the S1 reduction of four-dimensional Einstein gravity. In this case, the geo-
metric scaling symmetry is still (97), but the shift symmetry δe acts on the scalar
that is obtained by dualizing the three-dimensional Kaluza-Klein vector Aµ . The
non-linear action of the hidden symmetry δf in this example was originally discov-
ered in [42], and this SL(2) group goes under the name of the Ehlers group. It is
instructive to spell out some details of this first example of hidden symmetries. The
S1 reduction of D = 4 gravity is described by an ansatz (45) with γ = −1, β = 2.
According to (54), it results in a three-dimensional Lagrangian7

L (3) = |e|R(3)−
1
2
|e|∂µ φ ∂

µ
φ − 1

4
|e|e2φ Fµν Fµν , (98)

which exhibits the GL(1) symmetry (52), scaling the scalar and the vector field. In
three dimensions, vector fields are dual to scalar fields. This is most conveniently
implemented in the Lagrangian (98) by treating Fµν as a fundamental field (instead
of the gauge potential Aµ ) and implementing its Bianchi identity by means of a
Lagrange multiplier C as

L
(3)

parent = |e|R(3)−
1
2
|e|∂µ φ ∂

µ
φ − 1

4
|e|e2φ Fµν Fµν − 1

2
ε

µνρ
∂µ Fνρ C . (99)

The resulting field equations for Fµν are algebraic and can be used to eliminate this
field, leading to the dual Lagrangian

L
(3)

dual = |e|R(3)−
1
2
|e|∂µ φ ∂

µ
φ − 1

2
|e|e−2φ

∂µC∂
µC , (100)

in terms of two scalar fields. This is precisely the coset space sigma model (96).
After dualizing the three-dimensional vector Aµ into a scalar field, the symmetry of
the Lagrangian is thus enhanced to SL(2). Uplifting its action (95) back to D = 4 di-
mensions then induces a ‘hidden’ symmetry of general relativity acting on solutions
with a U(1) isometry.

7 W.r.t. the conventions of (45), (54), we have rescaled φ → φ/2.



24 Henning Samtleben

4.2 D = 8,7,6,5 maximal supergravities

We have seen in section 3.4 that the reduction of 11D supergravity on a two-torus
T 2 leads to maximal D = 9 supergravity whose global symmetries (78) do not in-
clude any hidden symmetries but are limited to the geometric symmetries g0 in (66).
Hidden symmetries appear upon reduction on larger tori.

Let us start with D = 8 maximal supergravity, obtained by reduction of 11D su-
pergravity on T 3 [43]. The necessity of a symmetry enhancement in this theory can
already be deduced from simple group theory considerations. As discussed above,
toroidal reduction of 11D supergravity on a three-torus T 3 yields a theory with man-
ifest geometric symmetries (66)

gl(3)⊕1+ , (101)

where 1+ denotes the one-dimensional algebra n+ generated by shifts (65) on the
scalar descending from the 11D 3-form. On the other hand, it follows from the dis-
cussion of section 3.4 that the same D = 8 supergravity is obtained by reducing IIB
supergravity on a two-torus T 2. In this case, the higher-dimensional origin implies
a global symmetry group (66) (

gl(2)⊕ sl(2)
)
⊕2+ , (102)

where sl(2) is the symmetry of the IIB theory and 2+ denotes the two-dimensional
algebra n+ generated by shifts (65) on the scalars descending from the doublet of
IIB 2-forms. Thus, the full global symmetry algebra of D = 8 supergravity must
unite both, (101) and (102). This is realized by the group

E3(3) ≃ SL(3)×SL(2) , (103)

whose algebra admits the decompositions

e3(3) = sl(3)⊕ sl(2) 11D−→ 1−⊕gl(3)⊕1+ , (104)

e3(3) = sl(3)⊕ sl(2) IIB−→ 2−⊕
(
gl(2)⊕ sl(2)

)
⊕2+ ,

embedding both, (101) and (102), in accordance with (80). With the labelling (92) of
sl(2) generators, the geometric symmetries (101) from 11D supergravity are identi-
fied as

⟨h⟩= gl(1)⊂ gl(3) , ⟨e⟩= 1+ . (105)

The scalars of D= 8 maximal supergravity descend from the internal block of the
11D metric together with the single scalar C descending from the 11D 3-form. The
symmetry enhancement (103) corresponds to the enhancement of the coset space
(56) to

GL(3)/SO(3) ↪−→ (SL(3)/SO(3))× (SL(2)/SO(2)) . (106)
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In particular, the determinant of the internal metric combines with the scalar C into
an SL(2)/SO(2) coset space sigma model, similar to the example of minimal D = 5
supergravity discussed after (96) above. As another non-trivial consequence of the
symmetry enhancement, the vector fields of D = 8 supergravity

{Aµ
m,Aµ mn} , m,n = 1,2,3 , (107)

descending from the 11D metric and 3-form, respectively, combine into an SL(2)
doublet, i.e., span the (3,2) representation of SL(3)×SL(2). Indeed, one may check
with (52), (62), and the identification (105) that these fields have opposite charges
± 1

2 under h ∈ sl(2). Moreover, under e, acting as shift symmetry (65) on the scalar
C, the vectors Aµ mn transform into Aµ

m, as follows from the higher-dimensional
embedding (69). The D = 8, 2-forms Aµν m have zero charge under h ∈ sl(2) and
remain SL(2) singlets. For the D = 8, 3-form, the symmetry enhancement can only
be made visible upon including the dual fields. To this end, consider the 3-form
Aµνρ descending from the 11D three form, together with its dual

Ãµνρ =
1
6

Aµνρ kmn ε
kmn , (108)

descending from the 11D 6-form.8 Equation (62) shows that they have opposite
charges ± 1

2 under h while (68) shows how they are mapped into each other under
the action of e. This shows that the 3-form Aµνρ together with its dual, forms a
doublet under the SL(2). Once more, this illustrates that the realization of the full
enhanced symmetry group in general involves the original and the dual fields of the
theory.

For the lower-dimensional maximal supergravities, the symmetry enhancement
proceeds in an analogous way. For D = 7 maximal supergravity [44], the geometric
symmetries enhance to an E4(4) = SL(5) global symmetry group, with the decom-
positions (80) corresponding to9

e4(4) = sl(5) 11D−→ 4′−⊕gl(4)⊕4+ , (109)

e4(4) = sl(5) IIB−→ (3′,2)−⊕
(
gl(3)⊕ sl(2)

)
⊕ (3,2)+ ,

respectively, depending on the higher-dimensional origin.
For D = 6 maximal supergravity [45], the geometric symmetries enhance to an

E5(5) = SO(5,5) global symmetry group, with the decompositions (80) correspond-
ing to

e5(5) = so(5,5) 11D−→ 10′−⊕gl(5)⊕10+ , (110)

e5(5) = so(5,5) IIB−→ (1,1)−2 ⊕ (6,2)−1 ⊕
(
gl(4)⊕ sl(2)

)
⊕ (6,2)+1 ⊕ (1,1)+2 ,

8 Equivalently, in D = 8 dimensions the two 3-forms are related by a first-order duality equation
of the form F̃µ1...µ4 =

1
24 |e|εµ1...µ8 Fµ5...µ8 , obtained by dimensional reduction of (16).

9 For the SL(d) groups, we use the notation R′ to denote the dual representation to R.
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respectively, depending on the higher-dimensional origin. The shift symmetries
(6,2)+1 and (1,1)+2 in the IIB decomposition are realized on the scalars descending
from the IIB 2-forms and 4-form, respectively.

For D = 5 maximal supergravity [46], the geometric symmetries enhance to an
E6(6) global symmetry group, with the decompositions (80) corresponding to

e6(6)
11D−→ 1−2 ⊕20−1 ⊕gl(6)⊕20+1 ⊕1+2 , (111)

e6(6)
IIB−→ (5′,1)−2 ⊕ (10,2)−1 ⊕

(
gl(5)⊕ sl(2)

)
⊕ (10′,2)+1 ⊕ (5,1)+2 ,

respectively, depending on the higher-dimensional origin. The shift symmetry 1+2
is realized on the scalar descending from the 11D 6-form. Recall that this form
is not present in the original 11D Lagrangian (12). I.e., after reduction of (12) to
D = 5 dimensions, the full scalar coset space sigma model E6(6)/USp(8) can only
be realized after dualizing the 3-form Aµνρ , descending from the 11D 3-form, into
a scalar field.10

We refer to [47] for a systematic discussion of the maximal supergravities in
various dimensions, together with their symmetries, and their eleven-dimensional
origin.

4.3 D = 4 maximal supergravity

Let us discuss in a little more detail the case of D = 4 maximal supergravity. His-
torically, this was the first example of exceptional symmetry groups appearing in
supergravity theories and playing an essential role in their explicit construction. The
field content of this theory is the massless N = 8 supergravity multiplet{

gµν ,ψµ
i,Aµ

Λ ,χ i jk,φ i jkl
}
, i = 1, . . . ,8 , Λ = 1, . . . ,28 , (112)

which comprises the graviton, 8 gravitinos, 28 vector fields, 56 spin-1/2 fermions,
and 70 scalar fields. The complete theory was obtained in [6] by dimensional reduc-
tion of the 11D supergravity on a seven-torus T 7 and realizing the exceptional sym-
metry group E7(7). As discussed in section 3.2, the reduction of pure gravity from
eleven dimensions down to D = 4 dimensions yields a gravitational theory with
seven abelian vector fields Aµ

n, n = 1, . . . ,7, and 1+27 scalar fields, parametrizing
the coset space GL(7)/SO(7). The dimensional reduction of the antisymmetric 3-
form to D = 4 dimensions as described in section 3.3 gives rise to one 3-form field,
seven 2-form fields,

(7
2

)
= 21 vectors and additional

(7
3

)
= 35 scalar fields. A priori,

the field content thus looks quite different from the N = 8 multiplet (112). Includ-
ing the (normalized) GL(1) charges from (52), (62), we find the four-dimensional
bosonic field content

10 The corresponding D = 5 duality equation follows from dimensional reduction of (16).
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gµν : 10 ,

φ : 10 +270 +35−2

Aµ : 7′+3 +21+1 ,

Aµν : 7+4 ,

Aµνρ : 1+7 , (113)

with the fields (other than the GL(7)/SO(7) scalars) falling into linear GL(7) rep-
resentations. Reduction of the 11D Lagrangian (12) yields the sum of (54) and (74),
together with the reduction of the 11D CS term. The symmetries of the resulting
action span the algebra

gl(7)⊕35′+2 , (114)

where the 35′+2 generators induce the shift symmetries (65) on the scalars descend-
ing from the 11D 3-form. In order to make contact with the N = 8 supergravity
multiplet, and realize the symmetry enhancement (80), we need to first dualize the
2-forms Aµν m into scalar fields (put equivalently, we trade them for the correspond-
ing scalars Am1...m6 descending from the dual 11D 6-form). With the associated shift
symmetries (65), the algebra of manifest global symmetries enhances to (66)

gl(7)⊕35′+2 ⊕7+4 . (115)

The non-trivial algebra structure of the charged generators directly descends from
the 11D gauge algebra (21).

The dynamics of the resulting set of 70 scalar fields is described by a sigma
model on the coset space

G/K = E7(7)/SU(8) ⊃ GL(7)/SO(7) , (116)

according to (87). The symmetry enhancement from (115) to e7(7) is realized along
the lines discussed in the previous sections: decomposing E7(7) according to its gl(1)
grading, the algebra splits into the form (80)

e7(7)
11D−→ 7′−4 ⊕35−2 ⊕gl(7)⊕35′+2 ⊕7+4 , (117)

with the generators of non-negative charge spanning (115). The negative grading
generators correspond to the hidden symmetries that are present after reduction
to four dimensions but have no manifest origin in 11D supergravity. An explicit
parametrization of the coset space (116) in terms of the 11D fields is given in the
triangular gauge (91) as

V ≡ exp
[
ε

klmnpqrAklmnpq t(+4)r

]
exp

[
Akmn tkmn

(+2)

]
VGL(7) . (118)

Here, VGL(7) ∈ GL(7) is the internal block of the 11D metric (up to some power
of its determinant), whereas the t(+n) refer to the E7(7) generators of positive grad-
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ing in (117). For convenience, all generators are evaluated in the fundamental 56
representation. Under the global symmetry e7(7), the vielbein transforms as (90), in-
ducing a non-linear action on the scalar fields. The bosonic sector of the theory can
be formulated in terms of the symmetric, positive definite matrix

MMN = VM
AVN

A , (119)

on which e7(7) acts by conjugation. In particular, the coset space sigma model (87)
can be written as

L =
1
8
|e|∂µ(M

−1)MN
∂

µMMN . (120)

In order to realize the global E7(7) symmetry on the vector fields, we have to
combine the 28 vector fields of (113) with their magnetic duals into the irreducible
56 of E7(7)

56 → 7−3 +21′−1 +21+1 +7′+3 . (121)

Once more, this illustrates that the realization of the full enhanced symmetry group
involves the original and the dual fields of the theory. The dynamics of the vector
fields is described by the E7(7) covariant twisted self-duality equation

Fµν
M = −1

2
|e|εµνρσ Ω

MNMNK Fρσ K , (122)

for the abelian field strengths Fµν
M = 2∂[µ Aν ]

M , and MNK from (119). Here, Ω MN

is the constant antisymmetric E7(7)-invariant symplectic tensor which establishes
the embedding E7(7) ⊂ Sp(28,28). In particular, the relation

Ω
KLMLMΩ

MNMNP =−δ
K

P , (123)

is necessary for consistency of (122). The full bosonic sector of maximal D = 4
supergravity can be compactly described by a pseudo-Lagrangian

LD=4 = |e|
(

R+
1
48

∂µ(M
−1)MN

∂
µMMN − 1

8
MMN Fµν MFµν

N
)
, (124)

combined with the twisted self-duality equation (122). Both, the Lagrangian (124)
and equation (122) are manifestly E7(7) covariant. However, (124) yields only a
pseudo-Lagrangian of the theory in that the twisted self-duality equation (122) does
not follow from the variational principle but has to be imposed separately. Only
its derivative coincides with the second-order equation for the vector fields that is
obtained by variation of (124).

A standard action principle of the theory can only be spelled out after sacrificing
the manifest E7(7) invariance and splitting the 56 vector fields into 28+28 as

Aµ
M = {Aµ

Λ , Aµ Λ} . (125)
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An action can then be constructed in terms of half of the fields Aµ
Λ considered

as independent propagating (electric) fields, while the Aµ Λ are defined via (122) as
their on-shell (magnetic) duals [48]. This is achieved by replacing the Maxwell term
of (124) by the Lagrangian

Lvector =
1
4
|e|IΛΣ Fµν

Λ Fµν Σ +
1
8

ε
µνρσ RΛΣ Fµν

Λ Fρσ
Σ , (126)

in terms of the 28 abelian field strengths Fµν
Λ , with the symmetric kinetic matrices

IΛΣ and RΛΣ related to the matrix M from (119) as

M ≡ −
(

I +RI −1R −RI −1

−I −1R I −1

)
, (127)

in the split (125). In particular, IΛΣ is negative definite, such that the kinetic term in
(126) comes with the correct sign. This yields a true action principle for the bosonic
sector of D= 4 maximal supergravity, whose off-shell symmetry however is reduced
to a subgroup of E7(7) whereas the full E7(7) global symmetry is realized only on-
shell. A similar pattern is observed in all even-dimensional maximal supergravities
in D < 10.

Different choices for the electric/magnetic split (125) correspond to different
electric frames and can be related by symplectic rotation. These give rise to different
off-shell formulations of the theory. In particular, the off-shell symmetry group de-
pends on the particular choice of the electric frame. Choosing the 28 electric vectors
to be

7′+3 +21′−1 : AΛ
µ = {Aµ

m,Aµ
mn} , (128)

among the 56 vectors (121), the symmetry of the Lagrangian (126) is given by the
electric subgroup SL(8)⊂ E7(7), with the vectors (128) spanning its irreducible 28-
dimensional representation.

Finally, the 3-form in (113) is non-propagating and can be consistently set to
zero in the dimensional reduction. Strictly speaking, however, its field equations
only imply that its field strength is constant and may be set to an arbitrary value.
Keeping this integration constant produces a one-parameter deformation of the
maximally supersymmetric theory [49]. It breaks the global E7(7) symmetry and
closer inspection shows that this integration constant is only one component of an
irreducible 912-dimensional representation E7(7) [50]. Switching on other param-
eters within this representation leads to different maximally supersymmetric theo-
ries which generically have non-abelian gauge groups and matter charged under the
gauge group; these deformations are the so-called gauged supergravities and may
correspond to more complicated compactifications in the presence of background
fluxes and/or geometric fluxes, see [51] for a review. In particular, these theories in-
clude the compactification of eleven-dimensional supergravity on the seven-sphere
S7, which gives rise to a four-dimensional theory with compact non-abelian gauge
group SO(8) [52].
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Let us finally note that maximal D = 4 supergravity can of course also be ob-
tained by reduction of the IIB theory on a six-torus T 6. In this case, the decomposi-
tion (80) of the algebra is given by

e7(7)
IIB−→ (1,2)−3 ⊕ (15′,1)−2 ⊕ (15,2)−1 ⊕

(
gl(6)⊕ sl(2)

)
⊕ (15′,2)+1 ⊕ (15,1)+2 ⊕ (1,2)+3 , (129)

and the shift symmetries (15′,2)+1, (15,1)+2, and (1,2)+3 are realized on the
scalars descending from the IIB 2-forms, 4-form and dual 6-forms, respectively.

4.4 Lower-dimensional supergravities

The symmetry enhancement and appearance of exceptional symmetry groups con-
tinues and becomes even more intricate with maximal supergravities in lower di-
mensions. For D = 3 maximal supergravity [53], the geometric symmetries enhance
to an E8(8) global symmetry group, with the decomposition (80) corresponding to

e8(8)
11D−→ 8−3 ⊕28′−2 ⊕56−2 ⊕gl(8)⊕56′+1 ⊕28+2 ⊕8′+3 . (130)

The shift symmetries 56′+1, and 28+2 are realized on the scalars descending from the
11D 3-form and dual 6-form, respectively. A new feature arising in the reduction to
D= 3 dimensions is the fact that the realization of the full symmetry algebra requires
the dualization of the 8 Kaluza-Klein vector fields Aµ

m (45) into scalar fields φm. We
have already encountered this in the example of the SL(2) Ehlers symmetry (100)
which is embedded as a subgroup into the E8(8) of (130). The dual scalar fields
encountered in D > 3 supergravities have all been identified among the components
of the 11D dual 6-form. In contrast, the higher-dimensional interpretation of the
φm is more subtle, as they should be identified with components of the 11D ‘dual
graviton’ [54, 55], whose proper definition beyond the linearized theory and before
dimensional reduction remains ambiguous. The shift symmetries 8′+3 in (130) act
on these dual scalars φm, and the full bosonic sector of the theory is given by a
gravity coupled sigma model on the coset space E8(8)/SO(16). For completeness,
let us also note the decomposition (80) of E8(8) w.r.t. IIB supergravity

e8(8)
IIB−→ (7,1)−4 ⊕ (7′,2)−3 ⊕ (35′,1)−2 ⊕ (21,2)−1 ⊕

(
gl(7)⊕ sl(2)

)
⊕ (21′,2)+1 ⊕ (35,1)+2 ⊕ (7,2)+3 ⊕ (7′,1)+4 . (131)

In the reduction to D = 2, the structures become even richer. Extrapolating the
exceptional series of Lie algebras with Dynkin diagram given by Figure 1 defines
the infinite-dimensional algebra e9(9) as the (centrally extended) loop algebra ê8(8).
This algebra naturally acts on infinite-dimensional representations which are built
by the infinite towers of dual scalar fields that are defined on-shell by repeatedly
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dualizing the 128 scalar fields that appear in the reduction of 11D supergravity.
These physical scalars together with the infinite tower of dual potentials can be cast
into the coset space E9(9)/K(E9) with a well-defined action of the e9(9) symmetry
algebra. We refer to [17, 56–61] for details.

The large global symmetry groups appearing in low dimensions have been of
practical use in order to generate solutions of the higher-dimensional theories.
While we have seen that part of the global symmetries (66) after toroidal reduc-
tion descends from the action of particular higher-dimensional diffeomorphisms and
gauge transformations, the hidden symmetries combined in the algebra n− in (80)
do not have a direct higher-dimensional interpretation. A solution of the higher-
dimensional field equations with a sufficient number of commuting Killing vector
fields induces a solution of the lower-dimensional theory on which the action of
the full symmetry group associated with (80) can be explicitly computed. Lifting
the result back to higher dimensions then produces a genuinely new solution to the
higher-dimensional field equations. It is in this context of solution generating meth-
ods in Einstein gravity that hidden symmetries have first been discovered in D = 3
reductions [42, 62–64], as well as in the infinite-dimensional case in D = 2 reduc-
tions [65–69], see [70] for a review. The larger the group of hidden symmetries, the
larger is the orbit of newly generated solutions. In supergravity, the hidden symme-
tries from D = 3 reductions have been exploited as solution generating techniques
for the construction of black hole and black ring solutions in higher dimensions, see
e.g., [71–73].

Let us finally mention that the extrapolation to yet higher d > 9 leads to the over-
extended and very-extended Kac-Moody algebras e10 and e11, respectively, which
each have been conjectured in different context to play a fundamental role in the full
11D supergravity [55, 74].

5 Exceptional field theory

We have seen in the preceding sections that the global symmetry groups of lower-
dimensional maximal supergravity theories are only partially explained by the dif-
feomorphism and gauge symmetries of 11D supergravity. In particular, after dimen-
sional reduction of (12), it is only after dualization of some of the lower-dimensional
fields that the full global symmetry group Ed(d) becomes manifest. In this final sec-
tion, we briefly review the reformulation of 11D supergravity as an exceptional field
theory (ExFT) [21]. As an illustration, we focus on the example of E7(7) ExFT [75].
In this formulation, dimensional reduction of the higher-dimensional theory directly
leads to the Lagrangian (124) and equations of motion (122), in which the global
exceptional symmetry E7(7) is manifest.

Starting from 11D supergravity, we may perform a decomposition of fields (45)
and (60), as appropriate for dimensional reduction on T 7, and rewrite the theory in
terms of the various components, without however imposing (43), i.e., keeping the
full eleven-dimensional coordinate dependence of all fields. This is akin to a Kaluza-
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Klein compactification of the 11D theory in which all the Kaluza-Klein towers of
massive fields are kept. From the four-dimensional point of view, this corresponds
to a theory with infinitely many fields, compactly encoded in the dependence of
all fields on the internal coordinates ym. As a standard structure of Kaluza-Klein
theory, the resulting theory comes with an infinite-dimensional non-abelian gauge
structure, corresponding to the diffeomorphisms and gauge symmetries on the inter-
nal space. After dualization of fields, following the steps of section 4.3,11 this leads
to a formulation of the bosonic field content in terms of the E7(7) fields{

gµν ,MMN ,Aµ
M}

, µ,ν = 0, . . . ,3 , M = 1, . . . ,56 , (132)

in alignment with the field content of D = 4 maximal supergravity, except for all
fields keeping their dependence on the internal coordinates ym. In particular, MMN
still is a matrix of type (119), representing the coset space E7(7)/SU(8). Its vielbein
(119) is parametrized as (118) in terms of the 11D fields. On top of these fields, the
formulation requires 2-forms of the type{

Bµν α ,Bµν M
}
, α = 1, . . . ,133 , (133)

also depending on all coordinates. Here, α is an index in the adjoint representation
of E7(7), while the 56 2-forms Bµν M satisfy algebraic constraints

(tα)K
M

Ω
NK Bµν MBρσ N = 0 = Ω

MN Bµν MBρσ N , (134)

where (tα)K
M denote the generators of the algebra e7(7).

The 11D field equations can be written in terms of the objects (132), (133).
Remarkably, the resulting equations can equivalently be derived from first princi-
ples based on the infinite-dimensional gauge structure of the theory. To this end,
the internal coordinates are embedded into an extended spacetime with coordinates
transforming in the fundamental 56 of E7(7). The original physical coordinates are
recovered as the solution of an E7(7)-covariant section constraint. On the extended
spacetime, the original diffeomorphisms and gauge symmetries are unified into gen-
eralized diffeomorphisms [77–86], which provide the organizing structure for the
construction of the theory.

Specifically, the action of generalized diffeomorphisms on the scalar matrix
MMN is of the form [81, 82]

δΛ MMN = LΛ MMN = Λ
K

∂KMMN +24∂LΛ
K PK

L
P
(M MN)P . (135)

11 In the reduction to D = 4 discussed in section 4.3, dualization always refers to abelian vectors
and p-forms. Here, the non-abelian structure related to the dependence on internal coordinates does
not pose an obstruction to the dualization but can be compensated by Stückelberg-type couplings
to higher degree forms, as is common in gauged supergravity [51, 76]. In particular, this is the
underlying reason for extending the bosonic field content to (133).
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Here, PK
L

P
M is the projector on the adjoint representation of E7(7), which takes the

explicit form12

PK
M

L
N = (tα)M

K(tα)N
L (136)

=
1
24

δM
K

δN
L +

1
12

δM
L
δN

K +(tα)MN(tα)KL − 1
24

ΩMNΩ
KL .

The 56 components of the gauge parameter Λ M in (135) combine the gauge sym-
metries associated with the vector fields (121). I.e., 7+21 of the gauge symmetries
descend from the 11D diffeomorphisms and tensor gauge transformations, respec-
tively, while the other half is associated with the dual vector fields.

The coordinate dependence of all fields and gauge parameters is constrained by
the so-called section constraint. The latter imposes an embedding of the physical
coordinates ∂m ↪−→ ∂M imposing that every couple of fields (Φ1,Φ2) satisfies

(tα)K
M

Ω
NK

∂MΦ1∂NΦ2 = 0 = Ω
MN

∂MΦ1∂NΦ2 , (137)

similar to (134). This is an E7(7)-covariant way of stating that only 7 out of the
formally 56 derivatives ∂M appearing in (135) actually have a non-trivial action, as
compatible with the eleven-dimensional nature of the original theory. It is straight-
forward to check that the algebra of generalized diffeomorphisms (135) only closes
under the assumption of (137).

Not unexpectedly, there are in fact two inequivalent maximal solutions to (137)
that restrict the dependence of all fields to 7 and 6 coordinates, respectively. They
correspond to 11D and IIB supergravity, respectively, which are thus both embed-
ded into the same exceptional field theory. Specifically, the solutions to the section
constraint (137) are based on the decompositions (117) and (129), respectively, of
e7(7) and correspond to the embedding of internal coordinates ∂m ↪−→ ∂M realized
according to13

11D : e7(7) −→ gl(7)

56 −→ 7−3 +21′−1 +21+1 +7′+3 ,

IIB : e7(7) −→ gl(6)⊕ sl(2)

56 −→ (6,1)−4 +(6′,2)−2 +(20,1)0 +(6,2)+2 +(6′,1)+4 . (138)

Invariance under local gauge transformations (135) in ExFT is implemented by co-
variant derivatives

Dµ = ∂µ −LAµ
, (139)

12 For the raising and lowering of symplectic indices, we use North-West South-East conventions,
i.e., ZM = Ω MNZN and ZM = ZNΩNM .
13 The fact that these embeddings provide solutions to (137) can immediately be inferred from the
gl(1) gradings.
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with the vector fields Aµ
M from (132) transforming as

δΛ Aµ
M = ∂µΛ

M −Aµ
K

∂KΛ
M +12∂KAµ

LPK
L

M
N Λµ

N − 1
2

Λ
M

∂KAµ
K

= DµΛ
M . (140)

In turn, the gauge covariant field strength is given by

Fµν
M = 2∂[µAν ]

M −2A[µ
K

∂KAν ]
M −12(tα)MK(tα)NL A[µ

N
∂KAν ]

L (141)

− 1
2

Ω
MK A[µ

N
∂KAν ]N −12(tα)MN

∂NBµν α − 1
2

Ω
MNBµν N .

While the non-abelian part of the field strength immediately follows from the al-
gebra of generalized diffeomorphisms (135), the Stückelberg-type couplings to the
2-forms of (133) are required by gauge covariance since the algebra is a Leibniz
rather than a Lie algebra.

The dynamics of E7(7) ExFT is described by a twisted self-duality equation for
these non-abelian field strengths which directly generalizes the corresponding equa-
tion of the D = 4 theory (122)

Fµν
M =−1

2
|e|εµνρσ Ω

MNMNK F ρσ K . (142)

Similar to the D= 4 theory, the remaining field equations of E7(7) ExFT are obtained
from a pseudo-action whose Lagrangian is directly modeled after (124) as

LExFT7 = |e|
(
R+

1
48

gµνDµ(M
−1)MN DνMMN − 1

8
MMNF µν MFµν

N
)

+Ltop −|e|V (g,M ) , (143)

upon introducing an internal coordinate dependence for all fields and rendering all
terms invariant under the action of generalized diffeomorphisms (135), (140).

Here, the Einstein-Hilbert term is constructed from the modified Ricci scalar R,
constructed from the external metric gµν however using covariant derivatives

Dµ gνρ = ∂µ −Aµ
K

∂Kgνρ −∂KAµ
K gνρ . (144)

Similarly, the scalar kinetic term in (143) is a gauged sigma model with covari-
ant derivatives defined by (139), (135). The Yang-Mills term is built from the field
strengths (141), while the non-abelian topological term is most compactly defined
as the boundary contribution of a five-dimensional integral over

dLtop ∝ ΩMN F M ∧DF N , (145)

with the covariant derivative DF N defined as in (140). Finally, the potential term
V (g,M ) in (143) is given by
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V (g,M ) = − 1
48

M MN
∂MM KL

∂NMKL +
1
2
M MN

∂MM KL
∂LMNK

− 1
4
|e|−1

∂M|e|∂NM MN − 1
16

M MN |e|−2
∂M|e|∂N |e|

− 1
4
M MN

∂Mgµν
∂Ngµν .

(146)

Although not manifest, this term can be shown to be invariant under generalized
diffeomorphisms (135) up to total derivatives. It may be thought of as the analogue
of a Ricci scalar on the extended internal spacetime [81].

By construction, all terms in (143) are separately invariant under generalized dif-
feomorphisms (135), (140). Moreover, the relative coefficients among these terms
are uniquely fixed by further demanding invariance under properly defined external
diffeomorphisms. The latter are generated by vectors ξ µ , which however also de-
pend on the internal coordinates. Invariance under generalized internal and external
diffeomorphisms thus uniquely fixes the dynamics of E7(7) ExFT.

After picking a solution (138) of the section constraint, the field equations ob-
tained from (142) and (143) precisely reproduce the field equations of 11D and IIB
supergravity, respectively. Moreover, also massive IIA supergravity, c.f. (29), can
be reproduced upon further deformation of the gauge structures [87, 88]. All these
theories are thus united within a common framework. Moreover, after dimensional
reduction ∂M → 0 this formulation directly yields the D= 4 theory (122), (124), with
the global symmetry group E7(7) manifest. This makes ExFT a natural framework
for the study of duality and solution generating transformations, see e.g., [89–91].
Moreover, with the higher-dimensional fields already re-arranged such as to fit the
fields of the lower-dimensional theory, E7(7) ExFT (143) is precisely tailored for
the study of reductions to D = 4 dimensions. It has been a particularly powerful
tool for the construction of consistent trunctions [92, 93] and the computation of
Kaluza-Klein spectra around four-dimensional backgrounds [94].

Exceptional field theories have been constructed for all finite-dimensional duality
groups Ed(d) (i.e., for d ≤ 8) [21, 36, 75, 95–99]. Just as (143), the respective actions
are modeled after the structure of the (11−d)-dimensional maximal supergravities,
lifting all fields to an extended spacetime (subject to the section contraint), with the
non-abelian gauge structure induced by the infinite-dimensional algebraic structure
of generalized diffeomorphisms. For d > 8, the exceptional field theory based on
the infinite-dimensional affine algebra e9(9) has been constructed in [100, 101]. Ex-
trapolating the structures all the way to the very-extended Kac-Moody algebra e11,
a master formulation has been given in [102]. This also allows to make contact with
the E11 conjectures of [55, 103, 104] and the E10 conjecture of [74].

Let us finally note that although we have restricted here to a discussion of the
bosonic sector, the ExFT construction can be extended to the fermionic sector in
a unique way such that supersymmetry can be realized [83, 105–108]. It is how-
ever interesting to note that, as stated above, in this framework, the bosonic sector
is already uniquely determined by imposing purely bosonic symmetries, the gener-
alized internal and external diffeomorphisms. This of course is directly related to
the observation discussed after (80) that the appearance of hidden symmetries relies
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on the exact bosonic couplings determined by supersymmetry. Why supersymmetry
precisely selects the couplings that give rise to the symmetry enhancement and the
exceptional groups still remains somewhat of a mystery and continues to challenge
our understanding of the fundamental symmetries of supergravity.
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