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1 Introduction

The eleven-dimensional M theory [1] is a unifying theory of all known superstring theories in
the strong coupling limit. Apart from the fact that massless excitations are described by the
eleven-dimensional supergravity, however, little has been understood as to what the under-
lying fundamental constituents of the M theory are and what governs microscopic dynamics
of the constituents. In an attempt to gain better understanding, one may draw a hint from
the history of probing internal structure of hadrons. Partons inside strongly coupled hadrons
are very fuzzy due to their characteristic high-frequency motion. If the hadrons are boosted,
the motion is slowed down via Lorentz time dilation, hence, makes it possible to snapshot the
parton strucutre. Indeed, morally following this idea, Banks et.al. [2] have proposed a par-
tonic definition of the M theory. In the infinite momentum limit, light-front view of a strongly
coupled type IIA string is infinitely many zero-branes threaded on the string itself. One thus
discovers that M-theory partons consist of zero-branes and infinitely short open strings gluing
them together. As such the M theory parton dynamics is accurately described by large N limit
of N = 16 supersymmetric U(N) matrix quantum mechanics, the so-called M(atrix) theory.
Despite clear identification of fundamental constitutent partons and underlying dynamics gov-
erning them, it has been very difficult to extract intrinsically M theoretic physics, for example,
nontrivial S-matrix amplitudes among physical asymptotic states.

Very recently Dijkgraaf, Verlinde and Verlinde (DVV) [3] have offered an important new
insight to the M(atrix) theory. By compactifying the M(atrix) theory one more dimension on
S1 in addition to the S1 compactified ‘quantum’ dimension and utilizing exchange symmetry
between the two directions, DVV have convincingly argued that the resulting M(atrix) string
theory provides for a nonperturbative description of M theory compactified on S1. In particu-
lar, in the weak coupling, DVV have shown that, based on earlier basic observation by Motl [4]
and identification of moduli space by Banks and Seiberg [5], the M(atrix) string theory de-
scribes second-quantized light-cone type IIA string, Virasoro projection for individual strings
emerges from residual ZN discrete gauge symmetry in the large N limit and, most importantly,
their joining and splitting interaction vertices. The DVV observation has marked a significant
progress since it has promoted the original M(atrix) theory into a firmer and calculable set-up.

On the other hand, it is not obvious that DVV proposal is robust enough and extendible to
all other superstrings than type IIA. In M theory, different string theories arise from different
choices of the compactification manifold. For instance, M theory compactified on an orbifold
S1/Z2 yields heterotic and type I′ superstrings. As they have different symmetries and field
content on the worldsheet, in particular, half many spacetime supersymmetries compared to
type II strings, it provides a highly nontrivial check point to test whether the DVV proposal
to the M(atrix) theory applies successfully to other superstrings as well.

In this paper, with the above motivation, we study the proposal of DVV for heterotic
superstring. We show that heterotic M(atrix) theory [6, 7] compactified on a circle defines the
heterotic M(atrix) string theory in terms of (8, 0) supersymmetric chiral gauge theory coupled to
twisted sector matter multiplets. In the strong coupling limit we find that the theory reproduces
the spectra and interactions of light-cone Green-Schwarz heterotic superstring. We also explore
the possibility of M(atrix) theory for bosonic strings in terms of dimensionally reduced d=26
Yang-Mills gauge theory. While this paper was being prepared, we have received preprints
related to part of our results [8] [9].
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2 Heterotic M(atrix) String Theory

In the previous work [7], we have obtained the heterotic M(atrix) theory by compactifying the
M(atrix) theory on an orbifold S1/Z2 along the 11-th direction. Following the proposal of DVV,
we compactify the heterotic M(atrix) theory further on S1 along, say, the 9-th direction. From
the defining M(atrix) theory [2] point of view, we have compactified the theory on a cylinder
S1×S1/Z2. We now interchange 9-th and 11-th directions. This results in the heterotic M(atrix)
string theory, a M(atrix) theory description of second-quantized heterotic strings. Because of
11−9 direction flip, the heterotic string is boosted longitudinally and p+ momentum is measured
in units of 1/R11, the same unit that was used before for D0-brane particle number. Likewise,
string coupling is now determined by the 9-th direction radius R9. As such, in the M(atrix)
heterotic string theory, the heterotic strings are described naturally in the light-cone Green-
Schwarz formulation.

The correspondence between the heterotic string and arrays of D0-branes through 11 − 9
direction flip can be understood via a chain of by-now well-established S− and T− dualities.
Consider the D-particles arrayed on 11-th direction. T-duality along 9-th direction turns the D-
particles into D-strings in type I string theory. S-duality (residual Z2 duality of the underlying
type IIB SL(2,Z) duality) converts the D-string into heterotic string. Inverting the T-duality
along 11-th direction, we have arrived at heterotic strings with longitudinal momentum around
11-th direction. The mapping is depicted in the following diagram:

Type I′ D0− brane no. = N ← (T− duality) → Type I D1− string no. = N
↑ ↑

(11− 9 flip) (S− duality)
↓ ↓

Heterotic momentum P+ = N ← (T− duality) → Heterotic winding no. = N
(1)

In this section, we elaborate details of the heterotic M(atrix) string theory construction
along the lines sketched above. As we will see, the resulting theory is an (1 + 1)-dimensional
(8, 0) supersymmetric gauge theory defined on S1× S̃1, in which the orbifold has turned into a
circle S̃1 of radius 1/R9.

2.1 Heterotic M(atrix) Theory

We begin by reviewing aspects of the heterotic M(atrix) theory relevant for foregoing dis-
cussions. By definition, heterotic M(atrix) theory is the M(atrix) theory compactified on an
orbifold I = S1/Z2, say, in 9-th direction [6, 7]. In the previous paper [7], we have studied con-
straint of the orbifold condition and have shown that N D0-brane parton dynamics is governed
by N = 8 supersymmetric SO(2N) matrix quantum mechanics. The orbifold compactification
breaks the R-symmetry to Spin(8) ⊂ Spin(9). As such, we adopt a Majorana spinor convention
so that real and symmetric representations of the Spin(9) gamma matrices ΓI , (I = 1, · · · , 9)
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are decomposed into

Γi =

(

0 σi
aȧ

σi
ȧa 0

)

i = 1, · · · , 8; Γ9 =

(

−δab 0
0 +δȧḃ

)

(2)

in terms of Spin(8) gamma matrices σi’s. The Spin(9) spinor2 Θ is decomposed into two
inequivalent chiral spinors of Spin(8):

Θ = 8s ⊕ 8c ≡ Sa ⊕ Sȧ (3)

where
Γ9Sa = −Sa; Γ9Sȧ = +Sȧ. (4)

The field content of the heterotic M(atrix) theory consists of untwisted and twisted sectors and
has been determined as follows [7]. Untwisted sector consists of a non-dynamical gauge su-
permultiplet (A0; 0) with purely bosonic degrees of freedom, an adjoint supermultiplet (A9,Sa)
and a rank-2 symmetric supermultiplet (Xi,Sȧ).

Twisted sector states arise from S1/Z2 orbifold fixed points. Located at each of the two
fixed points X9 = 0, πR9 are sixteen units of Ramond-Ramond nine-form charges. To can-
cel these anomalous charges, we introduce fundamental supermultiplets (0;χ

(1)
A ) and (0;χ

(2)
B )

(A,B = 1, · · · , 16)3 representing two sets of sixteen D8-branes. In order to cancel the Ramond-
Ramond gauge flux locally, it is necessary to lock the D8-brane positions on top of the orb-
ifold fixed points. This is achieved by turning on Wilson line of the spacetime gauge field
B9

AB = πR9 diag(0, · · · , 0, 1, · · · , 1)⊗iσ2, where iσ2 acts on each pairs of D8-brane and its mirror
image. This Wilson line configuration breaks the heterotic gauge group E8×E8 or Spin(32)/Z2

to SO(16)×SO(16). In what follows, we thus restrict our discussions to G ≡ SO(16)×SO(16)
gauge group configuration.

The complete spectra and their quantum numbers of the heterotic M(atrix) theory are
summarized in the following table.

Sector Multiplet Bosons Fermions Spin(8) SO(2N)
untwisted gauge A0 · (1 ; 0) 2N(2N–1)/2

adjoint A9 Sa (1 ; 8s) 2N (2N–1)/2
symmetric Xi Sȧ (8v ; 8c) 2N(2N+1)/2

twisted fundamental · χ
(1,2)
M ( 0 ; 1) 2N

Recalling that the two sets of sixteen twisted sector fermions are locked at X9 = 0, πR9

symmetrically by turning on the Wilson line B9, we find that the heterotic M(atrix) theory is
defined by the Lagrangian:

L = Tr
(

− 1

2R11

(DτA9)
2 +

1

2R11

(DτX)2 − R11

2
[A9,Xi]

2 +
R11

4
[Xi,Xj]2

− SaDτSa +R11 Sa[A9,Sa] + SȧDτSȧ +R11 Sȧ[A9,Sȧ]− 2R11 X
iσi

aȧ{Sa,Sȧ}
)

+ χ
(1)
A (Dτ +R11 A9)χ

(1)
A + χ

(2)
A (Dτ +R11 (A9 − iπR9σ2))χ

(2)
A . (5)

2We adopt the conjugate spinor convention ΘΓ
−
= Θ

T .
3Note that purely bosonic adjoint and purely fermionic fundamental supermultiplets are compatible with

N = 8 supersymmetric matrix quantum mechanics with Spin(8) R-symmetry.
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Here, Dτ ≡ ∂τ− [A0, ] defines the covariant derivative. The normalization of the twisted sector
fermions to the A9 gauge multiplet has been fixed so that the mass scale of the open string,
represented by the twisted sector fermions, connecting the D0-brane parton and the D8-brane
has the same mass scale as the open string among the D0-branes. The common mass scale is
the prerequisite to the cancellation of induced one-loop vacuum energy [7] as well as quantum
mechanical Z2 global anomaly [10].

The twisted sector is well-defined only if the fermion numbers are even. This is because
the one-dimensional Dirac operator iDτ = id/dτ + iA0 is not an elliptic operator. From the
D8-brane point of view, this conditions is automatically guaranteed since there exists always a
mirror D8-brane for every D8-brane. From the covering space point of view, this implies that
the heterotic M(atrix) theory is defined, in addition to SO(2N) gauge group, with [Z2]

N bundle
which acts trivially on the untwisted sector but nontrivially on the twisted sector fermions.
The action of [Z2]

N bundle is then identified with

[Z2]
N : χ

(1,2)
Ap → ηp

q χ
(1,2)
Aq , ηp

q = diag.(±,±, · · · ,±)N×N . (6)

From the above Lagrangian, we find the light-cone Hamiltonian as:

HLC = R11

[

Tr
(

−1
2
Π2

9 +
1

2
Π2

i +
1

2
[A9,X

i]2 − 1

4
[Xi,Xj]2

− Sȧ[A9,Sȧ]− Sa[A9,Sa] + 2Xiσu
aȧ{Sa,Sȧ}

)

− χ
(1)
A A9χ

(1)
A − χ

(2)
A (A9 − iπR9σ2)χ

(2)
A

]

. (7)

The eight kinematical generators Qȧ and the eight dynamical ones Qa are given by:

Qȧ =
1√
R11

TrSȧ,

Qa =
√

R11Tr
(

(σi
aȧS

ȧΠi − SaΠ9) +
1

2
(σij

abX
i[Sb,Xj] + σi

aȧSȧ[A9,X
i])
)

. (8)

It is straightforward to check that the anticommutators of the Qȧ,Qa supercharges give rise to
the conserved longitudinal momentum P+ = N/R11 and the light-cone Hamiltonian HLC up to
Gauss’ law constraint respectively.

2.2 Heterotic M(atrix) String Theory

We now construct the heterotic M(atrix) string theory adopting the DVV proposal. From
the M-theory point of view, the heterotic and the Type I strings arise from two different
degeneration limits of a cylindrical membrane stretched between the two orbifold fixed points
along 9-th direction. In the limit the 11-th circular direction shrinks, the membrane is reduced
to the Type I string with one-dimensional Chan-Paton fermions at each ends. In the limit the
9-th orbifold direction shrinks, the membrane becomes heterotic string with chiral fermions
generating Kac-Moody current algebra. In particular, from Type I string point of view, the
heterotic string is nothing but the strong-weak coupling dual D-string [11].

The heterotic string is properly described by dualizing along the squeezed, 9-th orbifold
direction [7]. We first note that T-duality maps S1/Z2 orbifold with radius R9 into S̃1 circle with
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dual radius 1/R9. This is easy to understand from the D-brane and orientifold configurations.
Initial configuration is given by 8-orientifolds and sixteen D8-branes located at the two fixed
points X9 = 0, πR9. T-duality along the 9-th direction turns them into 9-orientifold and D9-
branes. Since they have co-dimensions zero in the transverse space, the 9-orientifolds and
D9-branes do not give rise to any orbifolding at all. In particular, 9-th direction after T-duality
becomes S̃1 of radius 1/R9. We thus introduce a worldsheet parameter σ ∈ [0, 2π] so that the
distance along the dualized 9-th orbifold direction is measured by σ/R9. With this convention,
the duality turns A9 → R9Dσ and Π9 → Eσ/R9 in Eqs. (5, 7). This mapping turns the
untwisted sector of the N = 8 supersymmetric SO(2N) matrix quantum mechanics Eqs. (5, 7)
into (8, 0) supersymmetric SO(2N) chiral gauge theory.

For twisted sector fermions, the T-duality is achieved by replacing A9 → R9Dσ. The
transformation makes the twisted sector fermions propagate chirally around S̃1. We thus treat
them symmetrically by absorbing the πR9 dependence of χ(2) and introducing redefined chiral
fermions χ(P,A) :

χ
(P )
A (σ + τ) ≡ χ

(1)
A (σ + τ),

χ
(A)
A (σ + τ) ≡ eiσ/2 χ

(2)
A (σ + τ). (9)

Hence, χ(P,A) have opposite boundary conditions each other once traversed around S̃1, σ →
σ + 2π. This is the M(atrix) string theory manifestatation that distinguishes the two sets of
twisted sector fermions coming from each orbifold fixed points at A9 = 0, πR9. We adopt a
convention in which χ(P ) is periodic and χ(A) is anti-periodic. In fact, the two sets of boundary
conditions, hence, twisted sector fermions mix each other. In addition, in the heterotic M(atrix)
theory, we have identified the [Z2]

N discrete gauge symmetry acting only on the twisted sector
fermions, Eq. (6). Upon T-duality to heterotic M(atrix) string theory, the [Z2]

N discrete gauge
symmetry then acts together with the above boundary conditions. Altogether, this defines the
action of nontrivial SO(2N)×[Z2]

N bundle via ‘t Hooft’s twisted boundary conditions on the
twisted sector fermions.

We thus find the heterotic M(atrix) string theory consisting of the following field content
and quantum numbers:

Sector Multiplet (Components) Spin(8) SO(2N) Worldsheet
untwisted gauge (Aτ , Aσ ; Sȧ) (1 ; 8c) 2N (2N–1)/2 left-moving

symmetric (Xi; Sa) (8v; 8s) 2N(2N+1)/2 right-moving

twisted fundamental ( · ; χ
(P,A)
A ) (0 ; 1) 2N left-moving

To comply with the conventional light-cone string worldsheet units, we make a few more
rescalings together with the T-duality. First, we convert the M-theory time into worldsheet
time by rescaling t → τ/R11. Next, we normalize the kinetic terms canonically by rescaling
Xi → Xi/

√
R9. Finally, via 11-9 flip, we identify the heterotic string coupling parameter

g2H ≡ R3
9 in M-theory unit.

After the rescaling, the action is given by:

S =
∫

dτ
∮ 2π

0

dσ

2π

[

Tr
(

+
g2H
4
F 2
αβ +

1

2
(DαX

i)2 +
1

4g2H
[Xi,Xj]2

+ SaDRSa + SȧDLSȧ − 2Xiσi
aȧ{Sa,Sȧ}

)
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+ χ
(P )
A DLχ

(P )
A + χ

(A)
B DLχ

(A)
B

]

. (10)

Here, the left-, right-moving covariant derivatives are defined as DL,R ≡ Dτ ±Dσ.
The Hamiltonian of the heterotic M(atrix) string theory is given by

HLC =
∮ 2π

0

dσ

2π

[

Tr
(

+
1

2g2H
E2 +

1

2
Π2

i +
1

2
(DσX

i)2 − 1

4g2H
[Xi,Xj]2

− SȧDσSȧ − SaDσSa +
1

gH
2Xiσi

aȧ{Sa,Sȧ}
)

− χ
(P )
A Dσχ

(P )
A − χ

(A)
B Dσχ

(A)
B

]

. (11)

In the adopted normalization convention, the longitudinal momentum is taken as p+ = 1 for all
N . That this corresponds to the heterotic string can be seen [7] by formally taking N = 1/2.
Then, the Lagrangian is reduced precisely to the same form as the worldsheet action of a
single light-cone Green-Schwarz heterotic string, the structure first identified by Polchinski and
Witten [11] from the D-string worldsheet action in Type I string theory via Z2 heterotic – Type
I duality. Therefore, for N > 1, it is expected that the heterotic M(atrix) theory contain N
independent heterotic strings once suitably interpreted. Indeed, in the next Section, following
the DVV proposal, we will show that the heterotic M(atrix) theory indeed provides for a new
second-quantization description of light-cone Green-Schwarz heterotic strings.

The resulting heterotic M(atrix) string theory is a (1 + 1)-dimensional chiral gauge theory.
Spectrum of the theory is tightly constrained by the requirement of anomaly cancellation. From
the identified spectrum above, we find that the gauge anomaly from the right-moving symmet-
ric multiplet fermions is cancelled by the left-moving gauge and fundamental twisted sector
fermions. In fact, the anomaly cancellation requirement may be considered as the M(atrix)
theory principle for identifying the twisted sector spectrum [10, 7]. The result is also con-
sistent with the twisted sector spectrum derived from one–loop vacuum energy cancellation
requirement in the heterotic M(atrix) theory, as is expected from the T-duality between the
two theories 4

A remark is in order. One may question possible higher–order corrections to the above
Lagrangian and Hamiltonian Eqs. (10, 11), especially, higher-dimensional operators involving
gauge field strengths. However, we believe that there are no such terms. The Hamiltonian
Eq. (11) has the full structure of the light-cone Green-Schwarz heterotic string already for
N = 1/2 as shown above. The quadratic terms in Eq. (11) saturates all we can have consistently
with light-cone kinematics and supersymmetry. As will be shown in the next section, this is also
the case for arbitrary N in the phase the gauge group is spontaneously broken to SN × [Z2]

N .

4It should be noted that the d=10, N = 1 supersymmetric Yang-Mills theories other than SO(32) gauge
group are anomalous, hence, inconsistent. The M(atrix) theory governing D0-brane parton dynamics has been
derived from this theory via dimensional reduction. Given that T

d toroidal compactification is described by
(d + 1)-dimensional supersymmetric Yang-Mills theory, the M(atrix) theory may encounter an inconsistency
once all nine dimensions are compactified. Such potential problem does not arise if higher dimensional toroidal
compactifications of M(atrix) theory are instead described by some other field theories than supersymmetric
Yang-Mills theories. In fact, there exist such indications from the (2, 0) strong coupling fixed points for T

4

and T
5 compactifications [13]. We expect that such a resolution continues to higher-dimensional toroidal

compactifications. Alternative possibility is that the gauge group for T9 compactification is not enhanced to
U(N) but manifests [U(1)]N only.
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3 Phases of Heterotic M(atrix) String Theory

In the previous section, we have defined the heterotic M(atrix) string theory in terms of (1+1)-
dimensional (8, 0) supersymmetric chiral gauge theory. In this section, following the idea of [3]
we show that the heterotic M(atrix) string defines the second-quantized heterotic strings by
analyzing the phases of the supersymmetric chiral gauge theory.

The basic results may be summarized as follows. We will first show that the strong coupling
Higgs phase of SO(2N) chiral gauge theory defines non-interacting, light-cone multi-heterotic
string states with total number of string ≤ N and the total longitudinal momentum p+ =
N/R11. In addition, we show that string joining and splitting interactions are provided precisely
by the strong coupling expansions of the chiral gauge theory.

3.1 Free Heterotic String Limit

The gauge coupling constant gYM in (1+1)-dimensions has a mass dimension 1. Since g−2
YM =

ℓ2sg
2
H , the dimensionless coupling governing the gauge dynamics is given by g̃2YM = (Σ/ℓ2s)g

−2
H

where Σ denotes the world-sheet area.
We first consider the strong gauge coupling limit, g̃YM → ∞. This is the limit for which

gH → 0 and Σ → ∞. The strongly coupled heterotic M(atrix) string theory flows to an
infrared fixed point at which the theory is described by a nontrivial conformal field theory.
Content of the conformal field theory is tightly constrained by symmetries. The (8,0) chiral
supersymmetry, Spin(8) R-symmetry and G ≡ SO(16) × SO(16) affine Lie algebra on the
worldsheet should be respected by a candidate conformal field theory 5. We claim that such a
conformal field theory is provided by the (8, 0) supersymmetric sigma model on the symmetric
product space orbifold:

SN(R8 ⊗G) = (R8 ⊗G)N/(SN × [Z2]
N) (12)

where G = SO(16) × SO(16). Configuration of the other N–image strings is isomorphic to
Eq. (12) so we do not repeat them in what follows. It is straightforward to identify the above
target space. In the free heterotic string limit gH → 0, the Xi fields are dynamically confined
on the moduli spaceMN ≡ {Xi : [Xi,Xj] = 0}. At the same time, the gauge supermultiplet
(A0, A9;Sa) decouples, leaving only charge neutrality constraint for the remaining symmetric
and fundamental multiplets. At generic point in the moduli spaceMN , the fields can be written
as:

Xi = U · diag.(X i
1, X

i
2, · · · , X i

N) · U−1 ⊗ I2×2

Sȧ = U · diag.(S ȧ
1 , S

ȧ
2 , · · · , S ȧ

N) · U−1 ⊗ I2×2 (13)

where U ∈U(N)⊂SO(2N) is the same for all bosonic and spinor coordinate matrices. The
tensor product I2×2 represents image strings. This means that, in the Higgs phase, the residual
gauge symmetry is SN × [Z2]

N , where SN denotes the Weyl group of U(N)⊂SO(2N) acting
on the gauge invariant elements for a given representation and the [Z2]

N denotes the discrete
gauge symmetry Eq. (6) acting nontrivially on the twisted sector fermions in the fundamental

representation. Together with the twisted sector fermions (χ
(P )
I , χ

(A)
I ), the eigenvalues (X i

I , S
ȧ
I )

5This can be argued from ‘t Hooft anomaly matching conditions.
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(I = 1, · · · , N) describe light-cone Green-Schwarz worldsheet fields of N independent heterotic
strings.

The Hilbert space HN of the above SN orbifold sigma model is decomposed into twisted
sectors Hg [12]. Each twisted sector is labelled by the conjugacy classes [g] of the SN symmetric
orbifold group. Within a given twisted sector, the physical states are those invariant under the
centralizer subgroup Cg of g ⊂ U(N) ⊂ SO(2N). Denote this invariant subspace by Ĥg. Then,
the total SN orbifold Hilbert space is given schematically by

H(SN(R8 ⊗G)) =
⊕

[g]

Ĥg. (14)

For the SN symmetric group, the conjugacy classes [g] are characterized by all partitions of N :

∑

n≥1

nNn = N (15)

where Nn denotes the multiplicity of the irreducible cyclic permutation of n-elements in the
decomposition of g as:

[g] = (1)N1(2)N2 · · · =
∏

n≥1

(n)Nn . (16)

Associated to the above decomposition of the conjugacy classes [g] , each twisted sectors are
decomposed into the product of Nn-fold symmetric tensor products of n-element Hilbert sub-
spaces H(n):

HNn
=
⊗

n≥1

SNnH(n) (17)

where
SNH ≡

(

H⊗H⊗ · · · ⊗ H
)SN

. (18)

The Hilbert subspace H(n) denotes the Zn invariant subspace of states of a single heterotic
string with winding number n around S1. Each of the winding number n heterotic string can
be represented by a (8, 0) supersymmetric heterotic sigma model whose n distinct worldsheet

fields (X i
I , S

ȧ
I , χ

(P )
I , χ

(A)
I ) satisfy twisted boundary conditions

X i
I(σ + 2π) = + [V(±) ·X i(σ) · V −1

(±) ]I

S ȧ
I (σ + 2π) = + [V(±) · S ȧ(σ) · V −1

(±) ]I

χ
(P )
I (σ + 2π) = + [V(±) · χ(P )(σ) ]I

χ
(A)
I (σ + 2π) = − [V(±) · χ(A)(σ) ]I (I = 1, · · · , n) (19)

where V(±) denote the ‘t Hooft’s shift operators combined with nontrivial [Z2]
n bundle

V(+) =



















1
1

. . .

1
+1



















n×n

, V(−) =



















1
1

. . .

1
−1



















n×n

. (20)
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The action of Zn in the definition of H(n) is most clearly seen by patching n fields into a single
field (X i(σ), S ȧ(σ), χ(P ), χ(A))n defined over σ ∈ [0, 2πn]. The single fields are defined by

X i(σ + 2π(I − 1)) ≡ X i
I(σ) ,

S ȧ(σ + 2π(I − 1)) ≡ S ȧ
I (σ) ,

χ(P )(σ + 2π(I − 1)) ≡ (+)I−1 χ
(P )
I (σ) ,

χ(A)(σ + 2π(I − 1)) ≡ (−)I−1 χ
(A)
I (σ) . (I = 1, · · · , n) (21)

Then the action of the cyclic group Zn generated by ordered shift of the n-element sets
(X i

I , S
ȧ
I , χ

(P )
I , χ

(A)
I ) turns into the coordinate shift σ → σ+2πI acting on the newly introduced

fields (X i(σ), S ȧ(σ), χ(P )(σ), χ(A)(σ))n for (I = 1, · · · , n). Physically, these newly introduced
fields are interpreted as worldsheet degrees of freedom of Zn twisted, n-times long strings.
These fields satisfy boundary conditions

X i(σ + 2πn) = + X i(σ),

S ȧ(σ + 2πn) = + S ȧ(σ),

χ(P )(σ + 2πn) = (+)n η χ(P )(σ),

χ(A)(σ + 2πn) = (−)n η χ(A)(σ), (22)

where η ≡ ± denote the action of [Z2]
n bundle. Therefore, in the normalization that sets the

string winding number to unity for all n, we find that the n-twisted strings have 1/n fractional
oscillator quantum numbers. In addition, the twisted sector fermion fields give rise to various
charged sectors that generate the spacetime heterotic gauge group. Denote the boundary
conditions of twisted sector fermion fields as (χ(P ), χ(A)). From Eq. (22), one finds that (+,+)
and (−,−) sectors arise when n is even. Similarly, when n is odd, (+,−) and (−,+) sectors
arise.

So far, we have constructed the Hilbert space for a finite N , corresponding to N maximal
number of heterotic strings 6. The total L0 operator of the SN CFT is decomposed into

Ltotal
0 =

∑

{ni}

1

ni

L
(ni)
0 (23)

in a twisted sector defined by cyclic permutations of length ni’s. The Zn invariant Hilbert
subspace is then described by those excitations of a single string of length ni satisfying

Ltotal
0 − L

total
0 = Z viz. L

(ni)
0 − L

(ni)
0 = niZ. (24)

To obtain the full Fock space of the second-quantized heterotic string we take the large N
limit in the following manner [3]. In the light-cone formulation, length of the string is directly
proportional to the total longitudinal momentum (recall that we have adopted the normalization
that the n-string winding number is unity, hence, ptot+ ≡ N/R11 = 1.). By taking Hilbert
subspaces H(n) for which n is linearly proportional to N → ∞, only those heterotic string
states with non-vanishing longitudinal momentum p+ are allowed:

0 < p+ =
n

N
≤ 1. (25)

6 The conventional light–cone string field is then reproduced by Fourier transforming Fock space wave
functions with respect to the string number
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These long strings are the only surviving ones in the large N limit. Correspondingly, since
we have normalized the string winding number to unity, string statets af finite massive levels
constitute of very low-energy O(1/N) oscillator excitations.

In the N→∞ limit prescribed above, the Zn invariant Hilbert subspace then consists only
of individual string configurations satisfying

L
(ni)
0 − L

(ni)
0 = 0. (26)

All other string configurations with nonzero on the right-hand side become infinitely heavy in
the large N limit, hence, are not relevant for low-energy dynamics.

It is now straightforward to identify the heterotic string degrees of freedom and the required
GSO projections thereof. From Eq. (22) we have seen that the twisted sector fermions give rise
to (+,+) and (−,−) sectors when n is even, and (+,−) and (−,+) sectors when n is odd. Since
difference of the string length by one unit corresponds to difference of p+ = O(±1/N), hence,
becomes completely negligible in N→ ∞ limit, we define a single heterotic string of a given
p+ = n/N via a direct sum of the (+,−) and (−,+) sectors from n-twisted string together
with the (+,+) sector from (n + 1)-twisted string and the (−,−) sector from (n − 1)-twisted
string. With this definition, we then find that, in the string winding number normalization
adopted above, the vacuum energy associated with (+,−) and (−,+) sectors are zero, while
with (+,+) and (−,−) sectors are +1 and −1 respectively. This fits perfectly to the known
charged spectra of the perturbative heterotic string. At the same time, the two independent
GSO projection operators of the heterotic string theory are identified as follows. The first one
is the diagonal η = ± in Eq. (22) corresponding to (−)P+A. The second one is the diagonal
cyclic permutation by ±1, the first factor in Eq. (22). This gives rise to the projection via
anti-periodic boundary condition, (−)A. We therefore obtain two independent GSO projection
operators, (−)P and (−)A, needed to reproduce the E8 ×E8 heterotic string.

We should emphasize again the importance of N→ ∞ limit in identifying these two inde-
pendent GSO projection operators and the resulting charged spectrum thereof. While the first
GSO operator (−)P+A relevant for SO(32) heterotic string is well defined even for finite N, the
second one (−)A arises by construction only in the large N limit. Related to this, while the
(+,−) and (−,+) sectors are present for n odd as explained above, for finite N they are pro-
jected out by the (−)P+A GSO operator completely. We conclude that only SO(32) heterotic
strings are present for finite N heterotic M(atrix) string theory.

3.2 Perturbative Interactions of Heterotic M(atrix) String

So far, we have shown that the strict infrared limit of the (8, 0) supersymmetric chiral gauge
theory gives rise to free heterotic string in the light-cone Green-Schwarz form. We have seen
that, in this limit, each twisted sector of the SN orbifold is a Fock space of a definite string
number and longitudinal momentum. For free heterotic string, each Fock space of multi-
heterotic string states spans a superselection sector.

In this section, we consider the effect of non-zero but small heterotic string coupling con-
stant. Recall that the height of potential barrier of Xi for non-abelian symmetry restoration is
proportional to g−2

H . Large-N counting shows that the least barrier, hence, easiest restoration
is for SO(4) ⊂ SO(2N) corresponding to two overlapping heterotic strings. Once they overlap,
SO(4) gauge field fluctuations induce a non-zero intercommuting transition amplitude between
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the two heterotic strings. Indeed, this is precisely the elementary joining and splitting interac-
tions between two strings since the string number between in- and out-string states differ by
one.

It is also possible to represent the elementary string interaction in terms of perturbed SN

orbifold conformal field theory. The perturbation is described by a local operator since, being
induced by non-abelian gauge field fluctuations in the Higgs phase, the transition is a local
process 7 on the worldsheet (σ, τ) 8. A candidate local perturbation operator should satisfy
several physical conditions. First, since the operator represents elementary string joining and
splitting processes, it should correspond to an appropriate twist operator that intercommutes
two overlapping heterotic strings. Second, the operator should be a singlet under (8, 0) su-
persymmetry, SO(9, 1) Lorentz transformation and SO(16) ⊗ SO(16) Kac-Moody symmetry.
Third, the operator should be an irrelevant operator to guarantee that the unperturbed SN

conformal field theory is an infrared stable fixed point. Fourth, the leading irrelevant opera-
tor should have scaling dimension 3 so that the perturbation coupling parameter corresponds
precisely to the heterotic string coupling constant itself.

For the Type IIA M(atrix) string theory, DVV have shown the existence of a local perturba-
tion operator satisfying all of these requirements. The corresponding SN orbifold conformal field
theory has (8, 8) supersymmetries. In contrast, the heterotic M(atrix) string theory corresponds
to a SN conformal field theory with chiral (8, 0) supersymmetry [14] and SO(16)×SO(16) Kac-
Moody symmetry. As such, it is not a priori obvious that there again exists a local perturbation
operator satisfying all of the above requirements. We now show that such an operator of scaling
dimension (3/2, 3/2) indeed exists so that the perturbed SN conformal field theory is described
by:

S(8,0) int = S(8,0) free + gH

∫ d2z

ℓ2s
[ℓ3sO( 3

2
, 3
2
)] + · · · ,

O( 3
2
, 3
2
)(z, z) = O( 3

2
,0)(z) · O(0, 3

2
)(z), (27)

where ellipses denote higher-order contact interactions. We now derive the operator as a tensor
product of left-moving supersymmetric descendent twist operator of dimension 3/2 and right-
moving bosonic twist operator of dimension 3/2.

Consider first the left-moving supersymmetric sector. This sector gives rise to all of the
N = 16 spacetime supersymmetry generators in the light-cone Green-Schwarz formulation:

Qȧ =
1√
N

∮

dσ
N
∑

I=1

S ȧ
I , Qa =

√
N
∮

dσ
N
∑

I=1

σi
aȧS

ȧ
I ∂zX

i
I . (28)

As we have discussed, the leading order perturbation is given by intercommuting interactions
between the two free heterotic strings, say, I-th and J-th. Each of them is described by the
unperturbed conformal field theory. The interaction corresponds to Z2 twist operator associated
with a discrete gauge symmetry Z2 ∈ SU(2) ⊂ SO(4) acting on a product of I-th and J-th
string conformal field theories. Decompose the product into a conformal field theory of center-
of-mass motion and the another of relative motion. The Z2 acts on the conformal fields of

7The characteristic length scale of the massive charged gauge boson is ∼ gH/〈XIJ〉, where XIJ denote
separation distance between I-th and J-th strings.

8as well as being local in spacetime.
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relative motion X i
IJ ≡ (X i

I −X i
J), S ȧ

IJ ≡ (S ȧ
I − S ȧ

J):

Z2 : X
i
IJ ↔ −X i

IJ

S ȧ
IJ ↔ −S ȧ

IJ . (29)

This is exactly the same as either chiral sector of Type IIA M(atrix) string theory [3] and
corresponds to the well-known supersymmetric R8/Z2 orbifold. The twisted sector of the
orbifold arises from X i

IJ = 0, viz. when the two heterotic strings overlap.
Twist field of the above supersymmetric orbifold is a product of bosonic and fermions parts.

Associated to X i
IJ is the bosonic twist operator σIJ defined through the operator product

expansion:

∂zX
i
IJ(z) · σIJ(w) ∼

1

(z − w)
1

2

τ iIJ(w),

∂zX
i
IJ(z) · τ iIJ(ω) ∼

1

2
δij

1

(z − ω)
3

2

σIJ(ω) + 2δij
1

(z − ω)
1

2

∂ωσIJ(ω). (30)

Here, τ i denotes the excited twist field transforming as 8v under Spin(8). Associated to S ȧ
IJ

are a pair of spin fields (Σi
IJ ,Σ

a
IJ) defined through the operator product expansions

S ȧ
IJ(z) · Σi

IJ(ω) ∼
1

(z − ω)
1

2

σi
ȧaΣ

a
IJ(ω),

S ȧ
IJ(z) · Σa

IJ(ω) ∼
1

(z − ω)
1

2

σi
ȧaΣ

i
IJ(ω). (31)

Under Spin(8), the spin fields (Σi,Σa) transform as (8v, 8s). Taking operator product expan-
sions with the energy-momentum tensor

TIJ(z) =
1

2
∂zX

i
IJ∂zX

i
IJ +

1

2
S ȧ
IJ∂zS

ȧ
IJ , (32)

we find the conformal dimensions of the twist operators as [σ] = 1/2, [τi] = 1, [Σi] = [Σa] =
1/2 respectively. The unique (8, 0) supersymmetric and SO(9, 1) Lorentz invariant operator is
the supersymmetry descendent of one of the chiral primary operators σΣa:

O( 3
2
,0)(0) =

∮

z=0
dz
(

σi
ȧaS

ȧ∂zX
i
)

IJ
(z)
(

σΣa
)

IJ
(0)

=
∮

z=0

dz

z
1

2

(

∂zX
iΣi
)

IJ
(z) σIJ(0)

=
(

τ iΣi
)

IJ
(0). (33)

Next, consider the right-moving bosonic sector. The sector consists of X i’s and thirty-two
Majorana fermions χ(P ), χ(A). It is convenient to bosonize the chiral fermions into compact
chiral bosons Y A, (A = 1, · · · , 16). We again analyze the action of Z2 discrete gauge group
⊂ SO(4) to the right-moving sector when I-th and J-th heterotic string overlap. Again, decom-
posing the product of two anti-holomorphic conformal field theories into center-of-mass and
relative motion conformal field theories, the Z2 twist acts on the chiral bosons as:

Z2 : ∂zX
i
IJ → −∂zX i

IJ ,

∂zY
A
IJ → −∂zY i

IJ . (34)
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Hence, the relative-motion conformal field theory corresponds to (R8 × T16)/Z2 orbifold. For
our purposes, however, it is sufficient to take the Y A

IJ ∈ R. This is because Y A
IJ ≈ −Y A

IJ + 2π
is equivalent to Y A

I → (Y A
J + π), Y A

J → (Y A
I − π), which is part of discrete gauge symmetries

in the heterotic string [15], and because the intercommuting I-th and J-th heterotic string is a
purely local process in Y A

IJ space as well as in spacetime. Therefore, the left-moving sector is
given by the well-known c = 24 R24/Z2 orbifold conformal field theory [16]. The twist operator
is again defined through the operator product expansions:

∂zX
i
IJ(z) · σIJ(ω) ∼

1

(z − ω)
1

2

τ i(ω),

∂zY
A
IJ(z) · σIJ(ω) ∼

1

(z − ω)
1

2

τA(ω). (35)

The energy-momentum tensor is given by

T (z) =
1

2
∂zX

i∂zX
i +

1

2
∂zY

A∂zY
A. (36)

From this, we find that the twist operator σ has conformal dimension 24/16 = 3/2, while the
excited twist operators τ i have conformal dimension 2. We thus find a unique leading irrelevant
twist operator on the left-moving sector as:

O(0, 3
2
)(0) = σ(0). (37)

It is straightforward to see that the above operator is unique. To see this, consider the anti-
holomorphic partition function Z(q) of the second symmetric product of the heterotic string
theory. We will explicitly label the boundary conditions along (σ, τ) directions as Z(σ,τ). Denote
a single heterotic string partition function as Z(q) = q−1+24+O(q). Then, in the (+,+) sector,
the second-symmetric product partition function is given by Z(+,+)(q) = (Z(q))2 = q−2 + · · ·.
On the other hand, the partition function in the (+,−) is given by Z(+,−)(q) = Z(q2). By
modular invariance, the twisted sector (−,+) then gives rise to the second symmetric product

partition function Z(−,+)(q) = Z(q
1

2 ). Therefore, in the second symmetric space, c/24 = 2 and
we find the twisted sector spectrum as:

Z(−,+)(q) = Tr(−,+)q
(L0−

c

24
) = Z(q

1

2 ) = 1 · q− 1

2 + · · · . (38)

It shows that the ground-state of the twisted sector has multiplicity one and is created by the
afore-mentioned conformal dimension (0, 3/2) twist operator σ of the c = 24 R24/Z2 orbifold
conformal field theory.

The complete form of the cubic string interaction operator is obtained by tensoring the
left-moving and the right-moving twist operators for every pairs of (IJ). This yields

O( 3
2
, 3
2
)(0) = O( 3

2
,0)(0) · O(0, 3

2
)(0) =

∑

I<J

∮

z=0
dz
(

σi
ȧaS

ȧ∂zX
i
)

IJ
(z)
(

Σaσ · σ
)

IJ
(0) (39)

=
∑

I<J

∮

z=0

dz

z
1

2

(

∂zX
iΣi
)

IJ
(z)

(

σ · σ
)

IJ
(0). (40)

The operator has a scaling dimension (3/2, 3/2). As such, the corresponding worldsheet cou-
pling constant scales linearly with gH , a result which asserts that this operators should be
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identified with three string joining and splitting interactions. In the next section, we show
explicitly that this is indeed the case by comparing with the heterotic string light-cone world-
sheets in Mandelstam’s approach. Given that the structure and field content of the conformal
field theory are so different from those of type II string, the result may be viewed as a nontrivial
consistency check to the heterotic M(atrix) string theory.

3.3 Comparison with Conventional Light-Cone Heterotic String

Having determined the conformal field theory and the leading irrelevant operator corresponding
to joining and splitting interactions of heterotic M(atrix) string, it is of interest to compare them
with the conventional light-cone heterotic string field theory and cubic interactions thereof.
Below we show that the leading irrelevant operator of dimension (3/2, 3/2) in the heterotic
M(atrix) string theory is precisely the cubic interaction vertex of light-cone heterotic string
both in Green-Schwarz and Neveu-Schwarz-Ramond formulations.

The conventional light-cone Green-Schwarz heterotic string is described in terms of the
following worldsheet fields: bosonic coordinates X i(σ, τ), fermionic real coordinates S ȧ(σ, τ)
and 32 fermionic real coordinates χA(σ, τ) parametrizing sixteen–dimensional even self-dual
lattice of either E8×E8 or Spin(32)/Z2 gauge groups. They have SO(8) R–symmetry quantum
numbers (8v, 8c, 1) respectively. The light-cone gauge Lagrangian of a free heterotic string is

Lfree =
∫

dσ
(

∂ρX
i∂ρX

i + iS ȧ∂ρS
ȧ + iχA∂ρχ

A
)

(41)

where ρ ≡ τ + σ and ρ = τ − σ. We will freely use the same notation for Euclidean worldsheet
ρ ≡ τ + iσ, ρ ≡ τ − iσ, for which the fermionic fields S ȧ, χA and their Hermitian conjugates
should be interpreted as independent complex-valued fields. Global spacetime supersymmetry
requires that both X i, S ȧ satisfy periodic boundary conditions. The 32 fermionic fields χA are
SO(8) singlets, hence, can take either periodic or anti-periodic boundary conditions subject to
compatibility with GSO projections.

Using SO(8) triality, it can be shown [17] that the free heterotic string action Eq. (41)
in light-cone Green-Schwarz formulation is equivalent to the free heterotic string action in
light-cone Neveu-Schwarz-Ramond formulation. This is true in so far as both periodic and
anti-periodic boundary conditions and accompanying GSO projections are assumed for the
latter formulation. The light-cone worldsheet fermions Ψi (i = 1, · · · , 8) in the Neveu-Schwarz-
Ramond formulation can be identified with the conformal dimension (1/2, 0) 8v spin field
Σi.

The light-cone cubic interaction vertex takes a simple form in the Neveu-Schwarz-Ramond
formulation. In this formulation, Mandelstam [18] has found that the light-cone worldsheet
Lagrangian associated with the joining and splitting cubic interaction at ρ = ρ̃ is given by

L
(NSR)
int (ρ̃) = λH

∫

dσONSR(ρ, ρ̃)
∏

σ

δ(X i
in −X i

out)δ(Ψ
i
in −Ψi

out)δ(χ
A
in − χA

out) (42)

where the interaction location–dependent operator insertion is

ONSR(ρ, ρ̃) = Limρ→ρ̃(ρ− ρ̃)
3

4 Ψi∂ρX
i. (43)

Here, λH denotes the cubic interaction coupling parameter and the overlap delta functional is
between the initial and the final heterotic string wave functionals around the interaction point.
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The operator insertion Eq. (43) is only for the right-moving, supersymmetric sector. On the
other hand, the overlap delta functional in Eq. (42) acts on both left- and right-moving sectors,
much the same way as in the bosonic string.

The light-cone cubic interaction of the Green-Schwarz heterotic string has been obtained
by Green and Schwarz [19] and by Mandelstam [20]. It is most conveniently described in terms
of SU(4) × U(1) ⊂ SO(8). Conventionally the bosonic and fermionic worldsheet fields are
decomposed into irreducible representations of SU(4)× U(1),

8v =
(

XR ≡ 1√
2
(X1 + iX2), XL ≡ 1√

2
(X1 − iX2), Y i≥3 ≡ X i≥3

)

= (1+1, 60, 1−1),

8c =
(

S̃a ≡ 1√
2
(S ȧ + iS ȧ+4), S̃†a ≡ 1√

2
(S ȧ − iS ȧ+4)

)

= (4− 1

2

, 4+ 1

2

). (44)

In the Green-Schwarz formulation, the physical ground-state form two inequivalent eight-fold
degenerate multiplets that are created by acting the zero-modes of S̃a. Physically they represent
ground state spanned by 8v massless vector boson whose polarization is either R = (1 + i 2) =
1+ or L = (1 – i 2) = 1− type. With these vacuum choices light-cone worldsheet Lagrangian
describing the cubic interaction at ρ = ρ̃ is given by [20]:

L
(GS)
int (ρ̃) = λH

∫

dσO±
GS(ρ, ρ)

∏

σ

δ(X i
in −X i

out) δ(S
a
in − Sa

out) δ(χ
A
in − χA

out), (45)

where

O+
GS = Limρ→ρ̃(ρ− ρ̃)

1

2

[

∂ρX
L +

1

2
(ρ− ρ̃) λi

ȧḃ
∂ρY

iS̃†ȧS̃†ḃ + (ρ− ρ̃)2 ∂ρX
RS̃1† · · · S̃4†

]

(46)

for L = (1 + i2) =1+ (Mandelstam’s ‘empty ground-state’) boundary condition and

O−
GS = Limρ→ρ̃(ρ− ρ̃)

1

2

[

∂ρX
R +

1

2
(ρ− ρ̃) λi

ȧḃ
∂ρY

iS̃ ȧS̃ ḃ + (ρ− ρ̃)2 ∂ρX
LS̃1 · · · S̃4

]

(47)

for R = (1 – i 2) =1− (Mandelstam’s ‘full ground-state’) boundary condition respectively.
The above choice of physical ground-state is by no means unique. Indeed, one can choose

the ground state spanned by massless spinor 8s instead of massless vector 8v. In this case, the
SU(4)×U(1) decompositions are 8s = (1+1, 60, 1−1), while 8v = (4− 1

2

, 4+ 1

2

), viz. X i = (Za ≡
Xa − iXa+4, Z†a ≡ Xa + iXa+4). Correspondingly, the required operator insertions are given
by

O+
GS = Limρ→ρ̃

[

(ρ− ρ̃)S̃a∂ρZ
a + (ρ− ρ̃)2∂ρZ

1 S̃2 S̃3 S̃4 + (perm.)
]

(48)

for fermionic L = (1 + i 2) = 1+ boundary condition and

O−
GS = Limρ→ρ̃

[

(ρ− ρ̃)S̃†a∂ρZ
a + (ρ− ρ̃)2∂ρZ

1S̃†2S̃†3S̃†4 + (perm.)
]

(49)

for fermionic R = (1 – i 2) = 1− boundary condition respectively.
The nonlinear spinor terms in Eqs. (48, 49) can be linearized further [21]. Instead of inte-

grating over worldsheets with a fixed set of interaction-point boundary conditions, integrating
over both types of boundary conditions at the interaction points turns cubic in S̃a, S̃†a into
linear S̃†a, S̃a respectively. Note that we have still kept fixed the boundary conditions at the
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external string endpoints. With these proviso, the operator insertion for the Green-Schwarz
cubic interaction turns into a single operator:

OGS ≡ O+
GS +O−

GS = Limρ→ρ̃(ρ− ρ̃)
[

S̃a∂ρZ
†a + S̃†a∂ρZ

a
]

. (50)

It is now straightforward to compare the cubic interaction worldsheet Lagrangian Eqs. (42, 45)
of conventional light-cone heterotic string and the unique leading irrelevant operator Eqs. (39, 40).
First, near the interaction points, the light-cone worldsheet coordinates (ρ, ρ) is a double–cover
of the conformal field theory local coordinates (z, z). Once conformal mapping is made to the
latter coordinates, the factors (ρ − ρ̃)3/4∂ρ in Eq. (43) and (ρ − ρ̃)∂ρ in Eq. (50) are mapped
into z−1/2∂z in Eq. (40) and ∂z in Eq. (39) respectively. Second, in order to represent the
overlap delta functionals in Eqs. (45, 42), it is necessary to arrange the second Riemann sheet
at each interaction point to cover the two joining or splitting strings. In the (8, 0) conformal
field theory, this is achieved precisely by inserting Z2 bosonic twisted operator σ · σ. In addi-
tion, in the Green-Schwarz formulation with fermionic boundary conditions, the 8s spin field
Σa has to be inserted to allow both types of boundary conditions in Eq. (50). Finally, the
conventional insertion operators Eqs. (43, 50) are identified with the holomorphic operators
Σi∂zX

i and σI
ȧaS

ȧ∂zX
i in Eqs. (39, 40) respectively. Putting these correspondences together

we find that the leading irrelevant operator of (8, 0) superconformal field theory indeed matches
with the light-cone cubic interaction vertices of heterotic strings either in Green-Schwarz or in
Neveu-Schwarz-Ramond formulations.

In the conventional light-cone interacting string picture, it has been known that higher-
order contact terms between two or more incoming and outcoming string sets have to be
introduced [22] in order to ensure a stable ground state. These contact terms cancel divergences
caused by two colliding cubic interaction vertices on the light-cone worldsheet. Since exact
form of these contact terms either in the Green-Schwarz or in the Neveu-Schwarz-Ramond
formulations are not known presently, we will not make any attempt to compare them with
candidate sub-leading irrelevant operators in the SN conformal field theory.

4 Discussions

In this paper, we have extended the DVV proposal to the heterotic M(atrix) theory. The
resulting heterotic M(atrix) string theory, which provides with a non-perturbative description
of second-quantized heterotic strings, is defined by (8, 0) supersymmetric chiral gauge theory
with gauge group SO(2N) in large N limit. We have checked that the theory is consistent with
known properties of conventional heterotic string. The leading irrelevant operator of dimension
3 in the strong coupling expansion agrees with the joining and splitting cubic interaction vertices
of light-cone heterotic string either in Green-Schwarz or in Neveu-Schwarz-Ramond formulation.

We would like to conclude with a highly speculative remark on a possible M(atrix) theory
description of bosonic strings. It is well-known that bosonic Yang-Mills theory in twenty-six
dimensions is rather special [23]. The regularized one-loop effective action of d-dimensional
Yang-Mills theory is given by

Γd = − Tr
∫

ddx

(4π)d/2

[2− d

2

Λd

d
+

26− d

24

Λ(d−4)

(d− 4)
F 2
MN
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− Λ(d−6)

(d− 6)

((42− d)

120
(DMFMN)

2 +
(2− d)

144
F 3
MN

)

+ · · ·
]

. (51)

For d=26, the gauge kinetic term does not receive radiative correction at all, a feature shared
by the ten-dimensional super-Yang-Mills theory. We expect that this non-renormalization re-
mains the same even after dimensional reductions. For example, the four-dimensional Yang-
Mills theory with 22 pseudo-scalar fields in the adjoint representation has a vanishing beta
function at one loop and the renormalization group infrared fixed points for the scalar quar-

tic couplings λ1Tr(X
iXjX iXj) and λ2Tr(X

iXjXjX i) at λ1 = λ2 = g2/(2 ±
√

8/3). Given
this non-renormalization feature unique to twenty-six dimensional Yang-Mills theory, one may
wonder if it is possible to construct M(atrix) string theory following DVV proposal for bosonic
string as well despite the absence of supersymmetry and BPS states.

The bosonic strings also have D-brane extended solitons (0 ≤ p ≤ 25) whose tension scales
as 1/gB for weak string coupling gB ≪ 1. Given the observation that the leading order string
effective action of graviton, dilaton and antisymmetric tensor field may be derived from an
Einstein gravity in d = 27, let us make an assumption that the 27-th ‘quantum’ dimension
decompactifies as the string coupling gB becomes large. For D0-brane, the dilaton exchange
force may be interpreted as the 27-th diagonal component of d = 27 metric. Gravi-photon is
suppressed by compactifying 27-th direction on an orbifold rather than on a circle. Likewise, its
mass may be interpreted as 27-th Kaluza-Klein momentum of a massless excitation in d = 27.
In the infinite boost limit, the light-front view of a bosonic string is that infinitely many D0-
branes are threaded densely on the bosonic string. This hints that D0-branes and Yang-Mills
gauge fields gluing them are the fundamental partons, the same content as the strongly coupled
superstrings. This should not be surprising since the infinite momentum boost kinematics has
little to do with supersymmetry.

Given the above observation, it is quite possible that large N limit of (1 + 1)-dimensional
U(N) gauge theory with 24 adjoint matter fields Xi (i = 1, · · · , 24) describes second-quantized
bosonic strings in light-cone formulation. As a variant of the DVV proposal, this may be taken
as a definition of bosonic M(atrix) string theory. The Yang-Mills coupling gYM scales with
the bosonic string coupling gB the same way as superstring cases: g−2

YM = ℓ2sg
2
B. If the strong

coupling limit of the Yang-Mills theory is confining and flows to a nontrivial fixed point with
manifest SO(24) rotational symmetry, the bosonic M(atrix) string theory is locally described
by a (c, c) = (24, 24) conformal field theory defined on a symmetric product space orbifold
SNR24 ≡ (R24)N/SN . Because the theory is confining, only entries of diagonalized Xi’s are
observables. Since each of the left- and the right-moving sectors are the same copies as R24/Z2

orbifold conformal field theory sector of the heterotic string, the leading irrelevant operator
with manifest SO(24) rotational symmetry is identified with OB = σ · σ. This operator has
scaling dimension (3/2, 3/2), hence, worldsheet coupling associated with the perturbation is
proportional linearly to gB, much the same as the superstring cases. Furthermore, in Section
3.3, we have shown that perturbation by the operator σ ·σ is equivalent to arranging the second
Riemann-sheet at each interaction points so that joining and splitting string wave funcationals
do overlap. The overlap delta functional is all one needs to describe the joining and splitting
cubic interactions in light-cone bosonic string. These coincidences indicate that, despite lack
of controlled higher-order radiative corrections, the bosonic M(atrix) string theory may offer a
second-quantized description of interacting bosonic strings.
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