Inclusive B Decays - Spectra, Moments and CKM Matrix Elements

Presented by Daniel Cronin-Hennessy University of Rochester (CLEO Collaboration)

> BNL Seminar Jan 23, 2003

Outline

CESR/CLEO

LEPP

Cornell Electron-positron Storage Ring

- ➤~ ¾ km circumference
- ≻e⁺e⁻ collisions
- ≻E_{beam}: 1.5-5.6 GeV
- Most data collected near Y(4S) resonance.

Operating Energies

- > 2/3 data collected ON Y(4S)
 - ▶ $e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ (**s** ~ **1.0 nb**)
- > 1/3 data collected OFF
 - > 60 MeV below Resonance
 - Continuum only
 - Almost perfect qq background sample

Overview:

The Standard Model & The Heavy Quark Expansion

Overview

 $= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ S \\ b \end{pmatrix}$ S

CKM matrix relates quark mass eigenstates to weak eigenstates

Fundamental Standard Model parameters – must be measured.

Measurement of these electro-weak parameters complicated by QCD (we observe hadrons not quarks)

The formalism that provides a viable framework for extracting CKM elements is Heavy Quark Effective Theory **HQET**.

≻What is new in inclusive CKM extractions?
B→X_s g

Overview

$$\begin{pmatrix} d \\ S \\ b \end{pmatrix} = \begin{pmatrix} .975 & .223 & .004 \\ .223 & .974 & .041 \\ .009 & .041 & .999 \end{pmatrix} \begin{pmatrix} d \\ S \\ b \end{pmatrix}$$

CKM matrix relates quark mass eigenstates to weak eigenstates

Fundamental Standard Model parameters – must be measured.

Measurement of these electro-weak parameters complicated by QCD (we observe hadrons not quarks)

The formalism that provides a viable framework for extracting CKM elements is Heavy Quark Effective Theory **HQET**.

≻What is new in inclusive CKM extractions?
B→X_s g

$b \rightarrow c$ Decay

Very difficult

- Still need QCD corrections
- Perturbative
 - ✓ Hard gluon (Short distance)

✓ a_s

- Non-Perturbative
 - ✓ Soft gluon (Long distance)

✓ **L**, **l**₁ & **l**₂

HQET

> **HQET+OPE** allows any inclusive observable to be written as a double expansion in powers of α_s and $1/M_B$:

$$Observable = A(\boldsymbol{a}_s, \boldsymbol{a}_s^2) + B(\boldsymbol{a}_s) \frac{\overline{\Lambda}}{M} + C \frac{\overline{\Lambda^2}}{M^2} + D \frac{\boldsymbol{l}_1}{M^2} + E \frac{\boldsymbol{l}_2}{M^2} + O(\frac{1}{M^3})$$

 $\begin{array}{lll} O(1/M) & \overline{L} & \mbox{energy of light degrees of freedom} \\ O(1/M^2) & 1_1 & \mbox{-momentum squared of b quark} \\ & \lambda_2 & \mbox{hyperfine splitting (known from B/B* and D/D* \Delta M)} \\ O(1/M^3) & \rho_1, \rho_2, \tau_1, \tau_2, \tau_3, \tau_4 & \sim (.5 \ {\rm GeV})^3 \ {\rm from dimensional considerations} \end{array}$

$$\succ \Gamma_{sl} = |\mathbf{V}_{cb}|^2 \left(A(\alpha_{s,'}\beta_0\alpha_s^2) + B(\alpha_s)\overline{\Lambda}/M_B + C\lambda_1/M_B^2 + ... \right)$$

> $\overline{\Lambda}$, λ_1 combined with the Γ_{sl} measurements \rightarrow better $|V_{cb}|^2$

Observables

- $B \rightarrow X_s$ g: 1st and 2nd moments of Photon energy
- $B \rightarrow X_c \ell$ m: 1st and 2nd moments of hadronic recoil mass
- $B \rightarrow X_c \ell n$: Semileptonic Width (G_{sl})
- $B \rightarrow X_c \ell$ m: lepton energy moments

 $\left\langle E_{g}\right\rangle = \frac{m_{b}}{2}$ $\left\langle \left(E_{g} - \left\langle E_{g}\right\rangle\right)^{2}\right\rangle =$

 $B \rightarrow X_c \ell \mathbf{n}$

 $\langle (M_{X}^{2} - \overline{M}_{D}^{2}) \rangle$

- Monte Carlo model shown
- Measure moments of recoil mass
- D and D* well measured
- > Need to determine contribution to moments from high mass components

> Details of resonances not included in parton level calculation

Quark ← → Hadron

Semileptonic Decay Width

$hightarrow \Gamma_{ m sl}$ (B Meson Semileptonic Decay Width)

 Calculated from B meson branching fraction and lifetime measurements (CLEO, CDF, BaBar, Belle ...)

- It is the first approximation to the b quarks decay width

$$\Gamma_{s\ell}(B \to X_u ln) = \frac{G_F^2 |V_{ub}|^2 m_b^5}{\sqrt{192p^3}} [1 + \frac{I_1}{2m_b^2} - \frac{9I_2}{2m_b^2} + radiative + O(1/M_B^3)]$$

Free quark
decay width
b quark motion –
increased b lifetime

$$\Delta M$$

hyperfine splitting

$$\Gamma_{s\ell}(B \to X_c l\mathbf{n}) = \frac{(0.3689)G_F^2 |V_{cb}|^2 M_B^5}{192\mathbf{p}^3} [1 - 1.648 \frac{\overline{\Lambda}}{M_B} - 0.946 \frac{\overline{\Lambda}^2}{M_B^2} - 3.185 \frac{\mathbf{l}_1}{M_B^2} - 7.474 \frac{\mathbf{l}_2}{M_B^2} + O(1/M_B^3)]$$

Strategy

>At least two inclusive measurements needed in addition to the B branching fraction and B lifetime in order to extract V_{cb} .

≻Measure:

- > 1st and 2nd moments of Photon energy (b \rightarrow s γ)
- > 1st and 2nd moments of hadronic recoil mass (B \rightarrow X_c $\ell \nu$)
- > lepton energy moments (B \rightarrow X_c ℓ v)
- >Many measurements are needed to verify
 - Convergence of Expressions
 - >Quark-Hadron Duality

Measurements I

Moments & V_{cb}

- Lepton: Select events with very high lepton momentum (1.5 GeV)
 above lower momentum secondaries (eg D decays)
- Neutrino: Use all observed energy-momentum to calculate neutrino 4-vector
 fakes arise from non-interacting neutrals

 (K_{long}, secondary neutrinos, neutrons)

- Fit spectrum with
 - *BRDln*
 - *B*健 *D*[∗]ℓ*n*
 - $B \otimes X_H \ell \mathbf{n}$ (various models for X_H)
- Find moments of true M_{χ^2} spectrum

$$\langle (M_x^2 - \overline{M}_D^2) \rangle = 0.25 \pm 0.023 \pm 0.062$$

 $\langle (M_x^2 - \langle M_x^2 \rangle)^2 \rangle = 0.576 \pm 0.048 \pm 0.163$

- ♦ Always require high energy photon $2.0 < E_g < 2.7 \text{ GeV}$ $|\cos q| < 0.7$
- Naïve strategy: Measure E_g spectrum for ON and OFF resonance and subtract
- But, must suppress huge continuum background! [veto is not enough]
 - $\pi^0 \mathbb{R}$ $\gamma \gamma$ and $\eta \mathbb{R}$ $\gamma \gamma$
- Three attacks:
 - Shape analysis
 - Pseudoreconstruction
 - Leptons

Hadronic Mass and Photon Energy

V_{cb}

Lepton Energy Moments in $B \rightarrow X$ Im

Consistency Among Observables

- A and λ₁ ellipse extracted from 1st moment of
 B → X_s gphoton energy spectrum and 1st moment of hadronic mass² distribution(B → X_c m). We use the HQET equations in MS scheme at order 1/M_B³ and α_s² β₀.
 - ✤ MS Expressions: A. Falk, M. Luke, M. Savage,
 - Z. Ligeti, A. Manohar, M. Wise, C. Bauer
- ✤ The red and black curves are derived from the new CLEO results for $B \rightarrow X$ in lepton energy moments.
 - MS Expressions: M.Gremm, A. Kapustin, Z. Ligeti and M. Wise, I. Stewart (moments) and I. Bigi, N.Uraltsev, A. Vainshtein(width)
- Gray band represents total uncertainty for the 2nd moment of photon energy spectrum.

Moments Summary

CLEO has measured six moments, two each from

- 1) the photon energy distribution in $B \rightarrow X_s g$
- 2) the hadronic mass² distribution in $B \rightarrow X_c$ Im
- 3) most recently the lepton energy spectrum in $B \rightarrow X_c$ Im
- > The allowed values for HQET parameters Λ and λ_1 are in agreement for all measurements.
- \geq $|V_{cb}|$ extracted at the level of 3%

Global Analysis: hep-ph/0210027 Bauer, Ligeti, Luke & Manohar

Moment	CLEO	DELPHI(<i>prelim</i>)	BABAR(prelim)
<m<sup>2_H - m²_D></m<sup>	0.251±0.023±0.062 (E _I >1.5GeV)	0.534±0.041±0.074	Next Slide
<(m ² _H - <m<sup>2_H>)²></m<sup>	.576±0.048±0.163 (E _I > 1.5GeV)	1.23±0.16±0.15	
<(m ² _H - <m<sup>2_H>)³></m<sup>		2.97±0.67±0.48	
<ey></e	2.346±0.032± 0.011		
<(Eg- <ez>)²></ez>	0.0226±0.0066±0.0020		
<e<sub>l></e<sub>	1.7810 <u>+</u> 0.0007 <u>+</u> 0.0009 (E _I > 1.5 GeV)	1.383±0.012± 0.009	
<(E _l - <e<sub>l>)²></e<sub>		0.192 ± 0.005± 0.008	
<(E _l - <e<sub>l>)³></e<sub>		0.029 ±0.005±0.006	
R ₀	0.6187 <u>+</u> 0.0014 <u>+</u> 0.0016 (E _I > 1.5 GeV)		

BaBar at ICHEP

Global Analysis: hep-ph/0210027 Bauer, Ligeti, Luke & Manohar

|V_{cb}|=(4.08<u>+</u>0.09) 10⁻²

Abstract

We present expressions for shape variables of B decay distributions in several different mass schemes, to order $\alpha_s^2\beta_0$ and $\Lambda_{\rm QCD}^3/m_b^3$. Such observables are sensitive to the b quark mass and matrix elements in the heavy quark effective theory, and recent measurements allow precision determinations of some of these parameters. We perform a combined fit to recent experimental results from CLEO, BABAR, and DELPHI, and discuss the theoretical uncertainties due to nonperturbative and perturbative effects. We discuss the possible discrepancy between the OPE prediction, recent BABAR results and the measured branching fraction to D and D^* states. We find $|V_{cb}| = (40.8 \pm 0.9) \times 10^{-3}$ and $m_b^{1S} = 4.74 \pm 0.10$ GeV, where the errors are dominated by experimental uncertainties.

Measurements II

 V_{ub}

|V_{ub}| from Lepton Endpoint (using b @ sg)

\succ |V_{ub}| from $b \otimes u\ell$

- We measure the endpoint yield
- Large extrapolation to obtain |V_{ub}|
- High E cut leads to theoretical difficulties (we probe the part of spectrum most influenced by fermi momentum)
- GOAL: Use b @ sg to understand Fermi momentum and apply to b@ ulm for improved measurement of |V_{ub}|

Kagan-Neubert DeFazio-Neubert

B → lightquark shape function, SAME (to lowest order in Λ_{QCD}/m_b) for $b \rightarrow s \gamma \Rightarrow B \rightarrow X_s \gamma$ and $b \rightarrow u \Vdash \Rightarrow B \rightarrow X_u \upharpoonright v$.

|V_{ub}| from Lepton Endpoint (using b @ sg)

 $|V_{ub}| = (4.08 \pm 0.34 \pm 0.44 \pm 0.16 \pm 0.24)10-3$

The 1st two errors are from experiment and 2nd from theory

- Subleading corrections large
 C. Bauer, M. Luke, T. Mannel
 A. Leibovich, Z. Ligeti, M. Wise
- Method for partial inclusion of subleading corrections: Neubert

Conclusions

Summary

Endpoint $|V_{ub}| = (4.08 \pm 0.63) 10^{-3}$ Moments $|V_{cb}| = (4.04 \pm 0.13) 10^{-2}$

$\succ V_{cb}$:

- Bound state corrections to the semileptonic width, predicted by HQET and measured by a number moments analyses have permitted the extraction of V_{cb} to a precision of a few %.
- Are we seeing the first of Quark-Hadron Duality violations?
- Improved hadronic mass measurements and lepton energy moments, are nearing completion and may help us understand.

≻ V_{ub}:

- > The photon energy spectrum in $b \otimes sg$ provides a quantitative model for the bound state effects in $b \rightarrow u$ ly.
- ➤ This approach has not yet reached its full potential → We expect improved measurements from all 3 B factories.
- > The method does require additional theoretical refinements as well.

