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Abstract

Over the last two decades, many unexpected relations between exotic smoothness,
e.g. exotic R4, and quantum field theory were found. Some of these relations are rooted
in a relation to superstring theory and quantum gravity. Therefore one would expect
that exotic smoothness is directly related to the quantization of general relativity. In
this article we will support this conjecture and develop a new approach to quantum
gravity called smooth quantum gravity by using smooth 4-manifolds with an exotic
smoothness structure. In particular we discuss the appearance of a wildly embedded
3-manifold which we identify with a quantum state. Furthermore, we analyze this
quantum state by using foliation theory and relate it to an element in an operator
algebra. Then we describe a set of geometric, non-commutative operators, the skein
algebra, which can be used to determine the geometry of a 3-manifold. This operator
algebra can be understood as a deformation quantization of the classical Poisson algebra
of observables given by holonomies. The structure of this operator algebra induces
an action by using the quantized calculus of Connes. The scaling behavior of this
action is analyzed to obtain the classical theory of General Relativity (GRT) for large
scales. This approach has some obvious properties: there are non-linear gravitons, a
connection to lattice gauge field theory and a dimensional reduction from 4D to 2D.
Some cosmological consequences like the appearance of an inflationary phase are also
discussed. At the end we will get the simple picture that the change from the standard
R4 to the exotic R

4 is a quantization of geometry.
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1 Introduction

On the 25-th of November in 1915, Einstein presented his field equations, the basic equations
of General Relativity, to the Prussian Academy of Sciences in Berlin. This equation had
a tremendous impact on physics, in particular on cosmology. The essence of the theory
was expressed by Wheeler by the words: Spacetime tells matter how to move; matter tells
spacetime how to curve. Einsteins theory remained unchanged for about 40 years. Then one
started to investigate theories fulfilling Mach’s principle leading to a variable gravitational
constant. Brans-Dicke theory was the first realization of an extended Einstein theory with
variable gravitational constant (Jordans proposal was not widely known). All experiments
are, however, in good agreement with Einstein’s theory and currently there is no demand to
change it.

General relativity (GR) has changed our understanding of space-time. In parallel, the
appearance of quantum field theory (QFT) has modified our view of particles, fields and
the measurement process. The usual approach for the unification of QFT and GR to a
quantum gravity, starts with a proposal to quantize GR and its underlying structure, space-
time. There is a unique opinion in the community about the relation between geometry
and quantum theory: The geometry as used in GR is classical and should emerge from a
quantum gravity in the limit (Planck’s constant tends to zero). Most theories went a step
further and try to get a space-time from quantum theory. Then, the model of a smooth
manifold is not suitable to describe quantum gravity, but there is no sign for a discrete space-
time structure or higher dimensions in current experiments [41]. Therefore, we conjecture
that the model of spacetime as a smooth 4-manifold can be used also in a quantum gravity
regime, but then one has the problem to represent QFT by geometric methods (submanifolds
for particles or fields etc.) as well to quantize GR. In particular, one must give meaning to
the quantum state by geometric methods. Then one is able to construct the quantum theory
without quantization. Here we implicitly assumed that the quantum state is real, i.e. the
quantum state or the wave function has a real counterpart and is not a collection of future
possibilities representing some observables. Experiments [75, 28, 83] supported this view.
Then the wave function is not merely representing our limited knowledge of a system but it
is in direct correspondence to reality! Then one has to go the reverse way: one has to show
that the quantum state is produced by the quantization of a classical state. It is, however,
not enough to have a geometric approach to quantum gravity (or the quantum field theory
in general). What are the quantum fluctuations? What is the measurement process? What
is decoherence and entanglement? In principle, all these questions have to be addressed too.

Here, the exotic smoothness structure of 4-manifolds can help finding a way. A lot of
work was done in the last decades to fulfill this goal. It starts with the work of Brans and
Randall [32] and of Brans alone [29, 30, 31] where the special situation in exotic 4-manifolds
(in particular the exotic R4) was explained. One main result of this time was the Brans
conjecture: exotic smoothness can serve as an additional source of gravity. I will not present
the whole history where I refer to Carl’s article. Here I will list only some key results which
will be used in the following

• Exotic smoothness is an extra source of gravity (Brans conjecture is true), see As-
selmeyer [5] for compact manifolds and S ladkowski [86, 87] for the exotic R4. Therefore
an exotic R4 is always curved and cannot be flat!

• The exotic R4 cannot be a globally hyperbolic space (see [40] for instance), i.e. repre-
sented by M × R for some 3-manifold. Instead it admits complicated foliations [17].
Using non-commutative geometry, we are able to study these foliations (the leaf space)
and get relations to QFT. For instance, the von Neumann algebra of a codimension-
one foliation of an exotic R4 must contain a factor of type III1 used in local algebraic
QFT to describe the vacuum [11, 13, 19].
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• The end of R4 (the part extending to infinity) is S3 × R. If R4 is exotic then S3 × R

admits also an exotic smoothness structure. Clearly, there is always a topologically
embedded 3-sphere but there is no smoothly embedded one. Let us assume the well-
known hyperbolic metric of the spacetime S3 × R using the trivial foliation into leafs
S3 × {t} for all t ∈ R. Now we demand that S3 × R carries an exotic smoothness
structure at the same time. Then we will get only topologically embedded 3-spheres,
the leafs S3 × {t}. These topologically embedded 3-spheres are also known as wild
3-spheres. In [14], we presented a relation to quantum D-branes. Finally we proved in
[16] that the deformation quantization of a tame embedding (the usual embedding) is
a wild embedding1. Furthermore we obtained a geometric interpretation of quantum
states: wild embedded submanifolds are quantum states. Importantly, this construc-
tion depends essentially on the continuum, because wild embedded submanifolds admit
always infinite triangulations.

• For a special class of compact 4-manifolds we showed in [20] that exotic smoothness
can generate fermions and gauge fields using the so-called knot surgery of Fintushel
and Stern [51]. In the paper [10] we presented an approach using the exotic R4 where
the matter can be generated (like in QFT).

• The path integral in quantum gravity is dominated by the exotic smoothness contri-
bution (see [6, 50, 80] or by using string theory [12]).

The paper is organized as follows. In the following three sections we will explain exotic
4-manifolds and motivate the whole approach by using the path integral for the Einstein-
Hilbert action. Here we will also present how to couple the matter and gauge fields to
this theory. For a 4-manifold, there are two main invariants the Euler and Pontrjagin class
which determine the main topological invariant of a 4-manifold, the intersection form. In
section 5, we will obtain the Einstein-Hilbert and Holst action by using these two classes. At
the first view, this section is a little bit isolated from the previous and subsequent sections
but we will use this result later during the study of the scaling. In the main section 6,
we will construct the foliation of an exotic R4 of codimension (equivalent to a Lorentz
structure). Following Connes, [42] the leaf space is an operator algebra constructed from
the geometrical information of the foliation (holonomy groupoid). This operator algebra is
a factor III von Neumann algebra and we will use the Tomita-Takesaki modular theory to
uncover the structure of the foliation. It is not the first time that this factor was used for
quantum gravity and we refer to the paper [22] for a nice application. States in this operator
algebra are represented by equivalence classes of knotted curves (element of the Kauffman
bracket skein module). The reconstruction of the spatial space from the states gives a wild
embedded 3-sphere as geometrical representation of the state. Surprisingly, it fits with the
properties of the exotic R4. If one introduces a global foliation of the exotic R4 by a global
time then one obtains a foliation into wild embedded 3-spheres. In contrast, if one uses
a local but complicate foliation then this wild object can be omitted and one obtains a
state given by a finite collection of knotted curves. Interestingly, the operator algebra can
be understood as observable algebra given by a deformation quantization (Turaev-Drinfeld
quantization [97, 98]) of the classical observable algebra (Poisson algebra of holonomies a
la Goldman [61]). In section 7, we will use the splitting of the operator algebra (10) given
by Tomita-Takesaki modular theory to introduce the dynamics (see Connes and Rovelli
[44] with similar ideas). Finally we will obtain a quantum action (15) in the quantized
calculus of Connes [43]. Then the scaling behavior is studied in the next section. For large
scales, the action can be interpreted as a non-linear sigma model. The renormalization
group (RG) flow analysis [56] gives the Einstein equations for large scales. The short-scale

1A wild embedding is a topological embedding I : N → M so that the image I(N) ⊂ M is an infinite
polyhedron or the triangulation needs always infinitely many simplices.
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analysis is much more involved, yielding for small fluctuations the Einstein-Hilbert action
and a non-minimally coupled scalar field. In particular, we will obtain a (2+ǫ)−dimensional
fractal structure. In section 9 we will present some direct consequences of this approach:
the nonlinear graviton [79], a relation to lattice gauge field theory with a discussion of
discreteness and the appearance of dimensional reduction from 4D to 2D. In section 10 we
will discuss the answer to a fundamental question: where does the quantum fluctuations
come from? The main result of this section can be written as: The set of canonical pairs
(as measurable variables in the theory) forms a fractal subset of the space of all holonomies.
Then we can only determine the initial condition up to discrete value (given by the canonical
pair) and the chaotic behavior of the foliation (i.e. the Anosov flow) makes the limit not
predictable. This interesting result is followed by a section where we will discuss the collapse
of the wavefunction by the gravitational interaction by calculating the minimal decoherence
time. Furthermore we will discuss entanglement and the measurement process. In section
12 we will list our work in cosmology which uses partly the results of this paper. In the
last section 13, we will discuss some consequences and open questions. Some mathematical
prerequisites are presented in three appendices.

This article is dedicated to my only teacher, Carl H. Brans for 20 years of collaboration
and friendship. He is the founder of this research area. We had and will have many inter-
esting discussions. Carl always asked the right question and put the finger on many open
points. During the 7 years of writing our book, we had a very fruitful collaboration and I
learned so much to complete even this work. Carl, I hope for many discussions with you in
the future. I’m very glad to count on your advice. Happy Birthday!

2 What is Exotic Smoothness?

Why am I going to concentrate on a concept like exotic smoothness? Einstein used the
equivalence principle as a key principle in the development of general relativity. Every
gravitational field can be locally eliminated by acceleration. Then, the spacetime is locally
modeled as subsets of the flat R4 or the equivalence principle enforces us to use the concept
of a manifold for spacetime. Together with the smoothness of the dynamics (usage of differ-
ential equations), we obtain a smooth 4-manifold as model for the spacetime in agreement
with the current experimental situation. A manifold consists of charts and transition func-
tions forming an atlas which covers the manifold completely. The smooth atlas is called the
smoothness structure of the manifold. It was an open problem for a long time whether every
topological manifold admits a unique smooth atlas. In 1957, Milnor found the first coun-
terexample: the construction of a 7-sphere with at least 8 different smoothness structures.
Later it was shown that all manifolds of dimension larger than 4 admit only a finite number
of distinct smoothness structures. The real breakthrough for 4-manifolds came in the 80’s
where one constructed infinitely many different smoothness structures for many compact
4-manifolds (countably infinite) and for many non-compact 4-manifolds (uncountably infi-
nite) including the R4. In all dimensions smaller than four, there is only one smoothness
structure (up to diffeomorphisms), the standard structure. The standard R4 is simply char-
acterized by the unique property to split smoothly like R4 = R × R × R × R. All other
distinct smoothness structures are called exotic smoothness structures. These structures are
different, nonequivalent, smooth descriptions of the same topological manifold, a different
atlas of charts. In case of the exotic R4, the difference is tremendous: the standard R4 needs
one chart (and every other description can be reduced to it) whereas every known exotic R4

admits infinitely many charts (which cannot be reduced to a simpler description). So, the
spacetime exhibits a much larger complexity by using an exotic smoothness structure, but
why is dimension 4 so special? There is a good description in [55] and I will give a short
account now. At first we have to discuss the question: how do I build an atlas for a smooth
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manifold? The answer is given by considering the construction of diffeomorphisms. Every
diffeomorphism is locally given by the solution of ~̇x = −∇f(~x) for a real function f over the
manifold. The fixed points of this equation are the critical points of f . In case of isolated
critical points, one can reproduce the structure of the manifold (this is called Morse theory).
Every critical point leads to the attachment of a handle, a submanifold like Dn−k ×Dk, i.e.
the k−handle (where Dk is the k−disk). In many cases, the corresponding structure of the
manifold, the handle body, can be very complicated but there are rules (handle sliding) to
simplify them. In all dimensions except dimension 4. Therefore, two handle bodies can be
described by the same 4-manifold topologically but differ in the smooth description.

3 The Main Example: Exotic R4

One of the most surprising aspects of exotic smoothness is the existence of exotic R4’s. In
all other dimensions [88], the Euclidean space Rn with n 6= 4 admits a unique smoothness
structure, up to diffeomorphisms. Beginning with the first examples [66], Taubes [93] and
Freedman/DeMichelis [47] constructed countably many large and small exotic R4’s, respec-
tively. A small exotic R4 embeds smoothly in the 4-sphere whereas a large exotic R4 cannot
be embedded in that way. For the following we need some simple definitions: the connected
sum # and the boundary connected sum ♮ of manifolds. Let M,N be two n-manifolds
with boundaries ∂M, ∂N . The connected sum M#N is the procedure of cutting out a disk
Dn from the interior int(M) \ Dn and int(N) \ Dn with the boundaries Sn−1 ⊔ ∂M and
Sn−1 ⊔ ∂N , respectively, and gluing them together along the common boundary component
Sn−1. The boundary ∂(M#N) = ∂M ⊔ ∂N is the disjoint sum of the boundaries ∂M, ∂N .
The boundary connected sum M♮N is the procedure of cutting out a disk Dn−1 from the
boundary ∂M \Dn−1 and ∂N \Dn−1 and gluing them together along Sn−2 of the boundary.
Then the boundary of this sum M♮N is the connected sum ∂(M♮N) = ∂M#∂N of the
boundaries ∂M, ∂N .

3.1 Large Exotic R4

Large exotic R4 can be constructed using the failure to arbitrarily split a compact, simply-
connected 4-manifold. For every topological 4-manifold one knows how to split this manifold
topologically into simpler pieces using the work of Freedman [53]. Donaldson [48], however,
that some of these 4-manifolds do not exist as smooth 4-manifolds. This contradiction
between the continuous and the smooth case produces the first examples of exotic R4.
Below we discuss one of these examples.

One starts with a compact, simply-connected 4-manifold X classified by the intersection
form [53]

QX : H2(X,Z)×H2(X,Z)→ Z

a quadratic form over the second integer homology group. In the first construction of a large
exotic R4, one starts with the K3 surface as 4-manifold having the intersection form

QK3 = E8 ⊕ E8 ⊕ (⊕3

(

0 1
1 0

)

) := 2E8 ⊕ 3H (1)
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with the the matrix E8:

E8 =

























2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

























.

The work of Donaldson [48] shows that a closed, smooth, simply-connected, compact 4-
manifold XE8⊕E8

with intersection form E8 ⊕ E8 does not exist. Freedman [53] showed,
however, that there is a topological splitting

K3 = XE8⊕E8
#
(

#3(S2 × S2)
)

(2)

with the m−times connected sum #m (see above) which fails to be smooth. This splitting
means that we glue together the two manifolds #3(S2 × S2) \D4 and XE8⊕E8

\D4 along
the common boundary S3 = ∂D4 (D4 is the 4-disk or 4-ball). Now we define the interior
X = #3(S2 × S2) \ IntD4. The splitting (2) gives a way to represent the 3H part of the
intersection form (1) by using X but that fails smoothly. So, choosing a topological splitting

K3 = XE8⊕E8
#
(

#3(S2 × S2)
)

=
(

XE8⊕E8
\D4

)

∪
(

S3 × [0, 1]
)

∪
(

#3(S2 × S2) \D4
)

gives a S3 × [0, 1] inside the K3. The interior of S3 × [0, 1] defines a manifold S3 × [0, 1)
glued to a (topological) 4-disk D4 ⊂ #3(S2 × S2) \ D4 along the common boundary, i.e.
W = D4 ∪ S3 × [0, 1) topologically. W is homeomorphic to R4 but the non-existence of
the smooth splitting implies that it is an exotic R4 and there is no smooth embedded S3

(otherwise the topological splitting is smooth). This failure for a smooth embedding implies
also that such exotic R4’s do not embed in the 4-sphere, i.e. it is a large exotic R4. The
details of the construction can be found in our book [8] (section 8.4).

Gompf [64] introduced an important tool for finding new exotic R4 from others, the
end-sum ♮e. Let R,R′ be two topological R4’s. The end-sum R♮eR

′ is defined as follows:
Let γ : [0,∞) → R and γ′ : [0,∞) → R′ be smooth properly embedded rays with tubular
neighborhoods ν ⊂ R and ν′ ⊂ R′, respectively. For convenience, identify the two semi-
infinite intervals with [0, 1/2), and (1/2, 1] leading to diffeomorphisms, φ : ν → [0, 1/2)×R3

and φ′ : ν′ → (1/2, 1]× R3. Then define

R♮eR
′ = R ∪φ I × R3 ∪φ′ R′

as the end sum of R and R′. With a little checking, it is easy to see that this construction
leads to R♮eR

′ as another topological R4. However, if R,R′ are themselves exotic, then so
will R♮eR

′ and in fact, it will be a “new” exotic manifold, since it will not be diffeomorphic
to either R or R′. Gompf used this technique to construct a class of exotic R4’s none of
which can be embedded smoothly in the standard R4.

By an extension of Donaldson theory for a special class of open 4-manifolds, so-called
end-periodic 4-manifolds, Taubes [93] gives a continuous family of exotic R4 which was
extended by Gompf to a continuous 2-parameter family Rs,t.

3.2 Small Exotic R4

Small exotic R4’s are again the result of anomalous smoothness in 4-dimensional topology
but of a different kind than for large exotic R4’s. In 4-manifold topology [53], a homotopy-

7



equivalence between two compact, closed, simply-connected 4-manifolds implies a homeo-
morphism between them (a so-called h cobordism), but Donaldson [49] provided the first
smooth counterexample, i.e. both manifolds are generally not diffeomorphic to each other.
The failure can be localized in some contractible submanifold (Akbulut cork) so that an
open neighborhood of this submanifold is a small exotic R4. The whole procedure implies
that this exotic R4 can be embedded in the 4-sphere S4. Below we discuss the details for
one of these examples.

In 1975 Casson (Lecture 3 in [39]) described a smooth 5-dimensional h-cobordism between
compact 4-manifolds and showed that they “differ” by two proper homotopy R4’s (see below).
Freedman knew, as an application of his proper h-cobordism theorem, that the proper
homotopy R4’s were R4. After hearing about Donaldson’s work in March 1983, Freedman
realized that there should be exotic R4’s and, to find one, he produced the second part
of the construction below involving the smooth embedding of the proper homotopy R4’s
in S4. Unfortunately, it was necessary to have a compact counterexample to the smooth
h-cobordism conjecture, and Donaldson did not provide this until 1985 [49]. The idea of
the construction is simply given by the fact that every such smooth h-cobordism between
non-diffeomorphic 4-manifolds can be written as a product cobordism except for a compact
contractible sub-h-cobordism V , the Akbulut cork. An open subset U ⊂ V homeomorphic
to [0, 1] × R4 is the corresponding sub-h-cobordism between two exotic R4’s. These exotic
R4’s are called ribbon R4’s. They have the important property of being diffeomorphic to
open subsets of the standard R4. That stands in contrast to the previous defined examples
of Kirby, Gompf and Taubes.

To be more precise, consider a pair (X+, X−) of homeomorphic, smooth, closed, simply-
connected 4-manifolds. The transformation from X− to X+ visualized by a h-cobordism
can be described by the following construction.
Let W be a smooth h-cobordism between closed, simply connected 4-manifolds X− and X+.
Then there is an open subset U ⊂W homeomorphic to [0, 1]×R4 with a compact subset K ⊂
U such that the pair (W \K,U \K) is diffeomorphic to a product [0, 1]×(X−\K,U∩X−\K).
The subsets R± = U ∩X± (homeomorphic to R4) are diffeomorphic to open subsets of R4.
If X− and X+ are not diffeomorphic, then there is no smooth 4-ball in R± containing the
compact set Y± = K ∩R±, so both R± are exotic R4’s.
Thus, remove a certain contractible, smooth, compact 4-manifold Y− ⊂ X− (called an
Akbulut cork) from X−, and re-glue it by an involution of ∂Y−, i.e. a diffeomorphism
τ : ∂Y− → ∂Y− with τ ◦ τ = Id and τ(p) 6= ±p for all p ∈ ∂Y−. This argument was modified
above so that it works for a contractible open subset R− ⊂ X− with similar properties, such
that R− will be an exotic R4 if X+ is not diffeomorphic to X−. Furthermore R− lies in a
compact set, i.e. a 4-sphere or R− is a small exotic R4. In the next subsection we will see
how this results in the construction of handle bodies of exotic R4. In [47] Freedman and
DeMichelis constructed also a continuous family of small exotic R4.

3.3 Main Property of (Small) Exotic R4

One of the characterizing properties of an exotic R4 (all known examples) is the existence
of a compact subset K ⊂ R4 which cannot be surrounded by any smoothly embedded
3-sphere (and homology 3-sphere bounding a contractible, smooth 4-manifold). Let R4

be the standard R4 (i.e. R4 = R3 × R smoothly) and let R4 be a small exotic R4 with
compact subset K ⊂ R4 which cannot be surrounded by a smoothly embedded 3-sphere.
Then every completion N(K) of an open neighborhood N(K) ⊂ R4 is not bounded by a
3-sphere S3 6= ∂N(K). However, R4 is a small exotic R4 and there is a smooth embedding
E : R4 → R4 in the standard R4. Then the completion of the image E(R4) has the boundary
S3 = ∂E(R4) as subset of R4. So, we have the strange situation that an open subset of
the standard R4 represents a small exotic R4. In case of the large exotic R4, the situation
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is much more complicated. A large exotic R4 does not embed in any smooth 4-manifold
which is simpler than the manifold used for the construction of this exotic R4. Above we
considered the example of a large exotic R4 constructed from a K3 surface. Therefore this
large exotic R4 embeds in the K3 surface but not in simpler 4-manifolds like CP 2.

3.4 Handle decomposition of the small exotic R4 and Casson han-
dles

As of now, we only know of exotic R4’s represented by an infinite number of coordinate
patches. This naturally makes it difficult to provide an explicit description of a metric.
However, in [9], a suggestion to overcome this limitation is provided by the consideration
of periodic explicitly described coordinate patches making use of more complex pieces, so-
called handles, and even more complex gluing maps. Then one also gets infinite structures
of handles but with a clear picture: the coordinate patches have a periodic structure.

Handles Every 4-manifold can be decomposed using standard pieces such as Dk×D4−k,
the so-called k-handle attached along ∂Dk ×D4−k to the 0−handle D0 ×D4 = D4. In the
following we need two possible cases: the 1-handle D1 × D3 and the 2-handle D2 × D2.
These handles are attached along their boundary components S0 × D3 or S1 × D2 to the
boundary S3 of the 0−handle D4 (see [68] for the details). The attachment of a 2-handle
is defined by a map S1 ×D2 → S3, the embedding of a circle S1 into the 3-sphere S3, i.e.
a knot. This knot into S3 can be thickened (to get a knotted solid torus). The important
fact for our purposes is the freedom to twist this knotted solid torus (so-called Dehn twist).
The (integer) number of these twists (with respect to the orientation) is called the framing
number or the framing. Thus the gluing of the 2-handle on D4 can be represented by a
knot or link together with an integer framing. The simplest example is the unknot with
framing ±1 representing the complex projective space CP 2 or with reversed orientation

CP
2
, respectively. The 1-handle will be glued by the map of S0 ×D3 → S3 represented by

two disjoint solid 2-spheres D3. Akbulut [2] introduced another description. He observed
that a 1-handle is something like a cut-out 2-handle with a fixed framing. We remark that
all details can be found in [68]. Now we are ready to discuss the handle body decomposition
of an exotic R4 by Bizaca and Gompf [24].

Handle decomposition of small exotic R4 First it is very important to notice that
the exotic R4 is the interior of the handle body described below (since the handle body
has a non-null boundary and is compact). The construction of the handle body can be
divided into two parts. The first part is a submanifold consisting of a pair of a 1- and a
2-handle. This pair can be canceled topologically by using a Casson handle and we obtain
the topological 4-disk D4 with R4 as interior. This submanifold is a smooth 4-manifold with
a boundary that can be covered by a finite number of charts. The smoothness structure of
the exotic R4, however, depends mainly on the infinite Casson handle.

Casson handle Now consider the Casson handle and its construction in more detail.
Briefly, a Casson handle CH is the result of attempts to embed a disk D2 into a 4-manifold.
In most cases this attempt fails and Casson [39] looked for a substitute, which is now called
a Casson handle. Freedman [53] showed that every Casson handle CH is homeomorphic to
the open 2-handle D2 × R2 but in nearly all cases it is not diffeomorphic to the standard
handle [63, 65]. The Casson handle is built by iteration, starting from an immersed disk
in some 4-manifold M , i.e. an injective smooth map D2 → M. Every immersion D2 → M
is an embedding except on a countable set of points, the double points. One can kill one
double point by immersing another disk into that point. These disks form the first stage of
the Casson handle. By iteration one can produce the other stages. Finally consider not the
immersed disk but rather a tubular neighborhood D2 ×D2 of the immersed disk including
each stage. The union of all neighborhoods of all stages is the Casson handle CH . So,
there are two input data involved with the construction of a CH : the number of double
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Figure 1: Link picture for the compact subset K

points in each stage and their orientation ±. Thus we can visualize the Casson handle CH
by a tree: the root is the immersion D2 → M with k double points, the first stage forms
the next level of the tree with k vertices connected with the root by edges etc. The edges
are evaluated using the orientation ±. Every Casson handle can be represented by such an
infinite tree. The Casson handle CH(R+) having an immersed disk with one (positively
oriented) self-intersection (or double point) is the simplest Casson handle represented by
the simplest tree T+ having one vertex in each level connected by one edge with evaluation
+.

3.5 Small Exotic R4 as a Sequence of 3-Manifolds

One of the characterizing properties of an exotic R4 (all known examples) is the existence
of a compact subset K ⊂ R4 which cannot be surrounded by any smoothly embedded 3-
sphere (and homology 3-sphere bounding a contractible, smooth 4-manifold). Let R4 be the
standard R4 (i.e. R4 = R3 × R smoothly) and let R4 be a small exotic R4 with compact
subset K ⊂ R4 which cannot be surrounded by a smoothly embedded 3-sphere. Then
every completion N(K) of an open neighborhood N(K) ⊂ R4 is not bounded by a 3-sphere
S3 6= ∂N(K), but R4 is a small exotic R4 and there is a smooth embedding E : R4 → R4 in
the standard R4. Then the completion of the image E(R4) has the boundary S3 = ∂E(R4)
as subset of R4. So, we have the strange situation that an open subset of the standard R4

represents a small exotic R4.
Now we will describe R4. Historically it was constructed by using a counterexample

of the smooth h-cobordism theorem [49, 24]. Then the compact subset K is given by a
non-canceling 1-/2-handle pair. The attachment of a Casson handle CH cancels this pair
topologically. Then one obtains the 4-disk D4 with interior R4, but this cancellation of
the 1/2-handle pair cannot be done smoothly and one obtains a small exotic R4 which is
schematically given by R4 = K∪CH . Remember R4 is a small exotic R4, i.e. R4 is embedded
into the standard R4 by definition. The completion R̄4 of R4 ⊂ R4 has a boundary given by
the 3-manifold Yr. There is also the possibility to construct Yr directly as the limit n→∞ of
a sequence {Yn} of 3-manifolds. To construct this sequence of 3-manifolds [59], one can use
the Kirby calculus, i.e. one represents the compact subset K by 1- and 2-handles pictured
by a link say LK where the 1-handles are represented by a dot (so that surgery along this
link gives K) [68]. Then one attaches a Casson handle to this link [24]. As an example see
Figure 1.

The Casson handle is given by a sequence of Whitehead links (where the unknotted
component has a dot) which are linked according to the tree (see the right figure of Figure
2 for the building block and the left figure for the simplest Casson handle given by the
unbranched tree).

For the construction of a 3-manifold which surrounds the compact K, one considers
n−stages of the Casson handle and transforms the diagram to a real link (the dotted com-
ponents are changed to usual components with framing 0). By handle manipulations one
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Figure 2: Building block of every Casson handle (right) and the simplest Casson handle
(left).

Figure 3: Pretzel knot (−3, 3,−3) or the knot 946 in Rolfson notation producing the 3-
manifold Y1 by 0−framed Dehn surgery.

obtains a knot so that the n-th (untwisted) Whitehead double of this knot represents the
desired 3-manifold (by using surgery). Then our example in Figure 1 will result in the n-th
untwisted Whitehead double of the pretzel knot (−3, 3,−3), Figure 3 (see [59] for the handle
manipulations).

Then this sequence of 3-manifolds

Y1 → Y2 → · · · → Y∞ = Yr

characterizes the exotic smoothness structure of R4. The limit of this sequence n→∞ gives
a wild embedded 3-manifold Yr whose physical relevance will be explained later.

4 Motivation: Path Integral Contribution by Exotic
Smoothness

Here, we will motivate the appearance of exotic smoothness by discussing the path integral
for the Einstein-Hilbert action. For simplicity, we consider general relativity without mat-
ter (using the notation of topological QFT). Space-time is a smooth oriented 4-manifold M
which is non-compact and without boundary. From the formal point of view (no divergences
of the metric) one is able to define a boundary ∂M at infinity. The classical theory is the
study of the existence and uniqueness of (smooth) metric tensors g on M satisfying the Ein-
stein equations subject to suitable boundary conditions. In the first order Hilbert–Palatini
formulation, one specifies an SO(1, 3)-connection A together with a cotetrad field e rather
than a metric tensor. Fixing A|∂M at the boundary, one can derive first order field equations
in the interior (now called bulk) which are equivalent to the Einstein equations provided that
the cotetrad is non-degenerate. The theory is invariant under space-time diffeomorphisms
M → M . In the particular case of the space-time M = S3 × R (topologically), we have to
consider smooth 4-manifolds Mi,f as parts of M whose boundary ∂Mi,f = Σi ⊔ Σf is the
disjoint union of two smooth 3-manifolds Σi and Σf to which we associate Hilbert spaces
Hj of 3-geometries, j = i, f . These contain suitable wave functionals of connections A|Σj

.
We denote the connection eigenstates by |A|Σj

〉. The path integral,

〈A|Σf
|TM |A|Σi

〉 =

∫

A|∂Mi,f

DADe exp

(

i

~
SEH [e, A,Mi,f ]

)

(3)
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is the sum over all connections A matching A|∂Mi,f
, and over all e. It yields the matrix

elements of a linear map TM : Hi → Hf between states of 3-geometry. Our basic gravi-
tational variables will be cotetrad eIa and connection AIJa on space-time M with the index
a to present it as 1-forms and the indices I, J for an internal vector space V (used for the
representation of the symmetry group). Cotetrads e are ‘square-roots’ of metrics and the
transition from metrics to tetrads is motivated by the fact that tetrads are essential if one
is to introduce spinorial matter. eIa is an isomorphism between the tangent space Tp(M)
at any point p and a fixed internal vector space V equipped with a metric ηIJ so that
gab = eIae

J
b ηIJ . Here we used the action

SEH [e, A,Mi,f , ∂Mi,f ] =

∫

Mi,f

ǫIJKL(eI ∧eJ ∧(dA+A ∧ A)
KL

)+

∫

∂Mi,f

ǫIJKL(eI ∧eJ ∧AKL)

(4)
in the notation of [3, 4]. The boundary term ǫIJKL(eI ∧ eJ ∧ AKL) is equal to twice the
trace over the extrinsic curvature (or the mean curvature). For fixed boundary data, (3)
is a diffeomorphism invariant in the bulk. If Σi = Σf are diffeomorphic, we can identify
Σ = Σi = Σf and H = Hi = Hf i.e. we close the manifold Mi,f by identifying the two
boundaries to get the closed 4-manifold M ′. Provided that the trace over H can be defined,
the partition function,

Z(M ′) = trHTM =

∫

DADe exp

(

i

~
SEH [e, A,M, ∂M ]

)

(5)

where the integral is now unrestricted, is a dimensionless number which depends only on
the diffeomorphism class of the smooth manifold M ′. In case of the manifold Mi,f , the path
integral (as transition amplitude) 〈A|Σf

|TM |A|Σi
〉 is the diffeomorphism class of the smooth

manifold relative to the boundary. The diffeomorphism class of the boundary, however, is
unique and the value of the path integral depends on the topology of the boundary as well
on the diffeomorphism class of the interior of Mi,f . Therefore we will shortly write

〈Σf |TM |Σi〉 = 〈A|Σf
|TM |A|Σi

〉

and consider the sum of manifolds like Mi,h = Mi,f ∪Σf
Mf,h with the amplitudes

〈Σh|TM |Σi〉 =
∑

A|Σf

〈Σh|TM |Σf 〉〈Σf |TM |Σi〉 (6)

where we sum (or integrate) over the connections and frames on Σh (see [69]). Then the
boundary term

S∂ [Σf ] =

∫

Σf

ǫIJKL(eI ∧ eJ ∧ AKL) =

∫

Σf

H
√
hd3x (7)

is needed where H is the mean curvature of Σf corresponding to the metric h at Σf (as
restriction of the 4-metric). In the path integral (3), one integrates over the frames and
connections. The possibility of singular frames was discussed at some places (see [103, 104]).
The cotetrad field eI = eIadx

a changes w.r.t. the smooth map f : M → M by eIa(x) dxa 7→
eIa(x′) dx′a = eIa(f(x))(∂bf

a(x))dxb. The transformation matrix (∂bf
a(x)) has maximal

rank 4 for every regular value of the smooth map, but at the critical points xc of f , some
derivatives vanish and one has a smaller rank at the point xc, called a singular point. Then
there is no inverse frame (or tetrad field) at this point. Usually singular frames are of
this nature and one can decompose every singular frame into a product of a regular frame
and a (singular) transformation induced by a smooth map. How can one interpret these
singularities? At this point one needs some differential topology. A homeomorphism can

12



be arbitrarily and accurately approximated by smooth mappings (see [70], Theorem 2.6),
i.e. in a neighborhood of a homeomorphism one always finds a smooth map. Secondly,
there is a special class of smooth maps, the stable maps. Here, two smooth maps are stable
equivalent if both maps agree after a diffeomorphism of the corresponding manifolds [62].
Here we are interested into smooth mappings from 4-manifolds into 4-manifolds. By a deep
result of Mather [76], stable mappings for this dimension are dense in all smooth mappings
of 4-manifolds. In [8], we analyzed this situation: the approximation of a homeomorphism
by a stable map. If this smooth map has no singularities then we can perturb them to a
diffeomorphism. For a singular map, however, we showed that it induces a change of the
smoothness structure. Then, a singular frame corresponds to a regular frame in a different
smoothness structure. The path integral changed the domain of integration:

∫

regular+singular frames

De →
∫

smoothness structures

De

We remark that this change is unique for dimension four. No other dimension has this
plethora of smoothness structures which can be used to express the singular frames.

The inclusion of exotic smoothness changed the description of trivial spaces like R4

completely. Instead of a single chart, we have now an infinite sequence of charts or an
infinite sequence of 4-dimensional submanifolds. We will describe it more completely later.
Each submanifold is bounded by a 3-manifold (different from a 3-sphere) and we obtain a
sequence of 3-manifolds Y0 → Y1 → Y2 → . . . characterizing the smoothness structure. The
sequence of 3-manifolds divides the path integral into a product

〈Y0|TM |Y1〉〈Y1|TM |Y2〉〈Y2|TM |Y3〉 · · ·

and we have to think about the boundary term (7). In [10, 20] we analyzed this term: the
boundary Yn seen as embedding into the spacetime M can be described locally as spinor ψ
and one obtains for the boundary term

∫

Yn

H
√
hd3x =

∫

Yn

ψ̄Dψ
√
hd3x (8)

the Dirac action with the Dirac operator D and |ψ|2 = const.(see [57] for the construction
of ψ). In particular we obtained the eigenvalue equation Dψ = Hψ, i.e. the mean curvature
is the eigenvalue of the Dirac operator which has compact spectrum (from the compactness
of Yn) or we obtained discrete levels of geometry. This result enforced us to identify the
3-manifolds (or the parts) with the matter content. Furthermore the path integral of the
boundary can be carried out by an integration along ψ (see [18]).With some effort [10, 20],
one can extend this boundary term to a tubular neighborhood Yn × [0, 1] of the boundary
Yn. However, the relation (8) is only true for simple (i.e. irreducible) 3-manifolds, i.e. for
complements of a knot admitting hyperbolic structure. For more complex 3-manifolds, we
have the following simple scheme: the knot complements are connected by torus bundles
(locally written as T 2 × [0, 1]). Therefore we also have to describe these bundles by using
the boundary term. In [20] we described this situation by using the geometrical properties
of these bundles and we will give a short account of these ideas in subsection 9.1. Simply
expressed, in this bundle one has a flow of constant curvature along the tube. The constant
curvature connections are given by varying the Chern-Simons functional. Now following
Floer [52], the 4-dimensional version of this flow equation is the instanton equation (or the
self-dual equation) leading to the correct Yang-Mills functional (Chern-Simons gives the
Pontrjagin class and the instanton equation makes it to the Yang-Mills functional). More
importantly, the three possible types of torus bundles fit very good into the current scheme
of three gauge field interactions (see [20] (section 8)).
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5 The Action Induced by Topology

Now we have the following picture: fermions as hyperbolic knot complements and gauge
bosons as torus bundles. Both components together are forming an irreducible 3-manifold
which is connecting to the remaining space by a S2−boundary (see the prime decomposition
in Appendix B). This connection via S2× [0, 1] (S2−bundle) is the only connection between
matter and space. Here, there is only one interpretation: this S2−bundle must be interpreted
as gravity. In this section we will support this conjecture and construct the corresponding
action. At first we will fix the model, i.e. let ΣM and ΣS be the 3-manifolds for matter and
space, respectively. The connected sum # of both components represents the whole spatial
component

Σ = ΣM#ΣS = ΣM ∪S2

(

S2 × [0, 1]
)

∪S2 ΣS = ΣM#S3#ΣS

of the spacetime. The decomposition above showed the geometry of theS2−bundle (in the
sense of Thurston, see Appendix B) to be the spherical geometry with isometry group SO(3).
The idea of the following construction can be simply expressed: the 2-sphere S2 explores
locally the curvature of the space where the curvature is given by the inverse volume 1

vol(S2)

of the 2-sphere S2. The 2-sphere can be written as a homogenous space S2 = SO(3)/SO(2)
also known as Hopf bundle. As mentioned above, the geometry of the bundle S2 × [0, 1]
(interpreted as an equator region of S3) is the spherical geometry with isometry group SO(3).
So, as a local model we have an embedding of a 3-manifold (as the spatial component for
a fixed time) into the spacetime with local Lorentz symmetry (represented by SO(3, 1)).
From the mathematical point of view, it is a reductive Cartan geometry[101, 102] over the
homogenous space SO(3, 1)/SO(3), the 3-dimensional hyperbolic space. For the moment,
let us extend this symmetry to the spacetime M itself. A Cartan connection A decomposes
as a so(3)−valued connection ω (so(3) denotes the Lie algebra of SO(3)) and a coframe field
e (with values in so(3, 1)/so(3)) as

A = ω +
1

ℓ
e

by using the scale ℓ(in agreement with the physical units) and with curvature

F = dA+A ∧ A
= (dω + ω ∧ ω) +

1

ℓ2
e ∧ e = R+

1

ℓ2
e ∧ e

Then for the spacetime (as 4-manifold), we interpret the Cartan connection A as the con-
nection of the frame bundle (with respect to the Lorentz structure). Now we have to think
about what characterizes the S2−bundle in a 4-manifold, i.e. a surface bundle over a surface
(at least locally). It is known that a surface bundle over a surface is topologically described
by the Euler class as well as the Pontrjagin class (via the Hirzebruch signature theorem).
Therefore we choose the sum of the Euler and Pontrjagin class for the frame bundle as action

S =

∫

M

(

ǫABCDFAB ∧ FCD + γF ∧ F
)

where the Pontrjagin class is weighted by a parameter γ. Using the rules above, we obtain

S =
1

ℓ2

∫

M

(

2ǫABCDeA ∧ eB ∧RCD + 2γe ∧ e ∧R+
(1 + γ)

ℓ2
e ∧ e ∧ e ∧ e

)

+

+

∫

M

(

ǫABCDRAB ∧RCD + γR ∧R
)

,
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the Einstein-Hilbert action with cosmological constant and the Holst action with Immirizo
parameter as well the Euler and Pontrjagin class for the reduced bundles. In this model, the
curvature is changed locally by adding a S2−bundle. Then the scale ℓ2 has to agree with
the volume of the S2. In the action we have the coupling constant 1

ℓ2 which has to agree
with 1/L2

P (LP Planck length) to get in contact with Einsteins theory, i.e. we must set

ℓ = LP

The agreement with the Einstein-Hilbert action showed that this approach can describe
gravity but it does not describe the global geometry. Later we can show, however, that it
must be the de Sitter space SO(4, 1)/SO(3, 1) globally.

6 Wild Embeddings: Geometric Expression for the Quan-
tum State

In this section we will support our main hypothesis that an exotic R4 has automatically
a quantum geometry, but as noted in the introduction, we must implicitly assume that
the quantum-geometrical state is realized in the exotic R4. Interestingly, it follows from
the physically motivated existence of a Lorentz metric which is induced by a codimension-
one foliation. Therefore we will construct the foliation and the corresponding leaf space
as the space of observables (using ideas of Connes). This leaf space is a non-commutative
C∗−algebra with observable algebra a factor III1 von Neumann algebra. A state in this alge-
bra can be interpreted as a wild embedding which is also motivated by the exotic smoothness
structure. The classical state is the tame embedding. Then, the deformation quantization
of this tame embedding is the wild embedding (see [16]). In principle, the wild embedding
determines the C∗−algebra completely. This algebra is generated by holonomies along con-
nections of constant curvature. It is known from mathematics that this algebra (forming
a so-called character variety [45]) determines the geometrical structure of the 3-manifold
(along the way of Thurston [84, 95]). The main structure in this approach is the fundamen-
tal group, i.e. the group of closed, non-contractible curves in a manifold. The quantization
of this group (as an expression of the classical geometry) gives the so-called skein algebra of
knots in this manifold. We will relate this skein algebra to the leaf space above. On the way
to show this relation, we will obtain the generator of the translation from one 3-manifold
into another 3-manifold, i.e. the time together with the Hamiltonian.

6.1 Exotic R4 and its Foliation

In section 4, we described the sequence of 3-manifolds

Y1 → Y2 → · · · → Y∞ = Yr

characterizing the exotic smoothness structure of R4. Then 0−framed surgery along this
pretzel knot produces Y1 whereas the n-th untwisted Whitehead double will give Yn. For
large n, the structure of the Casson handle is contained in the topology of Yn and in the
limit n → ∞ we obtain Yr (which is now a wild embedding Yr ⊂ R4 in the standard R4

given by the embedding of the small exotic R4, see above). What do we know about the
structure of Yn or Yr in general? The compact subset K is a 4-manifold constructed by a
pair of one 1-handle and one 2-handle which topologically cancel. The boundary of K is a
compact 3-manifold having the first Betti number b1 = 1. This information is also contained
in Yr. By the work of Freedman [53], every Casson handle is topologically D2×R2 (relative
to the attaching region) and therefore Yr must be the boundary of D4 (the Casson handle
trivializes K to be D4), i.e. Yr is a wild embedded 3-sphere S3. Then we obtain two different
descriptions of R4:
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1. as a sequence of 3-manifolds Yn (all having the first Betti number b1 = 1) as boundaries
of the neighborhood of K with increasing size and

2. as a global hyperbolic space of R4 \K written as S3
∞×R where S3

∞ is a wild embedded
3-sphere (which looks differently for different t ∈ R).

The first description gives a non-trivial but smooth foliation but there is no global spatial
space. In contrast to this highly non-trivial foliation, the second description gives a global
foliated spacetime containing a global spatial component, the wild embedded 3-sphere. In
the first description we have a complex, relational description with no global time-like slices.
Here, there only is a local coordinate system (with its own eigenzeit). This relational view
has the big advantage that the simplest parts are also simple submanifolds (only finite
surfaces with boundary). In contrast, the second description introduces a global foliation
into equal time slices. Then the complexity is contained into the spatial component which
is now a wild embedding (i.e. a space with an infinite number of polygons). This second
approach will be described in the next subsection. So, lets concentrate on the first approach.
Every 3-manifold Yn admits a codimension-one (PSL(2,R)−invariant) foliation (see [17] for
the details). By the description of the exotic R4 using the sequence of 3-manifolds

Y1 → Y2 → Y3 → · · ·

we also get a foliation of the exoticR4. The foliation on Yn is defined by a PSL(2,R)−invariant
one-form ω which is integrable dω ∧ ω = 0 and defines another one-form η by dω = −η ∧ ω.
Then the integral

GV (Yn) =

∫

Yn

η ∧ dη

is known as Godbillon-Vey number GV (Yn) with the class gv = η ∧ dη. From the physics
point of view, it is the abelian Chern-Simons functional. The Godbillon-Vey class charac-
terizes the codimension-one foliation for the 3-manifold Yn (see the Appendix B for more
details). The foliation is very complicated. In [82] the local structure was analyzed. Let κ, τ
be the curvature and torsion of a normal curve, respectively. Furthermore, let T,N,Z be
the frame formed by this vector field dual to the one-forms ω, η, ξ and let lT be the second
fundamental form of leaf. Then the Godbillon-Vey class is locally given by

η ∧ dη = κ2 (τ + lT (N,Z))ω ∧ η ∧ ξ

where τ 6= 0 for PSL(2,R) invariant foliations i.e. [Z,N ] = Z, [N, T ] = T and [Z, T ] = N .
Recall that a foliation (M,F ) of a manifold M is an integrable subbundle F ⊂ TM of
the tangent bundle TM . The leaves L of the foliation (M,F ) are the maximal connected
submanifolds L ⊂M with TxL = Fx ∀x ∈ L. We denote with M/F the set of leaves or the
leaf space. Now one can associate to the leaf space M/F a C∗-algebra C(M,F ) by using the
smooth holonomy groupoid G of the foliation (see Connes [42]). According to Connes [43],
one assigns to each leaf ℓ ∈ X the canonical Hilbert space of square-integrable half-densities
L2(ℓ). This assignment, i.e. a measurable map, is called a random operator forming a von
Neumann W (M,F ). A deep theorem of Hurder and Katok [72] for foliations with non-zero
Godbillon-Vey invariant states that this foliation has to contain a factor III von Neumann
algebra. As shown in [13], the von Neumann algebra for the foliation of Yn and for the exotic
R4 is a factor III1−algebra. For the construction of this algebra, one needs the concept of a
holonomy groupoid. Foliations are determined by the holonomies of closed curves in a leaf
and the transport of this closed curve together with the holonomy from the given leaf to
another leaf. Now one may ask why one considers only closed curves. Let PM the space
of all paths in a manifold then this space admits a fibration over the space of closed paths
ΩM (also called loop space) with fiber the constant paths (therefore homeomorphic to M),
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see [26]. Then, a curve is determined up to deformation (i.e. homotopy) by a closed path.
Consider now a closed curve γ in a leaf ℓ and let act a diffeomorphism on ℓ. Then the curve
γ is modified as well to γ′ but γ and γ′ are related by a (smooth) homotopy. Therefore to
guarantee diffeomorphism invariance in this approach, one has to consider all closed curves
up to homotopy. This structure can be made into a group (using concatenation of paths
as group operation) called the fundamental group π1(ℓ) of the leaf. Above we spoke about
holonomy but a holonomy needs a connection of some bundle which we did not introduce
until now. But Connes [42] described a way to circumvent this difficulty: Given a leaf ℓ
of (M,F ) and two points x, y ∈ ℓ of this leaf, any simple path γ from x to y on the leaf ℓ
uniquely determines a germ h(γ) of a diffeomorphism from a transverse neighborhood of x
to a transverse neighborhood of y. The germ of diffeomorphism h(γ) only depends upon the
homotopy class of γ in the fundamental group of the leaf ℓ, and is called the holonomy of the
path γ. All fundamental groups of all leafs form the fundamental groupoid. The holonomy
groupoid of a leaf ℓ is the quotient of its fundamental groupoid by the equivalence relation
which identifies two paths γ and γ′ from x to y (both in ℓ) iff h(γ) = h(γ′). Then the von
Neumann algebra of the foliation is the convolution algebra of the holonomy groupoid which
will be constructed later for the wild embedding.

6.1.1 Intermezzo: Factor III and Tomita-Takesaki Modular Theory

Remember a von Neumann algebra is an involutive subalgebra M of the algebra of operators
on a Hilbert space H that has the property of being the commutant of its commutant:
(M ′)′ = M . This property is equivalent to saying thatM is an involutive algebra of operators
that is closed under weak limits. A von Neumann algebra M is said to be hyperfinite if it
is generated by an increasing sequence of finite-dimensional subalgebras. Furthermore we
call M a factor if its center is equal to C. It is a deep result of Murray and von Neumann
that every factor M can be decomposed into 3 types of factors M = MI ⊕MII ⊕MIII . The
factor I case divides into the two classes In and I∞ with the hyperfinite factors In = Mn(C)
the complex square matrices and I∞ = L(H) the algebra of all operators on an infinite-
dimensional Hilbert space H . The hyperfinite II factors are given by II1 = CliffC(E), the
Clifford algebra of an infinite-dimensional Euclidean space E, and II∞ = II1 ⊗ I∞. The
case III remained mysterious for a long time. Now we know that there are three cases
parametrized by a real number λ ∈ [0, 1]: III0 = RW the Krieger factor induced by an
ergodic flow W , IIIλ = Rλ the Powers factor for λ ∈ (0, 1) and III1 = R∞ = Rλ1

⊗ Rλ2

the Araki-Woods factor for all λ1, λ2 with λ1/λ2 /∈ Q. We remark that all factor III cases
are induced by infinite tensor products of the other factors. One example of such an infinite
tensor space is the Fock space in quantum field theory.

The modular theory of von Neumann algebras (see also [25]) has been discovered by
M. Tomita [96] in 1967 and put on solid grounds by M. Takesaki [91] around 1970. It is a
very deep theory that, to every von Neumann algebraM⊂ B(H) acting on a Hilbert space
H, and to every vector ξ ∈ H that is cyclic, i.e. (Mξ) = H, and separating, i.e. for A ∈ M,
Aξ = 0→ A = 0, associates:

• a one-parameter unitary group t 7→ ∆it ∈ B(H)

• and a conjugate-linear isometry J : H → H such that:

∆itM∆−it =M, ∀ t ∈ R, and JMJ =M′,

where the commutant M′ of M is defined by M′ := {A′ ∈ B(H) | [A′, A]− = 0, ∀A∈
B(H)}.

More generally, given a von Neumann algebraM and a faithful normal state2 (more generally

2ω is faithful if ω(x) = 0 → x = 0; it is normal if for every increasing bounded net of positive elements
xλ → x, we have ω(xλ) → ω(x).
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for a faithful normal semi-finite weight) ω on the algebraM, the modular theory allows to
create a one-parameter group of ∗-automorphisms of the algebraM,

σω : t 7→ σωt ∈ Aut(M), with t ∈ R,

such that:

• in the Gel’fand–Năımark–Segal representation πω induced by the weight ω, on the
Hilbert space Hω, the modular automorphism group σω is implemented by a unitary
one-parameter group t 7→ ∆it

ω ∈ B(Hω) i.e. we have πω(σωt (x)) = ∆it
ωπω(x)∆−it

ω , for
all x ∈M and for all t ∈ R;

• there is a conjugate-linear isometry Jω : Hω → Hω , whose adjoint action implements
a modular anti-isomorphism γω : πω(M)→ πω(M)′, between πω(M) and its commu-
tant πω(M)′, i.e. for all x ∈M, we have γω(πω(x)) = Jωπω(x)Jω .

The operators Jω and ∆ω are called respectively the modular conjugation operator and the
modular operator induced by the state (weight) ω. We will call “modular generator” the
self-adjoint generator of the unitary one-parameter group t 7→ ∆it

ω as defined by Stone’s
theorem i.e. the operator

Kω := log ∆ω, so that ∆it
ω = eiKωt. (9)

The modular automorphism group σω associated to ω is the unique one-parameter auto-
morphism group that satisfies the Kubo–Martin–Schwinger (KMS-condition) with respect
to the state (or more generally a normal semi-finite faithful weight) ω, at inverse temperature
β = −1, i.e.

ω(σωt (x)) = ω(x), ∀x ∈M
and for all x, y ∈ M.

Using Tomita-Takesaki-theory, one has a continuous decomposition (as crossed product)
of any factor III algebra M into a factor II∞ algebra N together with a one-parameter
group3 (θλ)λ∈R∗

+

of automorphisms θλ ∈ Aut(N) of N , i.e. one obtains

M = N ⋊θ R
∗
+ . (10)

That means, there is a foliation induced from the foliation producing this II∞ factor.
Connes [43] (in section I.4 page 57ff) constructed the foliation F ′ canonically associated to
the foliation F of factor III1 above having the factor II∞ as von Neumann algebra. In our
case it is the horocycle flow: Let P the polygon on the hyperbolic space H2 determining
the foliation above. P is equipped with the hyperbolic metric 2|dz|/(1− |z|2) together with
the collection T1P of unit tangent vectors to P . A horocycle in P is a circle contained in P
which touches ∂P at one point, but from the classification of factors, we know that II∞ is
also splitted into

II∞ = II1 ⊗ I∞
so that every factor III is determined by the factor II1. The factor I∞ are the compact
operators in the Hilbert space. With an important observation we will close this inter-
mezzo. The factor II∞ admits an action of the group R∗

+ by automorphisms so that the
crossed product (10) is the factor III1. The corresponding invariant, the flow of weights
mod(M), was determined by Connes [43] to be the Godbillon-Vey invariant. Therefore the
modular generator above is given by the Godbillon-Vey invariant, i.e. this invariant is the
Hamiltonian of the theory.

3The group R∗

+ is the group of positive real numbers with multiplication as group operation also known
as Pontrjagin dual.
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6.1.2 Construction of a State

Then the C∗-algebraC∗
r (M,F ) of the foliation (M,F ) is the C∗-algebra C∗

r (G) of the smooth
holonomy groupoid G. For completeness we will present the explicit construction (see [43]
sec. II.8). The basic elements of C∗

r (M,F )) are smooth half-densities with compact supports

on G, f ∈ C∞
c (G,Ω1/2), where Ω

1/2
γ for γ ∈ G is the one-dimensional complex vector space

Ω
1/2
x ⊗Ω

1/2
y , where s(γ) = x, t(γ) = y, and Ω

1/2
x is the one-dimensional complex vector space

of maps from the exterior power ΛkFx ,k = dimF , to C such that

ρ(λν) = |λ|1/2ρ(ν) ∀ν ∈ ΛkFx, λ ∈ R .

For f, g ∈ C∞
c (G,Ω1/2), the convolution product f ∗ g is given by the equality

(f ∗ g)(γ) =

∫

γ1◦γ2=γ

f(γ1)g(γ2)

Then we define via f∗(γ) = f(γ−1) a ∗-operation making C∞
c (G,Ω1/2) into a ∗-algebra.

For each leaf L of (M,F ) one has a natural representation of C∞
c (G,Ω1/2) on the L2 space

of the holonomy covering L̃ of L. Fixing a base point x ∈ L, one identifies L̃ with Gx =
{γ ∈ G, s(γ) = x}and defines the representation

(πx(f)ξ)(γ) =

∫

γ1◦γ2=γ

f(γ1)ξ(γ2) ∀ξ ∈ L2(Gx).

The completion of C∞
c (G,Ω1/2) with respect to the norm

||f || = sup
x∈M
||πx(f)||

makes it into a C∗-algebra C∗
r (M,F ). Among all elements of the C∗-algebra, there are

distinguished elements, idempotent operators or projectors having a geometric interpretation
in the foliation. For later use, we will construct them explicitly (we follow [43] sec. II.8.β
closely). Let N ⊂ M be a compact submanifold which is everywhere transverse to the
foliation (thus dim(N) = codim(F )). A small tubular neighborhood N ′ of N in M defines
an induced foliation F ′ of N ′ over N with fibers Rk, k = dimF . The corresponding C∗-
algebra C∗

r (N ′, F ′) is isomorphic to C(N)⊗K with K the C∗-algebra of compact operators.
In particular it contains an idempotent e = e2 = e∗, e = 1N ⊗ f ∈ C(N)⊗K , where f is a
minimal projection in K. The inclusion C∗

r (N ′, F ′) ⊂ C∗
r (M,F ) induces an idempotent in

C∗
r (M,F ) which is given by a closed curve in M transversal to the foliation.

In case of the foliation above (of the 3-manifolds Yn), one has the foliation of the polygon
P in H2 and a circle S1 attached to every leaf of this foliation. Therefore we have the leafs
S1× [0, 1] and the S1is the closed curve transversal to the foliation. Then every leaf defines
(using the isomorphism π1(S1 × [0, 1]) = π1(S1) = Z) an idempotent represented by the
fiber S1 forming a base for the GNS representation of the C∗−algebra. Now we are able to
construct a state in this algebra.

A state is a linear functional ω : C∗
r (M,F )→ C so that ω(x·x∗) ≥ 0 and ω(IC∗

r (M,F )) = 1.
Elements of C∗

r (M,F ) are half-densities with a support along some closed curve (as part
of the holonomy groupoid). In a first step, one can use the GNS-representation of the
C∗−algebra C∗

r (M,F ) by a map C∗
r (M,F )→ B(H) in to the bounded operators of a Hilbert

space. By the theorem of Fréchet-Riesz, every linear functional can be represented by the
scalar product of the Hilbert space for some vector. To determine the linear functionals,
we have to investigate the geometry of the foliation. The foliation was constructed to be
PSL(2,R)−invariant, i.e. fixing the upper half space H2. Then we considered the unit
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Figure 4: Mandelstam identity as skein relation (see Fig. 7 and subsection 6.3.2).

tangent vectors of the tangent bundle over H2 defining the S̃L(2,R)−geometry. But more is
true. Every part of the 3-manifold Yn is a knot/link complement with hyperbolic structure
with isometry group PSL(2,C) where the other geometric structures like S̃L(2,R) and
PSL(2,R) embed. Here we remark the known fact that every PSL(2,C)-geometry lifts
uniquely to SL(2,C) (the double cover). Therefore, to model the holonomy, we have to
choose a flat SL(2,C)−connection and write it as the well-known integral of the connection
1-form along a closed curve. The linear functional is the trace of this integral (seen as
matrix using a representation of SL(2,C)) known as Wilson loop. One can use the well-
known identity

Tr(A) · Tr(B) = Tr(AB) + Tr(AB−1)

for SL(2,C) which goes over to the Wilson loops. Let Wγ [A] be the Wilson loop of a
connection A along the closed curve γ. Then the relation of the Wilson loops

Wγ [A] ·Wη[A] = Wγ◦η[A] +Wγ◦η−1 [A]

for two intersecting curves γ and η is known as the Mandelstam identity for intersecting
loops, see Fig. 4 for a visualization.

This relation is also known from another area: knot theory. There, it is the Kauffman
bracket skein relation used to define the Kauffman knot polynomial. Therefore we obtain a
state in the C ∗−algebra by a closed curve in the leaf which extends to a knot (an embedded,
closed curve) in a submanifold of the 3-manifold defined up to the skein relation. Finally:

State ω over leaf ℓ←→ element of Kauffman skein module for ℓ×[0,1]

We will later explain this correspondence as a deformation quantization. We will close
this subsection by some remarks. Every representation π1(M) → SL(2,C) defines (up to
conjugacy) a flat connection. At the same time it defines also a hyperbolic structure on
Yn (for M = Yn). By the argumentation above, the quantized version of this geometry (as
defined by the C ∗−algebra of the foliation) is given by the skein space (see subsection 6.3.2
for the definition of the skein space).

6.2 The Wild Embedded 3-Sphere = Quantum (Geometric) State

Our previous work implied that the transition from the standard R4 to a small exotic R4 has
much to do with Quantum Gravity (QG). Therefore one would expect that a submanifold
in the standard R4 with an appropriated geometry represents a classical state. Before we
construct this state, there is a lot to say about the wild embedded 3-sphere as a quantum
state.

6.2.1 The Wild Embedded 3-Sphere

To describe this wild 3-sphere, we will construct the sequence of Yn by using the example of
[23, 24] which was already partly explained in subsection 3.5. At first we remark that the
interior of the handle body in Figure 5 is the R4.
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Figure 5: Handle picture of the small exotic R4, the components with the dot are 1-handles
and without the dot are 2-handles.

The Casson handle for this R4 is given by the simplest tree T+, one positive self-
intersection for each level. The compact 4-manifold inside of R4 can be seen in Figure
1 as a handle body. The 3-manifold Yn surrounding this compact submanifold K is given
by surgery (0−framed) along the link in Figure 5 with a Casson handle of n−levels. In
[59], this case is explicitly discussed. Yn is given by 0−framed surgery along the n-th un-
twisted Whitehead double of the pretzel (−3, 3− 3) knot (see Figure 3). Obviously, there is
a sequence of inclusions

. . . ⊂ Yn−1 ⊂ Yn ⊂ Yn+1 ⊂ . . .→ YT+

with the 3-manifold YT+
as limit. Let K+ be the corresponding (wild) knot, i.e. the ∞-

th untwisted Whitehead double of the pretzel knot (−3, 3,−3) (or the knot 946 in Rolfson
notation). The surgery description of YT+

induces the decomposition

YT+
= C(K+) ∪

(

D2 × S1
)

C(K+) = S3 \
(

K+ ×D2
)

(11)

where C(K+) is the knot complement of K+. In [33], the splitting of knot complements
was described. Let K946 be the pretzel knot (−3, 3,−3) and let LWh be the Whitehead link
(with two components). Then the complement C(K946) has one torus boundary whereas
the complement C(LWh) has two torus boundaries. Now according to [33], one obtains the
splitting

C(K+) = C(LWh) ∪T 2 · · · ∪T 2 C(LWh) ∪T 2 C(K946)

and we will describe each part separately (see Figure 6).
At first the knot K946 is a hyperbolic knot, i.e. the interior of the 3-manifold C(K946)

admits a hyperbolic metric. By the work of Gabai [60], C(K946)admits a codimension-one
foliation. The Whitehead link is a hyperbolic link but we need more: the Whitehead link is a
fibered link of genus 1. That is, there is a fibration of the link complement π : C(LWh)→ S1

over the circle so that π−1(p) is a surface of genus 1 (Seifert surface) for all p ∈ S1. Now
we will also describe the changes for a general tree. At first we will modify the Whitehead
link: we duplicate the linked circle, i.e. there are as many circles as branching in the tree
to get the link Whn with n+ 1 components. Then the complement of Whn has also n+ 1
torus boundaries and it also fibers over S1. With the help of Whn we can build every tree
T . Now the 3-manifold YT is given by 0−framed surgery along the∞-th untwisted ramified
(usage of Whn) Whitehead double of a knot k, denoted by the link KT . The tree T has one
root, then YT is given by

YT = C(KT ) ∪
(

D2 × S1
)

and the complement C(KT ) splits like the tree into complements of Whn and one copy of
C(k) (see Figure 6). Using a deep result of Freedman [53], we obtain:
YT is a wild embedded 3-sphere S3

∞.

21



..........

Wh Wh Wh .......... K

..........

..........

Wh Wh

Wh .......... K

Wh .......... K
2

Figure 6: Schematic picture for the splitting of the knot complement C(K+) (above) and in
the more general case C(KT ) (below).

6.2.2 Reconstruction of the Spatial Space by Using a State

Our result about the existence of a codimension-one foliation for YT can be simply expressed:
foliations are characterized by the holonomy properties of the leafs. This principle is also the
corner stone for the usage of non-commutative geometry as description of the leaf space. In
the previous subsection, we already characterized the state as an element of the Kauffman
skein module. Here we are interested in a reconstruction of the underlying space but now
assuming a global foliation so that we will obtain the whole spatial space.

Starting point is the state constructed in the subsection 6.1.2. Here, we got a relation
between the state ω as linear functional over the algebra and the Kauffman skein module.
Using this relation, we consider a leaf ℓ = S1× [0, 1] and the 3-dimensional extension as solid
torus S1 × D2. The Kauffman skein module K(S1 × D2) is polynomial algebra with one
generator (the loop around S1). Now we consider one 3-manifold Yn with the corresponding
foliation. Using the splitting above, the Kauffman skein module K(Yn) is determined by the
skein module for the parts, i.e. by the knot complements. Therefore we have to consider the
skein module for hyperbolic 3-manifolds. Hyperbolic 3-manifolds contain special surfaces,
called essential or incompressible surfaces, see Appendix C. It is known [36] that the skein
module of 3-manifolds containing essential surfaces is not finitely generated. Therefore,
the state itself is not finitely generated. If we use the leaf S1 × D2 as a local model for
one generator then we will obtain an infinitely complicated 3-manifold made from pieces
S1 × D2 so that the corresponding generators are not related to each other. An example
of this structure is the Whitehead manifold having a non-finitely generated Kauffman skein
module [1]. In general we will obtain a wild embedded 3-manifold by using this simple
pieces. By the argumentation in the previous subsection we know that this wild embedded
3-manifold is the wild embedded 3-sphere YT . Finally we obtain:

State ω ←→ wild embedded 3-sphere YT

the state ω is realized by some wild embedded 3-sphere.

6.2.3 Construction of the Operator Algebra

Following [16] we will construct a C∗−algebra from the wild embedded 3-sphere. Let I :
S3 → R4 be a wild embedding of codimension-one so that I(S3) = S3

∞ = YT . Now we
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consider the complement R4 \ I(S3) which is non-trivial, i.e. π1(R4 \ I(S3)) = π 6= 1. Now
we define the C∗−algebra C∗(G, π) associated to the complement G = R4 \I(S3) with group
π = π1(G). If π is non-trivial then this group is not finitely generated. From an abstract
point of view, we have a decomposition of G by an infinite union

G =
∞
⋃

i=0

Ci

of ’level sets’ Ci. Then every element γ ∈ π lies (up to homotopy) in a finite union of levels.
The basic elements of the C∗−algebra C∗(G, π) are smooth half-densities with compact

supports on G, f ∈ C∞
c (G,Ω1/2), where Ω

1/2
γ for γ ∈ π is the one-dimensional complex

vector space of maps from the exterior power ΛkL (dimL = k), of the union of levels L
representing γ, to C such that

ρ(λν) = |λ|1/2ρ(ν) ∀ν ∈ Λ2L, λ ∈ R .

For f, g ∈ C∞
c (G,Ω1/2), the convolution product f ∗ g is given by the equality

(f ∗ g)(γ) =

∫

γ1◦γ2=γ

f(γ1)g(γ2)

with the group operation γ1 ◦ γ2 in π. Then we define via f∗(γ) = f(γ−1) a ∗operation
making C∞

c (G,Ω1/2) into a ∗algebra. Each level set Ci consists of simple pieces (in case of
Alexanders horned sphere, we will explain it below) denoted by T . For these pieces, one
has a natural representation of C∞

c (G,Ω1/2) on the L2 space over T . Then one defines the
representation

(πx(f)ξ)(γ) =

∫

γ1◦γ2=γ

f(γ1)ξ(γ2) ∀ξ ∈ L2(T ), ∀x ∈ γ.

The completion of C∞
c (G,Ω1/2) with respect to the norm

||f || = sup
x∈G
||πx(f)||

makes it into a C∗-algebraC∞
c (G, π). Finally we are able to define the C∗−algebra associated

to the wild embedding. Using a result in [16], one can show that the corresponding von
Neumann algebra is the factor III1.

Among all elements of the C∗-algebra, there are distinguished elements, idempotent
operators or projectors having a geometric interpretation. For later use, we will con-
struct them explicitly (we follow [43] sec. II.8.β closely). Let YT ⊂ R4 be the wild
submanifold. A small tubular neighborhood N ′ of YT in R4 defines the corresponding
C∗-algebra C∞

c (N ′, π1(R4 \ N ′)) is isomorphic to C∞
c (G, π1(R4 \ I(S3)) ⊗ K with K the

C∗-algebra of compact operators. In particular it contains an idempotent e = e2 = e∗,
e = 1N ⊗ f ∈ C∞

c (G, π1(R4 \ I(S3))) ⊗ K , where f is a minimal projection in K. It in-
duces an idempotent in C∞

c (G, π1(R4 \ I(S3))). By definition, this idempotent is given by
a closed curve in the complement R4 \ I(S3). These projection operators form the basis in
this algebra

6.3 Reconstructing the Classical State

In this section we will describe a way from a (classical) Poisson algebra to a quantum
algebra by using deformation quantization. Therefore we will obtain a positive answer to
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the question: Does the C∗−algebra of the foliation (as well of a wild (specific) embedding)
comes from a (deformation) quantization? Of course, this question cannot be answered in
all generality, but for our example we will show that the enveloping von Neumann algebra
of foliation and of this wild embedding is the result of a deformation quantization using the
classical Poisson algebra (of closed curves) of the tame embedding. This result shows two
things: the wild embedding can be seen as a quantum state and the classical state is a tame
embedding.

6.3.1 Intermezzo 1: The Observable Algebra and its Poisson Structure

In this section we will describe the formal structure of a classical theory coming from the
algebra of observables using the concept of a Poisson algebra. In quantum theory, an ob-
servable is represented by an hermitean operator having the spectral decomposition via
projectors or idempotent operators. The coefficient of the projector is the eigenvalue of the
observable or one possible result of a measurement. At least one of these projectors repre-
sents (via the GNS representation) a quasi-classical state. Thus, to construct the substitute
of a classical observable algebra with Poisson algebra structure, we have to concentrate on
the idempotents in the C∗-algebra. Now we will see that the set of closed curves on a surface
has the structure of a Poisson algebra. Let us start with the definition of a Poisson algebra.

Let P be a commutative algebra with unit over R or C. A Poisson bracket on P is a
bilinearform { , } : P ⊗ P → P fulfilling the following 3 conditions:

1. anti-symmetry {a, b} = −{b, a}
2. Jacobi identity {a, {b, c}}+ {c, {a, b}}+ {b, {c, a}} = 0

3. derivation {ab, c} = a {b, c}+ b {a, c}.
Then a Poisson algebra is the algebra (P, { , }).
Now we consider a surface S together with a closed curve γ. Additionally we have a Lie

group G given by the isometry group. The closed curve is one element of the fundamental
group π1(S). From the theory of surfaces we know that π1(S) is a free abelian group.
Denote by Z the free K-module (K a ring with unit) with the basis π1(S), i.e. Z is a freely
generated K-module. Recall Goldman’s definition of the Lie bracket in Z (see [61]). For a
loop γ : S1 → S we denote its class in π1(S) by 〈γ〉. Let α, β be two loops on S lying in
general position. Denote the (finite) set α(S1) ∩ β(S1) by α#β. For q ∈ α#β denote by
ǫ(q;α, β) = ±1 the intersection index of α and β in q. Denote by αqβq the product of the
loops α, β based in q. Up to homotopy the loop (αqβq)(S

1) is obtained from α(S1) ∪ β(S1)
by the orientation preserving smoothing of the crossing in the point q. Set

[〈α〉 , 〈β〉] =
∑

q∈α#β

ǫ(q;α, β)(αqβq) . (12)

According to Goldman [61] (theorem 5.2), the bilinear pairing [ , ] : Z × Z → Z given by
(12) on the generators is well defined and makes Z a Lie algebra. The algebra Sym(Z) of
symmetric tensors is then a Poisson algebra (see Turaev [98]).

The whole approach seems natural for the construction of the Lie algebra Z but the
introduction of the Poisson structure is an artificial act. From the physical point of view,
the Poisson structure is not the essential part of classical mechanics. More important is
the algebra of observables, i.e. functions over the configuration space forming the Poisson
algebra. For the foliation discussed above, we already identified the observable algebra (the
holonomy along closed curves) as well the corresponding group to be SL(2,C). Therefore
for the following, we will set G = SL(2,C).

Now we introduce a principal G bundle on S, representing a geometry on the surface.
This bundle is induced from a G bundle over S × [0, 1] having always a flat connection.
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Alternatively one can consider a homomorphism π1(S)→ G represented as holonomy func-
tional

hol(ω, γ) = P exp





∫

γ

ω



 ∈ G (13)

with the path ordering operator P and ω as flat connection (i.e. inducing a flat curvature
Ω = dω + ω ∧ ω = 0). This functional is unique up to conjugation induced by a gauge
transformation of the connection. Thus we have to consider the conjugation classes of maps

hol : π1(S)→ G

forming the space X(S,G) of gauge-invariant flat connections of principal G bundles over
S. Now (see [85]) we can start with the construction of the Poisson structure on X(S,G),
based on the Cartan form as the unique bilinearform of a Lie algebra. As discussed above
we will use the Lie group G = SL(2,C) but the whole procedure works for every other group
too. Now we consider the standard basis

X =

(

0 1
0 0

)

, H =

(

1 0
0 −1

)

, Y =

(

0 0
1 0

)

(14)

of the Lie algebra sl(2,C) with [X,Y ] = H, [H,X ] = 2X, [H,Y ] = −2Y . Furthermore there
is the bilinearform B : sl2 ⊗ sl2 → C written in the standard basis as





0 0 −1
0 −2 0
−1 0 0





Now we consider the holomorphic function f : SL(2,C)→ C and define the gradient δf(A)
along f at the point A as δf (A) = Z with B(Z,W ) = dfA(W ) and

dfA(W ) =
d

dt
f(A · exp(tW ))

∣

∣

∣

∣

t=0

.

The calculation of the gradient δtr for the trace tr along a matrix

A =

(

a11 a12
a21 a22

)

is given by

δtr(A) = −a21Y − a12X −
1

2
(a11 − a22)H .

Given a representation ρ ∈ X(S, SL(2,C)) of the fundamental group and an invariant func-
tion f : SL(2,C) → R extendable to X(S, SL(2,C)). Then we consider two conjugacy
classes γ, η ∈ π1(S) represented by two transversal intersecting loops P,Q and define the
function fγ : X(S, SL(2,C) → C by fγ(ρ) = f(ρ(γ)). Let x ∈ P ∩ Q be the intersection
point of the loops P,Q and cx a path between the point x and the fixed base point in π1(S).
Then we define γx = cxγc

−1
x and ηx = cxηc

−1
x . Finally we get the Poisson bracket

{

fγ , f
′
η

}

=
∑

x∈P∩Q

sign(x)B(δf (ρ(γx)), δf ′(ρ(ηx))) ,

where sign(x) is the sign of the intersection point x. Thus,
The space X(S, SL(2,C)) has a natural Poisson structure (induced by the bilinear form

(12) on the group) and the Poisson algebra (X(S, SL(2,C), { , }) of complex functions over
them is the algebra of observables.
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Figure 7: Crossings L∞, Lo, Loo.

6.3.2 Intermezzo 2: Drinfeld-Turaev Quantization

Now we introduce the ring C[[h]] of formal polynomials in h with values in C. This ring has
a topological structure, i.e. for a given power series a ∈ C[[h]] the set a + hnC[[h]] forms a
neighborhood. Now we define

A Quantization of a Poisson algebra P is a C[[h]] algebra Ph together with the C-algebra
isomorphism Θ : Ph/hP → P so that

1. the module Ph is isomorphic to V [[h]] for a C vector space V
2. let a, b ∈ P and a′, b′ ∈ Ph be Θ(a) = a′, Θ(b) = b′ then

Θ

(

a′b′ − b′a′
h

)

= {a, b} .

One speaks of a deformation of the Poisson algebra by using a deformation parameter h
to get a relation between the Poisson bracket and the commutator. Therefore we have the
problem to find the deformation of the Poisson algebra (X(S, SL(2,C)), { , }). The solution
to this problem can be found via two steps:

1. at first find another description of the Poisson algebra by a structure with one param-
eter at a special value and

2. secondly vary this parameter to get the deformation.

Fortunately both problems were already solved (see [97, 98]). The solution of the first
problem is expressed in the theorem:

The skein module K−1(S× [0, 1]) (i.e. t = −1) has the structure of an algebra isomorphic
to the Poisson algebra (X(S, SL(2,C)), { , }). (see also [34, 38])

Then we have also the solution of the second problem:
The skein algebra Kt(S×[0, 1]) is the quantization of the Poisson algebra (X(S, SL(2,C)), { , })

with the deformation parameter t = exp(h/4).(see also [38])
To understand these solutions we have to introduce the skein module Kt(M) of a 3-

manifold M (see [81]). For that purpose we consider the set of links L(M) in M up to
isotopy and construct the vector space CL(M) with basis L(M). Then one can define
CL[[t]] as ring of formal polynomials having coefficients in CL(M). Now we consider the
link diagram of a link, i.e. the projection of the link to the R2 having the crossings in mind.
Choosing a disk in R2 so that one crossing is inside this disk. If the three links differ by the
three crossings Loo, Lo, L∞ (see figure 7) inside of the disk then these links are skein-related.

Then in CL[[t]] one writes the skein relation4 L∞ − tLo − t−1Loo. Furthermore let
L ⊔ O be the disjoint union of the link with a circle and one writes the framing relation

4The relation depends on the group SL(2,C).
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L ⊔ O + (t2 + t−2)L. Let S(M) be the smallest submodule of CL[[t]] containing both
relations. Then we define the Kauffman bracket skein module by Kt(M) = CL[[t]]/S(M).
We list the following general results about this module:

• The module K−1(M) for t = −1 is a commutative algebra.

• Let S be a surface, then Kt(S × [0, 1]) carries the structure of an algebra.

The algebraic structure of Kt(S × [0, 1]) can be simply seen by using the diffeomorphism
between the sum S × [0, 1] ∪S S × [0, 1] along S and S × [0, 1]. Then the product ab of two
elements a, b ∈ Kt(S × [0, 1]) is a link in S × [0, 1] ∪S S × [0, 1] corresponding to a link in
S × [0, 1] via the diffeomorphism. The algebra Kt(S × [0, 1]) is in general non-commutative
for t 6= −1. For the following we will omit the interval [0, 1] and denote the skein algebra by
Kt(S).

In subsection 6.1.2, we described the state as an element of the Kauffman skein module
Kt(ℓ) of the leaf ℓ. Now we obtained also that the observable algebra is the Kauffman skein
module again. How does this whole story fit into the description of the observable algebra
for the foliation as factor III1? In [58], it was shown that the Kauffman bracket skein module
of a cylinder over the torus embeds as a subalgebra of the noncommutative torus. However,
the noncommutative torus can be seen as the leaf space of the Kronecker foliation of the
torus leading to the factor II∞. Then by using (10), we obtain the factor III1 back. We will
use this relation in the next section to get the quantum action.

7 Action at the Quantum Level

Above, we used the foliation to get quantum states which agreed with the deformation
quantization of a classical state. Central point in our argumentation is the construction of
the C∗−algebra with the corresponding von Neumann algebra as observable algebra. This
von Neumann algebra is a factor III1. By using the Tomita-Takesaki modular theory, there
is a relation to the factor II∞ by using an action of the group R∗

+ by automorphisms of
a Lebesgue measure space leading to the decomposition of the factor III1. This action is
related to an invariant, the flow of weights mod(M). The main property of the factor III1
is the constant flow of weights mod(M). Connes [42, 43] described the flow of weights as a
bundle of densities over the leaf space, i.e. the R∗

+ homogeneous space of nonzero maps. In
case of foliation considered above, this density is constant and we can naturally identify this
density with the volume of the submanifold defining the foliation. By definition, this volume
is given by the Godbillon-Vey invariant (see eqn. (34) in Appendix B, the circle in the fiber
has unit size). This invariant can be seen as an element of H3(BG,R) with the holonomy
groupoid G of the foliation. As shown by Connes [42, 43], the Godbillon-Vey class GV can
be expressed as a cyclic cohomology class (the so-called flow of weights)

GVHC ∈ HC2(C∞
c (G))

of the C∗−algebra for the foliation. Then we define an expression

S = Trω (GVHC )

uniquely associated to the foliation (Trω is the Dixmier trace). The expression S generates
the action on the factor by

∆it
ω = exp(i S)

so that S is the action or the Hamiltonian multiplied by the time (see (9)). It is an operator
which defines the dynamics by acting on the states. For explicit calculations we have to
evaluate this operator. One way is the usage of the relation between the foliation and the
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wild embedding. This wild embedding is determined by the fundamental group π of its
complement. In [16], we discussed the properties of this group π. It is a perfect group, i.e.
every element is generated by a commutator. Then a representation of this group into some
other group like GL(C) (the limit of GL(n,C) for n → ∞) reduces to the representation
of the maximal perfect subgroup. For that purpose we consider the representation of the
group π into the group E(C) of elementary matrices, which is the perfect subgroup of GL(C).
Then we obtain matrix-valued functions Xµ ∈ C∞

c (E(C)) as the image of the generators
of π w.r.t. the representation π → E(C) labeled by the dimension µ = 1, . . . , 4 of the
embedding space Rn. Via the representation ι : π → E(C), we obtain a cyclic cocycle in
HC2(C∞

c (E(C)) generated by a suitable Fredholm operator F . Here we use the standard
choice F = D|D|−1 with the Dirac operator D acting on the functions in C∞

c (E(C)). Then
the cocycle in HC2(C∞

c (E(C)) can be expressed by

ι∗GVHC = ηµν [F,Xµ][F,Xν ]

using a metric ηµν in R4 via the pull-back using the representation ι : π → E(C). Finally we
obtain the action

S = Trω([F,Xµ][F,Xµ]) = Trω([D,Xµ][D,Xµ]|D|−2) (15)

which can be evaluated by using the heat-kernel of the Dirac operator D. The appearance
of the heat kernel is a sign for a relation to quantum field theory where the heat kernel is a
very convenient tool for studying one-loop divergences, anomalies and various asymptotics
of the effective action.

Away from this operator expression for the Godbillon-Vey invariant, there are geometrical
evaluations which are not defined on the leaf space but rather on the whole manifold. As
mentioned above, this invariant admits values in the real numbers and we can evaluate them
according to the type of the number: for integer values one obtains the Euler class and for
rational numbers the Pontrjagin class (for the corresponding bundles). Therefore using the
ideas of section 5, we obtain the Einstein-Hilbert and the Holst action but also a correction
given by irrational values of the Godbillon-Vey number.

8 The Scaling Behavior of the Action

A good test for the theory is the dependence of the action (15) on the scale. The theory
has a strong geometrical flavor and therefore the scaling behavior can be understood by
a geometrical construction using the exotic R4. As explained above, the central point in
the construction is the Casson handle. From the scaling point of view, the Casson handle
contains disks of any size (with respect to the embedding R4 →֒ R4). The long scales are
given by the first levels of the Casson handle whereas the small scales are represented by
the higher levels of the Casson handle.

8.1 Long-scale Behavior (Einstein-Hilbert Action)

Let us consider the small exotic R4. From the physics point of view, the large scale is
given by the first levels of the Casson handle. In the construction of the foliation of R4, the
first levels describe a polygon in the hyperbolic space H2 with a finite and small number of
vertices. The Godbillon-Vey number of this foliation is given by the volume of this polygon.
In principle, it is also true for the inclusion of the higher levels (and also for the whole
Casson handle) but every higher level gives only a very small contribution to the Godbillon-
Vey number. Therefore, the first levels of the Casson handle can be simply characterized
by the Godbillon-Vey number, i.e. by the size of the polygon in the scale r. Then the
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Godbillon-Vey number is given by GV = r2. In [16] we analyzed this situation and found
the relation

GV
r→∞

= r2
∫

D2

(

gµν∂kξ
µ∂kξν

)

d2x

to the Godbillon-Vey number. Here we integrate over the disk (equal to the polygon) which
is used to define the foliation. This model is the non-linear sigma model (for the embedding
of the disk into Yn with metric g) depending on the scale r2. The scaling behavior of this
model was studied in [56] and one obtains the RG flow equation

∂

∂r2
gµν = Rµν +

1

r2
(

RµλκιR
λκι
ν

)

+O(r−4) (16)

reducing to the Ricci flow equations for large scales (r →∞). The fixed point of this flow are
geometries of constant curvature (used to prove the Thurston geometrization conjecture).
Therefore in the classical limit of large scales, we obtain a geometry of the 3-manifold of
constant curvature whereas for small scales one has to take into account higher curvature
corrections. On the spacetime, one has also flow equations from one 3-manifold of constant
curvature to another 3-manifold of constant curvature. This flow equation is equivalent to
the (anti-)self-dual curvature (or instantons) by using the gradient flow of the Chern-Simons
functional [52]. This approach has much in common with the non-linear graviton of Penrose
[79]. We will explain these ideas in subsection 9.1.

8.2 Short-scale Behavior

For the short scale, we need the full power of the Casson handle. As a first step we can eval-
uate the action (15) so that the Dirac operator D acts on usual square-integrable functions,
so that [D,Xµ] = dXµ is finite. Then the action (15) reduces to

S = Trω(ηµν(∂kX
µ∂kXν)|D|−2)

where µ, ν = 1, . . . , 4 is the index for the coordinates on R4 and k = 1, 2 represents the
index of the disk (inside of the Casson handle). Now we will choose a small fluctuation ξk

of a fixed embedding of the disk in the Casson handle given by Xµ = (xk + ξµ)δµk with
∂lx

k = δkl . Then we obtain

∂kX
µ∂kXν = δµk δ

ν
k(1 + ∂kξ

µ)(1 + ∂kξ
ν)

and we use a standard argument to neglect the terms linear in ∂ξ: fluctuations have no
preferred direction and therefore only the square contributes. Then we have

S = Trω(ηµν(δµk δ
ν
k + ∂kξ

µ∂kξν)|D|−2)

for the action. By using a result of [43] one obtains for the Dixmier trace

Trω(|D|−2) = 2

∫

D2

∗(Φ1)

with the first coefficient Φ1 of the heat kernel expansion [21]

Φ1 =
1

6
R

and the action simplifies to

S =

∫

D2

(

2

3
R+ ∂kξ

µ∂kξν
1

3
R

)

dvol(D2) (17)
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for the main contributions where R is the scalar curvature of the embedded disk D2. Again,
but now for small fluctuations, we obtain the flow equation (16) but we have to consider the
small case r → 0. Then we have to take arbitrary curvature contributions into account. This
short calculation showed that the short-scale behavior is given by a two-dimensional action.
In the next section we will understand this behavior geometrically. For small fluctuations
we obtained a disk but what happens for larger fluctuations? Then we have to take even
the higher levels of the Casson handle into account. These higher levels form a complicated
surface with a fractal structure (a generalization of the Cantor set). Then the action (17)
has to be replaced by an integral over this fractal space. For the evaluation of the quantum
action (15) one can use the ideas of noncommutative geometry as used for fractals and
quasi-Fuchsian groups, see [43] (section IV.3).

9 Some Properties of the Theory

In this section we will present some properties of the theory. For an impression, it is enough
to present the main ideas. The details will be published separately.

9.1 The Graviton

By using the large scale behavior in subsection 8.1, we have to consider Ricci-flat spaces and
an easy calculation gives the well-known propagator in the linearized version, however, we
are not interested in the linearized version. GRT is a highly non-linear theory and therefore
one has to take this non-linearity into account. The Ricci-flatness of the spacetime goes
over to the 3-manifold as the spatial component where it implies a 3-manifold of constant
curvature (as fixed point of the Ricci flow). Then as shown by Witten [103, 104, 105], the
3-dimensional Einstein-Hilbert action

∫

N

R(3)

√
hd3x = L · CS(N,A)

is related to the Chern-Simons action CS(N,A) with respect to the (Levi-Civita) connection
A and the length L. By using the Stokes theorem we obtain

SEH(N × [0, 1]) =

∫

MT

tr(F ∧ F ) ,

i.e. the action for the 4-manifold N × [0, 1] (as local spacetime) with the curvature F = DA,
i.e. the action is the (topological) Pontrjagin class of the 4-manifold. From the formal
point of view, the curvature 2-form F = DA is generated by a SO(3, 1) connection A in the
frame bundle, which can be lifted uniquely to a SL(2,C)- (Spin-) connection. According
to the Ambrose-Singer theorem, the components of the curvature tensor are determined by
the values of holonomy which is in general a subgroup of SL(2,C). Thus we start with a
suitable curvature 2-form F = DA with values in the Lie algebra g of the Lie group G as
subgroup of the SL(2,C). The variation of the Chern-Simons action gets flat connections
DA = 0 as solutions. The flow of solutions A(t) in N × [0, 1] (parametrized by the variable
t, the ’time’) between the flat connection A(0) in N × {0} to the flat connection A(1) in
N × {1} will be given by the gradient flow equation (see for instance [52])

d

dt
A(t) = ± ∗ F (A) = ± ∗DA (18)

where the coordinate t is normal to N . Therefore we are able to introduce a connection Ã
in N × [0, 1] so that the covariant derivative in t-direction agrees with ∂/∂t. Then we have
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for the curvature F̃ = DÃ, where the fourth component is given by F̃4µ = dÃµ/dt. Thus
we will get the instanton equation with (anti-) self-dual curvature

F̃ = ± ∗ F̃ .

It follows

SEH([0, 1]×N) =

∫

N×[0,1]

tr(F̃ ∧ F̃ ) = ±
∫

N×[0,1]

tr( F̃ ∧ ∗F̃ ) ,

(i.e. the MacDowell–Mansouri action).
We remark the main point in this argumentation: we obtain a self-dual curvature as

gradient flow between two 3-manifolds of constant curvature. Of course, (anti-)self-dual
curvatures are also solutions of Einsteins equation (but the reverse is not true). Following
Penrose [79], we call these solutions the nonlinear graviton.

9.2 Relations to the Quantum Groups

Above we constructed the observable algebra from the foliation leading to the Kauffman
bracket skein module. In the subsection we will discuss the relation to lattice gauge field the-
ory. Main source for this discussion is the work of Bullock, Frohman and Kania-Bartoszyńska
[35, 36, 37, 58]. In this paper the authors realize that gauge fields come from the restricted
dual of the Hopf algebra on which the theory is based. This leads to a coordinate free
formulation. Then they comultiply connections in a way that implies the usual exchange
relations for fields while preserving their evaluability. Their new foundations allow them to
compute Wilson loops and many other operators using a simple extension of tangle func-
tors. Then they analyzed the structure of the algebra of observables. In their viewpoint,
the observables correspond to quantum groups seen as rings of invariants of n-tuples of
matrices under conjugation. The connection with lattice gauge field theory is that each
n-tuple of matrices corresponds to a connection on a lattice with one vertex and n-edges,
with the gauge fields based on a classical group. The construction given in this paper leads
to an algebra of ”characters” of a surface group with respect to any ribbon Hopf algebra.
The algebras are interesting from many points of view: They generalize objects studied in
invariant theory; they should provide tools for investigating the structure of the mapping
class groups of surfaces; and they should give a way of understanding quantum invariants of
3-manifolds. The algebra of observables based on the enveloped Lie algebra U(g) is proved
to be the ring of G-characters of the fundamental group of the associated surface. Then,
given the ring of G-characters of a surface group, they showed that the observables based
on the corresponding Drinfeld-Jimbo algebra form a quantization with respect to the usual
Poisson structure. Furthermore they proved for the classical groups that the algebra of
observables is generated by Wilson loops. Finally, invoking a quantized Cayley-Hamilton
identity, they obtain a new proof, that the Uh(sl2)-characters of a surface are exactly the
Kauffman bracket skein module of a cylinder over that surface. The power of lattice gauge
field theory is that it places the representation theory of the underlying manifold and the
quantum invariants in the same setting. Ultimately the asymptotic analysis of the quantum
invariants of a 3-manifold in terms of the representations of its fundamental group should
flow out of this setting. The identification of the representation theory of a quantum group
with that of a compact Lie group leads to rigorous integral formulas for quantum invariants
of 3-manifolds. This should in turn lead to a simple explication of the relationship between
quantum invariants and more classical invariants of 3-manifolds.

This relation to lattice gauge field theory seems to imply an underlying discrete structure
of the space and/or spacetime, but the approach in the paper uncovers the reason [35, 36, 37,
58]: the Kauffman bracket skein module is discrete structure containing only a finite amount
of information. Therefore, any description has to be discrete as well including the approach
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via gauge fields. This idea can be extended to the 4-manifold. As explained above, every
smooth 4-manifold can be effectively described by handles and one only needs a finite number
to describe every compact 4-manifold. Then the handles can be simply triangulated by using
simplices to end up with a piecewise-linear (or PL) structure. The surprising result of Cerf
for manifolds of dimension smaller than 7 was simple: PL-structure (or triangulations) and
smoothness structure are the same. This implies that every PL-structure can be smoothed to
a smoothness structure and vice versa. Therefore the discrete approach (via triangulations)
and the smooth approach to defining a manifold are the same! So, our spacetime admits a
kind of duality: it contains discrete information in its handle structure but it is a continuous
space at the same time. Both approaches are interchangeable. Therefore the underlying
structure of the spacetime is discrete but the spacetime itself is a smooth 4-manifold. Or,
the information contained in a smooth 4-manifold is finite.

9.3 Dimensional Reduction and Exotic Smooth Black Holes

In [9] we describe an exotic black hole by constructing a smooth metric for the interior. Here
we will present the main argument shortly.

In [31] the existence of an exotic Black hole (as exotic Kruskal space) using an exotic R4

was suggested. The idea was simply to consider the complement R4 \ (D3 × R) = S2 × R2

where × was only understood topologically. In case of the exotic small R4 given by a Casson
handle, we can reproduce our construction of an exotic S2 × R2 by using a Casson handle.
Therefore we will here concentrate on the representation of the exotic S2 ×R2 by using the
Casson handle CH to get

S2 ×Θ R2 = D2 ∪∂CH CH .

In [74] the analytical properties of the Casson handle were discussed. The main idea is the
usage of the theory of end-periodic manifolds, i.e. an infinite periodic structure generated
by W glued along a compact set K to get

S2 ×Θ R2 = K ∪N W ∪N W ∪N · · ·

the end-periodic manifold. The definition of an end-periodic manifold is very formal (see [93])
and we omit it here. All Casson handles generated by a balanced tree have the structure
of end-periodic manifolds as shown in [74]. By using the theory of Taubes [93] one can
construct a metric on · · · ∪N W ∪N W ∪N · · · by using the metric on W . Then a metric g
in S2 ×Θ R2 transforms to a periodic function ĝ on the infinite periodic manifold

Ỹ = · · · ∪N W−1 ∪N W0 ∪N W1 ∪N · · ·

where Wi is the building block W at the i-th place. To reflect the number of the building
block, we have to extend ĝ to Y ×C∗by using a metric ĝzholomorphic in z ∈ C∗ = S1 with
Y = W/i where i identifies the two boundaries of W . From the formal point of view we
have the generalized Fourier-Laplace transform (or Fourier-Laplace transform for short)

ĝz(.) =

∞
∑

n=0

anz
n · ĝ(.) (19)

where the coefficient an represents the building block Wn in Ỹ . Without loss of generality
we can choose the coordinates x in M so that the 0-th component x0 is related to the integer
n = [x0] via its integer part [ ]. Using the inverse transformation we can construct a smooth
metric g in Ỹ at the n-th building block via

(T̃ ng)(x) =
1

2πi

∫

|z|=s

z−nĝz(π(x))
dz

z
(20)
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for x ∈ Ỹ , s ∈ (0,∞), n = [x0] with the projection π : Ỹ → Y (mathematically: Ỹ is the
universal cover of Y like R is the universal cover of S1). In the case of the Kruskal space we
have the metric

ds2 =

(

2M3

r

)

exp
(

− r

2M

)

(

−dv2 + du2
)

+ r2
(

dθ2 + sin2 θdφ2
)

(21)

in the usual units with a singularity at r = 0 used for the whole space S2 × R2. The
coordinates (u, v) together with the relation

u2 − v2 =
( r

2M
− 1
)

exp
(

− r

2M

)

(22)

represent R2 and the angles (θ, φ) the 2-sphere S2 parametrized by the radius r. Clearly
this metric can be also used for each building block W having the topological structure
D3 × S1 = W with two attaching regions topologically given by D2 × S1 = N forming the
boundary S2×S1 = ∂(D3×S1) (see the description of a Casson handle above). Remember
that the Casson handle is topologically the subset D2 × R2 ⊂ S2 × R2. Now we consider
the decomposition W = D2 × (D1 × S1) and the part D1 × S1 will be later the R2 part of
the Casson handle. The size of the D2 is parametrized by r as above. Then we obtain the
metric (21) for the building block W .

Our model of the black hole based on the implicit dependence of the two coordinates
(u, v) on the parameter r, the radius of the 2-sphere. Therefore we choose for the coordinate
z ∈ C∗ the relation z = exp(ir) and obtain a metric ĝ on Y × C∗. So, we make the
assumptions:

1. The coordinate z is related to the radius by z = exp(ir).

2. Only the (u, v) part of the metric is periodic and we do not change the other component
r2
(

dθ2 + sin2 θdφ2
)

of the metric.

3. The integer part n = [v] of the coordinate v gives the number of the building block
Wn in the Casson handle (seen as end-periodic manifold).

4. The metric on S2 ×θ R2 is given by a Fourier transformation (20) of the (u, v) part of
the metric in the building block W .

Some more comments are in order. The number n = [v] is related to the coordinate v as
substitute of ”time”. The metric g in Ỹ is smooth with respect to v and we obtain the
number of the building block by n = [v]. To express this property we have to identify (u, v)
with the coordinates of D1×S1. Then we obtain the metric on S2×θ R2 by the generalized
Fourier-Laplace transformation of the metric on Y = W/i using the metric of the building
block W and the coordinate z similar to (20)

g(v, u, θ, φ) =

∫

exp (irv) ĝr(v, u, θ, φ)dr

Especially the singular part of the metric (i.e. the (u, v) part) on the building block W

(ĝr)00 =

(

2M3

r

)

exp
(

− r

2M

)

= (ĝr)11

transforms to the Heaviside jump function

g00 = g11 = 2M3Θ(v2 − u2 − 1)

using the relation (22), having no singularity. The metric vanishes, however, for large
values of v in the interior of the black hole. This sketch of some arguments gives a hint
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Figure 8: Hyperbolic triangle with increasing curvature (from left to right), the tree is the
limit and a dimensional reduction 2D to 1D

that the transformation of the smoothness to exotic smoothness could possibly smooth
out some singularity in the black hole case. This metric vanishes along two directions or
one obtains a dimensional reduction from 4D to 2D. But, is there a geometrical reason
for this reduction? A hyperbolic 3-manifold M admits a hyperbolic structure by fixing a
homomorphism π1(M)→ SL(2,C) (up to conjugation). From the physics point of view, this
homomorphism is given by the holonomy along a closed curve (as element in π1(M)) for a flat
connection. A sequence of these holonomies does not converge but it is possible to compactify
the space of flat SL(2,C) connections. This limit can be understood geometrically: the
hyperbolic 3-manifold is triangulated by tetrahedrons. However, because of the hyperbolic
geometry, the edge between two vertices is not the usual line but rather a geodesics in the
hyperbolic geometry. The curvature of this geodesics depends on the hyperbolic structure. In
the limit, all geodesics of the tetrahedron meet and one obtains a tree instead of tetrahedrons.
Therefore in the limit of large curvature, one obtains a reduction from 3D (=tetrahedrons)
to 1D (=tree). Fig. 8 visualizes the transition from 2D(triangle) to 1D(tree).

10 Where do the Quantum Fluctuations Come From?

In a purely geometrical theory, one has to answer this question. It cannot be shifted to
assume the appearance of quantum fluctuations. Instead we have to understand the root of
these quantum fluctuations. Starting point of our approach is the foliation of the exotic R4

by using the Anosov flow. Main point in the argumentation above is the appearance of the
hyperbolic geometry in 3- and 4-dimensional submanifolds. The foliation can, however, be
interpreted differently: a foliation defines a dynamics at a manifold leading to a splitting
into leafs (the integral curves of the dynamics). Therefore, a tiny variation in the initial
conditions will lead to a strong variation of the corresponding integral curve. This chaotic
behavior is a natural consequence of the exotic smoothness structure (leading to the non-
trivial PSL(2,R)−foliation). For completeness we will describe this dynamics, called the
Anosov flow. For that purpose we consider the standard basis

J =
1

2

(

1 0
0 −1

)

, X =

(

0 1
0 0

)

, Y =

(

0 0
1 0

)

(23)

of the Lie algebra sl(2,R) with

[J,X ] = X [J, Y ] = −Y [X,Y ] = 2J

leading to the exponential maps

gt = exp(tJ) =

(

et/2 0

0 e−t/2

)

h∗t = exp(tX) =

(

1 t
0 1

)

ht = exp(tY ) =

(

1 0
t 1

)
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defining right-invariant flows on the unit tangent bundle T1H = PSL(2,R) of the hyperbolic
space. The connection to the Anosov flow comes from the realization that gt is the geodesic
flow on P = T1H. With Lie vector fields being (by definition) left invariant under the action
of a group element, one has that these fields are left invariant under the specific elements
gt of the geodesic flow. This flow goes over to a surface M = H/Γ defined by a subgroup
Γ ⊂ PSL(2,R) with Q = T1M . Now the geodesic flow gt acts on the exponential maps
gs, h

∗
t , ht so that the geodesic flow itself is invariant, gsgt = gtgs = gs+t , but the other two

shrink and expand: gsh
∗
t = h∗t·exp(−s)gs and gsht = ht·exp(s)gs. Then the bundle TQ splits

into three subbundles
TQ = E+ ⊕ E0 ⊕ E−

where one bundle E+ expands, one bundle E− contracts and one bundle E0 is invariant
w.r.t. geodesic flow. This property is crucial for the following discussion. Because of
the expanding behavior of one subbundle, the Anosov flow is the generator of a chaotic
dynamics. Therefore, two geodesics diverge exponentially in this foliation, but this behavior
goes over to the holonomies characterizing the geometry. The transport of a holonomy along
two diverging geodesics can lead to totally different holonomies. Currently this dynamics is
deterministic, i.e. if we choose exactly the same initial condition then we will end at the state
(seen as limit point). This situation changes if we are unable to choose the initial condition
exactly (by choosing real numbers) but instead we can only choose a rational number where
this rational number is the characterizing property of the state. Then all initial conditions
(represented by all real numbers) in this class represent the same state but have totally
different limit points of the corresponding dynamics. Now we will describe this dynamics.

Starting point is the observable algebra X(S, SL(2,C), i.e. the space of holonomies
π1(S) → SL(2,C) (i.e. homomorphisms) up to conjugation, see subsection 6.3.1. The
deformation quantization (see subsection 6.3.2) is the Kauffman bracket skein module. Here
we made use of the identity

tr(A) · tr(B) = tr(AB) + tr(AB−1)

between two elements A,B ∈ SL(2,C) (w.r.t. a representation). Using the group commu-
tator [A,B] = ABA−1B−1 one also obtains

2 + tr([A,B]) = (tr(A))2 + (tr(B))2 + (tr(AB))2 − tr(A)tr(B)tr(AB)

According to deformation procedure, pairs of elements A,B ∈ SL(2,C) coming from closed
curves via the holonomy and fulfilling

tr([A,B]) = ±2

can be a canonical pair w.r.t. the symplectic structure. The sign is purely convention and
we choose tr([A,B]) = −2. Then the canonical pair has to fulfill the equation

(tr(A))2 + (tr(B))2 + (tr(AB))2 − tr(A)tr(B)tr(AB) = 0

which can be written in a more familiar form

x2 + y2 + z2 − 3xyz = 0 (24)

by using 3x = tr(A), 3y = tr(B), 3z = tr(AB). Because of the discreteness of π1(S), we
have to look for rational solutions of this equation (Diophantine equation). The solutions of
the equation are Markoff triples forming a binary tree (see Fig. 9).

The set of these elements A,B corresponding to discrete groups is known to be fractal
in nature [27]. It is the large class of quasi-Fuchsian groups having a fractal curve (Julia
set) as limit set. Then we have the desired behavior:
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Figure 9: Binary tree of Markoff numbers as solution of equation (24).

The set of canonical pairs (as measurable variables in the theory) forms a fractal subset of
the space of all holonomies. Then we can only determine the initial condition up to discrete
value (given by the canonical pair) and the chaotic behavior of the foliation (i.e. the Anosov
flow) makes the limit not predictable.
At the end of this section, one remark about the role of the canonical pair. It is always possi-
ble to construct a classical continuous random field that has the same probability density as
the quantum vacuum state. Furthermore it is known that a random field can be generated
by a chaotic dynamics. There is, however, a large difference between the classical random
field and a quantum field: there are pairs of not equally accurate measurable observables
(mostly the canonical pairs) for quantum fields impossible for the classical random fields.
With our approach, we showed the same behavior for the canonical pairs.

11 Decoherence, Entanglement and Measurement

Our geometrical approach should also lead to a description of the measurement process
(including the collapse of the wave function). In section 6, we constructed the geometrical
expression for a quantum state given by a wild embedding (the wild S3). The reduction
of the quantum state (as linear combination) to an eigenstate (or the collapse of the wave
function) is equivalent to a reduction of the wild embedding to a tame embedding. Therefore
we need a mechanism to reduce the wild embedding to a tame one. The construction of the
wild S3 is strongly related to the Casson handle. The exoticness of the smooth structure of
R4 and the wildness of the S3 depend both on the self-intersection of some disk. If we are
able to remove these self-intersections then we will obtain the desired reduction. According
to the discussion in subsection 3.2, one needs a Casson handle for the cancellation. How
many levels of the Casson handle are needed to cancel the self-intersection? This question
was answered by Freedman [54]: one needs three levels (a three-level Casson tower)! At the
same time, however, one produces more self-intersections in the higher levels. Therefore one
needs a little bit more: a Casson tower where a complete Casson handle can be embedded.
Then this Casson handle is able to cancel the self-intersection and we will obtain a tame
embedding or a classical state. As shown by Freedman [53] and Gompf/Singh [67], one
needs a 5-stage Casson tower so that a Casson handle with the same attaching circle can
be embedded into this 5-stage tower. We obtain a process which is ”the collapse of the
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wave function”. What is the cause of this collapse? As explained above, we cannot choose
a single disk to remove the self-intersections. Instead we have to choose a Casson tower
where each stage is a boundary-connected sum of S1 × D3, i.e. its boundary is the sum
S1 × S2#S1 × S2# · · · where the number of components is equal to the number of self-
intersections. So, every piece S1 × S2 of the boundary is given by the identification of the
two boundary components for S2 × [0, 1]. In section 5, we identified this 3-manifold with
the graviton or the collapse of the wave function is caused by a gravitational interaction.
The corresponding process is known as decoherence. In the following we will calculate the
minimal decoherence time for the gravitational interaction. The 5-stage Casson tower can
be also understood as a cobordism between the 3-manifold

Σ0 = S1 × S2

(the S1 defines the attaching circle) and a 3-manifold having the same homology. In case
of the simplest Casson tower, it is given by five complements of the Whitehead link C(Wh)
closed by two solid tori, i.e.

Σ1 = (D2 × S1) ∪ C(Wh) ∪ C(Wh) ∪ C(Wh) ∪ C(Wh) ∪ C(Wh) ∪ (D2 × S1)

and this manifold can be very complicated for more complex towers. Now we will add some
geometry to calculate the decoherence time. As shown by Witten [103, 104, 105], the action

∫

Σ0,1

3R
√
h d3x = L · CS(Σ0,1) (25)

for every 3-manifold (in particular for Σ0 and Σ1 denoted by Σ0,1) is related to the Chern-

Simons action CS(Σ0,1). The scaling factor L is related to the volume by L = 3
√

vol(Σ0,1)
and we obtain formally

L · CS(Σ0,1, A) = L3 · CS(Σ0,1)

L2
=

∫

Σ0,1

CS(Σ0,1)

L2 · vol(Σ0,1)

√
h d3x (26)

by using

L3 · vol(Σ0,1) =

∫

Σ0,1

√
h d3x

with the (unit) volume vol(Σ0,1). If Σ0,1 is a hyperbolic 3-manifold then the (unit) volume
is a topological invariant which cannot be normalized to 1. Together with

3R =
3k

a2

one can compare the kernels of the integrals of (25) and (26) to get for a fixed time

3k

a2
=

CS(Σ0,1)

L2 · vol(Σ0,1)
.

This gives the scaling factor

ϑ =
a2

L2
=

3 · vol(Σ0,1)

CS(Σ0,1)
(27)

where we set k = 1 in the following. The hyperbolic geometry of the cobordism is best
expressed by the metric

ds2 = dt2 − a(t)2hikdx
idxk (28)
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also called the Friedmann-Robertson-Walker metric (FRW metric) with the scaling function
a(t) for the (spatial) 3-manifold. Mostow rigidity enforces us to choose

(

ȧ

a

)2

=
1

L2

in the length scale L of the hyperbolic structure. In the following we will switch to quadratic
expressions because we will determine the expectation value of the area. A second reason
for the consideration of quadratic expressions is again the hyperbolic structure of H2. We
needed this structure for the construction of the foliation which is given by a polygon in
H2. This polygon defines a compact surface of genus g > 1. Then the foliation of the
polygon induces a foliation of the small exotic R4. The area of the polygon is mainly the
Godbillon-Vey invariant of the foliation. It is known that foliations of surfaces are given
by quadratic differentials of the form defined below. Here, there are deep connections to
trees and SL(2,C) flat connections, i.e. a tree defines a quadratic differential and vice versa
[90, 71, 106, 46].

Using the previous equation, we obtain

da2 =
a2

L2
dt2 = ϑ dt2 (29)

with respect to the scale ϑ. By using the tree of the Casson handle, we obtain a count-
able infinite sum of contributions for (29). Before we start we will clarify the geometry
of the Casson handle. A Casson handle admits a hyperbolic geometry. Therefore the tree
corresponding to the Casson handle must be interpreted as a metric tree with hyperbolic
structure in H2 and metric ds2 = (dx2 + dy2)/y2. The embedding of the Casson handle in
the cobordism is given by the rules

1. The direction of the increasing levels n → n+ 1 is identified with dy2 and dx2 is the
number of edges for a fixed level with scaling parameter ϑ.

2. The contribution of every level in the tree is determined by the previous level best
expressed in the scaling parameter ϑ.

3. An immersed disk at level n needs at least one disk to resolve the self-intersection
point. This disk forms the level n+ 1 but this disk is connected to the previous disk.
So we obtain for da2|n+1 at level n+ 1

da2|n+1 ∼ ϑ · da2|n

up to a constant.

By using the metric ds2 = (dx2 + dy2)/y2 with the embedding (y2 → n + 1, dx2 → ϑ) we
obtain for the change dx2/y2 along the x−direction (i.e. for a fixed y) ϑ

n+1 . This change
determines the scaling from the level n to n+ 1, i.e.

da2|n+1 =
ϑ

n+ 1
· da2|n =

ϑn+1

(n+ 1)!
· da2|0

and after the whole summation (as substitute for an integral in case of discrete values) we
obtain for the relative scaling

a2 =
∞
∑

n=0

(

da2|n
)

= a20 ·
∞
∑

n=0

1

n!
ϑn = a20 · exp (ϑ) = a20 · lscale (30)
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Figure 10: two disjoint circles get linked after the application of the skein relation for the
area marked by the small circles

with da2|0 = a20. The Chern-Simons invariant for Σ0 vanishes and we are left with

CS(Σ1) =
5

8

and the complements C(Wh) are hyperbolic 3-manifolds with

vol(Σ1) = 5 · vol(C(Wh)) ≈ 18.31931...

by using the software Snapea. Finally for the scaling we obtain

ϑ ≈ 87.932688...

and for the time we have to choose

Tdecoherence = T0 · exp

(

ϑ

2

)

using the well-known relation a0 = cT0 between length and time, i.e. we see one coordinate
along the Casson handle as time axis. The time T0 has to be identified with the Planck time
T0 ≈ 10−43s (see section 5) so that

Tdecoherence ≈ 10−24s

is the minimal decoherence time for the gravitational interaction.
Now we also discuss the entanglement which has to be also geometrically expressed. A

quantum state is an element of the skein algebra Kt(S) for S × [0, 1]. For two disjoint
surfaces S0 ⊔ S1 one has

Kt(S0 ⊔ S1) = Kt(S0)⊗Kt(S1) .

Now let us choose a knot |0〉 in S0× [0, 1] as element of Kt(S0) as well a knot |1〉 in Kt(S1).
Then |0〉 ⊗ |1〉 is an element of Kt(S0 ⊔ S1). Furthermore we can assume that the knots |1〉
and |0〉 can be also an element of Kt(S0) and Kt(S1), respectively. Then the element

|0〉 ⊗ |1〉+ |1〉 ⊗ |0〉

exists but now as an element of Kt(S) with S0⊔S1 ⊂ S. Using the skein relations in Kt(S),
see Fig. 7, we obtain a linking between the corresponding knots, i.e. |0〉 and |1〉 forming a
link. Fig. 10 visualizes the transition from disjoint circles (=disjoint states) to linked circles
(=entangled states). Then entanglement is reduced to a linking!

Next we have to think about the measurement which reduces the entangled state to
one product state. Here we will only present some rough ideas for the description of the
measurement process, but at first we have to define a measurement device. In this proposal,
it is a union of Casson handles which can be used to unlink two linked components. At the
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level of skein algebras, the Casson handle is also given by elements of a skein algebra (given
by closed, knotted curves at the levels). The particular structure of the Casson handle is
not determined (see also section 10). Now a given quantum state is linked to this Casson
handle. The limit point of the Casson handle (i.e. the leafs of the tree) give the result of
the unlinking. All limit points of the Casson handle have a fractal structure (a Cantor set)
expressing our inability to know the outcome of the measurement. The tree structure of
the Casson handle has also another effect: the limit points are exponentially separated from
each other and can be seen as classical states. With these speculations, we will close this
section.

12 Some Implications for Cosmology

In the last section we will collect some implications for a cosmological model. Let us assume
the topology S3 × R for the spacetime but with an exotic smoothness structure S3 ×θ R.
One can construct this spacetime from the exotic R4 by R4 \D4 = S3 ×θ R. From previous
work, we know:

• Cosmological anomalies like dark matter and dark energy are (conjecturally) rooted
in exotic smoothness [7].

• The initial state of the cosmos must be a wild 3-sphere representing a quantum state
[16].

• Then there is an inflationary phase [18] driven by a decoherence which can be described
by the Starobinsky model.
In this model, we have a topological transition from a 3-manifold Σ0 to another 3-
manifold Σ1. Both 3-manifolds are homology 3-spheres. Therefore let us describe this
change (a so-called homology cobordism) between two homology 3-spheres Σ0 and Σ1.
The situation can be described by a diagram

Σ1
Ψ−→ R

φ ↓ � l id (31)

Σ0
ψ−→ R

which commutes. The two functions ψ and Ψ are the Morse function of Σ0 and Σ1,
respectively, with Ψ = ψ ◦ φ. The Morse function over Σ0,1 is a function Σ0,1 → R

having only isolated, non-degenerated, critical points (i.e. with vanishing first deriva-
tives at these points). A homology 3-sphere has two critical points (located at the two
poles). The Morse function looks like ±||x||2 at these critical points. The transition
y = φ(x) represented by the (homology) cobordism M(Σ0,Σ1) maps the Morse func-
tion ψ(y) = ||y||2 on Σ0 to the Morse function Ψ(x) = ||φ(x)||2 on Σ1. The function
−||φ||2 represents also the critical point of the cobordism M(Σ0,Σ1). As we learned
above, this cobordism has a hyperbolic geometry and we have to interpret the function
||φ(x)||2 not as an Euclidean form but change it to the hyperbolic geometry so that

−||φ||2 = −
(

φ21 + φ22 + φ23
)

→ −e−2φ1(1 + φ22 + φ23)

i.e. we have a preferred direction represented by a single scalar field φ1 : Σ1 → R.
Therefore, the transition Σ0 → Σ1 is represented by a single scalar field φ1 : Σ1 → R

and we identify this field as the moduli. Finally we interpret this Morse function in
the interior of the cobordism M(Σ0,Σ1) as the potential (shifted away from the point
0 ) of the scalar field φ with Lagrangian

L = R+ (∂µφ)2 − ρ

2
(1− exp (−λφ))2
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with two free constants ρ and λ. For the value λ =
√

2/3 and ρ = 3M2 we obtain the
Starobinski model [89] (by a conformal transformation using φ and a redefinition of
the scalar field [100])

L = R+
1

6M2
R2 (32)

with the mass scaleM ≪MP much smaller than the Planck mass. From our discussion
above, the appearance of this model is not totally surprising. It favors a surface to be
incompressible (which is compatible with the properties of hyperbolic manifolds).

• This inflationary phase is followed by another exponentially increasing phase leading
to a hyperbolic 4-manifold with constant curvature which is rigid by Mostow rigid-
ity [18]. Here, we obtained the global geometry of the spacetime: it is a de Sitter
space SO(4, 1)/SO(3, 1) with a cosmological constant which is the curvature of the
spacetime.

• This constant curvature can be identified with the cosmological constant in good agree-
ment with the Planck satellite results [18]. The cosmological constant is constant by
Mostow rigidity (but now for the 4-manifold).

• The topology of the spatial component (seen as 3-manifold) is strongly restricted [15]
by the smoothness of the spacetime.

• The inclusion of matter can be done naturally as direct consequence of exotic smooth-
ness [10].

• The interior of black holes can be described by exotic smoothness where the singularity
is smoothed out [9].

13 Conclusion and Open Questions

Smooth Quantum Gravity, the usage of exotic smoothness structures on 4-manifolds, are
the attempt to obtain a consistent theory of quantum gravity without any further assump-
tions. For us, the change of the smoothness structure is the next step in extending General
Relativity, where non-Euclidean geometry was used to describe gravity and all accelerations.
Then, two different smoothness structures represent two different physical systems. In par-
ticular I think that the standard smoothness structure represents the case of a spacetime
without matter and non-gravitational fields. In this paper we are going a more radical way
to construct a quantum theory without quantization but by using purely geometrical ideas
from mathematical topics like differential and geometric topology. The flow of ideas can be
simply described by the following points:

• An exotic R4 is given by an infinite handlebody (so one needs infinitely many charts)
and one finds also the description by an infinite sequence of 3-manifolds together with
4-dimensional cobordisms connecting them.

• Every 3-manifold admits a codimension-one foliation which goes over to the 4-dimensional
cobordisms. The leaf space of this foliation is an operator algebra with a strong con-
nection to algebraic quantum field theory.

• The states (as linear functionals in the algebra) depend on knotted curves and are
elements of the Kauffman bracket skein algebra. The reconstruction of the spatial
space gives a wild embedded 3-sphere which is therefore related to the state, or the
quantum state can be identified with the wild embedding. The classical state is a tame
(i.e. usual) embedding where the deformation quantization of a tame embedding is a
wild embedding.
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• The structure of the operator algebra can be analyzed by the Tomita-Takesaki modular
theory. Then it is possible to construct the quantum action by using the quantized
calculus of Connes.

• For large scales, one gets the Einstein-Hilbert action. Whereas for small scales, one
obtains a dimensional reduced action.

• The foliation is given by a hyperbolic dynamics having a chaotic behavior. For our
states, one gets an unpredictable behavior so that the dynamics can generate the
quantum fluctuations.

This list shows the current state but there are many open points, where we list only the
most important here:

• What is the Hamiltonian of the theory? In principle we constructed this operator but
have a problem connecting to Loop quantum gravity.

• What are the states seen as knots? The states are knots but the skein and Mandelstam
identities give a class of knots: the states are conjecturally the concordance class of
knots.

• Is the state a solution of the Hamiltonian? Here we conjecture that the concordance
class of the knot lies already in the kernel of the Hamiltonian (therefore it is a solution
of the Hamiltonian constraint)

A lot is done but there are also many open problems.
Happy Birthday Carl!
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Appendix A Casson Handles and Labeled Trees

Let us now consider the basic construction of the Casson handle CH . Let M be a smooth,
compact, simply-connected 4-manifold and f : D2 → M a (codimension-2) mapping. By
using diffeomorphisms of D2 and M , one can deform the mapping f to get an immersion
(i.e. injective differential) generically with only double points (i.e. #|f−1(f(x))| = 2) as
singularities [62]. But to incorporate the generic location of the disk, one is rather interesting
in the mapping of a 2-handle D2×D2 induced by f× id : D2×D2 →M from f . Then every
double point (or self-intersection) of f(D2) leads to self-plumbings of the 2-handle D2×D2.
A self-plumbing is an identification of D2

0×D2 with D2
1×D2 where D2

0 , D
2
1 ⊂ D2 are disjoint

sub-disks of the first factor disk. In complex coordinates the plumbing may be written as
(z, w) 7→ (w, z) or (z, w) 7→ (w̄, z̄) creating either a positive or negative (respectively) double
point on the disk D2×0. Consider the pair (D2×D2, ∂D2×D2) and produce finitely many
self-plumbings away from the attaching region ∂D2 × D2 to get a kinky handle (k, ∂−k)
where ∂−k denotes the attaching region of the kinky handle. A kinky handle (k, ∂−k) is a
one-stage tower (T1, ∂

−T1) and an (n + 1)-stage tower (Tn+1, ∂
−Tn+1) is an n-stage tower

union of kinky handles
⋃n
ℓ=1(Tℓ, ∂

−Tℓ) where two towers are attached along ∂−Tℓ. Let T−
n

be (interiorTn) ∪ ∂−Tn and the Casson handle

CH =
⋃

ℓ=0

T−
ℓ
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is the union of towers (with direct limit topology induced from the inclusions Tn →֒ Tn+1).
A Casson handle is specified up to (orientation preserving) diffeomorphism (of pairs) by a
labeled finitely-branching tree with base-point *, having all edge paths infinitely extendable
away from *. Each edge should be given a label + or − and each vertex corresponds to a
kinky handle; the self-plumbing number of that kinky handle equals the number of branches
leaving the vertex. The sign on each branch corresponds to the sign of the associated self
plumbing. The whole process generates a tree with infinite many levels. In principle, every
tree with a finite number of branches per level realizes a corresponding Casson handle. The
simplest non-trivial Casson handle is represented by the tree Tree+: each level has one
branching point with positive sign +. The reverse construction of a Casson handle CHT

by using a labeled tree T can be found in the appendix A. Let T1 and T2 be two trees with
T1 ⊂ T2 (it is the subtree) then CHT2

⊂ CHT1
.Given a labeled based tree Q, let us describe

a subset UQ of D2 ×D2. Now we will construct a (UQ, ∂D
2 ×D2) which is diffeomorphic

to the Casson handle associated to Q. In D2 ×D2 embed a ramified Whitehead link with
one Whitehead link component for every edge labeled by + leaving * and one mirror image
Whitehead link component for every edge labeled by −(minus) leaving *. Corresponding to
each first level node of Q we have already found a (normally framed) solid torus embedded
in D2×∂D2. In each of these solid tori embed a ramified Whitehead link, ramified according
to the number of + and − labeled branches leaving that node. We can do that process for
every level of Q. Let the disjoint union of the (closed) solid tori in the n-th family (one solid
torus for each branch at level n in Q) be denoted by Xn. Q tells us how to construct an
infinite chain of inclusions:

. . . ⊂ Xn+1 ⊂ Xn ⊂ Xn−1 ⊂ . . . ⊂ X1 ⊂ D2 × ∂D2

and we define the Whitehead decomposition WhCQ =
⋂∞
n=1Xn of Q. WhCQ is the White-

head continuum [99] for the simplest unbranched tree. We define UQ to be

UQ = D2 ×D2 \ (D2 × ∂D2 ∪ closure(WhCQ))

alternatively one can also write

UQ = D2 ×D2 \ cone(WhCQ) (33)

where cone() is the cone of a space

cone(A) = A× [0, 1]/(x, 0) ∼ (x′, 0) ∀x, x′ ∈ A

over the point (0, 0) ∈ D2 ×D2. As Freedman (see [53] Theorem 2.2) showed UQ is diffeo-
morphic to the Casson handle CHQ given by the tree Q.

Appendix B Thurston Foliation of a 3-Manifold

In [94] Thurston constructed a foliation of the 3-sphere S3 which depends on a polygon P in
the hyperbolic plane H2 so that two foliations are non-cobordant if the corresponding poly-
gons have different areas. For later usage, we will present the main ideas of this construction
only (see also the book [92] chapter VIII for the details). Starting point is the hyperbolic
plane H2 with a convex polygon K ⊂ H2 having k sides s1, . . . , sk. Assuming the upper half
plane model of H2 then the sides are circular arcs. The construction of the foliation depends
mainly on the isometry group PSL(2,R) of H2 realized as rational transformations (and
this group can be lifted to SL(2,R)). The followings steps are needed in the construction:

1. The polygon K is doubled along one side, say s1, to get a polygon K ′. The sides are
identified by (isometric) transformations si → s′i (as elements of SL(2,R)).
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2. Take ǫ-neighborhoods Uǫ(pi), Uǫ(p
′
i) with ǫ > 0 sufficient small and set

V 2 = (K ∪K ′) \
k
⋃

i=1

(Uǫ(pi) ∪ Uǫ(p′i))

= S2 \
k
⋃

i=1

D2
i

having the topology of V 2 = S2 \ {k punctures} and we set P = K ∪K ′.

3. Now consider the unit tangent bundle UH2, i.e. a S1−bundle over H2 (or the tangent
bundle where every vector has norm one). The restricted bundle over V 2 is trivial so
that UV 2 = V 2 × S1. Let L,L′ be circular arcs (geodesics) in H2 (invariant w.r.t.
SL(2,R)) starting at a common point which define parallel tangent vectors w.r.t. the
metrics of the upper half plane model. The foliation of V 2 is given by geodesics
transverse to the boundary and we obtain a foliation of V 2 × S1 (as unit tangent
bundle). This foliation is given by a SL(2,R)-invariant smooth 1-form ω (so that
ω = const.defines the leaves) which is integrable dω ∧ ω = 0. (SL(2,R)−invariant
Foliation FSL)

4. With the relation D2 = V 2 ∪ D2
1 ∪ · · · ∪ D2

k−1, we obtain D2 × S1 = V 2 × S1 ∪
(

D2
1 × S1

)

∪ · · · ∪
(

D2
k−1 × S1

)

or the gluing of k − 1 solid tori to V 2 × S1 gives a
solid tori. Every glued solid torus will be foliated by a Reeb foliation. Finally using
S3 = (D2 × S1) ∪ (S1 ×D2) (the Heegard decomposition of the 3-sphere) again with
a solid torus with Reeb foliation, we obtain a foliation on the 3-sphere.

The construction of this foliation FThurston (Thurston foliation) will be also work for any
3-manifold. Thurston [94] obtains for the Godbillon-Vey number

GV (V 2 × S1,FSL) = 4π · vol(P ) = 8π · vol(K)

and
GV (S3,FThurston) = 4π · Area(P ) (34)

so that any real number can be realized by a suitable foliation of this type. Furthermore,
two cobordant foliations have the same Godbillon-Vey number (but the reverse is in general
wrong). Let [1] ∈ H3(S3,R) be the dual of the fundamental class [S3] defined by the volume
form, then the Godbillon-Vey class can be represented by

ΓFa
= 4π ·Area(P )[1] (35)

The Godbillon-Vey class is an element of the deRham cohomology H3(S3,R). Now we will
discuss the general case of a compact 3-manifold carrying a foliation of the same type like
the 3-sphere above. The main idea of the construction is very simple and uses a general
representation of all compact 3-manifolds by Dehn surgery. Here we will use an alternative
representation of surgery by using the Dehn-Lickorish theorem ([81] Corollary 12.4 at page
84). Let Σ be a compact 3-manifold without boundary. There is now a natural number
k ∈ N so that any orientable 3-manifold can be obtained by cutting out k solid tori from
the 3-sphere S3 and then pasting them back in, but along different diffeomorphisms of their
boundaries. Moreover, it can be assumed that all these solid tori in S3 are unknotted. Then
any 3-manifold Σ can be written as

Σ =

(

S3 \
(

k
⊔

i=1

D2
i × S1

))

∪φ1

(

D2
1 × S1

)

∪φ2
· · · ∪φk

(

D2
k × S1

)
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where φi : ∂
(

S3 \
(

⊔k
i=1D

2
i × S1

))

→ ∂D2
i × S1 is the gluing map from each boundary

component of
(

S3 \
(

⊔k
i=1D

2
i × S1

))

to the boundary of ∂D2
i × S1. This gluing map is

a diffeomorphism of tori T 2 → T 2 (where T 2 = S1 × S1). The Dehn-Lickorish theorem
describes all diffeomorphisms of a surface: Every diffeomorphism of a surface is the com-
position of Dehn twists and coordinate transformations (or small diffeomorphisms). The
decomposition

S3 =
(

V 2 × S1
)

∪
(

D2
1 × S1

)

∪ · · · ∪
(

D2
k−1 × S1

)

∪
(

S1 ×D2
k

)

(36)

of the 3-sphere can be used to get a decomposition of Σ by

Σ =
(

V 2 × S1
)

∪φ1

(

D2
1 × S1

)

∪φ2
· · · ∪φk

(

D2
k × S1

)

which will guide us to the construction of a foliation on Σ:

• Construct a foliation FΣ,SL on V 2 × S1 using a polygon P (see above) and

• Glue in k Reeb foliations of the solid tori using the diffeomorphisms φi.

Finally we get a foliation FΣ,Thurston on Σ. According to the rules above, we are able to
calculate the Godbillon-Vey number

GV (Σ,FΣ,Thurston) = 4π · vol(P )

Therefore for any foliation of S3, we can construct a foliation on any compact 3-manifold Σ
with the same Godbillon-Vey number. Both foliations FThurston and FΣ,Thurston agree for
the common submanifold V 2 × S1 or there is a foliated cobordism between V 2 × S1 ⊂ Σ
and V 2 × S1 ⊂ S3. Of course, S3 and Σ differ by the gluing of the solid tori but every solid
torus carries a Reeb foliation which does not contribute to the Godbillon-Vey number.

Appendix C 3-Manifolds and Geometric Structures

A connected 3-manifold N is prime if it cannot be obtained as a connected sum of two
manifolds N1#N2 neither of which is the 3-sphere S3 (or, equivalently, neither of which is the
homeomorphic to N). Examples are the 3-torus T 3 and S1×S2 but also the Poincare sphere.
According to [77], any compact, oriented 3-manifold is the connected sum of a unique (up to
homeomorphism) collection of prime 3-manifolds (prime decomposition). A subset of prime
manifolds are the irreducible 3-manifolds. A connected 3-manifold is irreducible if every
differentiable submanifold S homeomorphic to a sphere S2 bounds a subset D (i.e. ∂D = S)
which is homeomorphic to the closed ball D3. The only prime but reducible 3-manifold is
S1×S2. For the geometric properties (to meet Thurstons geometrization theorem) we need a
finer decomposition induced by incompressible tori. A properly embedded connected surface
S ⊂ N is called 2-sided5 if its normal bundle is trivial, and 1-sided if its normal bundle is
nontrivial. A 2-sided connected surface S other than S2 or D2 is called incompressible if for
each disk D ⊂ N with D ∩ S = ∂D there is a disk D′ ⊂ S with ∂D′ = ∂D. The boundary
of a 3-manifold is an incompressible surface. Most importantly, the 3-sphere S3, S2 × S1

and the 3-manifolds S3/Γ with Γ ⊂ SO(4) a finite subgroup do not contain incompressible
surfaces. The class of 3-manifolds S3/Γ (the spherical 3-manifolds) include cases like the
Poincare sphere (Γ = I∗ the binary icosaeder group) or lens spaces (Γ = Zp the cyclic

5The ‘sides’ of S then correspond to the components of the complement of S in a tubular neighborhood
S × [0, 1] ⊂ N .
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Figure 11: Torus (JSJ-) decomposition, Hi hyperbolic manifold, Si Graph-manifold, Ti Tori.

group). Let Ki be irreducible 3-manifolds containing incompressible surfaces then we can
N split into pieces (along embedded S2)

N = K1# · · ·#Kn1
#n2

S1 × S2#n3
S3/Γ , (37)

where #n denotes the n-fold connected sum and Γ ⊂ SO(4) is a finite subgroup. The
decomposition of N is unique up to the order of the factors. The irreducible 3-manifolds
K1, . . . , Kn1

are able to contain incompressible tori and one can split Ki along the tori into
simpler pieces K = H ∪T 2 G [73] (called the JSJ decomposition). The two classes G and H
are the graph manifold G and the hyperbolic 3-manifold H (see Figure 11).

The hyperbolic 3-manifold H has a torus boundary T 2 = ∂H , i.e. H admits a hyperbolic
structure in the interior only. In this paper we need the splitting of the link/knot comple-
ment. As shown in [33], the Whitehead double of a knot leads to JSJ decomposition of the
complement into the knot complement and the complement of the Whitehead link (along
one torus boundary of the Whitehead link complement).

One property of hyperbolic 3-manifolds is central: Mostow rigidity. As shown by Mostow
[78], every hyperbolic n−manifold n > 2 with finite volume has this property: Every dif-
feomorphism (especially every conformal transformation) of a hyperbolic n−manifold with
finite volume is induced by an isometry. Therefore one cannot scale a hyperbolic 3-manifold
and the volume is a topological invariant. Together with the prime and JSJ decomposition

N = (H1 ∪T 2 G1) # · · ·# (Hn1
∪T 2 Gn1

) #n2
S1 × S2#n3

S3/Γ ,

we can discuss the geometric properties central to Thurstons geometrization theorem: Every
oriented closed prime 3-manifold can be cut along tori (JSJ decomposition), so that the
interior of each of the resulting manifolds has a geometric structure with finite volume. Now,
we have to clarify the term geometric structure’s. A model geometry is a simply connected
smooth manifold X together with a transitive action of a Lie group G on X with compact
stabilizers. A geometric structure on a manifold N is a diffeomorphism from N to X/Γ for
some model geometry X , where Γ is a discrete subgroup of G acting freely on X . t is a
surprising fact that there are also a finite number of three-dimensional model geometries, i.e.
8 geometries with the following models: spherical (S3, O4(R)), Euclidean (E3, O3(R) ⋉R3),
hyperbolic (H3, O1,3(R)+), mixed spherical-Euclidean (S2 × R, O3(R) × R × Z2), mixed

hyperbolic-Euclidean (H2×R, O1,3(R)+×R×Z2) and 3 exceptional cases called S̃L2 (twisted
version of H2 × R), NIL (geometry of the Heisenberg group as twisted version of E3), SOL
(split extension of R2 by R, i.e. the Lie algebra of the group of isometries of 2-dimensional
Minkowski space). We refer to [84] for the details.
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