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Abstract: This paper is dedicated to M. Duff on the occasion of his 70th birthday.

I discuss some issues of M-theory/string theory/supergravity closely related to Mike’s

interests. I describe a relation between STU black hole entropy, Cayley hyperdeterminant,

Bhargava cube and a 3-qubit Alice, Bob, Charlie triality symmetry. I shortly describe my

recent work with Gunaydin, Linde, Yamada on M-theory cosmology [1], inspired by the

work of Duff with Ferrara and Borsten, Levay, Marrani et al. Here we have 7-qubits, a party

including Alice, Bob, Charlie, Daisy, Emma, Fred, George. Octonions and Hamming error

correcting codes are at the base of these models. They lead to 7 benchmark targets of future

CMB missions looking for primordial gravitational wave from inflation. I also show puzzling

relations between the fermion mass eigenvalues in these cosmological models, exceptional

Jordan eigenvalue problem, and black hole entropy. The symmetry of our cosmological

models is illustrated by beautiful pictures of a Coxeter projection of the root system of E7.
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1 Introduction

Inspiring ideas of Mike Duff have influenced my work over decades. Here I would like to

present two aspects of it, both rooted in Mike’s and in my work from long time ago, where

there is also a very recent progress.

The first story is about the black holes attractors [2] in N = 2 4d supergravity, origi-

nating from M-theory/string theory/11d supergravity. These black holes have interesting

properties which were initially understood in [3] and [4] where the STU black holes with

string theory triality symmetry were described. These were followed by [5] and [6] where

the STU black holes and their entropies were related to quantum information theory. In

these papers the relation between quantum entanglement in a 3-qubit system, Alice, Bob

and Charlie, and and 3-moduli STU black holes was discussed.

The recent stage of this story has to do with a renewed interest in mathematical aspects

of black holes in string theory/supergravity as studied in [7–10]. The relation between

STU black holes and Bhargava cube was observed and discussed earlier in [11, 12]. We

will add to the recent advances in all these papers the analysis of the triality symmetry,

which exists for these black holes in addition to the well known and well studied U-duality

[SL(2,Z)]3 symmetry. Basically triality symmetry is a statement that Alice, Bob and

Charlie are on equal footing. The aspects of Bhargava cube related to properties of the

Cayley hyperdeterminant will be discussed here. We will clarify the concept of equivalence

of black holes with the same entropy with U-duality symmetry [SL(2,Z)]3 n S3.

It was noticed in [6] that the black holes in N = 8 4d supergravity can be brought to

a canonical basis. Their entropy formula defined in general by 56 charges in the quartic

Cartan-Cremmer-Julia E7(7) invariant, in the canonical basis depends only on 8 charges

and coincides with the Cayley hyperdeterminant defining the STU black holes area of

the horizon/entropy. In the Bhargava cube terminology this [SL(2,Z)]3 invariant is a

discriminant of the associated binary quadratic forms.
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The [SL(2,Z)]3 n S3 symmetry of the Cayley hyperdeterminant/Bhargava cube is also

a symmetry following from the Kähler potential which is given by

K3mod = −
3∑

i=1

log
(
T i + T

i
)
. (1.1)

STU black holes can be associated with M-theory first truncated to 7 moduli, T i, i = 1, . . . , 7

with [SL(2,Z)]7 and S7 symmetry and the Kähler potential given by

K7mod = −
7∑

i=1

log
(
T i + T

i
)
. (1.2)

When 4 of the 7 moduli are truncated we have the remaining [SL(2,Z)]3 duality as well as

triality permutation symmetry S3, and we recover the kinetic term of N = 2 supergravity

STU model. A detailed derivation of the STU model from string theory/10d supergravity

was performed in [3].

The second story of this paper is about the new ideas in cosmology based on 7-moduli

model of M-theory compactified on a manifold with G2 holonomy and with [SL(2,Z)]7

symmetry and Kähler potential in eq. (1.2). M. Duff was the first to point out in [13]

that the maximal supersymmetry of M-theory is spontaneously broken down to N = 1

supersymmetry in 4d when compactified on a manifold with G2 holonomy. More recently

11d M-theory/supergravity compactified on a twisted 7-tori with holonomy group G2 was

investigated in [14].

During the last few years I studied the issues in cosmology initiated by discussions

with S. Ferrara which resulted in our paper [15]. This work, in turn, originated from S.

Ferrara’s work with M. Duff and his collaborators [12, 16–19]. One of the central ideas in

all these studies is based on the fact that E7(7) (R) symmetry of N = 8 4d supergravity has

a subgroup [SL(2,R)]7. For the discrete subgroups this becomes a following relation

E7(7)(Z)) ⊃ [SL(2,Z)
]7
. (1.3)

When the relevant cosmological models were constructed in [15, 20–22], 7 targets for early

universe future searches of gravitational waves from inflation were proposed. These are

shown here in Fig. 1 by 7 purple lines.

The theoretical underpinning of the cosmological models in [15, 20–22] was very recently

proposed in my paper [1] with M. Gunaydin, A. Linde, Y. Yamada. The entangled 7-qubit

system corresponds to 7 parties: Alice, Bob, Charlie, Daisy, Emma, Fred and George, and

it is related to 7 imaginary units of octonions.

M. Duff had a long and deep appreciation of the fact that there are four normed division

algebras: the real numbers (R), complex numbers (C), quaternions (H), and octonions

(O). He and his collaborators have developed many new aspects of the relations between

octonions and physics, see for example [12]. I will show here how octonions, Fano planes
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and error correcting Hamming (7,4) codes help to build cosmological models which will be

tested by future cosmological observations.
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Figure 1: This is a figure A.2 from the Astro2020 APC White Paper LiteBIRD: an all-sky cosmic

microwave background probe of inflation with a forecast of Litebird constraints in the ns - r plane [23]. The

7 purple lines in the figure, were derived most recently in [1] using M-theory compactified on G2, octonions,

Fano planes and error correcting codes.

I will also show that the mass eigenvalues of heavy scalars in cosmological models

in [1] described by a pair of cubic equations x3 − 7x − 7 = 0, y3 − 7x − 7 = 0 have a

particular relation to exceptional Jordan1 eigenvalue problem [24–28]. There is an interesting

connection between the product of the mass eigenvalues of fermions in cosmological models

and the entropy of the STU black holes. Both correspond to a determinant of a certain

relevant in each case Jordan matrix.

Another interesting feature of our cosmological models [1] is the symmetry of the

fermion mass matrix at Minkowski vacua. It is invariant under the O(7) symmetry and its

subgroups. The discrete subgroup of it is the Weyl group W (E7). We show the Coxeter

plane of the root system of W (E7) in Figs. 7, 8. When one imposes the invariance of the

octonion algebra on the transformations one obtains a finite subgroup of G2, the adjoint

Chevalley group G2(2) of order 12,096 as discussed in [29–32]. This is interesting since it is

expected that neutrino physics will require an extension of the standard model. Some of

these extensions might include discrete subgroups of G2, see for example [33, 34].

Thus, both of these stories, STU black holes and M-theory cosmology 7-moduli models

have interesting connection to E7 symmetry. I would like to notice here that the current

status of 4d N = 8 supergravity and its perturbative UV behavior remain puzzling. Some

heroic efforts were made by Z. Bern et al in amplitude loop computations, see the review [35].

They have shown that maximal supergravity behaves in UV much better than expected. It

was suggested in [36–38], that E7(7) symmetry together with maximal supersymmetry of

1Studies of octonions and Jordan algebras are based on the work of H. Freudenthal in ‘Oktaven,

Ausnahmegruppen und Oktavengeometrie’, Mathematisch Instituut der Rijksuniversiteit te Utrecht, 1951.
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perturbative maximal supergravity in 4d might explain the cancellation of UV infinities

observed in ‘theoretical experiments’ as described in [35]. It would be very interesting to

learn more about these exceptional symmetries and their role in physics.

2 STU black holes, triality and the Bhargava cube

A significant effort was dedicated over the years to understand the properties of black holes

in M-theory/string theory /supergravity. The STU black holes are sufficiently simple, there

are exact analytic solutions in classical N = 2 supergravity with the prepotential

F =
dijkX

iXjXk

X0
=
X1X2X3

X0
(2.1)

in the so-called double extreme approximation, when the values of 3 moduli zi = Xi

X0 near

the horizon are the same as the ones far away from the black hole, zi|inf = zi|hor. The

solution depends on 8 charges, 4 electric and 4 magnetic. The area of the horizon/the

entropy of these black holes was computed in [4] in terms of the 8 black hole charges (pΛ, qΛ),

Λ = 0, 1, 2, 3, shown as corners of the 2x2x2 hypermatrix in Fig. 2. The entropy is the

Figure 2: The 2x2x2 hypermatrix corresponding to supergravity black holes given in Fig.

2 of [6]. It represents the STU black hole solution in [4] with 8 charges pΛ = p0, p1, p2, p3

and qΛ = q0, q1, q2, q3 where 3 moduli z1, z2, z3 at the black hole horizon are functions of

these charges.

function of charges
S

π
=
(
W (pΛ, qΛ)

)1/2
, (2.2)

where

W (pΛ, qΛ) = −(p · q)2 + 4
(
(p1q1)(p2q2) + (p1q1)(p3q3) + (p3q3)(p2q2)

)

− 4p0q1q2q3 + 4q0p
1p2p3 (2.3)

– 5 –



and

p · q ≡ (p0q0) + (p1q1) + (p2q2) + (p3q3) . (2.4)

The function W (pΛ, qΛ) is manifestly symmetric under transformations:

p1 ↔ p2 ↔ p3 , q1 ↔ q2 ↔ q3 . (2.5)

Under [SL(2,Z)]3 transformations the charges and the moduli transform but the entropy is

invariant.

The values of the 3 complex moduli near the horizon, for each i = 1, 2, 3, were computed

in [4]

zi =
Bi

2Ai
∓ i
√
Bi − 4AiCi

2Ai
(2.6)

where for each i = 1, 2, 3

Ai = p0qi − 3dijkp
jpk Bi = p · q − 2piqi Ci = −(piq0 + 3dijkqjqk) (2.7)

and

W = −D = B1 − 4A1C
1 = B2 − 4A2C

2 = B3 − 4A3C
3 . (2.8)

It was pointed out in [5] that the classical expression for the entropy of the STU black holes

W (pΛ, qΛ) (2.3) can be represented in a very beautiful form:

SBPS = π
√
W =

π

2

√
−Det ψ , Det ψ < 0 , (2.9)

where Det ψ is the Cayley’s hyperdeterminant of the vector with components ψijk, con-

structed in 1845. The dictionary between 8 charges pΛ and qΛ and components of ψijk is

the following:
p0 p1 p2 p3 q0 q1 q2 q3

ψ000 −ψ001 −ψ010 −ψ100 ψ111 ψ110 ψ101 ψ011

(2.10)

Cayley hyperdeterminant of the 2x2x2 hypermatrix ψijk is defined as follows

Det ψ = − 1

2
εii

′
εjj

′
εkk

′
εmm′

εnn
′
εpp

′
ψijkψi′j′mψnpk′ψn′p′m′ . (2.11)

The new aspect of the STU black holes associated with Bhargava cube developed in [7–10]

is the following. It is possible to attach a triple of quadratic forms

Aix
2 +Bixy + Ciy

2 (2.12)

of the same discriminant D = B2
i − 4AiCi to a cube, with the corners given by an octuple

a, b, c, d, e, f, g, h. We show this cube in Fig. 3. Even when only 2 of the forms are available,

one can construct the third one as well as the Bhargava cube. The dictionary between 8
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7.11 Form Composition and Bhargava Cubes 175

7.11.7 Example. Let I = Za+Z(−b+δ) be an ideal, so that b2−tb+n = ja
for some j ∈ Z. Putting B = {a, −b + δ}, we easily compute

MB(a) = [ a 0
0a ] , MB(−b + δ) =

[
0 −j
a −2b+t

]
.

We express the form qI,a,−b+δ in matrix terms:

qI,a,−b+δ(x, y) =
N(xa − y(−b + δ))

a
=

det
(
x [ a 0

0a ] − y
[

0 −j
a −2b+t

])

a

= det
(
x [ 1 0

0a ] − y
[

0 −j
1 −2b+t

])
.

The last equality holds since both matrices on its left side have first column
divisible by a.

We can recover qI,a,−b+δ from the pair of matrices [ 1 0
0a ],

[
0 −j
1 −2b+t

]
. Chang-

ing the typography slightly, those two matrices can be thought of as the front
and back faces of a cube:

1 0

0 a

0 (−j)

1 (−2b + t)
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!
Such cubes are the protagonists of Bhargava’s take on the composition of

forms.

7.11.8 Definition. A Bhargava cube Cabcdefgh is a 2× 2× 2 array of
elements in Z:
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There are three ways of slicing a Bhargava cube into a pair of matrices.
Given a subscript ∗ ∈ {F, L, T}, let M∗ be the matrix on the Front, Left, or
Top face of the cube with a as its upper-left entry. Let N∗ be the parallel
matrix on the opposite face. The following table gives the three slicings. For
orientation, we draw an arrow along the top row of M∗ and N∗ :

Figure 3: The Bhargava cube.

black hole charges in Fig. 2 and Bhargava octuple in Fig. 3 is

p2 p0 −q1 p
3 −q3 p

1 q0 −q2

a b c d e f g h

(2.13)

The cube has a 3-way slicing: up-down, left-right, front-back, and many interesting properties.

The discriminant of the cube is given by the following expression.

DBha = a2h2 + b2g2 + c2f2 + d2e2

−2(abgh+ cdef + acfh+ bdeg + aedh+ bfcg)

+4(adfg + bceh) . (2.14)

Using eqs. (2.3), (2.14) and the dictionary (2.10) we see that

DBha = −W . (2.15)

The action of modular groups [SL(2,Z)]3 on the Bhargava cube was studied in detail in

mathematical literature and recently applied in the context of STU black holes in [7–10].

However, the permutations symmetry of the discriminant of the Bhargava cube was not yet

revealed in most of these studies2. Namely, the 3 permutation permutation symmetries in

black hole solutions which preserve the entropy and reflect the symmetry between 3 moduli

zi at the horizon and the relevant charges, are

z1 ↔ z2 : p1 ↔ p2 q1 ↔ q2

z2 ↔ z3 : p2 ↔ p3 q2 ↔ q3

2Examples with triality symmetry were given in [10], here we discuss a general case of triality symmetry

in the context of Bhargava cube.
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z3 ↔ z1 : p3 ↔ p1 q3 ↔ q1 (2.16)

Therefore the 3 symmetries of the discriminant of the Bhargava cube which reflect the

corresponding black hole symmetries are

f ↔ a c↔ h

a↔ d h↔ e

d↔ f e↔ c (2.17)

We show them by red diagonal lines in Fig. 4:

7.11 Form Composition and Bhargava Cubes 175

7.11.7 Example. Let I = Za+Z(−b+δ) be an ideal, so that b2−tb+n = ja
for some j ∈ Z. Putting B = {a, −b + δ}, we easily compute

MB(a) = [ a 0
0a ] , MB(−b + δ) =

[
0 −j
a −2b+t

]
.

We express the form qI,a,−b+δ in matrix terms:

qI,a,−b+δ(x, y) =
N(xa − y(−b + δ))

a
=

det
(
x [ a 0

0a ] − y
[

0 −j
a −2b+t

])

a

= det
(
x [ 1 0

0a ] − y
[

0 −j
1 −2b+t

])
.

The last equality holds since both matrices on its left side have first column
divisible by a.

We can recover qI,a,−b+δ from the pair of matrices [ 1 0
0a ],

[
0 −j
1 −2b+t

]
. Chang-

ing the typography slightly, those two matrices can be thought of as the front
and back faces of a cube:

1 0

0 a

0 (−j)

1 (−2b + t)

.........................................................................................................................
.........................................................................................................................

.........................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

...........................................................................................

............................................................................................................

.............................................................................. .....................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

.......

......

.......

.......

.

.........
.........
.........
.........

.........
.........
.........
.....

.........
.........
.........
.........

.........
.........
.........
.........

!
Such cubes are the protagonists of Bhargava’s take on the composition of

forms.

7.11.8 Definition. A Bhargava cube Cabcdefgh is a 2× 2× 2 array of
elements in Z:

a b

c d

e f

g h

.........................................................................................................................
.........................................................................................................................

.........................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.........................................................................................................................

....................................................................................................................
.............................................................................. ............................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.

......

.......

......

.......

..

.........
.........
.........
.........
...

.........
.........
.........
.........

.........
.........
.........
.........

.........
.........
.........
.........
...

There are three ways of slicing a Bhargava cube into a pair of matrices.
Given a subscript ∗ ∈ {F, L, T}, let M∗ be the matrix on the Front, Left, or
Top face of the cube with a as its upper-left entry. Let N∗ be the parallel
matrix on the opposite face. The following table gives the three slicings. For
orientation, we draw an arrow along the top row of M∗ and N∗ :

7.11 Form Composition and Bhargava Cubes 175

7.11.7 Example. Let I = Za+Z(−b+δ) be an ideal, so that b2−tb+n = ja
for some j ∈ Z. Putting B = {a, −b + δ}, we easily compute

MB(a) = [ a 0
0a ] , MB(−b + δ) =

[
0 −j
a −2b+t

]
.

We express the form qI,a,−b+δ in matrix terms:

qI,a,−b+δ(x, y) =
N(xa − y(−b + δ))

a
=

det
(
x [ a 0

0a ] − y
[

0 −j
a −2b+t

])

a

= det
(
x [ 1 0

0a ] − y
[

0 −j
1 −2b+t

])
.

The last equality holds since both matrices on its left side have first column
divisible by a.

We can recover qI,a,−b+δ from the pair of matrices [ 1 0
0a ],

[
0 −j
1 −2b+t

]
. Chang-

ing the typography slightly, those two matrices can be thought of as the front
and back faces of a cube:

1 0

0 a

0 (−j)

1 (−2b + t)

.........................................................................................................................
.........................................................................................................................

.........................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

...........................................................................................

............................................................................................................

.............................................................................. .....................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

.......

......

.......

.......

.

.........
.........
.........
.........

.........
.........
.........
.....

.........
.........
.........
.........

.........
.........
.........
.........

!
Such cubes are the protagonists of Bhargava’s take on the composition of

forms.

7.11.8 Definition. A Bhargava cube Cabcdefgh is a 2× 2× 2 array of
elements in Z:

a b

c d

e f

g h

.........................................................................................................................
.........................................................................................................................

.........................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.........................................................................................................................

....................................................................................................................
.............................................................................. ............................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.

......

.......

......

.......

..

.........
.........
.........
.........
...

.........
.........
.........
.........

.........
.........
.........
.........

.........
.........
.........
.........
...

There are three ways of slicing a Bhargava cube into a pair of matrices.
Given a subscript ∗ ∈ {F, L, T}, let M∗ be the matrix on the Front, Left, or
Top face of the cube with a as its upper-left entry. Let N∗ be the parallel
matrix on the opposite face. The following table gives the three slicings. For
orientation, we draw an arrow along the top row of M∗ and N∗ :

7.11 Form Composition and Bhargava Cubes 175

7.11.7 Example. Let I = Za+Z(−b+δ) be an ideal, so that b2−tb+n = ja
for some j ∈ Z. Putting B = {a, −b + δ}, we easily compute

MB(a) = [ a 0
0a ] , MB(−b + δ) =

[
0 −j
a −2b+t

]
.

We express the form qI,a,−b+δ in matrix terms:

qI,a,−b+δ(x, y) =
N(xa − y(−b + δ))

a
=

det
(
x [ a 0

0a ] − y
[

0 −j
a −2b+t

])

a

= det
(
x [ 1 0

0a ] − y
[

0 −j
1 −2b+t

])
.

The last equality holds since both matrices on its left side have first column
divisible by a.

We can recover qI,a,−b+δ from the pair of matrices [ 1 0
0a ],

[
0 −j
1 −2b+t

]
. Chang-

ing the typography slightly, those two matrices can be thought of as the front
and back faces of a cube:

1 0

0 a

0 (−j)

1 (−2b + t)

.........................................................................................................................
.........................................................................................................................

.........................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....

...........................................................................................

............................................................................................................

.............................................................................. .....................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...

.......

......

.......

.......

.

.........
.........
.........
.........

.........
.........
.........
.....

.........
.........
.........
.........

.........
.........
.........
.........

!
Such cubes are the protagonists of Bhargava’s take on the composition of

forms.

7.11.8 Definition. A Bhargava cube Cabcdefgh is a 2× 2× 2 array of
elements in Z:

a b
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There are three ways of slicing a Bhargava cube into a pair of matrices.
Given a subscript ∗ ∈ {F, L, T}, let M∗ be the matrix on the Front, Left, or
Top face of the cube with a as its upper-left entry. Let N∗ be the parallel
matrix on the opposite face. The following table gives the three slicings. For
orientation, we draw an arrow along the top row of M∗ and N∗ :

Figure 4: Three permutation symmetries of the discriminant of the Bhargava cube DBha,

according to eq. (2.17)

2.1 The issue of black hole equivalence

Supersymmetric STU black holes are defined by their entropy as well as by the values of

the 3 moduli near the horizon. In the basis where all 3 moduli zi are on equal footing in the

prepotential given in eq. (2.1), entropy is shown in eq. (2.3) and the values of the moduli

zi are given in eq. (2.6). The N = 2 supergravity in this basis and the black hole solution

both have this symmetry. The symmetry of solutions is presented in eq. (2.16).

The permutation symmetry for black holes, a triality symmetry, is important when

the physical question is asked: what kind of STU black holes are equivalent? It is known

that the entropy might be the same for different set of 8 changes, for example (pΛ, qΛ)

and
(

(pΛ)′, (qΛ)′
)

. However, some of these 8 charges can be related to each other by a

U-duality symmetry [SL(2,Z)]3 n S3 transformation. In such case, these two sets of 8

charges belong to the same U-duality orbit. If however, they are not related to each other

by an [SL(2,Z)]3 n S3 transformation, they belong to different orbits.
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There is a significant progress in understanding the discrete properties of Bhargava

cube which may be useful in the context of string theory counting of states associated with

supersymmetric black holes with integer charges. To use these properties it would be nice

to take into account systematically also triality symmetry S3 of the discriminant of the

Bhargava cube, in addition to modular [SL(2,Z)]3 symmetry which was already studied

extensively.

In the basis a, b, c, d, e, f, g, h which is standard in Bhargava cube literature, this S3

symmetry (2.17) of the discriminant in eq. (2.14) is not obvious since it does not appear to

be related to a supergravity S3 invariant prepotential (2.1). However, it is present there.

The metric, and therefore the entropy of the STU black hole solution is U-duality invariant.

The S3 symmetry is therefore manifest in eq. (2.3) since it follows from the triality invariant

prepotential.

3 M-theory cosmology, octonions and error correcting codes

A short summary of the recent paper [1] suitable for this set up is the following. We have

proposed an expression for the effective N = 1 4d supergravity following from M-theory/11d

supergravity compactified on a manifold with G2 structure. Starting with general type

G2-structure manifolds one finds Minkowski vacua only in cases the twisted 7-tori are G2-

holonomy manifolds. Here again it was a crucial early insight of M. Duff that the maximal

supersymmetry of M-theory is spontaneously broken by compactification to minimal N = 1

supersymmetry in 4d [13] when the compactification manifold has a G2 holonomy.

Our choice of the superpotential is based on a split of the 7-qubit system, Alice, Bob,

Charlie, Daisy, Emma, Fred, George, into 3-qubits and 4-qubits. The 3-qubits codify the

multiplication table of octonions, there are 7 associated triads there. The 7 complimentary

4-qubits define our superpotential. The automorphism group of octonions is G2, therefore

it is natural to define the superpotentials using octonions.

The effective N = 1 4d supergravity following from M-theory/11d supergravity is

defined as follows. The Kähler potential is given in eq. (1.2). The superpotential in general

is given by a sum over 7 the 4-qubits {ijkl} of the form

WO =
∑

{ijkl}

(T i − T j)(T k − T l) =
1

2
MijT

iT j . (3.1)

It appears to have 28 terms of the form T iT j , however, half of them cancels and we are left

with 14 terms. For example for Cartan-Shouten-Coxeter octonion conventions [39, 40]

WO =
6∑

r=0

(T r+2 − T r+4)(T r+5 − T r+6) . (3.2)
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We can see these 7x4 terms in right hand side of eq. (3.5). But actually, the formula

simplifies to 14 terms

WO = −
7∑

r=1

T r(T r+1 − T r+2) . (3.3)

Explicitly the 14 terms are

WO = −
(
T 1(T 2 − T 3) + T 2(T 3 − T 4) + T 3(T 4 − T 5) + T 4(T 5 − T 6)

+T 5(T 6 − T 7) + T 6(T 7 − T 1) + T 7(T 1 − T 2)
)
. (3.4)

The set of 7 terms in the superpotential in the form (3.2) is easy to compare with 7 octonion

associate triads, with 7 quadruples and with 7 codewords of the cyclic (7,4) Hamming error

correcting code. We show this relation in eq. (3.5).

Triads Codewords Quadruples ⇒ WO

WO =




(137) 1 0 1 0 0 0 1 (2456) (T 2 − T 4)(T 5 − T 6)

(241) 1 1 0 1 0 0 0 (3567) (T 3 − T 5)(T 6 − T 7)

(352) 0 1 1 0 1 0 0 (4671) (T 4 − T 6)(T 7 − T 1)

(463) 0 0 1 1 0 1 0 (5712) (T 5 − T 7)(T 1 − T 2)

(574) 0 0 0 1 1 0 1 (6123) (T 6 − T 1)(T 2 − T 3)

(615) 1 0 0 0 1 1 0 (7234) (T 7 − T 2)(T 3 − T 4)

(726) 0 1 0 0 0 1 1 (1345) (T 1 − T 3)(T 4 − T 5)




(3.5)

Let us show how the octonion triads are represented in the oriented Fano plane. Each

of the 7 lines has 3 points, the arrows show the order, with possible cyclic permutations.

For example the first one in eq. (3.5) is 137, we see it as the internal line going up and to

the right, it shows 371. The next one is 241, it is a set of points on a circle. One more, 352

is the one at the bottom, going to the left, it shows as 523, etc.

Figure 5: An oriented Fano plane, Fig. 1 in [41]. On each of the 7 lines (including the circle) there are 3

points e.g. 1,2, and 4 on a circle. The octonian multiplication rule is build into the Fano table. For example,

one can see from the oriented circle that e1 · e2 = e4.
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We studied Minkowski vacua in 7-moduli models with octonionic superpotentials (3.1).

We found that that these models have a Minkowski minimum at

T 1 = T 2 = T 3 = T 4 = T 5 = T 6 = T 7 ≡ T (3.6)

with one flat direction.

There are 480 different octonion conventions. We have presented a general formula of

the superpotential for any octonion convention in [1]. In all these cases, the matrix Mij in

eq. (3.1) can be computed either using the general formula or by performing a change of

variables. It is therefore not surprising that the eigenvalues of these matrices for all possible

octonions are always the same. We will discuss these eigenvalues and their relation to 3x3

octonionic Hermitian matrices, and to black hole entropy in the next section.

We can cut from the superpotential (3.2) some terms according to the rules specified

via error correcting codes. The related kinetic terms for the inflaton fields corresponding to
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7.2 Cyclic codes and projective spaces

As shown in Sect. 2.3, a linear code C is a subspace of Fn
q , q = pm. And

a cyclic code is an ideal (g) in the polynomial field Fq[x] ≡ Fn
q attached

to a polynomial g irreducible over Fq. One defines the Hamming distance

[2] between x and y in Fn
q as the number of coordinates in which x and

y differ. The minimum distance of a code is an important concept which

characterizes its efficiency for error correcting; it is defined as

d = dmin(C) = min
u,v∈C

u̸=v

d(u, v). (31)

A linear code corrects up to [d−1
2 ] and detect up to d − 1 errors. It can be

shown that for a linear [n, k] code, the following bound holds

d ≤ n − k + 1 = dmax. (32)

A minimum distance code (or a maximum distance separable, MDS code)

is such that d = dmax and it is usually referred to as a [n, k, d] code (or

[n, n−r, r+1] code). The binary Hamming [7, 4] code introduced in Sect. 2.3

thus corrects up to 1 and detect up to 3 errors. It is the MDS [7, 4, 4] code.

There exists an intimate link between this code and the Fano plane,

which can be inferred as follows. Let us take its seven codewords 1 to 7 by

cyclic extending of matrix (5), viz.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (33)

The above matrix is nothing but the incidence matrix of the Fano plane,

obtained as follows: if Pj is the jth point and Li represents the ith line of

the Fano plane, the elements of the matrix are

aij =

{
1 if Pj ∈ Li,
0 otherwise.

(34)

The link between good codes and projective geometry has recently re-

ceived considerable attention [24]. Let us define a vector space V of di-

mension δ + 1 ≥ 3 over Fq. Then a projective geometry P (V ) can be
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Figure 6: Three sets of codewords with some terms excluded: they codify the superpoten-

tials WOm,n where the corresponding terms in eq. (3.2) are absent. These superpotentials

lead to models with Minkowski vacua with two flat directions.

all these models with one and two flat directions are

K = −m log
(
T(1) + T (1)

)
− n log

(
T(2) + T (2)

)
(3.7)

with m+ n = 7 and cases like m = 0, n = 7;m = 1, n = 6;m = 2, n = 5;m = 3, n = 4. The

superpotentials WOm,n at the vacuum have the following properties:

WOm,n = 0 , ∂iWOm,n = 0 (3.8)

at

T 1 = · · · = Tm ≡ T(1), Tm+1 = · · · = Tn ≡ T(2) . (3.9)

Based on these M-theory Minkowski vacua we have build N = 1 supergravity phenomeno-

logical models with the potential

V = F (T, T̄ )
(

1 +
|Woct|2
W 2

0

)
+

7∑

i=1

(T i + T̄ i)2|∂iWoct|2 (3.10)
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where

Woct ≡ 1√∏7
i=1(2T i)

WO . (3.11)

Along the supersymmetric Minkowski flat directions we have Woct = ∂iWoct = 0. Therefore

the full expression for the inflaton potential, for example in the simpletst T-models, is given

by an inflationary potential for the α-attractor models and a cosmological constant

V = Λ +m2 tanh2

√
1

6α
φ . (3.12)

Inflation along various flat directions with these kinetic terms leads to 3α = 7, 6, 5, 4, 3, 2, 1

and therefore to 7 possible values of the tensor to scalar ratio r = 12α/N2
e in the range

10−2 & r & 10−3, which should be accessible to future cosmological observations. They are

shown by 7 purple lines in Fig. 1 here, taken from the LiteBIRD satellite mission forecast.

4 Properties of the mass matrix in octonion cosmological models

The octonion superpotentials for models in [1] with G2 holonomy and 7 moduli have 14

terms in the form

WO =
1

2
MijT

iT j . (4.1)

The matrix Mij for the simplest case WO for Cartan-Shouten-Coxeter octonion notations is

MWO =




0 −1 1 0 0 1 −1

−1 0 −1 1 0 0 1

1 −1 0 −1 1 0 0

0 1 −1 0 −1 1 0

0 0 1 −1 0 −1 1

1 0 0 1 −1 0 −1

−1 1 0 0 1 −1 0




(4.2)

One can see that it has the property Mii =
∑

j Mij = 0 ,∀i. In Minkowski vacuum with

WO = WO,i = 0 the fermion mass matrix is

1

2
e
K
2 χiMijχ

j . (4.3)

The non-vanishing 6 eigenvalues of the M matrix, defining the fermion mass eigenstates in

Minkowski vacua solve a double set of cubic equations

x3 − 7x− 7 = 0 , y3 − 7y − 7 = 0 . (4.4)
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The eigenvalues of the fermion mass matrix are

MEV
WO =




x1 0 0 0 0 0 0

0 x2 0 0 0 0 0

0 0 x3 0 0 0 0

0 0 0 y1 0 0 0

0 0 0 0 y2 0 0

0 0 0 0 0 y3 0

0 0 0 0 0 0 0




(4.5)

where xa = ya with a = 1, 2, 3 are solutions of the cubic eqs. (4.4). Numerically this gives

for a set of x1, y1; x2, y2; x3, y3 and a massless one, the following values

3.0489, 3.0489; −1.6920, −1.6920; −1.3569, −1.3569; 0 (4.6)

as shown in [1]. It looks like the numerical sum of all 3 eigenvalues vanishes

3.0489− 1.6920− 1.3569 ≈ 0 . (4.7)

Meanwhile, can also solve eqs. (4.4) analytically. With za = xa = ya and θ = Arc tan 3−3/2

the solutions are

z1 = 2

√
7

3
Re ei

θ
3

z2 = 2

√
7

3
Re ei

θ+2π
3

z3 = 2

√
7

3
Re ei

θ+4π
3 (4.8)

Also one finds that

z1 + z2 + z3 = 0 , (4.9)

which means that indeed the sum of the 3 eigenvalues of the fermions mass matrix vanishes

exactly. A number of other relations can be seen in the exact solution:

z1z2 + z2z3 + z1z3 = −7

z1z2z3 = 7

z2
1 + z2

2 + z2
3 = 2 · 7

z3
1 + z3

2 + z3
3 = 3 · 7

z4
1 + z4

2 + z4
3 = 2 · 72

z5
1 + z5

2 + z5
3 = 5 · 72 . (4.10)

We can compare the eigenvalues of the 3x3 part of the fermion mass matrix with the

eigenvalues of the 3x3 octonionic Hermitian matrix studied in [26, 27] which defines the

supersymmetric black hole entropy in 5d. This entropy was shown in [42] to be equal

to a square root of the cubic invariant I3 of E6(6). In [26, 27] it was shown how this

cubic invariant is related to the Jordan algebra JO3 of the 3x3 hermitian matrices over the

composition algebra of octonions O.
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A generic element J of JO3 has the form

J =



α1 o3 o∗2
o∗3 α2 o1

o2 o∗1 α3


 (4.11)

where αa are real numbers and oa with a = 1, 2, 3 are elements of O. The automorphism of

the split exceptional Jordan algebra is the non-compact F4(4) group. In case of the non-split

octonions the automorphism group is F4. An element of JO3 can be brought to a diagonal

form by an F4 rotation [24–26, 28]. In case of the black holes the generic element of J has

eigenvalues λa, a = 1, 2, 3 and the cubic norm of JO3 is, as shown in [26].

In case of non-split octonions, one also start with the element (4.11) and diagonalize it

using F4 transformation [24]. The 3 eigenvalues in this case were shown to satisfy certain

characteristic cubic equation [28]

− det(J − λI) = λ3 − (TrJ)λ2 + Tr(J × J)λ− (det J)I = 0 (4.12)

where in notation of [25]

J × J = J−1 det J . (4.13)

In our cosmological model the analogous cubic equation x3 − 7x− 7 = 0 corresponds to the

choice

TrJ = 0 , Tr J−1 = −I , det J = 7 (4.14)

The choice Tr J = 0 according to [25] means that our matrix (4.11) depends only on 26

parameters and therefore it is a 26-dimensional representation of F4. It is also explained

there that the invariants of F4 are

Tr J, Tr(J × J) , det J . (4.15)

Thus we find that our fermion mass matrix eigenvalues are defined by a cubic equation

x3 − 7x− 7 = 0 of the kind which defines the exceptional Jordan matrix eigenvalues [28]

with special F4 invariant properties.

Tr J = 0, (J × J) = −7 , det J = 7 . (4.16)

Meanwhile, the relation between the det of the fermion mass matrix MWO and black hole

entropy in the diagonal basis
√
I3 is

detMWO = x1x2x3 I3 = λ1λ2λ3 = p1p2p3 . (4.17)

In 5d black holes the values of magnetic charges, p1, p2, p3 are less restricted, they do

not satisfy a cubic equation of the kind x3 − 7x − 7 = 0. In fact the entropy of 4d STU

black holes we started with in eq. (2.3) is the same as the one in 5d under condition that

p0 = qi = q2 = q3 = 0.

Thus, in addition to numerous relations between various BPS and non-BPS black holes,

we have observed here an interesting relation to octonion based cosmological models and

fermion mass matrix.
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5 Discrete symmetry of fermions in cosmological models

The fermion mass matrix in eq. (4.3) at Minkowski vacua in cosmological models [1] can

be brought to a diagonal form as shown in eqs. (4.5), (4.6). Since it is a 7x7 matrix,

its eigenvalues are invariant under the O(7) symmetry and its subgroups. The discrete

subgroup of it is the Weyl group W (E7). It is isomorphic to a finite subgroup of O(7) which

is the direct product Z2 × SO7(2). The group SO7(2) is the adjoint Chevalley group of

order 1,451, 520. The Weyl group W (E7) has 2,903,040 symmetries. The root system of

the Weyl group W (E7) cannot be visualized since it is an object in 7 dimensions, but the

2-dimensional projections of them, the Coxeter planes, are well known. We present them in

Figs. 7, 8.

However, the Weyl group W (E7) does not preserve the octonion algebra. When one

imposes the invariance of the octonion algebra on the transformations of the E7 roots one

obtains a finite subgroup of G2, as expected, the adjoint Chevalley group G2(2) of order

12,096. We now review the analysis of E7 roots and its G2(2) symmetry following [29–32]

and show that it applies to the fermions in cosmological models of [1]. First we notice

that E8 roots can be defined by the integral octonions of the following form. We take

Cartan-Shoten-Coxeter octonion conventions, which we used in eq. (3.5). The triples are

124,235,346,457,561,672,713 and the quadruples are 3567, 4671, 5712, 6123, 7234, 1345,

2456. The set of 240 integer octonions is

±1,±ei (5.1)

1

2
(±1± ei ± ej ± ek) (5.2)

1

2
(±ei ± ej ± ek ± el) . (5.3)

Here in (5.2) ijk belong to triples, so we have 7x16 = 112 and in (5.3) ijkl belong to

complementary quadruples, so we have again 7x16 = 112. To this we add 16 from eq. (5.1).

This gives the total of 240 integral octonions, which make the E8 roots, also called Cayley

integers or octavians. From the set of integral octonions above we keep only the ones in

±ei,
1

2
(±ei ± ej ± ek ± el) . (5.4)

There are 14+7x16=126 integral octonions. It was shown in [31] that the set of transforma-

tions which preserve the octonion algebra of the root system of E7 in (5.4) is the adjoint

Chevalley group G2(2). It is possible to decompose these 126 imaginary octonions into 18

sets of 7 imaginary octonionic units that can be transformed to each other by the finite

subgroup of matrices. These lead to 18 sets of 7 which we see in Figs. 7, 8.

Thus it appears that the cosmological models in [1] derived from compactification of

11d supergravity on a manifold with G2 holonomy, have some hidden E7 symmetry. It

would be nice to understand a relation of all this to the maximal 4d supergravity with E7(7)

symmetry.
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Figure 7: This is the root system of the Weyl group of E7 projected into the Coxeter plane as given by

John Stembridge. The Lie group E7 has a root system of 126 points in 7-dimensional space. One can see

these 126 points as 7 groups of 18 points. These 126 points are tightly packed together and this configuration

has a total of 2,903,040 symmetries.

Figure 8: The Coxeter projections of all exceptional root systems are given by Tomás Görbe, including

the E7 case shown here. As in Fig. 7 we can see 7 circles with 18 points each, a total of 126 points

representing a root system of E7.
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6 Discussion

The entanglement of 7 qubits (Alice, Bob, Charlie, Daisy, Emma, Fred and George) was

important in M. Duff’s studies of black holes in M-theory. In the context of M-theory

cosmology, it is not surprising that the concept of 7 qubits and the related tools like

octonions, G2 symmetry, Fano Planes, (7,4) Hamming correcting codes also are playing an

important role. It would be interesting to develop more understanding of both black holes

and cosmological models in M-theory and of the role of octonions in physics.

Neutrino physics may also require some new ideas to satisfy the current and future

data. It was advocated in [33, 34] that some discrete subgroups of G2, like PSL2(13) might

be useful for this purpose.

A nice feature of our cosmological models in [1] is that they describe a case of maximal

supersymmetry spontaneously broken down to a minimal supersymmetry. These models

will be tested by the future cosmological observations as we show in Figure. 1. The most

recent forecast of the CMB-S4 in [43] suggests that the ground based Stage-4 experiments

will achieve the science goals of detecting primordial gravitational waves for r > 0.003 at

greater than 5σ, or, in the absence of a detection, of reaching an upper limit of r < 0.001

at 95% CL. Therefore the benchmark targets of cosmological models in [1] will be tested

during the next decade or two.
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