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Spin structure of the nucleon:
QCD evolution, lattice results and models

M. Altenbuchinger,a,1 Ph. Hägler,a,b,2 W. Weise,a,3 E. M. Henleyc
aPhysik Department, Technische Universität München, D-85747 Garching, Germany

bInstitut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
cDept. of Physics, University of Washington, Seattle, WA 98195-1560, USA

Abstract

The question how the spin of the nucleon is distributed among its quark and
gluon constituents is still a subject of intense investigations. Lattice QCD has
progressed to provide information about spin fractions and orbital angular mo-
mentum contributions for up- and down-quarks in the proton, at a typical scale
µ2 ∼ 4 GeV2. On the other hand, chiral quark models have traditionally been used
for orientation at low momentum scales. In the comparison of such model calcula-
tions with experiment or lattice QCD, fixing the model scale and the treatment of
scale evolution are essential. In this paper, we present a refined model calculation
and a QCD evolution of lattice results up to next-to-next-to-leading order. We
compare this approach with the Myhrer-Thomas scenario for resolving the proton
spin puzzle.

1altenb@ph.tum.de
2phaegler@ph.tum.de
3weise@ph.tum.de

1

ar
X

iv
:1

01
2.

44
09

v1
  [

he
p-

ph
] 

 2
0 

D
ec

 2
01

0



1 Introduction
How is the total spin 1/2 of the nucleon distributed among its quark and gluon con-
stituents? This question has been intensely discussed ever since the EMC experiment
presented first results for the spin asymmetry in polarized muon proton scattering in
1987 [1]. This measurement indicated that only about 15% or less of the nucleon spin is
built up by quark spins, although with sizeable statistical and systematic uncertainties.
Indeed, more recent measurements of HERMES and COMPASS [2, 3] and their QCD
analysis [4–6] showed that the nucleon receives still only about one third of its spin from
quark spins:

∆ΣHERMES(5GeV2) = 0.330± 0.011theo. ± 0.025exp. ± 0.028evol., (1)

determined at a scale µ2 = 5GeV2. This is in stark contrast to naive model calculations,
as for example in the non-relativistic quark model that suggests ∆Σ = 1. Relativistic
effects reduce ∆Σ to about two thirds, still far too large in comparison with Eq. (1).
Myhrer and Thomas proposed in [7–10] that ∆Σ could be further reduced by including
pion cloud contributions and corrections from one gluon exchanges. With such correc-
tions they end up with a result for ∆Σ that is consistent with experiment. The missing
≈ 60 − 70% of the nucleon spin reappear entirely as orbital angular momentum of up
and down quarks Lu+d. On the other hand it turns out that this is in strong contrast
to lattice calculations [11–13] where the orbital angular momentum contribution Lu+d

comes out close to zero [13]. To explain this difference, Thomas [8] proposed to consider
the renormalization scale (µ-)dependence of the quantities appearing in the nucleon spin
sum rule [14]

1

2
∆Σ + Lq + Lg + ∆G =

1

2
, (2)

defined by the following expectation values taken for a spin-up state of the proton, |P+〉:

∆Σ = 〈P + |
∫
d3xψ̄γ3γ5ψ|P+〉,

∆G = 〈P + |
∫
d3x(E1A2 − E2A1)|P+〉,

Lq = 〈P + |
∫
d3xiψ̄γ0(x1∂2 − x2∂1)ψ|P+〉,

Lg = 〈P + |
∫
d3xEi(x2∂1 − x1∂2)Ai|P+〉. (3)

Here ψ is the quark field, Ei and Aµ are the gluon electric field and gauge potential.
A sum over quark flavors is implicit in the definition of the flavor singlet quantities in
Eq. (3), and contributions in the non-singlet sector will be denoted by ∆Σu−d, Lu−d etc. .
The Lg is the orbital angular momentum contribution from gluons and ∆G is the gluon
spin part. It is important to note that Lq, Lg and ∆G in Eq. (3) are not explicitly gauge
invariant. A manifestly gauge invariant decomposition and its relation to moments of
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generalized parton distributions was presented by Ji in [15,16]:

1

2
∆Σ + LGI

q + JGI
g =

1

2
, (4)

where ∆Σ is given as before, LGI
q is obtained from Lq replacing ∂µ by the gauge-covariant

derivative, ∂µ → Dµ, and the total gluon angular momentum is defined as

JGI
g = 〈P + |

∫
d3x[~x× ( ~E × ~B)]3|P+〉 . (5)

Using a leading order QCD evolution of the spin contributions from the low, hadronic
model scale to the higher scale of the lattice results, it was shown in Ref. [8] that it is
possible to find at least a qualitative agreement with the lattice data.

With these previous achievements in mind, the purpose of the present work is twofold:
first, we extend the QCD evolution to next-to-leading (NLO) and next-to-next-to-leading
(NNLO) order and perform a backwards evolution starting from lattice results. This
approach has the advantage that the scale dependence of the spin contributions is rather
weak at the higher scale of lattice results, and that the extrapolation therefore does not
suffer from the uncertainty of the slope in µ at low scales. Most importantly, proceeding
in this way we do not have to fix the model scale a priori, which is generically difficult, but
have the possibility to compare model results over a wider range of low scales with the
downward-evolved lattice data. As a further extension, we use not only the perturbative
coupling αs(µ) in the evolution equations but employ also a frequently suggested “non-
perturbative” strong coupling that approaches a constant αeff

s,max in the infrared region.
The second purpose of this work is to reexamine the model calculations of [7–10] and

also to study possible improvements (chapter 3). Given these results and the evolved
lattice data, we conclude with a discussion in chapter 4.

2 QCD evolution of lattice results
In this section we aim to evolve results from lattice QCD, usually provided in the MS
scheme at a scale µ2 ' 4 GeV2, down to the low scales characteristic of model calcula-
tions. The lattice calculations were performed on the basis of manifestly gauge invariant
operators. The computations correspond to the spin decomposition proposed by Ji,
Eq. (4). For the remainder of this section, we will therefore employ the gauge invariant
definitions of the spin observables. We drop the superscript GI in the following for better
readability. To obtain the complete set of evolution equations for all individual parts of
the spin sum rule, we define the orbital angular momentum of quarks as Lq = Jq− 1

2
∆Σ,

of gluons as Lg = Jg −∆G (for discussions of the latter definition, see refs. [16–18]).
Note that the gauge invariant ∆G cannot be represented in terms of a local op-

erator [19], but can be defined as the lowest x-moment of the gauge invariant gluon
spin distribution, ∆g(x). Despite remarkable experimental and theoretical efforts with
respect to polarized PDFs [4–6, 20, 21], little is known so far about the magnitude of
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a1 b1 d1

11744
243

416
81

611
81

a2 b2 c2 d2 e2

5514208
6561

+ 1280
81
ζ(3) 134888

2187
+ 2560

27
ζ(3) 1136

243
670871
4374

− 2600
27
ζ(3) 8830

729

Table 1: Coefficients entering the evolution equations (7).

∆G. Concerning the numerical evaluation of the evolution equations, we will there-
fore concentrate on the quark spin, the quark orbital angular momentum and the total
angular momentum of the gluons. As will be shown below, this can be done without
explicit knowledge about ∆G and Lg = Jg −∆G. It then follows that the evolution of
all quantities of interest can also be performed at NNLO, employing known results for
the relevant anomalous dimensions from the literature.

The total angular momentum contributions Jq and Jg are introduced as in [16] in
the framework of generalized parton distributions. We observe that Jq and Jg mix in
exactly the same way under renormalization as the (symmetric and traceless) quark and
gluon energy momentum tensors. This can be seen for example by rewriting

〈P, s|J iq,g|P, s〉 =
1

2
εijk lim

∆µ→0

[
−i ∂

∂∆i
〈P+

∆

2
, s|T 0k

q,g|P−
∆

2
, s〉+

{
j ↔ k

}]
(2π)3δ(~∆). (6)

Here, the additional derivative with respect to the momentum transfer, ∆µ, cannot
have any influence on the singular behavior of the operators. Therefore they mix in
the same manner. The QCD evolution equations for Jq and Jg are constructed using
the spin-2 singlet anomalous dimension given at next-to-leading order in [22,23] and at
next-to-next-to-leading order in [24–26].This yields

d

d lnµ2

(
Jq
Jg

)
= −αs

4π

(
32
9

−2
3
nF

−32
9

2
3
nF

)(
Jq
Jg

)

−
(αs

4π

)2
(

a1 − b1nF −d1nF

−a1 + b1nF d1nF

)(
Jq
Jg

)
−
(αs

4π

)3
(

a2 − b2nF − c2n
2
F −d2nF + e2n

2
F

−a2 + b2nF + c2n
2
F d2nF − e2n

2
F

)(
Jq
Jg

)
(7)

for nF flavours (compare also [27]), with entries ai, bi, ... given in Table 1. For the
non-singlet combination JNSq , we find

d

d lnµ2
JNSq = −αs

4π

32

9
JNSq −

(αs
4π

)2(11744

243
− 256

81
nF

)
JNSq

−
(αs

4π

)3
(

5514208

6561
+

1280 ζ(3)

81
− 167200nF

2187
− 1280nF ζ(3)

27
− 896n2

F

729

)
JNSq .

(8)
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The evolution equations for the spin contributions at NNLO in the MS(MS) scheme
[28], [29] (these two schemes are simply connected through a change in the renormaliza-
tion scale) are given by [30–32]

d

d lnµ2

(
∆Σ

∆G

)
= −αs

4π

(
0 0

−4 −β0

)(
∆Σ

∆G

)
−
(αs

4π

)2
(

8nF 0

−100 + 8
9
nF −β1

)(
∆Σ

∆G

)

−
(αs

4π

)3
(

200nF −
16n2

F

9
0

γgq γgg

)(
∆Σ

∆G

)
. (9)

At NNLO, the anomalous dimensions γgq and γgg are still unknown, while the upper row
(γqq, γqg) has been obtained as described in [32]. Here the QCD beta functions are

β0 = 11− 2nF
3
, β1 = 102− 38

3
nF . (10)

We stress that in the chosen renormalization scheme, the evolution of ∆Σ is independent
of ∆G, even at NNLO. Furthermore, since Jq + Jg = 1/2 at any scale, the evolution of
Jq does not require an independent knowledge of the value of Jg. Hence one finds the
remarkable result, already mentioned above, that neither ∆G nor Lg = Jg − ∆G are
actually required in practice for the scale evolution of Lq = Jq−∆Σ/2. As a consequence
the evolution of all the quantities in Eq. (4) can be performed at NNLO.

Employing the definitions of Lq and Lg given above, fully consistent coupled evolution
equations for the orbital angular momenta of quarks and of gluons can be written,

d

d lnµ2

(
Lq

Lg

)
= −αs

4π

(
32
9

−2
3
nF

−32
9

2
3
nF

)(
Lq

Lg

)
− αs

4π

(
16
9
−2

3
nF

20
9

11

)(
∆Σ

∆G

)

−
(αs

4π

)2
(

11744
243
− 416

81
nF −611

81
nF

−11744
243

+ 416
81
nF

611
81
nF

)(
Lq

Lg

)

−
(αs

4π

)2
(

5872
243
− 532

81
nF −611

81
nF

18428
243

+ 136
81
nF 102− 415

81
nF

)(
∆Σ

∆G

)
,

(11)

at next-to-leading order in the MS(MS) scheme.
An overview of lattice QCD calculations of nucleon spin observables, in particular of

moments of generalized parton distributions that give access to the total quark angular
momentum Jq, can be found in [33]. Here we focus on the latest published results
from the LHP collaboration [34]. They were obtained in the framework of a mixed
action approach with Nf = 2 + 1 dynamical fermions, with lattice pion masses as low as
≈ 300 MeV. The computationally demanding quark line disconnected diagrams, which
contribute in the singlet sector, were not included in this study. The final values for
∆Σq, Lq and Jq at the physical pion mass were obtained from extrapolations employing
the covariant baryon chiral perturbation theory results of [35]. We refer to the original

5



∆Σ/2 Lq

u 0.411(36) -0.175(36)(17)

d -0.203(35) 0.205(35)(0)

Table 2: Lattice QCD results from Ref. [34] for the proton spin observables in the MS scheme at µ2 =
4 GeV2, separated into u- and d-quark contributions. Statistical and estimated systematic uncertainties
due to the renormalization are given in the form (. . .)stat(. . .)ren.

publication [34] for the details of the lattice simulation, the numerical analysis, and
a discussion of the statistical and systematic uncertainties. A summary of the lattice
results, for the MS scheme at a scale of 4 GeV2, is given in table 2. The errors given
in this table do not include systematic uncertainties from chiral extrapolations and
disconnected diagrams.

For our extrapolation of lattice results, we assume a vanishing contribution from
strange quarks. The total gluon angular momentum is given by Jg = 1

2
− Ju+d. Using

this value with ∆Σ and Lq given in Table 2 as starting points, and setting nF = 3 and
Λ

(3)

MS
= 338 MeV [36], we have solved the coupled evolution equations and found the

scale dependence plotted in Figures 1 and 2.
The results at LO, NLO and NNLO, employing the standard analytical expres-

sions for the perturbative strong coupling constant (corresponding to an expansion in
1/ ln(µ2/Λ2) beyond LO, see, e.g., [37]) in the MS scheme at the appropriate order, are
given by the short-dashed, dashed, and solid thin black curves, respectively. Clearly, the
deviation of the approximate analytical expressions for αs from the exact (numerical) so-
lutions of the evolution equations increases as one approaches lower scales. We note that
for nF = 3 and Λ

(3)

MS
= 338 MeV, the formally exact solution for the running coupling at

NNLO would already diverge around µ2 ∼ 0.3 GeV2. The curves in Fig. 1 obtained for
αs in the 1/ ln-approximation are therefore only indicative for a strong coupling constant
that grows indefinitely as µ2 → 0.

More generally, a comparison with the model results, e.g. as proposed by Myhrer and
Thomas [7–10], requires an evolution down to scales µ2 ∼ 0.1− 0.3 GeV2, far away from
the perturbative QCD regime. Obviously at such low scales quantitative statements
based on a perturbative QCD analysis (including the running of αs) are not reliable.
The large gap between the results at NLO and NNLO for µ2 ∼ 0.1− 0.3 GeV2 provides
already a first idea about the size of the corresponding uncertainties.

With respect to (the non-perturbative) αs, one would expect in any case that it
saturates at low scales, as suggested by non-perturbative resummation in the infrared
region [38–40]. A further rough impression about the uncertainties in the evolution
may therefore be obtained as follows. As an alternative to the infrared divergent, per-
turbative coupling αs(µ2) in the evolution equations, use an effective αeff

s (µ) that ap-
proaches a fixed value αeff

s,max at small µ2. For the corresponding numerical calculation
we have used αeff

s (µ2) = αs(µ
2) of appropriate order in the MS scheme for all µ for which

αs(µ
2) 6 αeff

s,max. Below the scale µ0 at which αs(µ2
0) = αeff

s,max, we use αeff
s ≡ αeff

s,max. The

6
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d.)

NNLO
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LO
Lu-d
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Figure 1: Scale dependence of ∆Σ/2, Lq, Jg, and Lu−d shown together with 1
2gA = 1

2∆Σu−d, starting
from the lattice QCD results at µ2 = 4 GeV2 given in table 2. In all diagrams the solid, dashed and
short-dashed lines are solutions of the QCD evolution equations at NNLO, NLO, and LO, respectively.
The evolution using the perturbative MS coupling is given by the black lines. The colored thick lines
are obtained by using αs bounded from above (see text), where the darker colored lines correspond to
the bound αeff

s,max = 3 and the lighter colored lines to αeff
s,max = 1.5.

corresponding results are represented in Figures 1 and 2 by the darker colored lines for
αeff
s,max = 3, and by the lighter colored lines for αeff

s,max = 1.5. The region in between these
two cases is highlighted by the shaded bands.

The most important fact to realize is that Lq evolves towards larger positive values
in LO and NLO at low scales, but towards negative values at NNLO (solid black line in
Fig. 1b). The qualitative behavior of Lu−d (see Fig. 1d) at low scales persists instead
at all orders considered: Lu−d evolves from sizable negative values at µ2 = 4 GeV2 to
positive values at low scales. Interestingly, the separate evolution of Lu and Ld (see
Fig. 2) remains qualitatively the same at all considered orders. Both Lu and Ld tend
to change sign as they evolve towards small scales. One realizes that the crossing point
of Lu and Ld moves downwards, going from LO to NLO to NNLO. The zero-crossing
points, on the other hand, move towards larger µ2 when going to higher orders in the
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Figure 2: Evolution of Lu and Ld in NNLO (solid lines), NLO (dashed lines) and LO (short dashed
lines). The colors and shaded areas are assigned as in Fig.1.

evolution equations. A more detailed discussion, especially of the influence of a cutoff
αeff
s,max, and a comparison of evolved lattice results with calculations performed in a chiral

quark model, follows in section 4.

3 Contributions to the nucleon spin in a chiral quark
model

3.1 Pion cloud contributions, revisited

It is a well established fact that the nucleon is a complex many-body system, with the
three valence quarks and multiple quark-antiquark pairs embedded in a strong, non-
perturbative gluonic field configuration. Chiral quark models draw a simplified picture
of this complexity in terms of valence quarks in a confining bag coupled to the pion cloud,
based on spontaneously broken chiral symmetry in low-energy QCD. A frequently used
representative of such chiral models is the cloudy bag (CBM) [41–43] that couples the
pion cloud to quarks in the MIT bag [44] such that chiral invariance is realized in the
limit of massless quarks. This section summarizes the present status concerning nucleon
spin structure from this model point of view.

The relativistic treatment of quarks itself yields already results that differ signifi-
cantly from the ordinary SU(6) quark model predictions. The ∆Σ = 1 of the non-
relativistic quark model is reduced to about ∆ΣMIT = 0.65 in the MIT bag model.
The "missing spin" is interpreted as orbital angular momentum of the valence quarks,
2LMIT

u+d = 0.35, associated with the lower components of the Dirac quark wave functions.
The correction factors for the pion cloud in the CBM were already derived by Myhrer

and Thomas in [7–10]. For the singlet expectation values,

∆ΣCBM = 0.65 · ΠS(R), 2LCBM
q = 0.35 · ΠS(R), 2LCBM

π = 1− ΠS(R), (12)
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Figure 3: Radius dependence of the singlet and non-singlet corrections ΠS and ΠNS associated with
the pion cloud of the nucleon.

and for the non-singlet expectation values [45],

∆ΣCBM
u−d = g

(3) CBM
A =

5

3
· 0.65 · ΠNS(R), 2LCBM

u−d =
5

3
· 0.35 · ΠNS(R) . (13)

We have denoted the pion cloud correction factors by ΠS(R) and ΠNS(R), each for a given
bag radius R. For their explicit form we refer to [7–10,45] and references therein. Notice
that the value g(3)

A = 1.27, given in [7–10], is obtained by adjusting a phenomenological
center-of-mass correction (which has however not been included for any of the other spin
observables [45]).
We have reproduced the results (12) and (13) using the formalism described in [43].
The radius dependence of the correction factors is plotted in Figure 3. The singlet
correction factor, ΠS, is smaller than unity and hence leads to the expected reduction of
the quark spin contribution. At the same time, ΠNS < 1 leads to a slightly less favourable
comparison of g(3) CBM

A with the experimental value of gA (not taking into account the
center-of-mass correction mentioned above).

3.2 Corrections from one-gluon exchange processes

The MIT bag model produces degenerate masses of the nucleon and the delta, whereas
the empirical mass splitting is about 300MeV. In order to account for this mass dif-
ference, an additional spin-spin interaction between quarks is introduced. The common
way to do this is to allow for quark-gluon interactions in the interior of the bag. The
results depend on the strong coupling constant, αs, treated as a free parameter of the
model. In [46], a value of αs = 2.2 was chosen to fit the baryon spectrum at leading
order. At order α2

s [47], the best fit could be obtained using αs = 1. In both calculations,
only pure gluon exchange diagrams were calculated and all divergent loop diagrams were
neglected.

We have performed calculations in analogy to ref. [48], where the color magnetic
corrections to baryon magnetic moments and to semileptonic decays, i.e. the axial
coupling constant, were derived at order αs. Following the arguments given there, we
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Figure 4: One-gluon exchange (OGE) corrections for ∆Σ, LS,NS and g(3)
A . Diagram (a) and (b) are

contribution from intermediate quark states and (c) and (d) from quark-antiquark pairs.

neglect the color electric corrections and drop loop diagrams. That means, we consider
diagrams 4(a)-4(d), in which only color magnetic gluons are exchanged.

For the singlet expectation values, ∆Σ and Lq, we find the (additive) OGE corrections

δ∆Σ = −2δg · αs, δLq = δg · αs, (14)

with δg ' 2.5 · 10−2, where Lq is used in its non-gauge-invariant formulation (3), and
intermediate (anti-)quarks in the orbitals P1/2, P3/2, D3/2, S

′
1/2, P

′
1/2, P

′
3/2, D

′
3/2, S

′′
1/2 are

taken into account (conventions are chosen as in [48]). As already pointed out in [7–
10] the corrections are mainly due to antiquarks propagating in the P1/2, P3/2 orbitals.
Compared to δ∆Σ ∼ −0.15 and δLq ∼ 0.08 for αs = 2.2 as presented in [9], our
corrections are slightly smaller.

For the non-singlet operators we find:

δ∆Σu−d = δg
(3)
A =

2

3
δg · αs, δLu−d = −1

3
δg · αs. (15)

The correction δg
(3)
A is in agreement with [49]. However, δLu−d differs in magnitude

and sign from the result given in [8]. In order to understand a possible cause of
this discrepancy, we first note that in our calculation, δLu−d ends up with a factor
〈p ↑ |

∑
i 6=j σz(i)τz(j)|p ↑〉, where the operators are applied to different quark currents i

and j. This is just what happens in the correction for gA (where we do find agreement).
Interestingly, the result of [8] for δLu−d could be reproduced instead if we would perform
the translation from the singlet case, i.e. δLq, in [8] to the non-singlet expectation val-
ues by replacing 〈p ↑ |

∑
i σz(i)|p ↑〉 → 〈p ↑ |

∑
i σz(i)τz(i)|p ↑〉 = 5

3
, i.e. an expression

where quark current indices are (wrongly) summed over one and the same index.
Explicit numbers for the singlet and non-singlet contributions to the nucleon spin in

the MIT bag model, as well as the OGE-improved MIT bag and cloudy bag model, for
two different values of αs, are displayed in Table 3.
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∆Σ/2 Lq ∆Σu−d/2 Lu−d

relativistic (MIT bag model) 0.33 0.17 0.54 0.29
+OGE (αs=1.0): 0.30 0.20 0.55 0.28

(αs=2.2): 0.27 0.23 0.56 0.27
+pion cloud (R = 1fm, αs=1.0): 0.24 0.26 0.51 0.26

(R = 1fm, αs=2.2): 0.22 0.28 0.52 0.25

Table 3: Spin structure of the nucleon in the MIT bag model, with corrections from one-gluon
exchanges (OGE), and from the pion cloud. The non-gauge-invariant decomposition of the nucleon
spin, Eqs. (3), is used here.

S1 / 2

S1 / 2 S1 / 2

S1 / 2

Figure 5: One-gluon exchange diagram attached to a quark-quark-gluon interaction vertex.

Once explicit gluon degrees of freedom, e.g. in form of one gluon exchange processes,
are taken into account, the questions of gauge invariance of the calculation must be care-
fully addressed. For a consistent calculation that includes gluon exchange contributions
at order αs, and for a meaningful comparison with results from lattice QCD, we have to
employ the gauge-invariant orbital angular momentum operator LGI

q in Eq. (4) instead
of Lq defined in (3). Due to the covariant derivative in LGI

q , an additional quark-gluon
interaction term appears, so that one must take into account the diagram in Fig. 5 for
the corrections at order αs to the MIT bag expectation values. This diagram yields the
large contribution

δLq,A = 0.203αs , (16)

where the subscript A stands for the gauge field interaction term. The total correction
to the quark orbital momentum is then given by δLGI

q = δLq + δLq,A. The diagram in
Fig. 5 also contributes to the gauge invariant LGI

u−d and shifts it by

δLu−d,A = −1

3
δLq,A. (17)

Furthermore, from the gauge-invariant spin sum rule Eq. (4), we conclude that the
contribution from the total gluon angular momentum equals

JGI
g = −δLq,A. (18)

We notice that the corrections (16)-(18) are much larger than the known one-gluon
exchange contributions from the diagrams of Fig. 4 given in Eqs. (14), (15). In particular,
δLq,A dominates LMIT

q for the chosen parameters. The MIT bag model results for the
gauge invariant decomposition of the nucleon spin are summarized in Table 4, together
with the combined results, including relativistic effects plus (full) one-gluon exchange
corrections plus corrections from the pion cloud.
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∆Σ/2 LGI
q JGI

g ∆Σu−d/2 LGI
u−d

relativistic (MIT bag model) 0.33 0.17 0 0.54 0.29
+OGE (αs=1.0): 0.30 0.40 -0.20 0.55 0.21

(αs=2.2): 0.27 0.68 -0.45 0.56 0.12
+pion cloud (R = 1fm, αs=1.0): 0.24 0.42 -0.16 0.51 0.19

(R = 1fm, αs=2.2): 0.22 0.64 -0.36 0.52 0.10

Table 4: Spin structure of the nucleon, based on manifestly gauge invariant operators, in the MIT bag
model, together with corrections from one gluon exchanges (OGE) and from the pion cloud.

To conclude this section, we emphasize that a direct calculation of JGI
g =

〈P + |
∫
d3r[~r × ( ~E × ~B)]3|P+〉 (i.e. not invoking the spin sum rule) in the framework

of the model requires a careful treatment of the boundary conditions for the color elec-
tric fields. The boundary conditions ~̂r · ~E|r=R cannot be fulfilled for the color electric
fields, in the way described in [50]. This leads to a non-vanishing surface term in the
calculation of JGI

g and, therefore, potentially to inconsistencies with respect to the spin
sum rule. A calculation with color electric fields that obey the boundary conditions,
as given in [51], turns out to be significantly more involved and will not be described
in this work. Note, however, that δLq,A is not affected by such complications since the
corresponding operator does not involve color electric fields. It is therefore legitimate to
extract the corresponding gluon angular momentum from JGI

g = 1/2− JGI
q = −δLq,A.

When JGI
g is calculated directly, using the “wrong” color electric fields, it spoils the

spin sum rule. Actually the direct evaluation of JGI
g can be used to check our result for

δLq,A. Consider the decomposition∫
d3r ~r × ( ~E × ~B) =

∫
d3x ~E × ~A+

∫
d3xEi(~x×∇)Ai (19)

−
∫
d3x gψ†(~x× ~A)ψ −

∫
d3x∇j[Ej(~x× ~A)]. (20)

The left hand side corresponds to JGI
g , the right hand side to ∆G + Lg − δLq,A supple-

mented by a surface term, −
∫
d3x∇j[Ej(~x× ~A)]. This surface terms vanishes in the free

field theory but in our model calculation this is not the case. Therefore, the total gluon
angular momentum calculated through the spin sum rule equals

∫
d3r ~r × ( ~E × ~B) +∫

d3x∇j[Ej(~x× ~A)], which indeed can be confirmed by a direct calculation. In fact, the
OGE corrections to ∆G and Lg cancel each other.

4 Discussion and summary
The present study has been motivated by the observation of an apparent contradiction
between quark orbital momentum contributions, Lq and Lu−d, calculated in models
and derived from lattice QCD computations. At the same time, results from models
and lattice QCD for the quark spin contributions ∆Σ and gA = ∆Σu−d are reasonably
consistent once pion cloud and gluon exchange effects are incorporated in the model [7].
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Let us now discuss these features in more detail. Consider first the LO QCD evolution
without imposing limiting constraints on αs at low scales. From the short dashed black
line in Fig.1b it is seen that the small lattice value for Lq evolves towards large positive
values as one approaches low scales. The evolved lattice results would roughly match the
model results at a small scale µ2

model ∼ 0.14− 0.16 GeV2. A similar observation is made
for the non-singlet combination Lu−d (cf. Fig. 1d) that evolves from sizable negative to
positive values which compare favorably with CBM results around µ2

model. Since ∆Σ is
scale independent at LO and gA is scale independent to all orders, and the CBM results
for ∆Σ as well as gA are compatible with lattice QCD values, it might then appear that
the aforementioned contradiction can be resolved. This was the point made in [8].

However, the matching scale µ2
model is evidently far too small to draw any meaningful

conclusions, in particular at LO. We have therefore extended the QCD evolution up to
NNLO in order to examine the systematics. At NLO, ∆Σ becomes scale dependent and
increases with lower scales, a behavior that is even more strongly enforced in NNLO.
At the same time, the estimated matching scale at which model results are approached
now increases to µ2

model ∼ 0.22 GeV2 at NLO, and tends to increase further at NNLO.
Incidentally, the NLO evolved lattice results turn out to be quite close to the original
MIT bag values at µ2

model ∼ 0.22GeV2 where Jg(µ2
model) = 1/2 − Lu+d −∆Σ/2 ' 0. As

the model calculations are improved, however, this apparent consistency deteriorates.
Inclusion of the pion cloud in the CBM lowers ∆Σ and increases Lq significantly. Further
inclusion of gluon exchange corrections would make the matching with the evolved lattice
data progressively more difficult.

Finally, consider the NNLO evolution. Except for Lq (see Fig. 1b), the qualitative
features are similar to the NLO situation. At this point it is interesting to examine
the effects of replacing the perturbative αs(µ2) by an effective αs that is constrained by
a maximal value αeff

s,max at small scales. Using upper bounds between αeff
s,max ∼ 3 and

αeff
s,max ∼ 1.5 gives the borders of the shaded areas in Figs. 1, with particularly strong

sensitivity observed in Lq(µ2). For αeff
s,max ∼ 3 this Lq moves from positive to negative

as one approaches µ2 ∼ 0.25 GeV2 from above. On the other hand, Lq remains positive
and flat throughout if αeff

s,max is constrained not to exceed 1.5, indicating that such a
scenario may improve the stability of the downward scale evolution.

Concerning the lattice calculations, one source of systematic uncertainty can be elim-
inated by studying isovector quantities such as Lu−d for which disconnected diagrams,
not taken into account in Ref. [34], cancel out. From the model investigations (see Tables
3, 4) one expects L(GI)

u−d in the range of 0.1 − 0.3.1 In contrast, the lattice results start
negative at µ2 ∼ 4 GeV2. The downward QCD evolution does predict the appropriate
change of sign (see Fig. 1d) at all orders considered. The scale at which this sign change
occurs, increases from µ2 ∼ 0.15 GeV2 to 0.25 GeV2 to about µ2 ∼ 0.3 GeV2 when going
from LO to NLO to NNLO, bringing lattice results and model expectations into closer
contact at scales where the evolution begins to be more reliable. Other systematic uncer-
tainties on the lattice side, for example those related to lattice operator renormalization

1Note, however, that a recent calculation using a chiral quark soliton model gives a negative Lu−d

even at low scales [52].
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issues, would affect the normalization of Lu−d but would not change this picture signif-
icantly. In contrast to the singlet Lq, inclusion of explicit gluon degrees of freedom in
the properly gauge invariant treatment of the quark orbital momentum operator leads
to a reduction of Lu−d at model scales (see Tables 3, 4) and moves this quantity closer
to the extrapolated lattice QCD results. The sign change of Lu−d can be traced in detail
by examining the crossing of Lu and Ld as shown in Fig. 2.

In summary, our analysis underlines the difficulty of simultaneously understanding
model calculations and lattice QCD results for the decomposition of the nucleon’s spin
into the angular momenta of the constituents. NNLO and NLO corrections turn out to
be of similar magnitude at the relevant low scales, indicating (not unexpectedly) that
reliable convergence is not reached in the evolution from lattice to low-energy models.
Conversely, this implies that it is difficult to arrive at quantitatively reliable predictions
from model calculations starting at scales smaller than µ2 ∼ 0.4 GeV2 and evolving
upward to scales accessible in experiments and related QCD phenomenology.

A possible exception concerning this critical assessment is the isovector orbital angu-
lar momentum combination Lu−d for which systematic lattice errors are minimal. Unlike
Lq, this quantity displays systematic behavior with a sign change as it evolves from lat-
tice QCD to low scales, in accordance with the model expectations listed in Tables 3
and 4.
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