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1 Introduction

It is well known that the QCD Lagrangian is classically scale invariant if the small quark
masses are neglected, but the invariance is broken at the quantum level. A common way to
express this phenomenon is to compute the trace of the QCD energy momentum tensor T+

T = m(1 + v )Yth + Bz(j)F“”FW. (1.1)
In addition to the expected quark mass contribution, terms proportional to the beta-
function § and the mass anomalous dimension ~,, appear. This is called the trace anomaly
and is fundamentally important in QCD as it signals the generation of a nonperturbative
mass scale. In particular, its nucleon matrix element (P|T|P) (relative to the vacuum
expectation value) is proportional to the nucleon mass squared (see (3.8) below).

In this paper, we address the following question. The energy momentum tensor consists
of the quark part and the gluon part 7" = T, + T}". Which part of the anomaly (1.1)
comes from T3 and the rest from 7,7 Until recently, there has not been enough motiva-
tion to ask this question. First of all, it is not clear a priori whether such a decomposition
is well-defined, and even if the answer is yes, it appears to be a purely conceptual problem
without any phenomenological implications. More technically, while the total anomaly is
renormalization group (RG) invariant, the individual terms T, and Ty, are not. Further-
more, the decomposition may depend on the regularization scheme one is using to handle
the UV divergences.

However, in recent years the necessity to understand the QCD energy momentum
tensor has intensified significantly. It has become a common practice to parametrize the
‘gravitational form factor’ of hadrons separately for quarks and gluons (P'|Tyq|P) [1-4].
Very importantly, understanding the origin of the nucleon mass has emerged as one of
the main objectives of the future Electron-Ion Collider [5], and an independent experiment



dedicated to this issue has been proposed at the Jefferson Laboratory [6]. Specifically, JLab
proposes to measure the near-threshold photoproduction of J/1 in ep scattering. It has
been shown in [7, 8] that the cross section of this process is sensitive to the F? part of the
trace anomaly (1.1). However, the extraction of the forward matrix element (P|F?|P) from
the experimental data is complicated by the fact that near the threshold, the momentum
transfer A = P’ — P is not negligible. In order to facilitate the extrapolation to A — 0, it is
convenient to express (P'|F?|P) in terms of the gravitational form factors (P'|(T, 4)%|P). In
ref. [8], this relation has been worked out at the level of the bare operators. In this paper,
we show that the relation gets modified once one considers the renormalized operators,
and compute the correction to two loops in dimensional regularization in the minimal
subtraction scheme. This clarifies the relation between the bare and renormalized operators
(Tg,9)e. As an important application of our result, we elucidate the renormalization group
property of the twist-four gravitational form factor C*q,g.

2 The trace anomaly

Our starting point is the gauge-invariant, symmetric QCD energy momentum tensor which
is given by ,
TH = —FMFY + %FQ + iy D = T 4 T, (2.1)
, _ AMBY4AYBE S _ Dr_Dw
where DF = 9M + jgA*, AWBY) = + and D# = =5~. We have neglected the
ghost and gauge fixing terms as they do not affect our final results. In the last equality,
we decomposed the total energy momentum tensor into the gluon and quark parts as
T = —FrFFY + %lﬂ and T} = i@'y(“ﬁ”)w. TH is conserved and therefore it is
a finite, scale-independent operator. However, T, and T} are not conserved separately
and are subject to regularization and renormalization.
We work in d = 4 — 2¢ spacetime dimensions. Let us decompose T"" into the traceless
TH and trace TH parts.

THY (TW _ 77WTCY) + ﬂTa =T L TH (2.2)
N d ¢ da <« ’ ’
where ) )
F _ = F _
TS = —26Z +i Py = —26T + map. (2.3)

The second equality follows from the equation of motion. (m is the quark mass.) The
corresponding decomposition for the bare operators T,y is

p w9

1y = (—pes - ) T 24
T (wy e e

T = (zme I — ”d zww) + %zww. (2.5)

The operator 2 is divergent and has to be regularized. We shall use the (modified) minimal
subtraction scheme, and in this scheme the renormalization of F2 has been well understood



in the literature [9, 10]. Denoting renormalized operators with a sub- or super-script R,

one finds myp = (mavp) g and

F? _
—ocl = PR gy ) (2.6
dr
where 3 is the QCD beta-function S(gr) = agﬁl(ﬁ) and v, (gr) = —miRagn%l(lf) is the mass
anomalous dimension. We thus arrive at the standard result
o} B 7
T3 = 5y (F)r + (L z) (mi) s (2.7)

The above derivation makes it clear that, in dimensional regularization, the anomaly en-
tirely comes from the bare gluon energy momentum tensor, while the bare quark energy
momentum tensor only contributes to the mass term

Tgo = f;;(FQ)R + 9 (M) R, (2.8)

T = (my)R. (2.9)

Noting that the right hand sides of (2.8) and (2.9) are both renormalization-group (RG)
invariant, one can also write

Too = QBgF2 + Ymmaip, (2.10)
TS = miy, (2.11)

where all the quantities and fields are bare. Note that such a clean separation of the
trace anomaly into the quark and gluon parts may not be unambiguously done in other
regularization schemes. For example, in the Pauli-Villars regularization, the anomaly comes
from the energy-momentum tensor of the massive regulator field which is neither Tj nor
Tg.1 The goal of this paper is to derive the corresponding formulas for the renormalized

operators (Tyr)S and (Tyr)%

3 Nucleon gravitational form factors

The scale-dependence of T(fg essentially determines the scale dependence of the so-called
gravitational form factors. The nonforward nucleon matrix element of T}y and (T4.g)r can
be parametrized as
y V)
(PITIP) = W) 400 P 4 By, T e
AFAY — n;w AQ
M

+Cqg + Cq,gMnW} u(P), (3.1)

v _ = PHigMA,
(PATERIP) = alP) | AP+ Bl TR

AFAY — n“”AQ
M

+cf + éngnW] u(P) (3.2)

We thank M. Polyakov for providing this argument.



. — L /, .
where A* = P'" — PI is the momentum transfer and P* = w. M is the nucleon

mass. The conservation of the energy momentum tensor implies that AS,R) + AE,R) =1 at

A =0 and C_’éR) = —C_’éR) for all values of A. The renormalized operators are given by
v v v v LT R gy
Ty = —(FMF3)R + 774 (F))r, Tl =iy " D")g, (3.3)

and the form factors Ag, Br,Cr,Cr are renormalized at scale u. Naively, since (F?)g
is now a finite operator, one might think that (Tyg)S = 0. However, this is not the
case, because renormalization and the trace operation do not commute in dimensional
regularization (see, e.g., [11, 12]). Taking the trace as well as the forward limit, we find

(PUT)IP) = (P (S 4l ) [P) = 22124, + dC) (3.4
(PI(T)2IP) = (Plmgy|P) = 2M3(A, + dCy), (35)

and
(PI(T, ) ()| P) = 2M2(AR () + 4CH (). (36)

(PITyr)a(1)|P) = 2M?(Ag (1) + 4C7 (1)).

The mass of the nucleon is given by

2212 = (P (L1 + (U dmid ) [P = (P (2 (P (4 ) (mb)n ) 1)
(3.8)
Note that, in the chiral limit, C; = —% A4, [13]. As suggested in [13], this relation does not
hold for the renormalized quantities.
The p-dependence of Affg (p) is well known. Since A, 4 are the matrix elements of the
twist-two, spin-2 quark and gluon operators, their evolution is closed under evolution. To
one-loop order, one finds

R 16 dny R
o () = 2 (s ) (8 ) 59)
dlnp \ A, Ar \ Pop -]\ A
_ N2-1 _ 4 . . . . . . R_ 9% _
where Cp = =5~ = 3. [To simplify the notation, in the following we write o, = 7% = a

for the renormalized coupling.] On the other hand, the p-dependence of Cq,g can be
obtained as follows. First one uses the identity [4, 14]

DTV = By, (3.10)

where the terms which vanish due to the equation of motion have been neglected. Similarly,
ATY = F,F Do F. (3.11)

Note that (3.10) and (3.11) are compatible with the condition 8, (74" + T4") = 0 thanks
to the equation of motion Dy F'® = g1py”1). Taking the matrix element of (3.10), one finds
(P'|gp Py, P) = iM A*Cyu(Pu(P), (3.12)

(P'|E Do FY|P) = iMA*Cyu(P)u(P). (3.13)



Therefore, the pu-dependence of C'q,g is governed by the anomalous dimension of the twist-4
operators gy F*~,1p and F,*D,F®. The latter can be computed either directly, using
the well-established techniques in the literature [15-21], or simply by noticing that it must
coincide with the anomalous dimension of T} by virtue of the identity (3.10). One finds,
in the chiral limit m = 0 [22],

0 g as (16 dng\ ~r

from which one would conclude that C’fg (1) = 0 as p — oo (in this chiral limit). We have
computed the correction due to the quark mass with the result

0 . as (16 dny _ 4CF oy _
7 (gOFM ) = — 2 (2 ) (g Frvey, B s g . (3.1
S0P e =52 (05 + 55 ) ir e o i (3.15)
This implies that, in the forward limit A — 0,
0 AR as (16 dny\ sp  as4Cp 1 -
_ s (16 dny s 4CF j2 P, 1
oc| 4W(30F+ 3>cg+4W:32MQ<mewR|> (3.16)

We note that although (3.12) and (3.13) make sense only at nonzero momentum trans-
fer A # 0, after removing the common factor A* the limit A — 0 can be safely taken
to arrive at (3.16). However, eq. (3.16) is actually problematic. One would expect that
the value of Cq,g should be at least partly constrained by the trace anomaly, but (3.16)
appears to be insensitive to it. As we shall see in the next section, one has to include
certain two-loop contributions in order to obtain the correct asymptotic limit of C'®.

4 One-loop renormalization of T,

Since the right hand sides of (3.4) and (3.5) are both renormalization group invariant, one
may naively think that A, 4+ 4C'q,g is invariant under renormalization, i.e., A4 4 + 4C7'q7g =
Agg(,u) +4C’fg (). However, this is not the case. In this section we show that this quantity
receives a finite renormalization.

For notational simplicity, let us write

O) = —FMFY, (4.1)
05 = 0" F?, (4.2)
-
O3 = iy Dy, (4.3)
O4 = 0™ mii. (4.4)
Then the energy momentum tensor is
0
TW:01+TQ+03 (4.5)



We introduce the renormalization constants as?

OF = ZrO1 + Zy1Oy + Z103 + Z50y, (4.6)
Of = ZrpO, + Zc 04, (4.7)
Of = 2,03+ ZK Oy + Zo01 + ZpOs, (4.8)
Of = 0. (4.9)
To one-loop order [10]
Qg 1
Zp =1—=—"By— 4.1
F 27750 2€ (4.10)
1
Zo = Ay — 4.11
o = 4y, (4.11)

where By = %C’A — 2% with C4 = N, = 3 is the first coefficient of the beta-function
B(g) = —ﬁo% + ---. The mass anomalous dimension is given by ~,, = 302%0‘8 to this
order. From the condition T"” = T%", we get the following relations

Zr+Zqg =1, (4.12)
t+ 2y = (113
Zp+ Zy =1, (4.14)
Zs + % + Zg = 0. (4.15)

Moreover, the twist-two operators O —(trace) and O3 —(trace) are mixed among themselves
under renormalization. The traceless gluonic twist-two operator is

~ Hv
Of = Off + Lo [P, (4.16)

Let us write
Hap [PV EJ)F = (1 -2 ) (F2)p + (= ym + 3)(mi) . (4.17)

where we have taken into account the fact that the trace operation and renormalization do
not commute and parameterized the possible anomalous terms by the unknown constants

z,y = O(as). Note that % =-—&(Loy - Q"Tf) to this order. Then the twist-two quark
operator becomes?

~ 1

O = of - 2okt - #05 (4.18)

2The most general formula includes the mixing with the equation-motion operators as well as the BRST-
exact operators. However, they do not affect our final result because their matrix elements in a physical
state vanish (see e.g., [11, 19, 20]).

3We have parametrized (4.17) and (4.18) such that their trace parts reproduce the total anomaly (1.1).
However, this is actually not necessary. The constraints (4.19) and (4.20) are strong enough that they
completely determine the anomaly term. That is, we may introduce two new unknown parameters for the
coefficient of 05"4 in (4.18) and still obtain the same result. This is true also at two-loop to be discussed in
the next section.



The renormalization relation is (cf., (3.9)),

Off + (1—2ﬁg+x> Of+(—%+y)of
o) (0 %) 5 o)
of —xOf ! gyof = (1 + 5:68?) (03 - (;4) - 4(;362%’" <01 + Oj) . (4.20)

From these two equations, we find
Zy =1+ Z‘—;iiF, (4.21)
Zo = _%;2%, (4.22)
Iy — EZF = 7%;2%, (4.23)
ag 8C

7=, 3€F : (4.25)
ZM+;<1+x—2i)ZF=;(1+zj2g>, (4.26)
dZK:xZC+1+y—(1+Zj8?iF>, (4.27)
ZS+<1—2i+x>?+_7"&+y:zjiZf. (4.28)

Combining these relations with (4.12)-(4.15),
equations

we obtain the unique solution to this set of

o ny
g = — | —— 4.2
B 47r( 66)’ (4.29)
as 11Ck
Ty = — 4.
M= yr 12¢ (4.30)
Qg QCF
L = — | — 4.31
K A ( 3¢ >7 ( 3 )
Qg 7CF
Zg =22 (-E 4.32
5= ( ¢ ) (4.32)
and
Qs ny as 4Cp
— 577 = 2= 4.
Am 37 L (4.33)
We thus arrive at
L as [ 1104 140y, -
mT = 52 (25 e+ S o). (1.34)
2 - Qg nf 2 4CF -
nuuTqR = (m¢w)R+ E ?(F )R+ T(m¢¢)R . (4'35)



In terms of the matrix element,

1 Qg (_HC’A

1401:
Pl—
2M2< ’471' 6

AR() +ACE () = (F2)-+ 25 = (mi)n ) 1P) (4:36)
A + 400 = (P |(mboga+ 52 (S )+ 2 Gmioin )| 1P). (a31)
Taking the 0,-derivative of (4.8), we find

(BIF™ )1 = (Zo — ZQ)BgF ™30 + Zxcd¥ (i) + (ZB - Z) F. (4.38)

Noting that Zp — % 0 to one-loop, we see that the relation (3.15) is reproduced. On
8) can be written as

the other hand, (4.

1 8CF nt as 2ny 1
T — 4 S8 = (e T Ds 2 = g, 4.
4R Torze 3 \le T Y T o s gl (4.39)
Taking the trace and the forward matrix element, we get
R ~R 4CF ”f 2
Ay (1) +4C7H (n) = Aq +dCy+ = 2M2 <P| mip + L F? | |P). (4.40)

In the last term we may replace F? — (F?)g since the difference is O(a?). Then (4.40)
becomes consistent with (4.37) after taking into account (3.5).

Eq. (4.40) shows that Af+4CF is RG-invariant to O(a), but it gets a finite renormal-
ization with respect to the bare quantities.* From the RG equation %(Aq,g +dCyq) =0,
we can deduce that

8 ~R __ Qg 4CF R nf R
8ln,u0q = < 3 Aq 3 Ag , (4.42)
8 ~R __ Qg 4CF R nf R
8lnuCg =~ ( 3 Aq 3 Ag . (4.43)
This can be rewritten as
oCk 4C
q F R R
= 4.44
dln 1 47r< 3 " 3)(A ~4g () (444)

— 16CF | 4ny\ (AR _ AR
_ 47T( R cS)

= C
4rm ( 3 + 3 >

o [4cF (Plmi)rlP)  ny ( (Pl(mi)r|P) 1>] 4o

3 2M? 3 2M? s)

1Using (4.42), one may write

Aq+dCy = Ag +4C, - 5 <4CFAR ”fAff). (4.41)
I8

But the combination A, 4 dC, is more useful as it is directly related to the mass term as in (3.5).



where Alf(c0) = 4CZinf and in the second line we used Af(u) +4Ck(n) = AF(c0) +

46‘5(00) to this order. In the third line, we used (4.37). Formally, (4.44) is consistent
with (3.16) to O(as) accuracy because % — 1 = O(as) due to the relation (3.8).
However, the perturbative result (3.16) misses the fact that the trace anomaly converts
naively O(a;) terms asF2, agmiptp into O(1) quantities. The asymptotic limit of C_'f(u)
in the chiral limit in this one-loop approximation can be directly read off from (4.37)

_ 1 n 1 s N
R I f s TVf 2
C (oo)_4< 4CF+nf+2M2<P4 3 (F )R|P>>

1 ny 2ny
_ _ = mia I 4.45
4<4CF+nf+3ﬁo> ( )

Numerically, C}t(c0) &~ —0.146 (ny = 3) and CF(cc) &~ —0.103 (ny = 2). This is an order
of magnitude larger than and has an opposite sign from the result of [22]. While the two
results are not necessarily inconsistent, as they are obtained at different scales, a more
detailed study is needed to clarify this issue (see (5.30) and (5.31) below).

5 Renormalization at two-loop

It is straightforward to generalize the result of the previous section to two-loop. The
beta-function and the mass anomalous dimension to this order are

7

47

e (Y

47
(5.1)
f and 1 = 34CA —2Cpny — —C’Anf The two-loop evolution of the

Qg 9 Qg 2
m=6Cr >+ (BCF + 2 ope, — anf> ( ) :

2
where 8y = % - =

twist-two matrix elements reads [23, 24]

0 AR « o\ 2 AR
qa | — [ =2 il q
Olnp (Af) |:47TX + (471') Y} <A§> ’ (5:2)
where
__16Cp 4ng
X = 165} _Eﬂ ) (5.3)
3 3

v — o FCrCa—52Ch — nsCr —chnf—WcAnf
B 3760 Ca+ 11202 + 12074015‘71]0 ﬁCFTLf—F 27C'Anf ’

AR\ (4,
<A5> _z <A> | 55)

B X oy X? BoX\/as\2 Y ra\21
Z_1_247T6+(8+ 4 (471'6) _§<E> 2¢” (5:6)

This can be integrated as

where




For the renormalization constants, we now have [10]

Qg g\ 2 as\2 1
Zr=1- 504776 + (5047%) — 25 (E) 2% (5:7)
and
Qg 120}7‘ Qg 2 —120}7‘50 1 2 194CACF QOCFTZf
Jo = — —= ——— + - 6C — . 5.8
“Tar e +(47T) [ €2 e P 3 3 (5:8)

Using Mathematica, we have repeated the calculation in the previous section. The result
for the renormalization constants is

16n 44C 3202
7 _1+as 8Cr +(a8)2 CF( 9f_ 9A)+ 5
v 4\ 3e A €2

Cp (18SC’A B 52nf> 5602

27 27 27
+ - : (5.9)
11Can;  8Cpny 4n} 35 37Crny
7H = s _QE +<%>2 9 g _T+_5740Anf_ 21’; (5.10)
QT U 3e A7 €2 € T
11Can; , 8Cpny  4n3  35Can; | 37Cpn;
ZT::[_A'_% 2& (%)2 — 9 j+ gj+Tf+ 54f+ 2?f (511)
47\ 3e A7 €2 € AT
44C,  16ngY\ 32C%
ZL:% _8Cp +(%>2 CF( 9 9) 9
A7 3e A7 €2
52n 188C 5602
CF( 27f_ 27A>+ 27F
, (5.12)
€
2
Zy = 2 (HOa)  (oxy? T - gt 4+
47\ 12¢ A7 €2
_ 14Cany I 17C3  5Cpng
+ 27 6 108 , (513)
€
110Anf QCFNf n?r 17 490an
Jn = % (_ﬁ) + (%)2 36 — 9 9 4 _5740Anf_ 108 (5 14)
B~ 4 6e A €2 € ’ '
88C 14ny 8C?2
Je Qg 7Cr _I_(as)? CF( 7~ 5 )+TF
ST 4 3e A7 €2
11n 406C 85C2
CF( 27f_ 27A>_ 54F
, (5.15)

€

,10,



110, _ 4ng) _ 8CE
CF( 9 9 9

€2

g 2CF g\ 2
e (290) ()
K 47r< 3¢ >+ 4m

34n 61C 202

Cr <T7f - 54A) +ar
+ . (5.16)

€

The anomaly coefficients in (4.17) and (4.18) are given by
= G (g, (So)? [ LCany , 29Ceny 5.17
v 47r<3 v o7 54 | (5.17)

4Cp s\ 2 61C4 68ng\ 4C%

= — — - . 5.18
Y 47r< 3 >+<4w> [CF< o7 27 27 (5.18)

This leads to the main result of this paper, which is the two-loop version of (4.34)—(4.37)

(PlnuTyp|P) = Ag(p)+4C (n)

2M2
- i (P {4 (e (miw) (7)) 5.19)
#(52)" [ (or (208 210) L 5 (),
+ (282;”” - 17303‘ + 505%) (FQ)R} } |1P),
s Pl T P) = AR(u) +4CF ()

= 537 (P {(WW) ( Cr (myn) p+ ; ng (F?) R) (5.20)
- <ZTST)2 [(mzﬁw)R (cp (612?‘ - 6277%) _ 4;%)

17Can 49Crn
+(F2)R< 27 f+ 52 f>:|}‘P>a

and, similarly, (4.40) now becomes
R ~R ~
Al () +4CH (1) — (Ag + dCy)

—2A142<P‘{M<4CF( Pt (7))

o\ 2 17C4  49Cr 9
+(E> K 27 54 )"f (F) (5:21)
GICACF 68CFTLf 4012; -
+< 27 o1 27>(mW)RH|P>'

— 11 —



Moreover, eq. (4.38), together with the two-loop renormalization constants, leads to the
two-loop evolution equation for the three-body operator,

O 4 _
(9¢ “V7V¢) = 47T (<_ 1630F ;Lf> ( ¢F'LW’YV¢> +&8#( WZ))R)

s\ 2 11C4 4Cpg (2
+<E> [( 18 +9>"f8 (F)

22402
N <<20(JF B 700A> 0 752C4CF N C%

) (5P 0) ,

9 27 27 27
(122(27?@ 136Gy ¢ 8C3 )au (o) ] (5.22)

extending the previous one-loop result (3.15). As mentioned below (3.16), this two-loop
result is needed to correctly evaluate the renormalization group evolution of C'. Let us
check the consistency bewteen (5.22) and (5.19), (5.20). The scale dependence of C_'f(u)
at the two-loop accuracy may be calculated by differentiating (5.20) with respect to u, as

OCH () 1 ]as s o 2 .
Olnp ——4([% Y} e (5) Y]qug “”)
19 (miv) . Lo, Oy 1, 0P,
4 Oln,u 1 T 3 nlu, 3nf alnu
+2BgI;ZTSr ( Cr (me) p+ 3 ”f( ?) ) (5.23)

where we have substituted (5.2) for 8AqR(,u)/8 Inp, and das/0Inp = 4(Br/2gr)cs from
the definition of the § function. The remaining p-derivative terms are determined by the
renormalization group equations which directly follow from (4.7) and (4.9)

aa(f;)f o [(223@; 47;1‘) (F2), — 24 (miw) ]
(),
+ (CF <80;Lf - 77630“‘) — 240%) (mW)R] . (5.24)
a(gll‘ﬁ@ﬁ)z% — 0, (5.25)

whose solution is given by (3.8). We then eliminate Aﬁg(u) from (5.23) using (5.20)
and (5.19). The resulting equation exactly coincides with the one obtained by taking
the nonforward matrix element of (5.22).

— 12 —



On the other hand, in the forward limit A = 0 we have an additional constraint,
Af(,u) + Af(u) = 1. Using this and (5.20), we can eliminate Af:g from (5.23) and find®

3

3 3

Olnp  4m | ¢ 3 2M?

OCR(1) oy [CR( )<_160F 4nf> nf+<40F+nf> (P| (my) , | P)
3 3

as\2 | An 20ny  752Cy 70Cang  224C%
+<47r> Cq () <0F< 9 27 > T
35 37Cpny 4CFny ”?” (P| (FZ)R P)

o (12204 Bng) | 35Cang  8CR (Pl (miv), |P)
F\ "oy 3 54 27 M2

Finally, we use (3.8) to eliminate (P| (F?),|P), yielding

OCH () | - 16Cr  4n ny  ny (8Cr  2n
g s | AR F f s ng (8Ck ;
_— - B LD S B s e 0 2
dlnp 4 Cq(“’)( 3 3) 3 5o<9 +9> (5:27)
ny (8Cp 20\  4Cr | ng (Pl(m¢) 4| P)
+(50(9+9 gt e

In the chiral limit, the solution of this equation approaches (4.45) asymptotically.

The above derivation makes it clear that the u-dependence of C_'(fg is completely fixed by
the condition TH” = T]’éy and the anomalous dimension of the twist-two matrix elements
Agg. In view of this, the RG equation Oéfg /OInpu = --- is somewhat redundant and
can be even misleading as the naive counting in a,; does not work. We actually know
the explicit solution of this equation including the integration constants, see (4.36)—(4.37)
and (5.19)—(5.20).

Even more explicit formulas can be derived by using the well-known expression

8C'F+2nf

> T (5.28)

Al (1)

o ACP AT (o) +ny (AT (o) = 1) [ o (1)
N 4CF +ny 4Cp +ny as(po)

with a certain starting scale pg. Here, the ellipses denote the next-to-leading contributions
associated with 81 and Y of (5.2), namely, the order o contributions when expanded in

°If we instead use AJ(u) — 1 — AF(u) and (5.19) in (5.23), we obtain (5.26) up to extra terms that
vanish with the use of the relation (3.8).
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the power series in as. Substituting (3.8) into (5.20) to eliminate (P)| (FZ)R |P), we obtain
- 1 n 2n 1 (2n P| (myy) 5 | P
Chy = L () (2 ) PLmed) )
4 \4Cr + nf 380 380 2M
SCF+2nf

ACPAR (o) + g (AF (o) — 1) < as (1) > e
4(4Cr +ny) s (o)

4

34C 4 490F)

ng (_ 27 27
+045(N) 61”; (5.29)
47 480 63y
34C 157C -
+1 nf( 27A+ 27F) +4CF_2,31nf <P| (W“MJ)R|P>
4 Bo 3 34 202 ’

which reproduces (4.45), now taking into account the quark mass effect. Numerically, we

have
R,y ~ ~0-146 — 0.25 (AX (10) — 0.36) (s(%)))o — 0.01a (1)
(0,306 + 0.08a, (1)) 1) (TZ%)R P (5.30)
and
C*f(u)\nf:2 ~ —0.103 — 0.25 (A} (10) — 0.27) <;‘(le))> 5 —0.00405(p)
+(0.284 + 0.061as (1)) il (”;;@@R ‘P>. (5.31)

Thus, the important correction comes from the evolution of the twist-two form factor Af,
while the other corrections play a minor (~a few percent) role.

6 Conclusions

In this paper we have studied the renormalization of the QCD trace anomaly separately
for the quark and gluon parts of the energy momentum tensor. While the renormalization
of the total anomaly T' = Tj + T, is well understood in the literature [10], our analysis
at the quark and gluon level has revealed some interesting new features. The bare and
renormalized (T,4)% differ by finite operators, and this difference can be systematically
computed order by order in «. It is interesting to notice that, at one loop, the renormalized
T; gives the ny part of the beta function. However, this property no longer holds at two-
loop, see (5.19). Besides, the partition of the total anomaly can be different if one uses
other regularization schemes (see, e.g., the ‘gradient flow’ regularization [25]), and it is
interesting to study their mutual relations. We have also found that C'q7g(u) does not go
to zero as  — 0o even in the chiral limit, contrary to what one would naively expect from
the one-loop calculation (3.16).
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Our result has interesting phenomenological implications. In [8], the relation between
F? and (T,,)% has been worked out for the bare quantities. If a more careful analysis
reveals that one should use the renormalized relation, the numerical result in [8] may have
to be revised. Another place where C’%g plays a role is the nucleon’s transverse spin sum
rule. It has been shown in [26-28] (see also [29]) that Ji’s sum rule [1] does not hold for a
transversely polarized nucleon unless the nucleon is at rest. One has, for the quark/gluon
total angular momentum Jg 4,

1
Jgg = §<Aqﬁg + Byg) + [(P:)Cyyq (6.1)

where f(P,) is a frame-dependent function (depends on the nucleon longitudinal mo-
mentum P,) which vanishes at P, = 0 and approaches % as P, — oo. Asymptotically,
$(Aq + By) = 0.18 while Cy = —Cjy &~ —0.15 for ny = 3, so the effect of the last term can
be actually quite significant.
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