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ABSTRACT

The mathematical concept of a “Banchoff index” associated with discrete
Morse functions for oriented triangular meshes has been shown to correspond to
the height assignments of nodes in adinkras. In recent work there has been intro-
duced the concept of “Banchoff matrices” leading to HYMNs - height yielding
matrix numbers. HYMNs map the shape of an adinkra to a set of eigenvalues
derived from Banchoff matrices. In the context of some examples of four-color,
minimal five-color, and minimal six-color adinkras, properties of the HYMNs
are explored.

PACS: 11.30.Pb, 12.60.Jv

Keywords: adinkra, supersymmetry

1 sylvester−gates@brown.edu
2 yangrui hu@brown.edu
3 kory stiffler@brown.edu

ar
X

iv
:2

01
0.

14
65

9v
2 

 [
he

p-
th

] 
 5

 N
ov

 2
02

0



1 Introduction

Graphs have demonstrated an unexpected power to “clear out the mathematical underbrush”

encountered by theoretical physicists. Feynman Diagrams are a spectacular example of this. While

it is difficult to recall, there was a time when Feynman Diagrams were not held in high regard.

This all changed rapidly when a sufficient number of physicists employed their power to efficiently

calculate quantum corrections to physical processes.

While we make no similar claims about breadth of possible impacts from the developments

which began with the recognition of the existence of the GR(d, N ) (“Garden Algebras”) [1,2]) as

a foundation of supersymmetric representation theory and their evolution into the introduction of

adinkras [3], we do hold that adinkras provide similarly important tools within the domain of the

representation theory of supersymmetrical theories. One hint about this involves the pathways [4,

5,6] that adinkras have opened from supersymmetrical theories, including field theories, to error-

correction codes.

There is a substantial and rapidly growing literature on the relation of quantum error-correction

codes [7] to the very structure of space-time (e. g. [8]) itself. Over and above this particular focus,

there is the related similar discussion underway regarding quantum entanglement and space-time.

Literally, it is bona fide query to ask, “Is space-time a quantum error-correction code?” However,

from the perspective of field theory, the fields themselves are primary dynamical entities. This

suggests the similar question, “Are there relations between fields that describe physical reality and

quantum error-correction codes?”

To our knowledge, the works in [4,5,6] are the singular ones that hint at such a linkage. To be

clear, there have been no claims that these works provide for a role for quantum error-correction

codes. The implication of the works in [4,5,6] is all irreducible supersymmetric field theory repre-

sentations in four or dimensions involve classical error-corrections codes. However, it also true that

the L-matrices and their inverses the R-matrices that arise from adinkras are generalizations of

Pauli matrices. Looking at many discussions of quantum error-correction codes, the Pauli matrices

play an important role.

Among the most primitive of adinkras are those which have the structure of nodes only occurring

at two distinct height. These are called “valise adinkras” with all bosonic nodes at the same value

of height and all fermion nodes at the same (but different from the bosonic one) height. The fact

that the nodes representing functions can be differentiated or integrated is reflected in a change of

nodal height in adinkras [9]. In the works of [10] - [16], various prescriptions have been presented

for ways to map the graphical representations into numerical data. While some of these involve

the use of eigenvalues for this purpose, we recently used a modified formulation [17] (called Height

Yielding Matrix Numbers - HYMNs) also using eigenvalues. The “HYMNs” approach encode the

heights of various nodes into diagonal matrices. This approach called, “dressing,” was introduced

in work by Toppan et. al. [18,19,20,21,22]. In the discussion to follow we explore properties of the

HYMNs through examples of four-color, five-color, and six-color adinkras.

Works by mathematicians [23,24] have connected adinkras to algebraic geometry and in partic-

ular Riemann surfaces. The concept of discrete Morse functions for oriented triangular meshes on

Riemann surfaces was introduced into the mathematical literature some time ago [25]. Thus, nodal
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heights in adinkras are associated with values of these Morse functions. The latter are piecewise-

linear over the meshes constructed by linear extension across edges and faces of the plaquettes

associated with the meshes. The bottom line is the height assignment of any node in an adinkra

corresponds to the integer value of the Morse function and the height assignment can be “Banchoff

index” of the node. The fact that adinkra contain many nodes leads to matrices of these indices that

we call “Banchoff Matrices.” The Height Yielding Matrix Numbers - HYMNs - are the eigenvalue

of these matrices.

HYMNs provide to an intrinsic definition of the shape of an adinkra. In a vaguely reminiscent

way of how the Riemann curvature tensor provides a definition of intrinsic curvature for hyper

surfaces, HYMNs provide an intrinsic way to define the shape of any adinkra. In our conclusions

section, a further discussion of the importance of this will be covered more extensively.
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2 HYMNs: Height Yielding Matrix Numbers

Here, we generalize the notion of HYMNs [17] from those with only bosonic nodes lifted to also

include lifting of fermion nodes. Supersymmetric transformation laws encoded by valise adinkras

can be described succinctly by the equations

D
I
Φi = i (L

I
) i k̂ Ψk̂ , D

I
Ψk̂ = (R

I
) k̂ i ∂0 Φi , (2.1)

and the N L
I

and N R
I

matrices satisfy the algebra of general, real matrices describing N super-

symmetries between d bosons and d fermions, the so-called Garden Algebra:

L
I
R

J
+ L

J
R

I
= 2 δIJ Id , R

I
L

J
+ R

J
L

I
= 2 δIJ Id , (2.2)

with Id the d× d identity matrix. These relations imply that off-diagonal N real 2d × 2d matrices

γ̂
I

constructed from the L
I

and R
I

matrices form a Euclidean Clifford Algebra.

We define the node lifting operator M(m,w) that acts on an arbitrary number of d fields as

M(m,w) ≡


mp1 0 0 . . . 0

0 mp1 0 . . . 0

0 0 mp3 . . . 0
...

...
...

. . . 0

0 0 0 . . . mpd

 , (2.3)

w ≡p120 + p22
1 + p32

2 + · · ·+ pd2d−1 , with pi = 0, 1 (2.4)

where the word parameter w is as in [26]. We define lifted bosons Φ(mB, wB) and lifted fermions

Ψ(mF , wF ) as

Φ(mB, wB) = M (mB, wB)Φ (2.5)

Ψ(µF , wF ) = M (µF , wF )Ψ (2.6)

In [17], only lifting bosonic nodes was considered. As M(1, w) = M(m, 0) = Id, lifting only

bosonic nodes amounts to setting either mF = 1 or wF = 0 in the following.

Multiplying Eqs. (2.1) by node lifting matrices M (mB, wB) and M(µF , wF ) and inserting factors

of Id = M(m−1
F , wF )M(mF , wF ) and Id = M(µ−1

B , wB)M (µB, wB) results in the transformation

laws

D
I
Φ(mB, wB) = iL

I
(mB,mF , wB, wF )Ψ(mF , wF ) , (2.7)

D
I
Ψ(µF , wF ) = R

I
(µB, µF , wB, wF ) ∂0Φ(µB, wB) , (2.8)

where

L
I
(mB,mF , wB, wF ) = M(mB, wB)L

I
M(m−1

F , wF ) (2.9)

R
I
(µB, µF , wB, wF ) = M(µF , wF )R

I
M(µ−1

B , wB) (2.10)
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The way we have written these equations, µ is not specific to fermions and m is not specfic to

bosons. Rather, µ is specific to the R-matrices and m to the L-matrices. See Eqs. (2.7) and (2.8).

Based on equation (2.9) and (2.10), it’s clear that the final L and R matrices after lifting

both bosons and fermions do not depend on the order of lifting operations. Since two diagonal

matrices commute with each other and matrix multiplication is associative. Namely, there is only

one unique set of L and R matrices corresponding to a specified adinkra, no matter whether it is

valise or non-valise.

The redefined matrices L
I
(m,w) and R

I
(µ,w) satisfy the GR(d,N) algebra in the µF → mF

and µB → mB limit:

L
I
(mB,mF , wB, wF )R

J
(µB, µF , wB, wF ) + L

J
(mB,mF , wB, wF )R

I
(µB, µF , wB, wF )

= M (mB, wB) [L
I
M (µF/mF , wF )R

J
+ L

J
M (µF/mF , wF )R

I
]M(µ−1

B , wB)

→M (mB, wB) [L
I
R

J
+ L

J
R

I
]M(µ−1

B , wB) = 2 δI J M (mB/µB, wB) , for µF → mF

→ 2 δI J Id , for µB → mB (2.11)

The same results hold in the µB → mB and µF → mF limit for the R
I
L

J
+ R

J
L

I
algebra

R
I
(µB, µF , wB, wF )L

J
(mB,mF , wB, wF ) + R

J
(µB, µF , wB, wF )L

I
(mB,mF , wB, wF )

→ 2 δI J Id , for µB → mB , and µF → mF (2.12)

The m/µ ratio will be prevalent in the rest of our calculations, so we define

ρB = mB/µB , ρF = µF/mF . (2.13)

For N = 4, lifted Banchoff B-matrices are defined as:

BL(ρB, ρF , wB, wF ) =

L4(mB,mF , wB, wF )R3(µB, µF , wB, wF )L2(mB,mF , wB, wF )R1(µB, µF , wB, wF )

BR(ρB, ρF , wB, wF ) =

R4(µB, µF , wB, wF )L3(mB,mF , wB, wF )R2(µB, µF , wB, wF )L1(mB,mF , wB, wF )

(2.14)

We will define Banchoff matrices for N = 5 and N = 6 in the following sections.

In the remainder of this work, we will demonstrate, in the context of specific example, some

properties of these constructions. Our examples are chosen from systems of four color, five color,

and then six color adinkras.
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3 GR(4,4) Calculations

Since adinkras can be obtained from the dimensional reduction of supersymmetric theories from

higher dimensions, there are multiple higher dimensional starting points. Thus, models with the

same number of independent supercharges under such reduction lead to the same adinkras. In par-

ticular, 4D, N = 1 [27], 2D, N = (2,2) [28], 2D, N = (4,0) [29] and 1D, N = 4 supersymmetrical

theories [30] must produce adinkras that lie in the set of the 36,864 adinkras associated with the

Coxeter Group BC4.

If the starting point is chosen in the domain of 4D, N = 1 supersymmetrical theories, among

the most familiar models involve the chiral, vector and tensor supermultiplets. The explicit forms

of the L-matrices and R-matrices for the 4D, N = 1 supermultiplets can be found in the work seen

in [27]. This is our starting point discussed below. In the following sections, we not only present

HYMNs for various supermultiplets, but also HYMNs if we drop all dashings in the associated

adinkra.

3.1 Chiral Supermultiplet:

1

1 2

3 4

2 3 4

Figure 1: Chiral Supermultiplet Adinkra

In Fig. 1, there is shown the adinkra for chiral supermultiplet.

BL eigenvalues BR eigenvalues

{ ρB , ρB , ρB , ρB } {− 1 ,−1 ,− ρ2B ,− ρ2B }
BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{ ρB , ρB , ρB , ρB } { 1 , 1 , ρ2B , ρ
2
B }

Table 1: Results of BL and BR eigenvalues with/without dashings for the adinkra in Fig 1

3.2 Vector Supermultiplet:

In Fig. 2, there is shown the adinkra for vector supermultiplet.

6



1

1 2 3

4

2 3 4

Figure 2: Vector Supermultiplet Adinkra

BL eigenvalues BR eigenvalues

{− 1 ,− 1 ,− ρB ,− ρB } { 1 , 1, ρB , ρB }
BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{ 1 , 1 , ρB , ρB } { 1 , 1, ρB , ρB }

Table 2: Results of BL and BR eigenvalues with/without dashings for the adinkra in Fig 2

3.3 Tensor Supermultiplet:

In Fig. 3, there is shown the adinkra for tensor supermultiplet.

1

1 2 3 4

2 3 4

Figure 3: Tensor Supermultiplet Adinkra

BL eigenvalues BR eigenvalues

{− 1 ,−1 ,− 1 ,− 1 } { 1 , 1, 1, 1 }
BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{ 1 , 1, 1, 1 } { 1 , 1, 1, 1 }

Table 3: Results of BL and BR eigenvalues with/without dashings for the adinkra in Fig 3

3.4 Four Supermultiples: SM-I, SM-II, SM-III, SM-IV

In this subsection, the valise adinkras associated with the domain of 2D, N = (4,0) supersym-

metric models are considered below. The explicit forms of the L-matrices and R-matrices for the
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2D, N = (4,0) and 1D, N = 4 supermultiplets can be found in the work seen in [30]. Thus in Fig.

4 through 7, there are shown the adinkras for supermultiplets SM-I to SM-IV.

1

1 2 3 4

2 3 4

Figure 4: Adinkra Diagram for SM-I

1

1 2 3 4

2 3 4

Figure 5: Adinkra Diagram for SM-II

1

1 2 3 4

2 3 4

Figure 6: Adinkra Diagram for SM-III

1

1 2 3 4

2 3 4

Figure 7: Adinkra Diagram for SM-IV

These four adinkras, as well as all 36,864 valise GR(4,4) adinkras share the same eigenvalues.

Eigenvalues for BL matrix are: where

BL eigenvalues BR eigenvalues

{χo, χo, χo, χo } {−χo, −χo, −χo, −χo }
BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{ 1, 1, 1, 1 } { 1, 1, 1, 1 }

Table 4: Results of BL and BR eigenvalues with/without dashings for the 36, 864 valise adinkras

associated with (4, 0) SUSY

χo(R) =

{
1 when R = SM-I, SM-IV

−1 when R = SM-II, SM-III
(3.1)

which is true for all the valise GR(4,4) adinkras.

3.5 The Collapse of the Variant Representations

There are ten off-shell 4D, N = 1 off-shell supermultiplets. For completeness (as well as cor-

recting some sign errors in previous publications) the complete description of the component fields

as well as SUSY transformation laws are given in Appendix A.

The point is to note that any theory that has a description in terms of 4D, N = 1 off-shell

supermultiplet can be reduced to a 1D, N = 4 off-shell supermultiplet which may be transformed

into a valise adinkra by bring all the bosonic fields to the same level in the corresponding adinkra.
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We begin by briefly giving the names and component fields listed in each of these supermultiplets.

We have for all those supermultiplets related to the chiral supermultiplet the following:

(1.) Chiral Supermultiplet : (A, B, ψa, F, G)

(2.) Hodge−Dual #1 Chiral Supermultiplet : (A, B, ψa, fµ ν ρ, G)

(3.) Hodge−Dual #2 Chiral Supermultiplet : (A, B, ψa, F, gµ ν ρ)

(4.) Hodge−Dual #3 Chiral Supermultiplet : (A, B, ψa, fµ ν ρ, gµ ν ρ)

BL eigenvalues BR eigenvalues

{ 1 , 1 , ρB , ρB } {− 1 ,−1 ,− ρB ,− ρB }
BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{ 1 , 1 , ρB , ρB } { 1 , 1 , ρB , ρB }

Table 5: Results of BL and BR eigenvalues with/without dashings for Hodge-Dual #1 and Hodge-

Dual #2 Chiral Supermultiplet

The eigenvalues shown in tables # 5 and # 6 result with the four dimensional supermultiplet is

case into the form of a 1D valise supermultiplet.

BL eigenvalues BR eigenvalues

{ 1 , 1 , 1 , 1 } {−1 ,−1 ,−1 ,−1 }
BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{ 1 , 1 , 1 , 1 } { 1 , 1 , 1 , 1 }

Table 6: Results of BL and BR eigenvalues with/without dashings for Hodge-Dual #3 Chiral

Supermultiplet

It should be noted that performing a parity exchange on the component bosonic fields of the

original chiral supermultiplet returns the same field content. The reason for this is that the bosonic

fields in the chiral-like supermultiplets all come in opposite parity pairs. So performing a parity

transformation on the bosons only “swaps” members of the parings. This is not so for the remaining

supermultiplets.

We have for all those supermultiplets related to the vector supermultiplet the following

(1.) Vector Supermultiplet : (Aµ, λb, d)

(2.) Axial− Vector Supermultiplet : (Uµ, λ̃b, d̃)

(3.) Hodge−Dual Vector Supermultiplet : (Aµ, λb, dµ ν ρ)

(4.) Hodge−Dual Axial− Vector Supermultiplet : (Ũµ, λ̃b, d̃µ ν ρ)

BL eigenvalues BR eigenvalues

{− 1 ,−1 ,− ρB ,− ρB } { 1 , 1 , ρB , ρB }
BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{ 1 , 1 , ρB , ρB } { 1 , 1 , ρB , ρB }

Table 7: Results of BL and BR eigenvalues with/without dashings for Axial-Vector Supermultiplet
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BL eigenvalues BR eigenvalues

{−1 ,−1 ,−1 ,−1 } { 1 , 1 , 1 , 1 }
BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{ 1 , 1 , 1 , 1 } { 1 , 1 , 1 , 1 }

Table 8: Results of BL and BR eigenvalues with/without dashings for Hodge-Dual Vector Super-

multiplet, Hodge-Dual Axial-Vector Supermultiplet, and Axial-Tensor Supermultiplet

Finally, we come to the tensor supermultiplet and its parity exhanged version. Since this super-

multiplet does not possess any auxiliary fields, there is not a possibility to perform a Hodge-type

duality. So the only possible transformation is to perform a parity exchange on the bosons. This

leads to:

(1.) Tensor Supermultiplet : (ϕ, Bµ ν , χa)

(2.) Axial− Tensor Supermultiplet : (ϕ̃, Cµ ν , χ̃a)

These studies suggest that two simple functions of the eigenvalues that are important for the

introduction of a class-based structure for these diagrams would be the trace and determinant. The

trace and determinant have the properties that they are invariant under any permutation of the

eigenvalues. Actually, since there are two sets of eigenvalues (one set for BL and one for BR). we

are able to analyze the trace and determinant for each. These results are shown in appendix B.
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4 An Example of 4-color Non-minimal Adinkra

In this chapter, the discussion will turn to an exploration of the response of the HYMNs to

changes of shape of 4-color adinkras which possess 8-closed and 8-open nodes as seen in Fig. 8.

These correspond to reducible superfields. The 4D, N = 1 real scalar superfield was shown in [31]

to be depicted by the adinkra in Fig. 8 similar to how the 4D, N = 1 chiral, vector, and tensor

multiplets were shown in [27] to be depicted by the adinkras in Figs. 1, 2, and 3.

1

1

2 3 5

2

4 6

3

7

4

5

8

6 7 8

Figure 8: An Example of 4-color Non-minimal Adinkra

Recall that the definition of Banchoff B-matrices is:

BL = L4R3L2R1 , (4.1)

BR = R4L3R2L1 . (4.2)

For the adinkra in Figure 8, the corresponding L-matrices are:

L1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


, L2 =



0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0


, (4.3)

11



L3 =



0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0


,L4 =



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0


. (4.4)

In this case, we not only lift bosons but also lift fermions. We define the boson lifting matrix

M(mB, wB) and fermion lifting matrix M(mF , wF ) as in Eqs. (2.5) and (2.6), respectively. By

analyzing the HYMNs, we get results listed in Table 9. Eigenvalues are not sensitive to dashings.

BL eigenvalues BR eigenvalues

{−ρ2BρF ,−ρ2BρF ,−ρ2BρF ,−ρ2BρF , {−ρ2BρF ,−ρ2BρF ,−ρ2BρF ,−ρ2BρF ,
ρ2BρF , ρ

2
BρF , ρ

2
BρF , ρ

2
BρF} ρ2BρF , ρ

2
BρF , ρ

2
BρF , ρ

2
BρF}

BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{−ρ2BρF ,−ρ2BρF ,−ρ2BρF ,−ρ2BρF , {−ρ2BρF ,−ρ2BρF ,−ρ2BρF ,−ρ2BρF ,
ρ2BρF , ρ

2
BρF , ρ

2
BρF , ρ

2
BρF} ρ2BρF , ρ

2
BρF , ρ

2
BρF , ρ

2
BρF}

Table 9: Results of BL and BR eigenvalues with/without dashings for the adinkra in Fig 8

Consider the B2 matrix, which is

B2 =

[
B2
L 0

0 B2
R

]
(4.5)

Eigenvalues for B2
L matrix (which is diagonal) are

{ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F} (4.6)

Eigenvalues for B2
R matrix (which is diagonal) are

{ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F , ρ4Bρ2F} (4.7)

Then we can find:

det(B2
L) = ρ32B ρ

16
F (4.8)

det(B2
R) = ρ32B ρ

16
F (4.9)

which are consistent with our conjecture:

det(B2
L) = det(B2

R) = ρ
N×(# of bosons lifted )
B ρ

N×(# of fermions lifted )
F (4.10)
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4.1 Step-by-step Results

Figure 9: An Example of 4-color Non-minimal Adinkra

Look at Figure 9, start the analysis from the valise adinkra in which all bosons live in level-1

and all fermions live in level-2. In order to get the dimond adinkra as Figure 9 shown, there are

three steps to do the transformations.

Note that lifting or lowering nodes would not influence dashing properties, so in all following

steps, eigenvalues after dropping all dashing are the same as with dashing.

In the following tables, we use < | > notation to denote the “shape” of adinkras we met in

intermediate steps. The number sitting next to < is the number of bosons living in level-1. | is to

divide adjacent levels. Thus the second number is the number of fermions living in level-2, and so

on. So < 8|8 > is the valise adinkra, our starting point, and the one in Figure 9 is < 1|4|6|4|1 >.

Figure 10 shows the < 1|4|7|4 > type adinkra.

Step 1: Raise Boson 2-8 to Level-3. See Table 10. All values in the last column of Table

10 satisfy our conjecture (4.10).

Step 2: Raise Fermions 5-8 to Level-4. See Table 11. All values in the last column of Table

11 satisfy our conjecture (4.10).

Step 3: Raise Boson 8 to Level-5 and we get the final results as Table 9 and Equation (4.6)

to (4.9).
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BL eigenvalues BR eigenvalues det(B2
L/R)

< 8|8 >
{−1 ,−1 ,−1 ,−1 , {−1 ,−1 ,−1 ,−1 ,

ρ4×0
B1 , 1 , 1 , 1 } 1 , 1 , 1 , 1 }

< 7|8|1 >
{−1 ,−1 , 1 , 1 , {−1 ,−1 , 1 , 1 ,

ρ4×1
B−ρ1/2B ,−ρ1/2B , ρ

1/2
B , ρ

1/2
B } −ρ1/2B ,−ρ1/2B , ρ

1/2
B , ρ

1/2
B }

< 6|8|2 >
{−ρ1/2B ,−ρ1/2B ,−ρ1/2B ,−ρ1/2B , {−1,−1, 1, 1,

ρ4×2
Bρ

1/2
B , ρ

1/2
B , ρ

1/2
B , ρ

1/2
B } −ρB,−ρB, ρB, ρB}

< 5|8|3 >
{−ρ1/2B ,−ρ1/2B , ρ

1/2
B , ρ

1/2
B , {−ρ1/2B ,−ρ1/2B , ρ

1/2
B , ρ

1/2
B ,

ρ4×3
B−ρB,−ρB, ρB, ρB} −ρB,−ρB, ρB, ρB}

< 4|8|4 >
{−ρB,−ρB,−ρB,−ρB, {−ρB,−ρB,−ρB,−ρB,

ρ4×4
BρB, ρB, ρB, ρB} ρB, ρB, ρB, ρB}

< 3|8|5 >
{−ρB,−ρB, ρB, ρB, {−ρB,−ρB, ρB, ρB,

ρ4×5
B−ρ3/2B ,−ρ3/2B , ρ

3/2
B , ρ

3/2
B } −ρ3/2B ,−ρ3/2B , ρ

3/2
B , ρ

3/2
B }

< 2|8|6 >
{−ρ3/2B ,−ρ3/2B ,−ρ3/2B ,−ρ3/2B , } {−ρB,−ρB, ρB, ρB,

ρ4×6
Bρ

3/2
B , ρ

3/2
B , ρ

3/2
B , ρ

3/2
B −ρ2B,−ρ2B, ρ2B, ρ2B}

< 1|8|7 >
{−ρ3/2B ,−ρ3/2B , ρ

3/2
B , ρ

3/2
B , {−ρ3/2B ,−ρ3/2B , ρ

3/2
B , ρ

3/2
B ,

ρ4×7
B−ρ2B,−ρ2B, ρ2B, ρ2B} −ρ2B,−ρ2B, ρ2B, ρ2B}

Table 10: Eigenvalues of BL and BR matrices and determinants of B2
L and B2

R matrices in Step

1

BL and BR eigenvalues det(B2
L/R)

< 1|7|7|1 >
BL: {−ρ3/2B , ρ

3/2
B ,−ρ2B, ρ2B,−ρ

3/2
B ρ

1/2
F , ρ

3/2
B ρ

1/2
F ,−ρ2Bρ

1/2
F , ρ2Bρ

1/2
F } ρ4×7

B ρ4×1
FBR: {−ρ3/2B , ρ

3/2
B ,−ρ2B, ρ2B,−ρ

3/2
B ρ

1/2
F , ρ

3/2
B ρ

1/2
F ,−ρ2Bρ

1/2
F , ρ2Bρ

1/2
F }

< 1|6|7|2 >
BL: {−ρ3/2B , ρ

3/2
B ,−ρ2B, ρ2B,−ρ

3/2
B ρF , ρ

3/2
B ρF ,−ρ2BρF , ρ2BρF } ρ4×7

B ρ4×2
FBR: {−ρ3/2B ρ

1/2
F ,−ρ3/2B ρ

1/2
F , ρ

3/2
B ρ

1/2
F , ρ

3/2
B ρ

1/2
F ,−ρ2Bρ

1/2
F , ρ2Bρ

1/2
F ,−ρ2Bρ

1/2
F , ρ2Bρ

1/2
F }

< 1|5|7|3 >
BL: {−ρ3/2B ρ

1/2
F , ρ

3/2
B ρ

1/2
F ,−ρ2Bρ

1/2
F , ρ2Bρ

1/2
F ,−ρ3/2B ρF , ρ

3/2
B ρF ,−ρ2BρF , ρ2BρF } ρ4×7

B ρ4×3
FBR: {−ρ3/2B ρ

1/2
F , ρ

3/2
B ρ

1/2
F ,−ρ2Bρ

1/2
F , ρ2Bρ

1/2
F ,−ρ3/2B ρF , ρ

3/2
B ρF ,−ρ2BρF , ρ2BρF }

< 1|4|7|4 >
BL: {−ρ3/2B ρF ,−ρ3/2B ρF , ρ

3/2
B ρF , ρ

3/2
B ρF ,−ρ2BρF ,−ρ2BρF , ρ2BρF , ρ2BρF } ρ4×7

B ρ4×4
FBR: {−ρ3/2B ρF ,−ρ3/2B ρF , ρ

3/2
B ρF , ρ

3/2
B ρF ,−ρ2BρF ,−ρ2BρF , ρ2BρF , ρ2BρF }

Table 11: Eigenvalues of BL and BR matrices and determinants of B2
L and B2

R matrices in Step

2

Figure 10: An Example of 4-color < 1|4|7|4 > Non-minimal Adinkra
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5 Two Five-color Adinkras

At this point, let us emphasize a matter of some importance that occurs whenever adinkras with

an odd number of colors is under consideration. From (2.14), it follows that the index structure of

the BR and BL matrices is very different. Explicitly expressions describing the matrix entries for

each, take the forms

BL = (BL) j k , BR = (BR) ĵ k̂ , (5.1)

if N is even but also

BL = (BL) j k̂ , BR = (BR) ĵ k , (5.2)

if N is odd. This observation has some powerful implications for the multiplications of the the BR

and BL matrices:

(a.) if N is even, only eigenvalues of (BR)p and (BL)q for any real numbers

p and q have well defined mathematical meanings, and

(b.) if N is odd, only eigenvalues of (BRBL)p and (BLBR)q for any real

numbers p and q have well defined mathematical meanings.

In Fig. 11, there are shown two five-color adinkras.

Figure 11: Two Five-color Adinkras
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Since in this case, N = 5 is odd, we have to study the eigenvalues of Banchoff BRBL and BLBR

matrices. For each of these, we respectively find

BRBL = R5L4R3L2R1L5R4L3R2L1 ,

BLBR = L5R4L3R2L1R5L4R3L2R1 .
(5.3)

For the first adinkra, the L-matrices are:

L1 =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1


, L2 =



0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0


, (5.4)

L3 =



−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0


,L4 =



0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0


, (5.5)

L5 =



0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0


. (5.6)

By analyzing the HYMNs, we obtain the results listed in Table 12.

BLBR eigenvalues BRBL eigenvalues

{1, 1, ρB, ρB, ρ2B, ρ2B, ρ2B, ρ2B} {1, 1, ρB, ρB, ρ2B, ρ2B, ρ2B, ρ2B}
BLBR eigenvalues (dropping all dashings) BRBL eigenvalues (dropping all dashings)

{1, 1, ρB, ρB, ρ2B, ρ2B, ρ2B, ρ2B} {1, 1, ρB, ρB, ρ2B, ρ2B, ρ2B, ρ2B}

Table 12: Results of BLBR and BRBL eigenvalues with/without dashings for the first adinkra

in Figure 11
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For the second adinkra, the L-matrices are:

L1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0


, L2 =



0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 0


, (5.7)

L3 =



0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0


,L4 =



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0


, (5.8)

L5 =



0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0


. (5.9)

By analyzing the HYMNs for this case we find the results listed in Table 13.

BLBR eigenvalues BRBL eigenvalues

{ρB, ρB, ρB, ρB, ρB, ρB, ρ2B, ρ2B} {ρB, ρB, ρB, ρB, ρB, ρB, ρ2B, ρ2B}
BLBR eigenvalues (dropping all dashings) BRBL eigenvalues (dropping all dashings)

{ρB, ρB, ρB, ρB, ρB, ρB, ρ2B, ρ2B} {ρB, ρB, ρB, ρB, ρB, ρB, ρ2B, ρ2B}

Table 13: Results of BL and BR eigenvalues with/without dashings for the second adinkra in

Figure 11
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6 Two Six-color Adinkras

In this chapter, we are going to study HYMNs for six-color adinkras. In Figure 12, there are

shown two six-color adinkras.

Figure 12: Two Six-color Adinkras

Since in this case, N = 6 is even, we define Banchoff B-matrices in the way similar to N = 4

case.

BL = L6R5L4R3L2R1 , (6.1)

BR = R6L5R4L3R2L1 . (6.2)
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For the first adinkra, the L-matrices are:

L1 =



0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1


, L2 =



0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −1 0 0 0


, (6.3)

L3 =



−1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0


,L4 =



0 0 0 1 0 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0


, (6.4)

L5 =



0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0


,L6 =



0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0


. (6.5)

By analyzing the HYMNs, we get results listed in Table 14.

BL eigenvalues BR eigenvalues

{−i√ρB,−i
√
ρB, i
√
ρB, i
√
ρB, {−i√ρB,−i

√
ρB, i
√
ρB, i
√
ρB,

−iρB,−iρB, iρB, iρB} −iρB,−iρB, iρB, iρB}
BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{−√ρB,−
√
ρB,
√
ρB,
√
ρB {−√ρB,−

√
ρB,
√
ρB,
√
ρB,

−ρB,−ρB, ρB, ρB} −ρB,−ρB, ρB, ρB}

Table 14: Results of BL and BR eigenvalues with/without dashings for the first adinkra in Fig 12
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For the second adinkra, the L-matrices are:

L1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0


, L2 =



0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 0


, (6.6)

L3 =



0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0


,L4 =



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0


, (6.7)

L5 =



0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0


,L6 =



0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 −1 0 0 0 0 0 0


. (6.8)

By analyzing the HYMNs, we get results listed in Table 15.

BL eigenvalues BR eigenvalues

{−i,−i, i, i, {−i, i,−iρB,−iρB,
−iρB, iρB,−iρ2B, iρ2B} −iρB, iρB, iρB, iρB}

BL eigenvalues (dropping all dashings) BR eigenvalues (dropping all dashings)

{−1,−1, 1, 1, {−1, 1,−ρB,−ρB,
−ρB, ρB,−ρ2B, ρ2B} −ρB, ρB, ρB, ρB}

Table 15: Results of BL and BR eigenvalues with/without dashings for the second adinkra in Fig

12
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7 Conclusion

In this paper, we have extended our previous discussions about using HYMNs (height-yielding

matrix numbers) which are the eigenvalues [14] of functions of the adjacency matrices associated

with the L-matrics and R-matrices derived from adinkras. The traces and determinants of the

Banchoff matrices defined in this paper yield polynomials that are sensitive of the “shapes” of the

adinkras in all cases examined. Further study will be required to support the current speculation

that these polynomials split adinkras into equivalent classes. Even more intriguing is the possibility

that these polynomials could play an important role in the concept of “SUSY Holography,” as

introduced in the work of [49]. These topics will be the subject of future explorations.

“The object of pure Physics is the unfolding of the laws

of the intelligible world; the object of pure Mathematics

that of unfolding the laws of human intelligence.”

- J. J. Sylvester
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A Transformation Laws of 4D, N = 1 Minimal Supermultiplets

Although a lot of literature about Adinkras has presented transformation laws of ten minimal

off-shell 4D, N = 1 supermultiplets, for example chapter three in [17], there are some chronic

typos. For clarity, we include the corrected transformation laws in this appendix. Note that the

convention is ε0123 = +1 and ηµν = ηµν = diag(−1, 1, 1, 1).

Chiral Supermultiplet : (A, B, ψa, F, G)

DaA = ψa , DaB = i (γ5)a
b ψb ,

Daψb = i (γµ)a b ∂µA − (γ5γµ)a b ∂µB − i Ca b F + (γ5)a bG ,

DaF = (γµ)a
b ∂µ ψb , DaG = i (γ5γµ)a

b ∂µ ψb ,

(A.1)

Hodge−Dual #1 Chiral Supermultiplet : (A, B, ψa, fµ ν ρ, G)

DaA = ψa , DaB = i (γ5)a
b ψb ,

Daψb = i (γµ)a b ∂µA − (γ5γµ)a b ∂µB − i
1

3!
Ca b (εσµνρ ∂σfµ ν ρ) + (γ5)a bG ,

Dafµ ν ρ = − (γσ)a
b εσµνρ ψb , DaG = i (γ5γµ)a

b ∂µ ψb ,

(A.2)

Hodge−Dual #2 Chiral Supermultiplet : (A, B, ψa, F, gµ ν ρ)

DaA = ψa , DaB = i (γ5)a
b ψb ,

Daψb = i (γµ)a b ∂µA − (γ5γµ)a b ∂µB − i Ca b F +
1

3!
(γ5)a b (εσµνρ ∂σgµ ν ρ) ,

DaF = (γµ)a
b ∂µ ψb , Dagµ ν ρ = − (γ5γσ)a

b εσµνρ ψb ,

(A.3)

Hodge−Dual #3 Chiral Supermultiplet : (A, B, ψa, fµ ν ρ, gµ ν ρ)

DaA = ψa , DaB = i (γ5)a
b ψb ,

Daψb = i (γµ)a b ∂µA − (γ5γµ)a b ∂µB

− i
1

3!
Ca b (εσµνρ ∂σfµ ν ρ) +

1

3!
(γ5)a b (εσµνρ ∂σgµ ν ρ) ,

Dafµ ν ρ = − (γσ)a
b εσµνρ ψb , Dagµ ν ρ = − (γ5γσ)a

b εσµνρ ψb .

(A.4)

For the Hodge−Dual #1 Chiral Supermultiplet one should perform the replacement of the

auxiliary fields according to ∫
dt F → f123 , G → G , (A.5)

where f123 is the purely spatial component of the Lorentz 3-form fµνρ.

For the Hodge−Dual #2 Chiral Supermultiplet one should perform the replacement of the

auxiliary fields according to

F → F ,

∫
dtG → g123 , (A.6)

22



where g123 is the purely spatial component of the Lorentz 3-form gµνρ.

For the Hodge−Dual #3 Chiral Supermultiplet one should perform the replacement of the

auxiliary fields according to ∫
dt F → f123 ,

∫
dtG → g123 , (A.7)

where f123 is the purely spatial component of the Lorentz 3-form fµνρ and g123 is the purely spatial

component of the Lorentz 3-form gµνρ.

V ector Supermultiplet : (Aµ, λb, d)

DaAµ = (γµ)a
b λb ,

Daλb = − i 1
4([ γµ , γν ])ab ( ∂µAν − ∂ν Aµ ) + (γ5)a b d ,

Da d = i (γ5γµ)a
b ∂µλb ,

(A.8)

Axial − V ector Supermultiplet : (Uµ, λ̃b, d̃)

Da Uµ = i (γ5γµ)a
b λ̃b ,

Daλ̃b = 1
4(γ5[ γµ , γν ])ab ( ∂µ Uν − ∂ν Uµ ) + i Ca b d̃ ,

Da d̃ = − (γµ)a
b ∂µλ̃b ,

(A.9)

Hodge−Dual V ector Supermultiplet : (Aµ, λb, dµ ν ρ)

DaAµ = (γµ)a
b λb ,

Daλb = − i 1
4([ γµ , γν ])ab ( ∂µAν − ∂ν Aµ ) +

1

3!
(γ5)a b (εσµνρ ∂σdµ ν ρ) ,

Da dµνρ = − i (γ5γσ)a
b εσµνρ λb ,

(A.10)

Hodge−Dual Axial − V ector Supermultiplet : (Aµ, λ̃b, d̃µ ν ρ)

Da Uµ = i (γ5γµ)a
b λ̃b ,

Daλ̃b = 1
4(γ5[ γµ , γν ])ab ( ∂µ Uν − ∂ν Uµ ) + i

1

3!
Ca b (εσµνρ ∂σd̃µ ν ρ) ,

Da d̃µνρ = (γσ)a
b εσµνρ λ̃b ,

(A.11)

For Axial − V ector Supermultiplet one should perform the replacement of the fermionic fields

according to

λb → − i (γ5)b
c λ̃c , (A.12)

and the bosonic fields according to

Aµ → Uµ , d → d̃ . (A.13)
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For Hodge−Dual V ector Supermultiplet one should perform the replacement of the the aux-

iliary field according to ∫
dt d → d123 , (A.14)

where d123 is the purely spatial component of the Lorentz 3-form dµνρ. Note that the last line in

Equation (3.9) in [17] has typos and the corrected one is (A.10).

For Hodge−Dual Axial − V ector Supermultiplet one should perform the replacement of the

auxiliary field according to ∫
dt d̃ → d̃123 , (A.15)

where d̃123 is the purely spatial component of the Lorentz 3-form d̃µνρ. Note that the last line in

Equation (3.10) in [17] has typos and the corrected one is (A.11).

Tensor Supermultiplet : (ϕ, Bµ ν , χa)

Daϕ = χa , DaBµ ν = − 1
4([ γµ , γν ])a

b χb ,

Daχb = i (γµ)a b ∂µϕ − (γ5γµ)a b εµ
ρσ τ∂ρBσ τ ,

(A.16)

Axial − Tensor Supermultiplet : (ϕ̃, Cµ ν , χ̃a)

Daϕ̃ = i (γ5)a
b χ̃b , DaCµ ν = − i 1

4(γ5[ γµ , γν ])a
b χ̃b ,

Daχ̃b = − (γ5γµ)a b ∂µϕ̃ − i (γµ)a b εµ
ρσ τ∂ρCσ τ ,

(A.17)

For Axial− Tensor Supermultiplet one should perform the replacement of the fermionic fields

according to

χa → i (γ5)a
b χ̃b , (A.18)

and the bosonic fields according to

ϕ → ϕ̃ , Bµ ν → Cµ ν . (A.19)

Note that the first line in Equation (3.12) in [17] has typos and the corrected one is (A.17).
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B Traces and Determinants

As mentioned in the body of the paper, the traces and determinants of the various Banchoff

matrices presented are an important calculation as to the classification of the HYMNs. These are

listed below.

BL BR |BL| |BR|
trace 4ρB −2 ( 1 + ρ2B ) 4ρB 2 ( 1 + ρ2B )

determinant ρ4B ρ4B ρ4B ρ4B

Table 16: Results of trace and determinant eigenvalues with/without dashings for the adinkra in

Fig 1

BL BR |BL| |BR|
trace −2 ( 1 + ρ2B ) 2 ( 1 + ρ2B ) 2 ( 1 + ρ2B ) 2 ( 1 + ρ2B )

determinant ρ2B ρ2B ρ2B ρ2B

Table 17: Traces and determinants with/without dashings for the adinkra in Fig 2

BL BR |BL| |BR|
trace −4 4 4 4

determinant 1 1 1 1

Table 18: Traces and determinants with/without dashings for the adinkra in Fig 3

BL BR |BL| |BR|
trace 4χo −4χo 4 4

determinant 1 1 1 1

Table 19: Traces and determinants with/without dashings for the 36, 864 valise adinkras

associated with (4, 0) SUSY

where

χo(R) =

{
1 when R = SM-I, SM-IV

−1 when R = SM-II, SM-III
(B.1)

which is true for all the valise GR(4,4) adinkras.

BL BR |BL| |BR|
trace 2 ( 1 + ρ2B ) −2 ( 1 + ρ2B ) 2 ( 1 + ρ2B ) 2 ( 1 + ρ2B )

determinant ρ2B ρ2B ρ2B ρ2B

Table 20: Traces and determinants with/without dashings for Hodge-Dual #1 and Hodge-

Dual #2 Chiral Supermultiplet

For the adinkra described in Chapter 4, since as we already seen that eigenvalues are not sensitive

to dashings, we will only show Tr(BL), Tr(BR), Det(BL), and Det(BR) in Table 24.
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BL BR |BL| |BR|
trace 4 −4 4 4

determinant 1 1 1 1

Table 21: Traces and determinants with/without dashings for Hodge-Dual #3 Chiral

Supermultiplet

BL BR |BL| |BR|
trace −2 ( 1 + ρ2B ) 2 ( 1 + ρ2B ) 2 ( 1 + ρ2B ) 2 ( 1 + ρ2B )

determinant ρ2B ρ2B ρ2B ρ2B

Table 22: Traces and determinants with/without dashings for Axial-Vector Supermultiplet

BL BR |BL| |BR|
trace −4 4 4 4

determinant 1 1 1 1

Table 23: Traces and determinants with/without dashings for Hodge-Dual Vector Super-

multiplet, Hodge-Dual Axial-Vector Supermultiplet, and Axial-Tensor Supermultiplet

Tr(BL) Tr(BR) Det(BL) Det(BR)

< 8|8 > 0 0 1 1

< 7|8|1 > 0 0 ρ2B ρ2B
< 6|8|2 > 0 0 ρ4B ρ4B
< 5|8|3 > 0 0 ρ6B ρ6B
< 4|8|4 > 0 0 ρ8B ρ8B
< 3|8|5 > 0 0 ρ10B ρ10B
< 2|8|6 > 0 0 ρ12B ρ12B
< 1|8|7 > 0 0 ρ14B ρ14B
< 1|7|7|1 > 0 0 ρ14B ρ

2
F ρ14B ρ

2
F

< 1|6|7|2 > 0 0 ρ14B ρ
4
F ρ14B ρ

4
F

< 1|5|7|3 > 0 0 ρ14B ρ
6
F ρ14B ρ

6
F

< 1|4|7|4 > 0 0 ρ14B ρ
8
F ρ14B ρ

8
F

< 1|4|6|4|1 > 0 0 ρ16B ρ
8
F ρ16B ρ

8
F

Table 24: Traces and determinants for adinkras described in Chapter 4
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In summary, for the 4-color nonminimal adinkras described in Chapter 4, we have general

equations

Tr(BL) = Tr(BR) = 0

Det(BL) = Det(BR) = ρ2×# of bosons lifted
B ρ2×# of fermions lifted

F

(B.2)

For two five-color adinkras described in Chapter 5, since eigenvalues are not sensitive to dashings

as well, we will only show results with dashings.

1st Adinkra BLBR BRBL

trace 2( 1 + ρB + 2ρ2B ) 2( 1 + ρB + 2ρ2B )

determinant ρ10B ρ10B

2nd Adinkra BLBR BRBL

trace 2( 3ρB + ρ2B ) 2( 3ρB + ρ2B )

determinant ρ10B ρ10B

Table 25: Traces and determinants for the adinkras in Fig 11

For two six-color adinkras described in Chapter 6, we have Table 26.

1st Adinkra BL BR |BL| |BR|
trace 0 0 0 0

determinant ρ6B ρ6B ρ6B ρ6B

2nd Adinkra BL BR |BL| |BR|
trace 0 0 0 0

determinant ρ6B ρ6B ρ6B ρ6B

Table 26: Traces and determinants with/without dashings for the adinkras in Fig 12
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