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1 Introduction

The QCD energy-momentum tensor Tµν is known to receive the trace anomaly [1–3], as

Tµµ = ηµνT
µν = β(g)

2g F 2 + (1 + γm(g))mψ̄ψ , (1.1)

representing the broken scale invariance due to the quantum loop effects, with the beta-
function β(g) for the QCD coupling constant g and the anomalous dimension γm(g) for
the quark mass m. Here, ηµν is the metric tensor, ηµν = diag (1, −1, −1, −1) in four
spacetime dimensions, and F 2 (= Fµνa Faµν) and mψ̄ψ (= muūu+mdd̄d+ . . .) denote the
renormalized composite operators dependent on a renormalization scale. The symmetric
QCD energy-momentum tensor is given by [4] (see also [5, 6])

Tµν = Tµνq + Tµνg (1.2)

where the operators,

Tµνq = iψ̄γ(µ←→D ν)ψ , T µνg = −FµλF νλ + ηµν

4 F 2 , (1.3)

with Dµ = ∂µ + igAµ, ←→D µ ≡
−→
Dµ−

←−
Dµ

2 and R(µSν) ≡ RµSν+RνSµ
2 , are the gauge-invariant

quark part and gluon part; we have neglected the gauge-variant terms in the r.h.s. of (1.2),
i.e., the ghost term and the gauge fixing term, as they do not affect our final results.
Classically, we have, ηµνTµνq = mψ̄ψ and ηµνTµνg = 0, up to the terms that vanish by the
equations of motion (EOM), but (1.1) does not coincide with the quantum corrections to
the mψ̄ψ operator, reflecting that renormalizing the quantum loops and taking the trace
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do not commute. We note that the total tensor Tµν of (1.2) is not renormalized; it is a
finite, scale-independent operator, because of the energy-momentum conservation,

∂νT
µν = 0 , (1.4)

while Tµνq and Tµνg are not conserved separately and thus each of Tµνq and Tµνg is subject
to regularization and renormalization. This fact suggests that each of Tµνq and Tµνg
should receive a definite amount of anomalous trace contribution, such that their sum
reproduces (1.1). The corresponding trace anomaly for each quark/gluon part is derived
up to two-loop order in [7]. The extension to the three-loop order is worked out in [8],
demonstrating that the logic to determine the quark/gluon decomposition of the trace
anomaly holds to all orders in perturbation theory. In the MS-like (MS, MS) schemes in
the dimensional regularization, we obtain

ηµνT
µν
q = mψ̄ψ + αs

4π

(
nf
3 F 2 + 4CF

3 mψ̄ψ

)
+ · · · ,

ηµνT
µν
g = αs

4π

(
−11CA

6 F 2 + 14CF
3 mψ̄ψ

)
+ · · · , (1.5)

for nf flavor and Nc color with CF = (N2
c − 1)/(2Nc) and CA = Nc; here αs = g2/(4π), and

the ellipses stand for the two-loop (O(α2
s)) as well as three-loop (O(α3

s)) corrections, whose
explicit formulas are presented in [7, 8]. The sum of the two formulas of (1.5) coincides
with (1.1) at every order in αs. For a recent extention to the four-loop order, see [9].

Each formula of (1.5) is separately renormalization group (RG)-invariant up to the one-
loop terms that are explicitly shown above, but ηµνTµνq as well as ηµνTµνg receives the RG
scale dependence beyond the one-loop order, still the total anomaly (1.1) is scale-independent.
Although intuitive interpretation of the separate anomalies (1.5) for quark/gluon parts, as
well as their correspondence to the quark/gluon degrees of freedom participating in the
quantum loops, is not straightforward beyond one-loop order, the formulas (1.5) could be
useful beyond being a purely formal decomposition. Indeed, the separate anomalies (1.5),
as well as their RG properties, allow us to constrain the twist-four gravitational form
factor C̄q,g [7], where C̄q (C̄g) arises as one of the gravitational form factors [4, 10–12]
to parametrize the hadron matirx element of each of quark and gluon parts of the QCD
energy-momentum tensor, 〈p′|Tµνq,g |p〉. In particular, it has been demonstrated [7] that
the solution of the corresponding two-loop RG equations provides a model-independent
determination of the forward (p′ → p) value of C̄q,g, at the accuracy of ∼ ten percent level.
Such quantitative constraint could have impact on the developments to describe the shape
deep inside the hadrons reflecting dynamics of quarks and gluons, such as the pressure
distributions inside the hadrons [11, 13, 14]; indeed, the recent results of the pressure
distributions [15] and the shear force distributions [16] inside the nucleon are based on the
determination of the quark part of the gravitational form factors from the behaviors of the
generalized parton distributions (GPDs) [17–19], which are obtained by experiments like
deeply virtual Compton scattering (DVCS) [18–23], deeply virtual meson production [24, 25],
meson-induced Drell-Yan production [26–28], etc. As another phenomenological implication,
the cross section of the near-threshold photoproduction of J/ψ in ep scattering, proposed
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to be measured at the Jefferson Laboratory [29], is sensitive to the F 2 part of the trace
anomaly (1.1) [30], which can be conveniently handled [31] through the p′ → p behavior of
the gravitational form factors that parametrize 〈p′|ηµνTµνg |p〉. The separate anomalies (1.5)
should also provide a new insight on understanding the origin of the nucleon mass [32–38]
to be explored in the future Electron-Ion Collider.

In this paper we extend the two-loop calculation of [7] for constraining the twist-four
gravitational form factor C̄q,g to the calculation at the next higher-order accuracy by using
the three-loop formulas for the separate anomalies, (1.5). We calculate the forward value of
the twist-four gravitational form factor C̄q,g at the next-to-next-to-leading-order (NNLO)
accuracy, which allows us to present quantitative results for nucleon as well as pion; in
particular, for nucleon, we determine the forward value of C̄q,g at the level of accuracy ∼ a
few percent.

The rest of the paper is organized as follows. We sketch all-orders renormalization-
mixing structure relevant for the quark and gluon energy-momentum tensors in the MS-like
schemes in section 2, and explain, as its direct consequence, the quark/gluon decomposition
of the QCD trace anomaly. Implications of this result to constrain the gravitational form
factors are discussed in section 3. In particular, in section 4, we present a model-independent
determination of the forward value of the twist-four gravitational form factor C̄q,g, at the
accuracy of ∼ a few percent level. These results for a nucleon are extended to the case of
the spin-0 hadrons like a pion in section 5. Section 6 is reserved for conclusions.

2 Renormalization structure of energy-momentum tensor and the sepa-
rate quark and gluon trace anomalies

In this section we sketch how the formulas (1.5) are obtained. First of all, the renormalization
of Tµνq , Tµνg of (1.3) is not straightforward, because it does not obey a simple multiplicative
form: Tµνq , Tµνg are composed of the twist-two (traceless part) and twist-four (trace part)
operators, and the renormalization mixing between the quark part and gluon part also
arises. To treat them, we define a basis of independent gauge-invariant operators up to
twist four,

Og = −FµλF νλ , Oq = iψ̄γ(µ←→D ν)ψ , (2.1)
Og(4) = ηµνF 2 , Oq(4) = ηµνmψ̄ψ , (2.2)

and the corresponding bare operators, OBk with k = g, q, g(4), and q(4). The renormalization
constants are introduced as

Og = ZTO
B
g + ZMO

B
g(4) + ZLO

B
q + ZSO

B
q(4) , (2.3)

Oq = ZψO
B
q + ZKO

B
q(4) + ZQO

B
g + ZBO

B
g(4) , (2.4)

Og(4) = ZFO
B
g(4) + ZCO

B
q(4) , (2.5)

Oq(4) = OBq(4) , (2.6)

where, for simplicity, the mixing with the EOM operators as well as the BRST-exact
operators is not shown, as their physical matrix elements vanish and they do not affect our
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final result [39]. Here, Og, as well as Oq, is a mixture of the twist-two and -four operators,
and the corresponding twist-four components receive the contributions of the twist-four
operators Og(4) and Oq(4). The latter two formulas (2.5) and (2.6) reflect, respectively, that
the twist-four operator Og(4) mixes with itself and another twist-four operator Oq(4), and
that Oq(4) is renormalization group (RG)-invariant (see [7, 8, 40]).

Subtracting the traces from both sides of the equations (2.3) and (2.4), Ok and OBk with
k = g, q are replaced by the corresponding twist-two parts, Ok(2) and OBk(2), respectively,
such that the twist-four contributions drop out:

Og(2) = ZTO
B
g(2) + ZLO

B
q(2) ,

Oq(2) = ZψO
B
q(2) + ZQO

B
g(2) . (2.7)

Here, the resultant equations are controlled by the renormalization constants ZT , ZL, Zψ
and ZQ, and should represent the flavor-singlet mixing of the twist-two, spin-two operators.
Thus, those four constants ZT , ZL, Zψ and ZQ can be determined by the second moments
of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting functions which are
known up to the three-loop accuracy [41].1

For the renormalization mixing (2.5) at twist four, the Feynman diagram calculation
of ZF and ZC is available to the two-loop order [40]. Moreover, it is shown [8] that the
constraints imposed by the RG invariance of (1.1) allow to determine the power series in αs
for ZF as well as ZC in the MS-like schemes, completely from the perturbative expansions
of β(g) and γm(g), which are now known to five-loop order [43–48] in the literature.

Therefore, six renormalization constants ZT , ZL, Zψ, ZQ, ZF and ZC among ten con-
stants arising in (2.3)–(2.6) are available to a certain accuracy beyond two-loop order in
the MS-like schemes, and they take the form,

ZX = (δX,T + δX,ψ + δX,F ) + aX
ε

+ bX
ε2

+ cX
ε3

+ · · · , (2.8)

in the d = 4− 2ε spacetime dimensions with X = T, L, ψ,Q, F , and C; here, aX , bX , cX , . . .,
are the constants given as the power series in αs, and δX,X′ denotes the Kronecker symbol.
However, ZM , ZS , ZK and ZB still remain unknown. It is shown [8] that these four
renormalization constants can be determined to the accuracy same as the renormalization
constants (2.8), by invoking that they should also obey the form (2.8) with X = M,S,K,B,
and that the r.h.s. of the formulas (2.3), (2.4) are, in total, UV-finite. Thus, all the
renormalization constants in (2.3)–(2.6) are determined up to the three-loop accuracy.
The trace part of each of the renormalized quark part and gluon part (1.3), ηµνTµνq,g , is
of twist four and thus is expressed as a superposition in terms of the independent twist-
four renormalized operators, mψ̄ψ and F 2. The corresponding formulas can be derived
calculating the trace part of (2.4) and (2.3), and then reexpressing the results with mψ̄ψ
and F 2 by the use of (2.5), (2.6). Expressing the resulting formulas as

ηµνT
µν
q = xq(αs)F 2 + (1 + yq(αs))mψ̄ψ , (2.9)

ηµνT
µν
g = xg(αs)F 2 + yg(αs)mψ̄ψ , (2.10)

1See [42] for recent four loop results for the low moments.
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the coefficients xq(αs), yq(αs), xg(αs), and yg(αs) are completely determined by the renor-
malization constants in (2.3)–(2.6), such that those coefficients are the finite quantities of
order αs and higher. Furthermore, it has been shown [8] that the relations,

xq(αs) + xg(αs) = β(g)
2g ,

yq(αs) + yg(αs) = γm(g) , (2.11)

hold to all orders in αs, where

β(g) = dg

d lnµ =
√
π

αs

dαs
d lnµ = −

√
4παs

∞∑
n=0

βn

(
αs
4π

)n+1
, (2.12)

γm(g) = − 1
m

∂m(µ)
∂ lnµ =

∞∑
n=0

γmn

(
αs
4π

)n+1
, (2.13)

so that the relations (2.11) guarantee that the sum of (2.9) and (2.10) reproduces the QCD
trace anomaly (1.1). We note that the sum of the two equations (2.9) and (2.10) is thus
RG-invariant; but, each of them exhibits the dependence on the renormalization scale µ in
the MS-like schemes, i.e.,

T λλ = ηλνT
λν
g

∣∣∣
µ

+ ηλνT
λν
q

∣∣∣
µ
, (2.14)

due to the contributions of order α2
s and higher (see the discussion in section 1).

The results (2.9), (2.10) allow us to derive the three-loop formulas for (1.5); here, the
explicit form of (2.9), (2.10) is given, in the MS-like schemes, up to the three-loop order in
eqs. (88), (87) of [8], and the corresponding three-loop formulas of xq(αs), yq(αs), xg(αs),
and yg(αs) in the MS-like schemes are given as x3, y3, x1, and y1 in eqs. (83)-(86) in [8].
Therefore, through the renormalization, each of the quark part Tµνq and the gluon part Tµνg
of the energy-momentum tensor receives a definite amount of anomalous trace contribution
as in (2.9), (2.10), such that their sum reproduces (1.1).

3 Anomaly constraints on the nucleon’s twist-four gravitational form
factor

The nucleon matrix element of each term in (1.2), using the nucleon states |N(p)〉 and
|N(p′)〉 with the 4-momenta p and p′, respectively, is parameterized as

〈N(p′)|Tµνq,g |N(p)〉 = ū(p′)
[
Aq,g(t)γ(µP̄ ν) +Bq,g(t)

P̄ (µiσν)α∆α

2M

+Dq,g(t)
∆µ∆ν − ηµνt

4M + C̄q,g(t)Mηµν
]
u(p) , (3.1)

in terms of the gravitational form factors Aq,g(t), Bq,g(t), Dq,g(t), and C̄q,g(t) [11, 12], where
P̄µ ≡ pµ+p′µ

2 is the average of the initial and final momenta, ∆µ = p′µ−pµ is the momentum
transfer, t = ∆2, and M and u(p) are the nucleon mass and spinor, so that P̄ 2 = M2 − t/4.
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Aq,g(t) and Bq,g(t) are familiar twist-two form factors; Aq,g(t) obey the forward (t → 0)
sum rule,

Aq(0) + Ag(0) = 1 , (3.2)

representing a sharing of the total momentum by the quarks/gluons, as a consequence of
the forward matrix element of the energy-momentum tensor (1.2) being normalized by

〈N(p)|Tµν |N(p)〉 = 2pµpν , (3.3)

with 〈N(p′)|N(p)〉 = 2p0(2π)3δ(3)(p′ − p) being assumed, and, similarly, Bq,g(t) obey the
forward sum rule, [Aq(0) + Bq(0) + Ag(0) + Bg(0)]/2 = 1/2, representing a sharing of
the total angular momentum by the quarks/gluons, as a consequence of the nucleon spin
being 1/2.

Dq,g(t), C̄q,g(t) of (3.1) have also received considerable attention recently [10–16, 31],
and their theoretical estimates are performed [34, 49–57]: Dq,g(t) are related to the so-called
D term, D ≡ Dq(0)+Dg(0) [11]. For C̄q,g(t), exact manipulations for the divergence of (1.3)
yield the operator identities [12, 58, 59],

∂νT
µν
q = ψ̄gFµνγνψ , ∂νT

µν
g = −Fµνa Dρ

abF
b
ρν , (3.4)

up to the terms which vanish using the equations of motion, (i /D −m)ψ = 0, and the
matrix elements of these identities can be expressd by C̄q,g(t) using (3.1), as [12]

〈N(p′)|gψ̄Fµνγνψ|N(p)〉 = iM∆µC̄q(t)ū(p′)u(p) , (3.5)
−〈N(p′)|Fµνa Dρ

abF
b
ρν |N(p)〉 = iM∆µC̄g(t)ū(p′)u(p) , (3.6)

showing that C̄q,g(t) represent the multiparton correlation of twist four. The identities
of (3.4) are compatible with the condition (1.4), using the equations of motion for the gluon
fields, DαF

αν = gψ̄γνψ, and the fact that the equations of motions are preserved under
renormalization; therefore, we have

C̄q(t) + C̄g(t) = 0 , (3.7)

for all values of t. We note that C̄q,g(t) are relevant to the force distribution inside the
nucleon [11, 16] and the nucleon’s transverse spin sum rule [60].

The formula (2.14) indicates that the gravitational form factors Aq,g(t), Bq,g(t), Dq,g(t),
and C̄q,g(t) in (3.1) depend on the renormalization scale µ; this renormalization scale
dependence can be determined from the renormalization-mixing structures in (2.3)–(2.6).
The corresponding renormalization group (RG) equations of C̄q,g and Aq,g and the scale
evolutions implied by their solutions are discussed at the two-loop level in [7]. In this paper
we discuss the evolutions of C̄q,g as well as of Aq,g at the three-loop level, as a result of the
three-loop formulas for (2.3)–(2.6), (2.9), (2.10) derived in [8]. In the following, we treat
the form factors,

C̄q,g(µ) ≡ C̄q,g(t = 0, µ) ,
Aq,g(µ) ≡ Aq,g (t = 0, µ) , (3.8)
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in the forward limit t = 0, denoting the renormalization scale µ dependence explicitly, and
derive their three-loop evolutions taking into account the above constraints (3.7), (3.2).

Substituting (3.1) for the forward matrix element of the relations,

Ok(2) = Tµνk − traces (k = q, g) , (3.9)

between the operators (1.3) and the twist-2 parts of (2.1), it is straightforward to see that
the form factor Aq,g(µ) of (3.8) obey the µ-dependences implied by (2.7): the differentiation
of the relations (2.7) with respect to the renormalization scale yields the RG equations
of the twist-two, spin-2 quark and gluon operators, which coincide with the first moment
of the DGLAP evolution equations for the flavor-singlet part of the unpolarized parton
distribution functions,

d

d lnµ

(
Oq(2)(µ)
Og(2)(µ)

)
= −γ̃(αs)

(
Oq(2)(µ)
Og(2)(µ)

)
= −

(
γ̃qq(αs) γ̃qg(αs)
γ̃gq(αs) γ̃gg(αs)

)(
Oq(2)(µ)
Og(2)(µ)

)
, (3.10)

with the anomalous dimension matrix γ̃(αs), as the first moment of the singlet DGLAP
kernel. The three-loop anomalous dimension matrix of (3.10) for the twist-two flavor-singlet
operators reads [41, 61]

γ̃(αs) ≡
(
γ̃qq(αs) γ̃qg(αs)
γ̃gq(αs) γ̃gg(αs)

)
= αs

4π γ̃0 +
(
αs
4π

)2
γ̃1 +

(
αs
4π

)3
γ̃2 , (3.11)

where

γ̃0 =
( 16CF

3 −4nf
3

−16CF
3

4nf
3

)
, (3.12)

γ̃1 = 2
(

376
27 CFCA −

112
27 C

2
F − 104

27 nfCF −74
27CFnf −

35
27CAnf

−376
27 CFCA + 112

27 C
2
F + 104

27 CFnf
74
27CFnf + 35

27CAnf

)
, (3.13)

and

γ̃2 qq = −γ̃2 gq = −256
3 ζ(3)CACFnf −

44
9 CACFnf − 128ζ(3)CAC2

F + 128
3 ζ(3)C2

ACF

− 17056
243 CAC

2
F + 41840

243 C2
ACF + 256

3 ζ(3)C2
Fnf −

14188
243 C2

Fnf

− 568
81 CFn

2
f + 256ζ(3)C3

F

3 − 1120C3
F

243 ,

γ̃2 qg = −γ̃2 gg = −208
3 ζ(3)CACFnf + 278

9 CACFnf + 48ζ(3)C2
Anf −

3589
81 C2

Anf

+ 2116
243 CAn

2
f + 64

3 ζ(3)C2
Fnf −

346
243CFn

2
f −

4310
243 C

2
Fnf , (3.14)

in the MS-like schemes. Here, ζ(s) is the Riemann zeta-function with ζ(3) = 1.202056903 . . ..
We note that, from the definition (3.1), we have the relation (see e.g., [11, 12]),

Aq (µ) =
∑
f

〈x〉f (µ) , (3.15)

– 7 –



J
H
E
P
0
3
(
2
0
2
3
)
0
1
3

where the sum is over the nf quark flavors f = u, d, . . ., and

〈x〉f (µ) =
∫ 1

0
dxx

(
qf (x, µ) + qf̄ (x, µ)

)
(3.16)

is the first moment of the quark and antiquark distributions of flavor f at the scale µ. We
have also the similar formulas for Ag(µ).

Explicit form of the solution for the RG equations of the type of (3.10) has been
discussed at the three- as well as four-loop accuracy in [62] (see also [63]). For the present
case, we obtain (

Aq(µ)
Ag(µ)

)
= E(µ, µ0)

(
Aq(µ0)
Ag(µ0)

)
, (3.17)

for a certain “input” scale µ0, using the evolution operator E(µ, µ0) that obeys

d

d lnµE(µ, µ0) = −γ̃(αs)E(µ, µ0) , E(µ0, µ0) = 1 , (3.18)

with the three-loop anomalous dimension matrix (3.11). Noting that the lowest-order mixing
matrix (3.12) satisfies

γ̃2
0 = 16CF + 4nf

3 γ̃0 , (3.19)

i.e.,
γ̃0

(
γ̃0 −

16CF + 4nf
3 1

)
= 0 , (3.20)

we can define the projection operators,

P = 3
16CF + 4nf

γ̃0 ,

Q = 1− P , (3.21)

which are associated with the eigenvalues ((16CF + 4nf ) /3, 0) of the matrix γ̃0 as

γ̃0P = P γ̃0 = 16CF + 4nf
3 P , γ̃0Q = Qγ̃0 = 0 , (3.22)

satisfying
P 2 = P , Q2 = Q , PQ = 0 . (3.23)

These projection operators allow us to express the LO solution for the evolution operator
of (3.18) as

ELO(µ, µ0) = exp
[
γ̃0
2β0

ln
(
αs(µ)
αs(µ0)

)]
=

Q+ P
(
αs(µ)
αs(µ0)

) 8CF + 2nf
3β0

 , (3.24)

and we seek a solution for the full equation (3.18) as a perturbation about the LO solution,
in a form [62, 63]

E(µ, µ0) = U (αs(µ))ELO(µ, µ0)U−1 (αs(µ0)) , (3.25)
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with the matrices U (αs(µ)) and U−1 (αs(µ0)) determined order-by-order, as

U (αs(µ)) = 1 + αs(µ)
4π U1 +

(
αs(µ)

4π

)2
U2 ,

U−1 (αs(µ0)) = 1− αs(µ0)
4π U1 +

(
αs(µ0)

4π

)2 (
−U2 +U2

1

)
, (3.26)

where

Un = 1
2nβ0

(QRnQ+ PRnP ) + 1
16CF+4nf

3 + 2nβ0
QRnP

− 1
16CF+4nf

3 − 2nβ0
PRnQ , (3.27)

for n = 1, 2, with

R1 = γ̃1 −
β1
β0
γ̃0 ,

R2 = γ̃2 −
β1
β0
γ̃1 −

(
β2
β0
− β2

1
β2

0

)
γ̃0 +R1U1 . (3.28)

Thus, the evolution operator E(µ, µ0) of (3.17) at the three-loop accuracy is expressed as

E(µ, µ0) = Q+ P
(
αs(µ)
αs(µ0)

) 8CF + 2nf
3β0

+ αs(µ)
4π U1Q−

αs(µ0)
4π QU1 +

(
αs(µ)
αs(µ0)

) 8CF + 2nf
3β0

[
αs(µ)

4π U1P −
αs(µ0)

4π PU1

]
+
(
αs(µ)

4π

)2
U2Q−

αs(µ)αs(µ0)
(4π)2 U1QU1 +

(
αs(µ0)

4π

)2
Q
(
−U2 +U2

1

)

+
(
αs(µ)
αs(µ0)

) 8CF + 2nf
3β0

[(
αs(µ)

4π

)2
U2P −

αs(µ)αs(µ0)
(4π)2 U1PU1

+
(
αs(µ0)

4π

)2
P
(
−U2 +U2

1

)]
. (3.29)

Here, the first and the second lines are the LO terms and the NLO terms, respectively,
which are controlled at the one-loop and two-loop accuracy; the third line and the following
lines denote the NNLO terms derived from the three-loop contributions. We can confirm
that Aq,g(µ) obeying (3.17) with (3.29) satisfies (3.2), when it is satisfied at a certain scale
µ0. Therefore, (3.17) with (3.29) reduces to

Aq(µ) = 1−Ag(µ) = (1, 0) ·E(µ, µ0)
(

Aq(µ0)
1−Aq(µ0)

)
= ALO

q (µ) +ANLO
q (µ) +ANNLO

q (µ) , (3.30)
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where

ALO
q (µ) = nf

4CF +nf
+ 4CFAq (µ0)+nf (Aq (µ0)−1)

4CF +nf

(
αs (µ)
αs(µ0)

) 8CF+2nf
3β0

, (3.31)

ANLO
q (µ) =

(
αs(µ)

4π

) 4CFnf (−59CA+102CF +26nf )
9 (4CF +nf ) (−3β0 +8CF +2nf )

−
(
αs(µ)
αs(µ0)

) 8CF + 2nf
3β0

[(
αs(µ)

4π

) 4CFAq (µ0)+nf (Aq (µ0)−1)
27β2

0 (4CF +nf )

(
CF {−376β0CA

+72β1 +30β0nf}−35β0CAnf +112β0C
2
F +18β1nf

)
+
(
αs(µ0)

4π

) 1
27β2

0 (−3β0 +8CF +2nf )

(
−16C2

F

{(
−188β0CA−21β2

0 +36β1
)
Aq (µ0)

+β0nf (29Aq (µ0)−14)}−8β0CACF {nf (94−129Aq (µ0))+141β0Aq (µ0)}

+6CF
{
−10β0n

2
f (Aq (µ0)−1)+24β1nf (1−2Aq (µ0))+β2

0nf (15Aq (µ0)+37)

+36β0β1Aq (µ0)}+nf (35β0CA−18β1) (Aq (µ0)−1) (2nf −3β0)−896β0C
3
FAq (µ0)

)]
,

(3.32)

ANNLO
q (µ) =−

(
αs(µ)

4π

)2 CFnf
81(4CF +nf ) (4CF +nf −3β0) (8CF +2nf −3β0)

(
48
{
−1241

+1728ζ(3)
}
C3
F +2{(57928−98496ζ(3))CA+nf (−26134+31104ζ(3))+81β0(85

−192ζ(3))}C2
F +

{
24(−1951+4752ζ(3))C2

A+(−90720ζ(3)nf +51268nf −9726β0

+73872β0ζ(3))CA−5508β1−3nfβ0(−3893+5184ζ(3))+2n2
f (−6377+5184ζ(3))

}
CF

−6nf
{

142n2
f −213β0nf +234β1

}
+C2

A {8(−593+3564ζ(3))nf +β0(921−42768ζ(3))}

+CA
{

(5458−10368ζ(3))n2
f +3β0(−1819+5184ζ(3))nf +3186β1

})
+
(
αs(µ)
αs(µ0)

) 8CF + 2nf
3β0

[(
αs(µ)

4π

)2 nf (Aq (µ0)−1)+4CFAq (µ0)
2916(4CF +nf )β4

0

(
25088β2

0C
4
F

+32β0
{

3
(
648ζ(3)β2

0−35β2
0 +140nfβ0 +336β1

)
−5264CAβ0

}
C3
F

+2
{

3nf (−4939+7776ζ(3))β3
0 +141376C2

Aβ
2
0 +900n2

fβ
2
0 +8352nfβ1β0

−16CA
(
3[533+972ζ(3)]β2

0 +1900nfβ0 +3384β1
)
β0 +432β1

(
7β2

0 +12β1
)}
C2
F

+2
{

8C2
A (3290nf +3β0[2615+648ζ(3)])β2

0−3CA
(
700β0n

2
f +9

[
3(161+72ζ(3))β2

0

+688β1]nf +3384β0β1)β0 +3
([

360β0β1−679β3
0

]
n2
f +54β1

[
5β2

0 +16β1
]
nf

+648β0
[
β2

1−β0β2
])}

CF +nf
{
C2
A (2450nf +9β0[3589−3888ζ(3)])β2

0

−6CA
(
1058nfβ2

0 +315β1β0 +420nfβ1
)
β0 +324

(
2nfβ2

1 +3β0
[
β2

1−β0β2
])})

−
(
αs(µ)

4π

)(
αs(µ0)

4π

) 1
729(8CF +2nf −3β0)β4

0

({
112β0C

2
F +(−376CAβ0 +30nfβ0
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+72β1)CF −35CAnfβ0 +18nfβ1}
{

896β0Aq (µ0)C3
F +16

([
−21β2

0−188CAβ0

+36β1]Aq (µ0)+nfβ0 [29Aq (µ0)−14])C2
F +8CAβ0 (nf [94−129Aq (µ0)]

+141β0Aq (µ0))CF −6
(
−10β0 [Aq (µ0)−1]n2

f +24β1 [1−2Aq (µ0)]nf

+β2
0 [15Aq (µ0)+37]nf +36β0β1Aq (µ0)

)
CF −nf (2nf −3β0) (35CAβ0

−18β1) (Aq (µ0)−1)}
)

+
(
αs(µ0)

4π

)2 1
2916(4CF +nf −3β0)β4

0

(
100352β2

0Aq (µ0)C5
F

−128β0
{(

3[161+648ζ(3)]β2
0 +5264CAβ0−1008β1

)
Aq (µ0)−28nfβ0 (22Aq (µ0)−7)

}
C4
F

+8
{

141376C2
AAq (µ0)β2

0 +60n2
f (43Aq (µ0)−28)β2

0−16CA
(
−3[1849+972ζ(3)]Aq (µ0)β2

0

+4nf [804Aq (µ0)−329]β0 +3384β1Aq (µ0))β0 +36
(
[−35+648ζ(3)]β4

0−420β1β
2
0

+144β2
1

)
Aq (µ0)+3nf

(
[−10368ζ(3)Aq (µ0)+3399Aq (µ0)+2592ζ(3)−2212]β3

0

+96β1 [43Aq (µ0)−14]β0)}C3
F +2

{
32C2

A (94nf [82Aq (µ0)−47]−3β0[7033

+648ζ(3)]Aq (µ0))β2
0−4CA

(
100β0 [97Aq (µ0)−76]n2

f −3 [(5832ζ(3)Aq (µ0)

+14079Aq (µ0)−3888ζ(3)+3844)β2
0 +48β1 (94−223Aq (µ0))

]
nf +36β0

[
β2

0(533

+972ζ(3))−1410β1]Aq (µ0))β0 +3
(
300β2

0 [Aq (µ0)−1]n3
f +[(−7776ζ(3)Aq (µ0)

+6755Aq (µ0)+7776ζ(3)−7159)β3
0 +96β1 (44Aq (µ0)−29)β0

]
n2
f

+3
[
(7776ζ(3)Aq (µ0)−4939Aq (µ0)+2592ζ(3)−2155)β4

0−24β1 (145Aq (µ0)+32)β2
0

+576β2
1 (3Aq (µ0)−1)

]
nf +432β0

[
7β1β

2
0 +6β2β0−18β2

1

]
Aq (µ0)

)}
C2
F

+2
{

2C2
A

(
70 [223Aq (µ0)−188]n2

f +3β0 [9072ζ(3)Aq (µ0)−34387Aq (µ0)+2592ζ(3)

+17040]nf +36β2
0 [2615+648ζ(3)]Aq (µ0)

)
β2

0−3CA
(
700β0 [Aq (µ0)−1]n3

f

+
[
(−1944ζ(3)Aq (µ0)−10679Aq (µ0)+1944ζ(3)+2807)β2

0 +48β1 (164Aq (µ0)

−129)]n2
f +9β0

[
9(72ζ(3)Aq (µ0)+161Aq (µ0)+312ζ(3)−139)β2

0 +4β1 (352

−645Aq (µ0))]nf +10152β2
0β1Aq (µ0)

)
β0 +3

(
β0
[
679β2

0 +360β1
]

[Aq (µ0)−1]n3
f

−3
[
(679Aq (µ0)+173)β4

0 +6β1 (75Aq (µ0)+29)β2
0 +144β2

1 (2−3Aq (µ0))
]
n2
f

+54β0
[
β1 (15Aq (µ0)+37)β2

0 +12β2 (2Aq (µ0)−1)β0 +36β2
1 (1−2Aq (µ0))

]
nf

−1944β2
0

[
β0β2−β2

1

]
Aq (µ0)

)}
CF +nf {nf −3β0}

{
C2
A (2450nf +9β0[−3589

+3888ζ(3)])β2
0 +6CA

(
1058nfβ2

0 +315β1β0−420nfβ1
)
β0 +324

(
2nfβ2

1

+3β0
[
β0β2−β2

1

])}
{Aq (µ0)−1}

)]
, (3.33)

where “(1, 0)· ” in the first line of (3.30) denotes the projection onto a unit vector (1, 0);
(3.31), (3.32), and (3.33) show the LO, NLO, and NNLO contributions, respectively, which
are derived from the first line, the second line, and the third and the following lines of (3.29).
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To determine the behavior of C̄q,g(µ), we proceed similarly as being handled at the
two-loop order in [7]. We present the relevant formulas in the forms that hold to all orders
in αs. Considering the forward (∆ = 0) limit of (3.1) at the renormalization scale µ and
taking their trace part, we have

C̄q,g(µ) = −1
4Aq,g(µ) + 1

8M2 〈N(p)| ηλνT λνq,g
∣∣∣
µ
|N(p)〉 , (3.34)

where the first term is associated with the twist-two quantities corresponding to the
quark/gluon average momentum fraction as in (3.15), (3.16); this may be interpreted as the
“twist-four target mass effects” −M2

4 Aq,g(µ) divided by M2. The second term represents
the effects due to the twist-four operators. Substituting the trace anomalies of (2.9), (2.10),
we obtain

C̄q(µ) = −1
4Aq(µ) + xq(αs)

〈N(p)|F 2|N(p)〉
8M2 + (1 + yq(αs))

〈N(p)|mψ̄ψ|N(p)〉
8M2 , (3.35)

C̄g(µ) = −1
4Ag(µ) + xg(αs)

〈N(p)|F 2|N(p)〉
8M2 + yg(αs)

〈N(p)|mψ̄ψ|N(p)〉
8M2 . (3.36)

Adding these two formulas and using (3.2) and (2.11), we get

C̄q(µ) + C̄g(µ) = −1
4 (Aq(µ) +Ag(µ)) + (xq(αs) + xg(αs))

〈N(p)|F 2|N(p)〉
8M2

+ (1 + yq(αs) + yg(αs))
〈N(p)|mψ̄ψ|N(p)〉

8M2

= −1
4 + 1

8M2 〈N(p)|
(
β(g)
2g F 2 + (1 + γm(g))mψ̄ψ

)
|N(p)〉 , (3.37)

which shows that (3.7) is satisfied when we use the relation,

2M2 = 〈N(p)|T λλ |N(p)〉 = 〈N(p)|
(
β(g)
2g F 2 + (1 + γm(g))mψ̄ψ

)
|N(p)〉 . (3.38)

This is nothing but the well-known formula for the nucleon mass [8, 64, 65] as a consequence
of the total trace anomaly (1.1) combined with the normalization condition (3.3). This fact
indicates that it is important to impose the constraint (3.38) when evaluating each of (3.35)
and (3.36). Because (2.12) reads, in perturbation theory,

2g
β(g) = −2[

β0
αs
4π + β1

(αs
4π
)2 + β2

(αs
4π
)3 + · · ·

]
= − 2

β0

(4π
αs

) 1
1 + β1

β0

(αs
4π
)

+ β2
β0

(αs
4π
)2 + · · ·

, (3.39)

the constraint (3.38) implies 〈N(p)|F 2 |N(p)〉 ∼M2/αs. We take into account the corre-
sponding constraint exactly by eliminating 〈N(p)|F 2 |N(p)〉 in favor of M2 using (3.38),
as

〈N(p)|F 2|N(p)〉
8M2 = 2g

β(g)

(
1
4 − (1 + γm(g)) 〈N(p)|mψ̄ψ|N(p)〉

8M2

)
, (3.40)
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and the substitution of this formula into (3.36) leads to

C̄q(µ) = −C̄g(µ)

= −1
4Aq(µ) + xq(αs)

{
g

2β(g) −
2g
β(g) (1 + γm(g)) 〈N(p)|mψ̄ψ|N(p)〉

8M2

}

+ (1 + yq(αs))
〈N(p)|mψ̄ψ|N(p)〉

8M2

= 1
4

(
−Aq(µ) + xq(αs)

2g
β(g)

)
+
{

1 + yq(αs)− xq(αs)
2g
β(g) (1 + γm(g))

} 〈N(p)|mψ̄ψ|N(p)〉
8M2 . (3.41)

Combining (3.41) with (3.17) and (3.29), we can determine the value of C̄q,g(µ) for arbitrary
µ, to the desired accuracy. Substituting the three-loop formulas of xq(αs) and yq(αs),
discussed in section 2, the mass anomalous dimension (2.13) to the three-loop accuracy
with [66, 67]

γm0 = 6CF , (3.42)

γm1 = 3C2
F + 97

3 CFCA −
10
3 CFnf , (3.43)

γm2 = nf

[(
−48ζ(3)− 556

27

)
CACF + (48ζ(3)− 46)C2

F

]
− 129

2 CAC
2
F + 11413

54 C2
ACF −

70
27CFn

2
f + 129C3

F , (3.44)

and (3.30) for Aq(µ) at the three-loop accuracy, (3.41) reads

C̄q(µ) =−C̄g(µ)

=−1
4

(
nf

4CF +nf
+ 2nf

3β0

)
+ 1

4

(2nf
3β0

+1
) 〈N(p)|mψ̄ψ |N(p)〉

2M2

− 4CFAq (µ0)+nf (Aq (µ0)−1)
4(4CF +nf )

(
αs (µ)
αs(µ0)

) 8CF+2nf
3β0

+ αs(µ)
4π

(
−nf (34CA+49CF )

108β0
+ β1nf

6β2
0

+
[
nf (34CA+157CF )

108β0
+ CF

3 −
β1nf
6β2

0

] 〈N(p)|mψ̄ψ |N(p)〉
2M2

)
− 1

4A
NLO
q (µ)

+
(
αs(µ)

4π

)2(n2
f

β0

[697CA
1458 + 169CF

2916

]
+nf

[17β1CA
54β2

0
+ β2

6β2
0

+ 49β1CF
108β2

0

+ 1
β0

{(401
648−

26ζ(3)
9

)
CACF +

(
2ζ(3)− 67

27

)
C2
A+

(8ζ(3)
9 − 2407

2916

)
C2
F

}
− β2

1
6β3

0

]

+
[
−
n2
f

β0

(697CA
1458 + 1789CF

2916

)
+nf

(
−17β1CA

54β2
0
− β2

6β2
0
− 157β1CF

108β2
0

+ β2
1

6β3
0
− 17CF

27

)

+ nf
β0

{(26ζ(3)
9 + 4315

648

)
CACF +

(67
27−2ζ(3)

)
C2
A+

(11803
2916 −

8ζ(3)
9

)
C2
F

}

+ 61CACF
108 − C

2
F

27

]
〈N(p)|mψ̄ψ |N(p)〉

2M2

)
− 1

4A
NNLO
q (µ) , (3.45)

– 13 –



J
H
E
P
0
3
(
2
0
2
3
)
0
1
3

in the MS-like schemes, with µ0 being a certain input scale. Here, the second and the third
lines show the LO terms that are composed of the leading contributions from the terms
proportinal to xq(αs) 2g

β(g) in (3.41) and of the terms of ALO
q (µ) given by (3.31); similarly,

the fourth and the fifth lines show the NLO terms with ANLO
q (µ) given by (3.32), and the

sixth and the following lines show the NNLO terms with ANNLO
q (µ) given by (3.33). This is

our main result that extends the two-loop calculation of [7] for constraining the twist-four
gravitational form factor C̄q,g into the next higher-order accuracy. As emphasized in [7], the
terms arising in the second line are independent of the scale µ and represent the asymptotic
value of C̄q(µ) = −C̄g(µ) as µ→∞; in the chiral limit, in particular, they are completely
determined by the values of Nc and nf , as 1

4 times the sum of

− nf
4CF + nf

, and − 2nf
3β0

, (3.46)

which come from the first term of (3.31) and the second term of (3.35), respectively, and
gives the values

− 9
25 (= −0.36) , and − 2

9 (= −0.22 . . .) , (3.47)

for Nc = 3, nf = 3 (compare with the first term of (4.7) bellow).
As seen in (3.41) with (3.39), the n-loop terms (i.e., the order αns terms) arising in xq(αs)

contribute to C̄q,g of (3.45) at order αn−1
s and higher; this fact indicates that the naive

counting in αs does not work when deriving C̄q,g, as first pointed out at the two-loop level
in [7]. Our three-loop result (3.45) shows that the corresponding n-loop level approximation
for C̄q,g, retaining up to the order αn−1

s terms, matches with the αs counting in the n-loop
level results (3.30)–(3.33) for Aq,g(µ), corresponding to the Nn−1LO solution of the RG
equation, (3.10), (3.18). Therefore, (3.45) represents C̄q,g that is organized according to
the RG-improved perturbation theory and is exact up to the corrections of N3LO and
higher. Indeed, a key relation (3.38) used to obtain (3.41), (3.45) may be regarded as a
consequence of solving the corresponding RG equations, because the RG-invariance relation,
d
dµT

λ
λ = 0, for the total trace anomaly (1.1) is obeyed by (3.38) and yields the equation

for the µ dependence of the operator F 2, which is identical to the RG equation resulting
from (2.5), as demonstrated in [8]; the corresponding solution (3.40), and thus the terms
of (3.45) derived by its use, should obey the counting in αs according to the RG-improved
perturbation theory, as in (3.30). In this context, it is also worth mentioning that the
formula (3.45) satisfies the RG equation, which is obtained as the matrix element of the
three-loop evolution equation for the twist-four operator,

∂

∂ lnµ
(
gψ̄F λνγνψ

)
= αs

4π

((
−16CF

3 − 4nf
3

)
gψ̄F λνγνψ + 4CF

3 ∂λ
(
mψ̄ψ

))
+
(
αs
4π

)2 [(11CA
18 + 4CF

9

)
nf∂

λF 2

+
((20CF

9 − 70CA
27

)
nf −

752CACF
27 + 224C2

F

27

)
gψ̄F λνγνψ
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+
(

122CACF
27 − 136CFnf

27 − 8C2
F

27

)
∂λ
(
mψ̄ψ

)]

+
(
αs
4π

)3
[
∂λF 2

(
n2
f

(
−56CA

81 − 19CF
27

)
+ nf

(
433CACF

108 + 1235C2
A

324 + 14C2
F

27

))

+gψ̄F λνγνψ
(
nf

((
16ζ(3) + 322

9

)
CACF +

(
48ζ(3)− 3589

81

)
C2
A

+
(9878

243 − 64ζ(3)
)
C2
F

)
+ n2

f

(2116CA
243 + 1358CF

243

)
+
(

128ζ(3) + 17056
243

)
CAC

2
F

− 16
243(648ζ(3) + 2615)C2

ACF −
32
243(648ζ(3)− 35)C3

F

)
+∂λ

(
mψ̄ψ

)(
nf

((64ζ(3)
3 − 8305

243

)
C2
F −

2
81(864ζ(3) + 1079)CACF

)
+
(
−32ζ(3)− 1144

243

)
CAC

2
F +

(32ζ(3)
3 + 6611

243

)
C2
ACF

−76
81CFn

2
f + 8

243(648ζ(3)− 125)C3
F

)]
. (3.48)

Note that one has to take the off-forward matrix element of this evolution equation to
separate the overall factor ∆µ = p′µ − pµ as in (3.5) when deriving the corresponding RG
equation. This evolution equation (3.48) at the three-loop accuracy for the quark-gluon
three-body operator of twist-four was derived in [8].

4 Calculating the nucleon’s C̄q,g at NNLO

Our three-loop formula (3.45) allows us to calculate C̄q,g(µ) as a function of the renor-
malization scale µ in the MS scheme. We calculate the values for C̄q,g(µ) at the NNLO
accuracy for a proton, using the coefficients of the beta-function (2.12) to three loops,

β0 = 11
3 CA −

2nf
3 , (4.1)

β1 = 34
3 C

2
A − 2CFnf −

10
3 CAnf , (4.2)

β2 = 2857C3
A

54 − 1
2nf

(
1415C2

A

27 + 205CACF
9 − 2C2

F

)
+ 1

4n
2
f

(158CA
27 + 44CF

9

)
, (4.3)

and the corresponding three-loop running coupling constant, which is obtained by solving
the RG equation of (2.12),

d lnαs
d lnµ2 = β(g)

2√παs
= −β0

αs
4π − β1

(
αs
4π

)2
− β2

(
αs
4π

)3
, (4.4)

as
ln µ2

Λ2
QCD

= 4π
β0αs(µ) + β1

β2
0

ln
(
β0αs(µ)

4π

)
+
(
β0β2 − β2

1
)
αs(µ)

4πβ3
0

. (4.5)

Here, the constant of integration is represented by the QCD scale parameter ΛQCD according
to the definition in [68, 69]; although (4.5) may be further solved for αs(µ) iteratively,
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leading to
αs(µ)

4π = 1
β0L

− β1 lnL
β3

0L
2 + 1

L3

β2
β4

0
+
β2

1

(
ln2 L− lnL− 1

)
β5

0

 , (4.6)

with L ≡ ln
(
µ2/Λ2

QCD

)
, we shall use the exact numerical solution of (4.5) as the value of

αs(µ) in our calculations.
We evaluate (3.45) with (3.32) and (3.33), assuming a fixed number nf = 3. Substituting

Nc = 3 and nf = 3 into (3.45), we obtain

C̄q(µ)
∣∣∣
nf=3

=−0.145556+0.305556〈N(p)|mψ̄ψ |N(p)〉
2M2 +(0.09−0.25Aq (µ0))

(
αs (µ)
αs (µ0)

) 50
81

+αs(µ)
[
0.00553609+0.0803962〈N(p)|mψ̄ψ |N(p)〉

2M2

+(0.0127684−0.0354678Aq (µ0))
(
αs (µ)
αs (µ0)

) 50
81

−(0.0279651−0.0354678Aq (µ0))
(
αs (µ)
αs (µ0)

)− 31
81
]

+
(
αs(µ)

)2[0.00174426+0.0312256〈N(p)|mψ̄ψ |N(p)〉
2M2

−(0.0059729−0.0165914Aq (µ0))
(
αs (µ)
αs (µ0)

) 50
81

−(0.00396745−0.00503187Aq (µ0))
(
αs (µ)
αs (µ0)

)− 31
81

+(0.0237481−0.0216233Aq (µ0))
(
αs (µ)
αs (µ0)

)− 112
81
]
, (4.7)

up to the corrections of N3LO and higher. Here, for αs(µ), we use the value determined
by (4.5) with Λ(3)

QCD ' 0.3359GeV, so that

αs(µ = 1 GeV) ' 0.4736 .2 (4.8)

The corresponding NNLO coupling constant by (4.5) is always used in the following numerical
computations, independently of the order considered, as a way of isolating the effect of the
higher order contributions exhibited in the formula (4.7). For the values of the input scale
µ0 and the value for Aq (µ0), we use

µ0 = 1.3 GeV , Aq (µ0 = 1.3 GeV) = 0.613 . (4.9)

These values correspond to the starting scale and the total momentum fraction shared
by the three quark flavors, u, d and s in the CT18 parton distribution functions of the

2This value would evolve into the conventional αs(MZ) = 0.1181, if the number of active flavors were
determined automatically such that the decoupling is performed at the pole mass of the respective heavy
quark, using the RunDec package [70]. In the present case with nf = 3 fixed, we have αs(MZ) ' 0.1059.
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Figure 1. The nucleon’s gravitational form factor C̄q(µ)
∣∣
nf =3 of (4.7) at the NNLO (3-loop)

accuracy in the chiral limit, 〈N(p)|mψ̄ψ|N(p)〉 = 0: (a) the results up to the LO, NLO, and NNLO
contributions; (b) the total (NNLO) result, and the separate contributions from the first (twist-2
effect) and second (anomaly effect) terms of (3.34).

nucleon [71], which are determined by the global QCD analysis at NNLO; at the starting
scale µ0 = 1.3 GeV of CT18, the active quark flavors arising in (3.15) are u, d and s. We
note that, for (4.9), the uncertainty . a few percent [71], and it is consistent with the
results of the other collaborations of the global QCD analysis like [72, 73] within such
small uncertainties.

Firstly, (4.7) in the chiral limit is plotted as a function of µ in figure 1: figure 1(a)
shows the results up to the LO, NLO, and NNLO contributions; the NLO as well as NNLO
corrections give a few percent level effects, reflecting the small numerical coefficients for
those correction terms arising in (4.7), and, furthermore, the NLO and NNLO corrections
tend to cancel. Thus, the important correction comes from the LO-level evolution of the
twist-two form factor Aq, so that the approach to the asymptotic value (' −0.146) is quite
slow, while the other corrections play a minor (. a few percent) role. In figure 1(b), the
NNLO result is separated into the individual contributions from each term in (3.34), the
first (twist-2 effect) term and the second (anomaly effect) term; both twist-2 and anomaly
effects produce the important contributions.

When taking into account the quark-mass effects in evaluating (4.7), we need the matrix
element of the quark scalar operator, 〈N(p)|mψ̄ψ|N(p)〉, which is related to the sigma
terms (see, e.g., [32, 74–76]). Assuming nf = 3, the corresponding relation reads

〈N(p)|mψ̄ψ|N(p)〉 = 〈N(p)|muūu+mdd̄d+mss̄s|N(p)〉 = 2M (σπN + σs) , (4.10)

up to small isospin-violating corrections of O (md −mu), where

σπN = 1
2M 〈N(p)|mu +md

2
(
ūu+ d̄d

)
|N(p)〉

is the pion-nucleon sigma-term, and

σs = 1
2M 〈N(p)|mss̄s|N(p)〉
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Figure 2. The nucleon’s gravitational form factor C̄q(µ)
∣∣
nf =3 of (4.7) at the NNLO (3-loop)

accuracy with 〈N(p)|mψ̄ψ|N(p)〉 = 2M (σπN + σs), using (4.11), (4.12): (a) the results up to the
LO, NLO, and NNLO contributions; (b) the total (NNLO) result, and the separate contributions
from the first (twist-2 effect) and second (anomaly effect) terms of (3.34).

is the strangeness content of the nucleon. Here, for the former, we use the value due to a
recent phenomenological analysis [77],

σπN = 59.1± 3.5 MeV , (4.11)

and, for the latter, we use the value,

σs = 45.6± 6.2 MeV , (4.12)

which is given by a recent lattice QCD determination [78]; see also [79–91].
Figure 2 shows (4.7) with (4.10)–(4.12) as a function of µ, similarly as figure 1. Compared

to figure 1(a) in the chiral limit, the sigma terms increase the LO value of C̄q(µ)
∣∣∣
nf=3

in
figure 2(a) by ∼ 20 % due to the contribution from the second term of (4.7). The sigma
terms at the NLO level, due to the second term in the second line of (4.7), also give the
positive contribution and almost cancel the negative contribution due to the NLO evolution
arising in figure 1(a), so that the LO and the NLO curves are indistinguishable in figure 2(a).
Thus, the NLO as well as NNLO terms of (4.7) give at most a few percent level effects, again,
reflecting the small numerical coefficients of the corresponding terms in (4.7). Figure 2(b)
also demonstrates that the sigma terms give positive effects to the anomaly contribution,
compared to the results in figure 1(b).

The sigma terms (4.10)–(4.12) modify the asymptotic value due to the first two terms
of (4.7) into the value as

− 0.145556 + 0.305556〈N(p)|mψ̄ψ |N(p)〉
2M2 ' −0.111 . (4.13)

Although the approach to this asymptotic value is quite slow in figure 2(a), similarly as in
figure 1(a), this value dominantly determines the size of C̄q(µ)

∣∣∣
nf=3

and the sigma terms
contribute to (4.13) by only ∼ 20 %. As a result, rather large uncertainties of the sigma
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Figure 3. The nucleon’s gravitational form factor C̄q(µ)
∣∣
nf =3 of (4.7) at the NNLO (3-loop)

accuracy with 〈N(p)|mψ̄ψ|N(p)〉 = 2M (σπN + σs): the solid line shows the full (NNLO) result; the
shaded areas indicate the uncertainties estimated by varying the sigma terms within the uncertainties
of (4.11), (4.12). The blue dashed line shows the approximate formula (4.16).

terms (4.10)–(4.12) do not cause large errors in C̄q(µ)
∣∣∣
nf=3

: the solid curve in figure 3 shows

our NNLO formula (4.7) with (4.10)–(4.12) as a function of µ for the region3 suitable for
the present evaluation assuming a fixed number nf = 3; here, the shaded areas display the
uncertainties estimated by varying the sigma terms within the uncertainties of (4.11), (4.12).
Some of the corresponding explicit values read

C̄q(µ = 0.7 GeV)
∣∣∣
nf=3

= −0.201± 0.003 ,

C̄q(µ = 1 GeV)
∣∣∣
nf=3

= −0.180± 0.003 ,

C̄q(µ = 2 GeV)
∣∣∣
nf=3

= −0.163± 0.003 . (4.14)

These are the values in the MS scheme. As discussed in figures 1(a) and 2(a) above, the
NNLO terms in (4.7) produce a few % level effects. Thus, we believe that the uncertainties
due to the omission of the terms of N3LO and higher should be much smaller than
the uncertanties presented in figure 3 and (4.14).4 It is remarkable that, although the
uncertainties in the inputs from the sigma terms (4.11), (4.12) are rather large and determine
the uncertainties in the final results, the small numerical coefficients associated with the
sigma terms in (4.7) lead to the resultant uncertainties at a few % level, allowing us to
obtain the accurate predictions as in figure 3 and (4.14) without spoiling the accuracy of the
perturbative calculations at the NNLO. We note that an estimate in [7] using the asymptotic

3We note that the corresponding evolution is performed not only to the scales higher than the input scale
µ0 = 1.3GeV, but also to the scales lower than µ0 = 1.3GeV; the inclusion of the high orders of perturbation
theory for our evolution equations allows a reliable evaluation even for the “backward” evolution towards
the low scales (see e.g., [92, 93] for a backwards evolution in a different context).

4This fact may be explicitly checked using a recent extension of the quark/gluon decomposition of the
trace anomaly (2.9), (2.10) to the four-loop order [9], but we do not go into the detail here.
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value as C̄q
∣∣∣
nf=3

≈ −0.15 is confirmed and improved by the present results (4.14), but the
values of (4.14) are rather different from those of other estimates [34, 49, 52, 56].

The approach of the curves to the asymptotic limit (4.13) in figure 2(a) as well as in
figure 1(a) is slow as a function of µ, because it is controlled by the logarithm of µ as in (4.6).
We find in the calculations of those figures that the values different from the asymptotic
limit by 10 % or less are obtained for the huge µ like µ & 1012 GeV, which corresponds to

ln (µ/ΛQCD) & 2π
β0

10
3β0

8CF+2nf , (4.15)

so that [αs (µ)](8CF+2nf )/3β0 . 1/10, see (3.45). Therefore, the asymptotic value (4.13)
should be regarded as the formal µ → ∞ limit of our formulas (3.45), (4.7), and does
not represent the leading contribution in any sense in quantitative evaluations. Indeed,
according to the order counting explained below (3.45), the leading order contribution is
composed of the asymptotic value (4.13) and the LO evolution contribution (i.e., the third
line of (3.45)), such that the latter is as important as the former.

The behaviors of the NLO and NNLO contributions observed in figures 1, 2 suggest
that the LO terms in the first line of (4.7) with the asymptotic value (4.13) modified into
the corresponding NNLO value ' −0.108 could provide a good approximation of the full
NNLO result. The correspnding approximation reads

C̄q(µ)
∣∣∣
nf=3

' −0.108− 0.114 [αs (µ)]
50
81 , (4.16)

where the second term coincides with the LO evolution term (the third term of (4.7))
with (4.9) substituted, and this approximate formula is plotted by the blue dashed curve in
figure 3.

The gravitational form factors of (3.1) are studied in lattice QCD calculations [53, 54],
but the corresponding calculation of the twist-four gravitational factor C̄q,g(t, µ) seems to
be still missing. Recently the behaviors of C̄q,g(t, µ) are studied with perturbative QCD
factorization [94, 95], but this framework is applicable to the cases with large momentum
transfer t. We emphasize that the NNLO QCD prediction of the forward value C̄q,g(0, µ)
is now available. As presented above, the quark/gluon decomposition of the QCD trace
anomaly (2.9), (2.10) provide sufficient constraints to allow us to obtain a model-independent
determination of the forward value as (4.14), (4.16), up to a few % uncertainties.

5 Spin-0 hadron case

The matrix element of the quark part of the energy-momentum tensor of (1.3) in terms of a
spin-0 hadron state, |h(p)〉, like a pion state, is parameterized as (see e.g. [12, 94])

〈h(p′)|Tµνq |h(p)〉 = 1
2Θ2q(t)P̄µP̄ ν + 1

2Θ1q(t) (tgµν −∆µ∆ν) + 2m2
hC̄

h
q (t)ηµν , (5.1)

where mh denotes the mass of the hadron h, and the matrix element of the gluon part of (1.3)
is given by the similar parameterization with q → g. The dimensionless Lorentz-invariant
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coefficients, Θ1q(t),Θ2q(t), C̄hq (t), Θ1g(t),Θ2g(t), C̄hg (t), are the gravitational form factors
for a spin-0 hadron h. Similar to (3.8), we treat the form factors relevant to the forward
limit, as

C̄hq,g(µ) ≡ C̄hq,g(t = 0, µ) ,
Θ2q(µ) ≡ Θ2q (t = 0, µ) , Θ2g(µ) ≡ Θ2g (t = 0, µ) , (5.2)

denoting the renormalization scale µ dependence explicitly in the following.
It is straightforward to see that the manipulations with (5.1), (5.2), similar as in

section 3, lead to the formulas (3.2)–(3.45) with the substitutions,

M → mh , |N(p)〉 → |h(p)〉 ,

C̄j(µ)→ C̄hj (µ) , Aj(µ)→ 1
4Θ2j(µ) , (5.3)

with j = q, g; e.g., (3.41) with these substitutions read

C̄hq (µ) = 1
4

(
−1

4Θ2q(µ) + xq(αs)
2g
β(g)

)
+
{

1 + yq(αs)− xq(αs)
2g
β(g) (1 + γm(g))

} 〈h(p)|mψ̄ψ|h(p)〉
8m2

h

, (5.4)

and, combining this with the evolution (3.17) with the substitutions Aj → Θ2j , we can
determine the value of C̄hq,g(µ) of a spin-0 hadron for arbitrary µ to the desired accuracy.
As a result, C̄hq,g(µ) at the NNLO accuracy in the MS-like schemes are expressed as (3.45)
with the substitutions (5.3).

Among the spin-0 hadrons, the pion is of special interest;5 here, we evaluate (5.4) for
the case with the pion, h = π, taking into account nontrivial nature as a Nambu-Goldstone
boson. The PCAC relation (fπ is the pion decay constant),

− (mu +md) 〈0|ūu+ d̄d|0〉 = 2f2
πm

2
π , (5.5)

due to Gell-Mann, Oakes, and Renner [99], indicates m2
π ∼ m as m→ 0; therefore, even in

the chiral limit, we cannot neglect the terms associated with
〈
h(p)

∣∣mψ̄ψ∣∣h(p)
〉
/m2

h in (5.4)
for h = π. By contrast to the nucleon case discussed in section 4, however, it is remarkable
that the corresponding matrix element,

〈
π(p)

∣∣mψ̄ψ∣∣π(p)
〉
, can be determined reflecting the

Nambu-Goldstone nature of the pion. We note that the pion mass can be calculated as the
mass shift from the chiral limit, due to the ordinary first-order perturbation theory in the
quark mass term in the QCD Hamiltonian, as [74, 76, 100]

m2
π = 0

〈
π(p)

∣∣mψ̄ψ∣∣π(p)
〉

0 , (5.6)

where
∣∣π(p)

〉
0 ≡

∣∣π(p)
〉∣∣
m=0, so that we obtain

〈π(p)|mψ̄ψ|π(p)〉
m2
π

= 1 , (5.7)

5The behaviors of the gravitational form factors for the pion have been obtained [10] through the
determination of the generalized distribution amplitudes (GDAs) [18, 96–98] using the Belle data on
γ∗γ → π0π0.
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up to the corrections of O(m). It is worth mentioning that the matrix element
〈
π(p)

∣∣F 2∣∣π(p)
〉

is also expressed by the pion mass, as〈
π(p)

∣∣F 2∣∣π(p)
〉

m2
π

= 2g
β(g) (1− γm(g)) , (5.8)

up to the corrections of O(m), using (5.7) in (3.40) with the substitutions (5.3), and that
the relations (5.7) and (5.8) have been utilized to determine the anomaly-induced mass
structure of the pion in [8]. Using (5.7), the above result (5.4) with h = π reads

C̄πq (µ) = 1
8

(
−1

2Θ2q(µ) + xq(αs)
2g
β(g) (1− γm(g)) + 1 + yq(αs)

)
, (5.9)

up to the corrections of O(m). This result leads to the explicit NNLO-level formula for the
pion’s twist-four gravitational form factor C̄πq (µ) = −C̄πg (µ) in the MS-like schemes, which
is given by (3.45) with the substitutions (5.3), and also with h = π and (5.7) substituted; in
the MS scheme and with Nc = 3 and a fixed number of quark flavors nf = 3, C̄πq (µ)

∣∣∣
nf=3

is given at the NNLO accuracy by the formula (4.7) with the replacements,

Aq(µ0)→ 1
4Θ2q(µ0) ,

〈N(p)|mψ̄ψ |N(p)〉
2M2 → 1

2 . (5.10)

Similar as (3.15) and (3.16), we have the relation (see (5.3)),

1
4Θ2q(µ) =

∑
f

∫ 1

0
dxx

(
qπf (x, µ) + qπ

f̄
(x, µ)

)
, (5.11)

using the quark and antiquark distribution functions for a pion, qπf (x, µ) and qπ
f̄

(x, µ), and
the recent NLO global QCD analyses for those distribution functions, such that the active
quark flavors at the scale µ0 = 1.3GeV being u, d and s, give

1
4Θ2q (µ0) =


0.70± 0.02 (Ref. [101]) ,
0.81± 0.16 (Ref. [102]) ,
0.61± 0.08 (Ref. [103]) ,

(5.12)

where the last analysis of [103] takes into account also the next-to-leading logarithmic
threshold resummation on the relevant Drell-Yan cross sections, which tends to make the
valence distribution considerably softer at high momentum fractions x [104]. See also [105–
108] for earlier works of the NLO QCD analysis and [109] for a recent lattice result. First of
all, we plot the above result of C̄πq (µ)

∣∣∣
nf=3

in figure 4 using 1
4Θ2q (µ0 = 1.3 GeV) = 0.613,

which produces the same contributions through evolutions as those in figures 1, 2 with the
input (4.9): figure 4 is displayed in a similar manner as figure 1, and the former may be
formally regarded as representing the case for a “nucleon” assumed to possess the fictitiously
large sigma terms such that σπN + σs →M/2, corresponding to (5.10), which results in the
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Figure 4. The pion’s gravitational form factor C̄πq (µ)
∣∣
nf =3 at the NNLO (3-loop) accuracy, given

by (4.7) with (5.10) and 1
4 Θ2q (µ0 = 1.3 GeV) = 0.613: (a) the results up to the LO, NLO, and

NNLO contributions; (b) the total (NNLO) result, and the separate contributions from the first
(twist-2 effect) and the remaining (anomaly effect) terms of (5.9).

considerable increase of the LO value due to the contribution from the second term of (4.7).
The asymptotic value of (4.7) now becomes

− 0.145556 + 0.305556〈π(p)|mψ̄ψ|π(p)〉
2m2

π

' 0.007 , (5.13)

and this small value due to the cancellation leads to the small values at LO in figure 4(a),
to which the NLO and NNLO corrections give ten %-level and %-level effects, respectively.
Figure 4(b) shows that the anomaly terms are now positive and much larger than the
corresponding contribution in figure 1(b); this contribution strongly cancel the negative
twist-2 effect, resulting in the rather small total value. Thus, figure 4 shows a quite different
pattern, compared to figures 1, 2 for the nucleon case.

From the results in figure 4, we expect that the uncertainties in our calculation of
C̄πq (µ)

∣∣∣
nf=3

due to the omission of the terms of N3LO and higher should be . a few %.
It is also known that the corrections to (5.6), (5.7) by chiral perturbation theory is very
small (. 6 %) [110–112]; therefore, the uncertainty in the present calculation of C̄πq (µ)

∣∣∣
nf=3

appears to be dominated by the uncertainties exhibited in (5.12). In view of this, the shaded
area in figure 5 displays the uncertainties estimated by varying 1

4Θ2q (µ0 = 1.3 GeV) within
the uncertainties of 1

4Θ2q (µ0 = 1.3 GeV) = 0.61± 0.08, and the solid line is same as the
solid line in figure 4(a); some explicit values with the uncertainties corresponding to the
shaded area read

C̄πq (µ = 0.7 GeV)
∣∣∣
nf=3

= −0.05± 0.03 ,

C̄πq (µ = 1 GeV)
∣∣∣
nf=3

= −0.04± 0.02 ,

C̄πq (µ = 2 GeV)
∣∣∣
nf=3

= −0.03± 0.02 . (5.14)

– 23 –



J
H
E
P
0
3
(
2
0
2
3
)
0
1
3

Figure 5. The pion’s gravitational form factor C̄πq (µ)
∣∣
nf =3 at the NNLO (3-loop) accuracy,

given by (4.7) with (5.10): the shaded areas indicate the uncertainties estimated by varying
1
4 Θ2q (µ0 = 1.3 GeV) within the uncertainties of 1

4 Θ2q (µ0 = 1.3 GeV) = 0.61± 0.08; the solid curve
is same as the solid curve in figure 4(a) (i.e., the NNLO result using 1

4 Θ2q (µ0 = 1.3 GeV) = 0.613);
also shown by the upper and lower dotted lines are the NNLO results using 1

4 Θ2q (µ0 = 1.3 GeV) = 0.5
and 0.8, respectively.

These are the values in the MS scheme. These results indicate that the behaviors of C̄πq (µ)
for the pion are quite different from those of C̄q(µ) for the nucleon, and, in particular, the
absolute magnitude of the former is much smaller than that of the latter, see (4.14).

It is remarkable that the Nambu-Goldstone nature of the pion allows us to determine the
matrix element of the quark scalar operator accurately, as (5.7), although the corresponding
quantities for the nucleon case, the sigma terms, are the major source of the uncertainty
to calculate the nucleon’s C̄q(µ). The uncertainties in figure 5 and (5.14) reflect those of
the input for 1

4Θ2q (µ0), (5.12). Our NNLO formula, (4.7) with (5.10), would allow us to
predict the value of the pion’s C̄πq (µ)

∣∣∣
nf=3

at the accuracy of ∼ percent level, when the

value of 1
4Θ2q (µ0) were fixed at the NNLO level by global QCD analysis or by lattice QCD.

6 Conclusions

In this paper we have presented the NNLO QCD calculation of the forward value of the
twist-four gravitational form factor C̄q,g. Our model-independent calculation is based on
exact QCD constraints on C̄q,g, provided by an extended version of the QCD trace anomaly,
such that the trace anomaly is attributed to the anomalies arising in each of the quark
part and gluon part of the QCD energy-momentum tensor. This allows us to reexpress the
forward value of C̄q for the nucleon in terms of the target mass effect associated with the
average value of the quark momentum fraction, and in terms of the expectation value of
the quark contribution of the trace anomaly. The forward value of C̄g can be expressed
similarly using the corresponding gluonic quantities, and the fact that the QCD trace
anomaly equals the sum of the quark anomaly and gluon anomaly ensures the relation,
C̄q + C̄g = 0. Using the three-loop DGLAP evolution of the quark momentum fraction and
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the three-loop formula of the quark/gluon decomposition of the QCD trace anomaly, we
derive the NNLO formula of the forward value, C̄q(µ), which exhibits the dependence on the
renormalization scale µ. This NNLO formula coincides with the solution of the three-loop
RG equation for the twist-four quark-antiquark-gluon operator whose matrix element gives
C̄q(µ). The terms of this formula are organized clarifying each order of the LO, NLO, and
NNLO in the RG-improved perturbation theory; for this purpose, taking into account the
nucleon mass formula derived from the QCD trace anomaly plays essential roles, so that
the matrix elements of the operator F 2 arising from the quark contribution to the trace
anomaly are reexpressed in favor of the nucleon mass and the matrix elements of the quark
scalar operator mψ̄ψ.

As a result, our NNLO formula for C̄q(µ) involves, apart from the nucleon mass, the
two types of nonperturbative parameters: the quark momentum fraction Aq corresponding
to twist-two effect and the sigma terms corresponfing to the twist-four operator mψ̄ψ. As a
remarkable point of the formula, it has the µ-independent constant terms that are determined
completely by Nc and nf . Those constant terms represent the asymptotic value of C̄q(µ) as
µ→∞ in the chiral limit, and are composed of the contribution due to the asymptotic value
of the quark momentum fraction Aq and of the contribution originating from the behavior
〈N(p)|F 2 |N(p)〉 ∼M2/αs in the quark anomaly effect. Although the approach of C̄q(µ) to
the corresponding asymptotic value is quite slow due to the RG evolution effect of Aq, this
asymptotic value determines the model-independent “basis value” for the NNLO estimation
of C̄q(µ). We find that the nonperturbative parameters participate in our NNLO formula
accompanying the small numerical coefficients, so that the nonperturbative parameter Aq as
well as the sigma terms produces at most 30 % level modification. As the result, the NLO
as well as the NNLO perturbative corrections associated with Aq yield the percent-level
corrections to the LO evaluation, and the uncertainties in the input values of the sigma
terms lead to only a few percent uncertainties in our evaluation of C̄q(µ), allowing us to
obtain accurate NNLO prediction in the MS scheme, C̄q(µ = 1 GeV)

∣∣∣
nf=3

= −0.180±0.003.
We find that the µ dependence is significant in the relevant region, 0.7 GeV . µ . 2 GeV, for
which we provide a simple approximate formula to reproduce the µ dependence at NNLO.

We also extend those results to the case of the spin-0 hadrons, in particular, a pion.
In the context of evaluating our NNLO formula, the pion may be formally regarded as a
“nucleon” assumed to possess fictitiously large sigma terms, whose value are determined
precisely by the Nambu-Goldstone nature of the pion. The corresponding large sigma terms
lead to cosiderable positive modification to the asymptotic “basis value”, so that our NNLO
evaluation indicates the nonzero but small value, C̄πq (µ = 1 GeV)

∣∣∣
nf=3

= −0.04± 0.02, in

the MS scheme. The significant uncertainty of this prediction reflects the uncertainties in
the average value of the quark momentum fraction in the pion based on the recent NLO
global fits of the pion’s parton distribution functions. Those results, compared with those
for the nucleon, indicate quite different pattern, revealed as a new aspect by exploiting the
quark/gluon decomposition of the QCD trace anomaly.

The present result may have implications on the spin sum rule for the nucleon [4], in
particular, for the transversely polarized case: the quark/gluon total angular momentum
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Jq,g are expressed as

Jq,g = 1
2(Aq,g +Bq,g) + f(pz)C̄q,g (6.1)

where f(pz) = 0 for the longitudinally polarized nucleon, while, for the transversely polarized
nucleon, f(pz) is a frame-dependent function (depends on the nucleon longitudinal momen-
tum pz) which vanishes at pz = 0 and approaches 1

2 as pz →∞ [60, 113, 114] (see also [115]).
It was noted [7] that, asymptotically, 1

2(Aq+Bq) ≈ 0.18, while C̄q = −C̄g ≈ −0.15 for nf = 3,
indicating the effect of the last term could be significant. Now it is confirmed and improved
by the present result, C̄q(µ = 1 GeV)

∣∣∣
nf=3

= −C̄g(µ = 1 GeV)
∣∣∣
nf=3

= −0.180± 0.003.

Our result could be useful also for the studies of the quark/gluon contributions of
pressure distributions inside the hadrons, the near-threshold photoproduction of J/ψ in ep
scattering, and the origin of the hadron mass. Our NNLO prediction may be compared
with the future direct calculations of C̄q(µ) in lattice QCD. Also, the present result should
impose the constraints on the studies of the t dependence of the gravitational form factor
C̄q,g(t, µ), providing its normalization at t = 0.
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