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CHAPTER 1

INTRODUCTION

1.1 A Brief Review of the Standard Model (SM)

The standard model (SM) of particle physics is based on the non-abelian gauge sym-

metry SU(3)c×SU(2)L×U(1)Y . Here the SU(3)c gauge group describes the theory of

strong interaction called quantum chromodynamics (QCD). This type of interactions

holds the quarks and the gluons together to form hadrons. Each quark type is called

flavor. For example, up, charm and top denoted respectively by u, c and t are three

flavors of the up-type quark. Each flavor of quark transforms as the fundamental color

triplet of SU(3)c while the gauge bosons, the gluons, are assigned to the adjoint octet

representation of SU(3)c. In this case, we have eight gluons associated with the eight

SU(3)c generators. The SU(2)L × U(1)Y is the gauge group of the Glashow, Wein-

berg, and Salam model [1] which successfully combines the electromagnetic and weak

interactions in one theory called electroweak theory. The total number of generators

of SU(2)L × U(1)Y is four. Accordingly, this theory contains four electroweak gauge

bosons (three of them conventionally are denoted Wi and the forth one is denoted B).

This SU(2)L×U(1)Y symmetry is respected above roughly 100 GeV (the electroweak

scale). The electromagnetic interaction arises below the electroweak scale where the

electroweak symmetry is broken spontaneously by the Higgs mechanism.

In order to understand how the electroweak symmetry breaking is implemented

in the SM, let us first point out that the invariance of the Lagrangian for both

quantum electrodynamics (QED) and QCD under local gauge transformations leads

respectively to massless photons and gluons. However, this idea can not be applied

1



SU(3)c × SU(2)L × U(1)Y

Li=




νi

ei


, (1,2,−1)

ec
i , (1,1,2)

Qi=




ui

di


, (3,2,1

3
)

uc
i , (3,1,−4

3
)

dc
i , (3,1,2

3
)

H=




H+

H0


, (1,2,1)

Table 1.1: The transformation of the lepton (Li,e
c), quark (Q,uc,dc), and Higgs (H)

fields under SM gauge group SU(3)c × SU(2)L × U(1)Y .

to the weak interaction since the gauge bosons of the weak interaction are massive (of

order 90 GeV). One way out of this problem is to consider the situation of a hidden

symmetry; the Lagrangian still respects the local gauge symmetry, but picks one of

all possible ground states that result from minimizing the potential for a Higgs field

as the physical vacuum which breaks the symmetry.

The spontaneous symmetry breaking is implemented by including a doublet of

scalar Higgs boson to the SM. The transformations of the quark, lepton and Higgs

fields under the SM gauge group are shown Table 1.1. In this Table, all fermion

fields are left handed and the generation index i runs from 1 to 3. Let us study the

spontaneous symmetry breaking of the gauge group SU(2)L × U(1)Y to U(1)em by

2



writing down the Higgs potential for the Higgs field H:

V (H) = −µ2H†H + λ(H†H)2, µ2 > 0. (1.1)

The above potential is invariant under the SM gauge group. Minimizing the potential

V (H), one obtains

〈H〉 = 〈0|H|0〉 =
v√
2




0

1


 , (1.2)

where v = µ/
√

λ. The generator that remains unbroken is Q = T3 + Y
2
. Y refers

to the electroweak hypercharge. Q is identified as the electric charge. The unbroken

charge is easily checked by

Q〈H〉 = 0. (1.3)

The parameter Y needs to be adjusted such that the electric charges of the quarks

and the leptons come out right. In general, the broken generators correspond to

the gauge bosons that pick up mass, and the unbroken generators correspond to the

massless gauge bosons. In this case, there are three broken generators associated

with three massive gauge bosons (W+, W−, Z0), and the unbroken charge Q asso-

ciated with massless gauge boson γ (the electromagnetic field Aµ). The electroweak

symmetry breaking scale is around the masses of the gauge bosons (i.e., 100 GeV).

We can calculate the masses of electroweak gauge bosons by substituting the vacuum

expectation value (VEV) of the Higgs field from Eq.(1.2) into the following gauge

invariant kinetic term of the Higgs field:

(DµH)(DµH)† = |∂µH − ig

2
−→τ .
−→
W µH − ig′

2
BµH|2, (1.4)

where the gauge coupling constants g and g′ are associated respectively to the gauge

groups SU(2)L and U(1)Y . The masses of the electroweak gauge bosons are then

mW =
ev

2 sin θW

, (1.5)

mZ =
ev

2 sin θW cos θW

. (1.6)

3



The gauge coupling constants are parameterized in terms of an angle θW (known as

the Weinberg angle) defined as follows:

tan θW =
g′

g
, (1.7)

and e = g sin θW . The mass term of fermions cannot be added to the Lagrangian

by hand because the left-handed and the right-handed fermions transform differently

under SU(2)L ×U(1)Y . Therefore, one employs the Higgs mechanism that generates

mass to the fermions via Yukawa couplings. The Higgs field and its charge conjugate

are given respectively by

H =




H+

H0


 H̃ = iτ2H

∗ =




H∗
0

−H−


 . (1.8)

The transformation of H̃ under SU(3)c×SU(2)L×U(1)Y is (1, 2, −1). We can write

the gauge invariant Yukawa couplings as follows:

LY = Y d
ijd

cT
i H†Qj + Y e

ije
cT
i H†Lj + Y u

ij u
cT
i H̃†Qj + h.c., (1.9)

where a charge conjugation C is understood to be sandwiched between the fermion

fields. As a consequence of spontaneous symmetry breaking, LY leads to mass terms

for fermions as follows:

LY = DcT MdD + U cT MuU + EcT M eE + h.c., (1.10)

where

U =




u

c

t




, D =




d

s

b




, E =




e

µ

τ




,

U c =




uc

cc

tc




, Dc =




dc

sc

bc




, Ec =




ec

µc

τ c




. (1.11)

4



The mass matrix elements for up-and down-quarks as well as charged leptons are

given by

MF
ij =

v√
2
Y F

ij , F = u, d, e. (1.12)

Note that in the standard model the right handed neutrino does not exist. Therefore,

the neutrinos are massless. The weak eigenstates are not eigenstates of the Hamil-

tonian. In order to write the Lagrangian in terms of the Hamiltonian eigenstates

(i.e mass eigenstates), we need to diagonalize the fermion mass matrices given by

Eq.(1.12) by means of bi-unitary transformation given as:

V F
R

†
MF V F

L = MF
diag., (1.13)

where

Mu
diag. = diag(mu,mc,mt),

Md
diag. = diag(md,ms, mb),

M e
diag. = diag(me,mµ,mτ ). (1.14)

The fermion mass matrices (MF ) are in general neither symmetric nor hermitian.

but, MF †MF is hermitian and can be diagonalized as follows:

V F
L

†
MF †MF V F

L = MF †
diag.M

F
diag.. (1.15)

The mass eigenstates (D0, U0, E0, Dc
0, U c

0 , Ec
0) can be written in terms of the weak

eigenstates as follows:

D0 = V d
L

†
D, Dc

0 = V d
R

T
Dc,

U0 = V u
L
†U, U c

0 = V u
R

T U c,

E0 = V e
L
†E, Ec

0 = V e
R

T Dc. (1.16)

The charged current weak interactions for quarks are given as

Lcc =
g√
2
W †UγµD + h.c.

=
g√
2
W †U

0
VCKMγµD

0 + h.c. (1.17)

5



It is clear from the above equation that the charged current W± interactions couple

to the physical u0
j and d0

k quarks with a couplings matrix represented by

VCKM = V u
L
†V d

L =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




. (1.18)

This is called the Cabibbo-Kobayashi-Maskawa mixing matrix [2, 3]. It is a unitary

matrix that can be parameterized by three mixing angles and one CP -violation phase:

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




, (1.19)

where sij = sin θij, cij = cos θij and δ is the phase factor responsible for the violation

of CP symmetry [3]. All other phases can be removed by field redefinition. It is known

experimentally that the CKM mixing angles are small (i.e s13 << s23 << s12 << 1).

It is convenient to write down an expression for a CP -violation parameter which is

phase-convention-independent:

η = −Im(VudV
∗
ub/VcdV

∗
cb). (1.20)

Unlike the situation in the case of charged current interactions, no flavor mixings

exist for neutral current interactions of SU(2)L × U(1)Y at tree level and this has

been confirmed to a great accuracy by experiments. However, flavor changing neutral

currents (FCNC), which have been measured, but which are strongly suppressed,

can be induced by considering higher order corrections. For example, FCNC can be

induced in the process K0 ↔ K0 transition which arises from box diagrams shown

in Fig1.1. The calculation on the K0 ↔ K0 mass difference ∆mk has been done [4],

and the result is close to the experimental value of ∆mk = 3.5× 10−15 GeV. This can

be considered as a successful prediction of the SM.

6



u,c,t

W

+

W

u,c,t W

u,c,tu,c,t

_

_

d

ds

s d

ds

s

Figure 1.1: Feynman diagrams of K0 ↔ K0 induced by higher order corrections in

the SM.

1.2 Seesaw Mechanism and Leptonic Mixing Matrix

In the previous section, we have seen that SM contains left and right chiral projections

for all fermions except the neutrinos. This looks unnatural. Besides, the absence of a

right-handed neutrino from Eq.(1.9) leads to massless neutrinos. However, neutrino

experiments indicate that the neutrinos have tiny masses. The current experimental

values for neutrino masses are [7]

∆m2
21 = (7.59± 0.20)× 10−5eV2,

∆m2
32 = (2.43± 0.13)× 10−3eV2, (1.21)

where ∆m2
2,1 = m2

2 −m2
1 and ∆m2

3,2 = m2
3 −m2

2. To explain this, let us add to the

SM right-handed neutrinos (νc
i ) corresponding to each charged lepton. The νc

i fields

transform as (1,1,0) under the SM gauge group. Thus, we can write down the Yukawa

couplings for the neutrino sector as follows:

Lν
Y = Y ν

ijν
cT
i H̃†Lj + h.c. (1.22)

With a VEV of H̃†, this gives the following neutrino Dirac mass term

Lν
Y = MDνcT ν + h.c, (1.23)

where (MD)ij = Y ν
ijv/

√
2. Since the νc fields are singlets under the SM gauge sym-

metry, they can posses a gauge invariant bare mass term (Majorana mass):

Lbare =
1

2
MRνcT νc + h.c. (1.24)

7



We can write the combination of Majorana and Dirac neutrino masses as a matrix

for the (ν, νc) system as:

Mν =




0 MT
D

MD MR


 , (1.25)

where MD and MR are 3 × 3 matrices. The invariance of the right-handed neutrino

mass terms under SM gauge symmetry suggests that they can be above the weak

interaction scale. So after integrating out these heavy fields (or equivalently by finding

the eigenvalues of the matrix in Eq.(1.25)), the light neutrino masses are suppressed

by MR via:

Mν = −MT
DM−1

R MD, (1.26)

where MD should not exceed about 100 GeV. This idea, known as the seesaw mech-

anism [5], is an elegant way to explain the smallness of neutrino masses. The light

neutrino mass matrix given by Eq.(1.26) can be diagonalized as:

V T
ν MνVν =




m1

m2

m3




, (1.27)

with m1,2,3 being the tiny masses of the three light neutrinos. Now, we can write the

leptonic charge current interaction in terms of the mass eigenstates as follows:

Lcc =
g√
2
[e0γµVPMNSν0]W−µ + h.c. (1.28)

where VPMNS = V †
LVν is the leptonic mixing matrix, or the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix [6]. In general, the PMNS matrix can be written as

VPMNS =




Ve1 Ve2 Ve3

Vµ1 Vµ2 Vµ3

Vτ1 Vτ2 Vτ3




, (1.29)
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which can be parameterized in terms of three Euler angles and three phases- one

“Dirac phase” and two “Majorana phases”. The standard parametrization [7] has

VPMNS = V.P where

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




(1.30)

P =




eiα

eiβ

1




. (1.31)

Here sij = sin θij, cij = cos θij which should not be confused with the angles in

the quark sector, given in 1.19. The parameters α and β are the Majorana phases,

while δ is the Dirac phase. Present constraints on the neutrino mixing angles can be

summarized by (2σ error bars quoted)[8]

sin2 θ12 = 0.27− 0.35, (1.32)

sin2 θ23 = 0.39− 0.63, (1.33)

sin2 θ13 ≤ 0.040. (1.34)

The above data can be well represented by the tri-bimaximal mixing of the form [9]

V =




√
2
3

√
1
3

0

−
√

1
6

√
1
3
−

√
1
2

−
√

1
6

√
1
3

√
1
2




P, (1.35)

which corresponds to sin2 θ12 = 1/3, sin2 θ23 = 1/2 and sin2 θ13 = 0. No information

on the Dirac phase δ and on the Majorana phases (β, α) is known at present. There

are several thoughts to reproduce the structure in Eq.(1.35). One interesting idea

is to employ the discrete flavor symmetry A4 [10] which will be further discussed in

chapter 2.
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1.3 Shortcomings of the SM and the Need for New Physics.

The standard model is a trustful theory in the energy range of few 100 GeV. However,

things become more obscure beyond the electroweak energy scale. Understanding how

nature behaves at higher energy scales might answer many of the standard model’s

puzzles. For example, the SM has no real explanation of the different strengths of

the three gauge couplings associated with the three gauge groups. Also, there is no

reason why the fermions transform under the local gauge interactions of the SM in

the way shown in Table 1.1, except for the posteriori justification of fitting the data.

Grand unification theory (GUT) provides an understanding of the origin of the

three gauge couplings and consequently an understanding of three gauge groups. The

GUT idea is described by a unified gauge group which necessitates a single unified

gauge coupling. This unified gauge group will be broken at a certain high energy

scale (GUT scale) to the SM gauge group. Thus, strong, weak and electromagnetic

forces are described in the framework of a single grand unified theory. Moreover, if the

unified gauge group is simple, quantization of electric charge will follow automatically

because the eigenvalues of the non-abelian group generators are discrete as opposed

to the eigenvalues of the abelian U(1) group generator which are continuous. The

most popular simple non-abelian groups that are chosen as grand unification groups

are SU(5) and SO(10). We will study these GUT groups in details in sections 1.4

and 1.5.

Arbitrary Parameters

The SM has 19 arbitrary parameters. 3 gauge coupling constants (gs, g, and g′ as-

sociated respectively with SU(3)c, SU(2)L and U(1)Y ), 9 charged fermion masses,

4 quark mixing parameters, and v, λ (or equivalently to Mz, mh) and the QCD θ

parameter. Besides, if we consider the neutrino sector, there are at least 9 additional

parameters: 3 light neutrino masses, 3 mixing angles, and 3 phases (assuming Majo-

10



rana neutrinos). Thus, the SM has too many arbitrary parameters which are chosen

in order to fit the data. On the other hand, GUTs do not contain that many arbi-

trary parameters. Another advantage of GUT is that the seesaw mechanism can be

implemented naturally within SO(10) GUT, since the gauge structure requires the

existence of νc, as we will see in section 1.5.3.

Grand unification theory describes the three interactions (strong, weak, and elec-

tromagnetic) by one gauge coupling constant. However, it is known that these inter-

actions are described by three distinct gauge couplings at low energy (E ≈ 100 GeV).

So the question is how does the grand unification idea reconcile with these three

disparate couplings? This question can be answered by the suggestion [11] that the

three gauge coupling constants are scale dependent quantities, and if the hypothesis

of grand unification holds, the three gauge coupling constants of the SM will meet to

a unified value at the GUT scale MGUT . Above the scale MGUT we have one gauge

coupling described by a simple unified group. The renormalization group running

of the gauge couplings determines the GUT scale. In the SM, however, the gauge

couplings come only close to one another forming what is called the GUT triangle

as shown in Fig.1.2. This can be fixed by introducing new physics around the TeV

scale. The most promising new physics scenario is supersymmetry, which will be

further discussed below

Hierarchy Problem

Another problem that needs to be fixed is the hierarchy problem of the SM. This

problem occurs because the mass of the Higgs boson receives a quadratically divergent

loop correction given by:

m2
HSM

(phys) ' m2
HSM

+
c

16π2
Λ2, (1.36)

where m2
HSM

is the Higgs mass squared parameter in the Lagrangian and the second

term denotes the quadratically divergent loop correction. The cut-off scale Λ is in-

11



Α1
-1

Α2
-1

Α3
-1

5 10 15
0

10

20

30

40

50

60

Log
10
HΜ�GeVL

Α
-

1

Figure 1.2: The evolution of the inverse gauge couplings α−1
i in the standard model

(dashed lines) and in the MSSM (solid lines).

terpreted as the scale at which the SM ceases to be valid. Reasonable values of the

energy scale Λ at which the new physics becomes important are chosen such that

any extremely fine-tuned cancelation between the two terms on the right-hand side of

Eq.(1.36) is avoided. The physical Higgs boson mass mHSM
(phys) has to be smaller

than a few hundred GeV [12]. Therefore, reasonable values of Λ might be around

the TeV scale. A promising scenario that solves the hierarchy problem of the SM

and allows the unification of the three gauge coupling constants is supersymmetry

(SUSY). In order to avoid extreme fine-tuning, SUSY should exist above an energy

scale of order 1 TeV which is being probed at the Large Hadron Collider.

Problems in the Flavor Sector

The SM does not provide an explanation for the existence of three families of fermions,

and the observed masses and mixings of the fermions, and the smallness of the quark

mixing angles compared to the largeness of the neutrino mixing angles. These prob-

lems can be understood either through GUTs and/or by adding a family symmetry.

12



Some of the features of the fermions such as the three fold replication of fermion gen-

erations, mixing properties of the lepton sector—that is two large mixing angles and

one small mixing angle—cannot be explained successfully by GUT symmetry alone.

So in order to meet these challenges, one may consider the possibility of introducing

a flavor symmetry (family symmetry) group which is the symmetry between genera-

tions. In this case, the three known generations can be assigned to a representation of

the family group. There are many possible candidates for the family symmetry group.

Basically, we can divide them into two categories: continuous and discrete groups.

The general feature of the global continuous groups is that they lead to undesired

Goldstone bosons. On the other hand, it is suggestive to consider discrete non-abelian

symmetry because in this case there is no problem with unwanted Goldstone bosons.

Combining grand unification gauge symmetry and family symmetry (GGUT ×GFAM)

in the framework of supersymmetric theory leads certainly to new physics beyond the

SM that solves most of the standard model’s puzzles. Many grand unification models

with discrete family symmetry have been studied so far [13, 14, 15, 16]. In particular,

employing SO(10)× A4 symmetry may give the tri-bi-maximal mixings structure in

Eq.(1.35) [15].

1.3.1 Supersymmetry

Supersymmetry is a symmetry that relates bosons and fermions. It predicts new

yet to be discovered superpartner states for each known particle in the SM. The SM

particle and its supersymmetric partner belong together to the same supermultiplet

which is collectively described in terms of a superfield. In this way a spin-0 boson and

a spin-1/2 fermion are described as a chiral superfield and a spin-1 vector boson and

a spin-1/2 fermion form a vector superfield. The supersymmetric extension of the SM

assumes that all quarks and leptons of the SM are accompanied by their scalar su-

perpartners which are called respectively squarks and sleptons, and the gauge bosons

13



with their fermionic superpartners which are called gauginos. This supersymmetric

extension of the SM is called Minimal Supersymmetric Standard Model (MSSM), it is

minimal in the sense that it contains the smallest number of new particle states. The

SM contains one Higgs doublet field to achieve electroweak symmetry breaking while

the MSSM contains two Higgs doublets Hu and Hd which give mass to the up-type

and down-type quarks respectively. Their superpartners are called higgsinos. This

setup helps in solving the quadratic divergence correction of the Higgs mass due to

the fact that the loops involving particles are canceled by the loops involving their su-

perpartners. Another feature in favor of the MSSM is that the gauge couplings unify

around 2× 1016 GeV as shown in Fig 1.2. These features motivate the consideration

of supersymmetric GUTs.

Unlike the SM where the baryon and lepton numbers are conserved automatically,

there are additional superpotential terms in the case of MSSM that are consistent

with SU(3)c × SU(2)L × U(1)Y symmetry, which break the lepton and baryon num-

bers. These terms are dangerous since the lepton and baryon violating processes

are strongly constrained by experiment, especially from proton stability. These un-

wanted terms can be prohibited by requiring the superpotential to be invariant under

R-parity defined by,

R = (−1)3(B−L)+2s, (1.37)

where s is the spin of the field, and B and L are the baryon and the lepton number

respectively. For example B = 1/3(−1/3) for quark (antiquark) superfields, L =

1(−1) for lepton (antilepton) superfields, and zero for the Higgs and gauge superfields.

Supersymmetry Breaking

The supersymmetry algebra tells us that the particle and its superpartner acquire

the same mass. However, this is not consistent with experiment since for instance no

spin-0 particle has been detected so far with the same mass as the electron. Therefore,
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Figure 1.3: These three diagrams contribute to K0 ↔ K0 mixing in supersymmetric

models. They put constraints on the off-diagonal elements of the soft breaking scalar

down mass matrix that is indicated by ×.

SUSY must be broken somewhere above the energy scale that has been probed so far.

SUSY should preferably be broken spontaneously. In other words, the generators of

the SUSY does not annihilate the vacuum. Although many models of SUSY breaking

have been proposed, there is no complete theory where this is achieved satisfactorily

at present. In order to maintain the remarkable cancelation of quadratic divergencies

in field theoretical models, SUSY should be broken softly in the effective low energy

theory. This can be done by assuming that the outcome of symmetry breaking is

extra terms (soft terms), such as additional masses for the scalars. The common

philosophy of all the scenarios of SUSY breaking is that SUSY is broken in a “hidden

sector” of particles which is decoupled from the visible sector of MSSM particles. The

effects of SUSY breaking in the hidden sector are communicated to the visible sector

by messengers, resulting in the MSSM soft SUSY breaking terms.

The soft SUSY breaking terms imply flavor mixing. For example, suppose m̃2
Q is

not diagonal in the soft term d̃†Li(m
2
Q)ij d̃Li. In this case, the effective Hamiltonian

for K0 ↔ K0 mixing gets contributions from the box diagrams involving squarks and

gluinos, such as the ones shown in Fig.1.3. The experimental value of ∆mK puts

constraints on the soft SUSY breaking mixing of the three diagrams in Fig1.3. The

most striking limit applies to the diagram in Fig1.3(b) [28]:

|Re[m̃2
s∗RdR

m̃2
s∗LdL

|1/2

m̃2
q

<
m̃q × 10−3

500 GeV
, (1.38)
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where m̃q is the average mass of squarks m̃d and m̃s and the gluino mass has been

assumed equal to the average squark mass. Thus, in order to suppress the off-diagonal

entries of m̃2
Q, we need to assume the masses of the squarks are nearly degenerate.

This can be achieved by adding a non-Abelian discrete symmetry group. This can be

done either by grouping the first two families into an irreducible doublet [29] or by

grouping all three families into an irreducible triplet of the flavor group. For example,

the group could be A4, which is the smallest discrete group that contains a triplet in

its irreducible representations.

Another natural solution to the flavor violation problem is obtained by adopting

gauge-mediated supersymmetry breaking (GMSB) scenario [59, 60, 61]. In this sce-

nario the supersymmetry breaking is transmitted to the visible sector by SM gauge

interactions. In this case the soft masses are generated through loops such that the

scalar masses with the same gauge quantum number are automatically degenerate.

A model based on the GMSB scenario will be discussed in chapter 4.

1.3.2 Discrete Flavor Symmetry A4

The non-abelian finite group A4 is the symmetry group of even permutations of four

objects. It has twelve elements and four irreducible representations (irreps): 1, 1′, 1′′,

3s, and 3a with the multiplication rule

3× 3 = 1 + 1′ + 1′′ + 3s + 3a. (1.39)

For example, let (a1, a2, a3), and (b1, b2, b3) transform as triplets under A4, then the

multiplication of 3× 3 can be decomposed as

a1b1 + a2b2 + a3b3 ∼ 1, (1.40)

a1b1 + ω2a2b2 + ωa3b3 ∼ 1′, (1.41)

a1b1 + ωa2b2 + ω2a3b3 ∼ 1′′, (1.42)

(a2b3 + a3b2, a3b1 + a1b3, a1b2 + a2b1) ∼ 3s, (1.43)
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(a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) ∼ 3a, (1.44)

where ω = exp[2πi/3]. One advantage of the discrete A4 symmetry is that it is the

smallest group that contains a 3-dimensional irrep so that the three generations of

the fermions can be accommodated within this triplet. Another advantage is that the

FCNC problem might be solved if one considers the combinations of A4 and SUSY

SO(10) GUT. This is due to the fact that the SO(10)×A4 symmetry allows us to write

down one universal mass term for the three generations of sfermions. Consequently,

the degeneracy of sfermions is satisfied.

1.4 Minimal SUSY-SU(5)

We have pointed out previously that the running behavior of the three gauge couplings

with energy scale indicates that they should unify at some point at a high energy

scale. This unification of the gauge couplings does not occur exactly in the SM.

However, in the case of the MSSM, the unification occurs with impressive precision

at MGUT ≈ 2 × 1016 GeV. This strongly suggests that MSSM might be remnant

of some sort of supersymmetric grand unification theory. Therefore, it is logical to

propose a larger gauge group associated with one gauge coupling constant. The

first approach of finding a simple gauge group that contains the SM group was the

Georgi-Glashow SU(5) model [17]. In this section we will discuss this SU(5) model,

its predictions and its experimental implications because it is considered the simplest

example of grand unification models and it is a subgroup of SO(10).

1.4.1 SU(5) Matter Fields

The SM gauge group has rank 4. Hence the rank of the grand unification group

should be at least 4. There are many possibilities for a rank 4 simple group with

one gauge couplings. Among all possibilities, SU(5) is found to be the only choice

that meets all the required features: It has complex representation for fermions and it
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accommodates both integer and fractionally charged fermions. The 15 left-handed SM

fermions for one family can be embedded into just two irreps, the antifundamental

5F and the two-index antisymmetric tensor 10F . This can be seen by writing the

decomposition of 5F and 10F irreps of SU(5) under SU(3)c × SU(2)L × U(1)Y as

follows:

5 = (3, 1, +2/3)⊕ (1, 2,−1),

10 = (3, 1,−4/3)⊕ (3, 2, +1/3)⊕ (1, 1, +2). (1.45)

Also, this embedding can be depicted in matrix representation as

5 =




dc1

dc2

dc3

e−

ν




, 10 =
1√
2




0 uc
3 uc

2 u1 d1

−uc
3 0 uc

1 u2 d2

−uc
2 −uc

1 0 u3 d3

−u1 −u2 −u3 0 e+

−d1 −d2 −d3 −e+ 0




. (1.46)

This assignment is free of chiral anomalies. In the SUSY version of SU(5), these

multiplets are promoted to superfields.

1.4.2 Higgs Sectors and Yukawa Couplings in the minimal SUSY-SU(5)

In order to test the viability of minimal SUSY SU(5), let us first construct the

invariant Yukawa couplings by writing down the SU(5) decomposition of all possible

multiplications of the irreps 5 and 10.

5× 5 = 10 + 15, (1.47)

10× 10 = 5 + 45 + 50, (1.48)

5× 10 = 5 + 45. (1.49)

It is easy to check that the MSSM superfield Higgs doublet Hu is contained in 5 and 45,

and Hd in 5 and 45. Therefore, two quintets 5H and 5H are introduced minimally in
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the SUSY-minimal SU(5). These two quintets are responsible for breaking SU(3)c×
SU(2)L × U(1)Y to SU(3)c × U(1)em. Based on the above analysis, the invariant

superpotential that contains only the Yukawa couplings is given as follows:

f̂ 3 Y u
αβεijklm10ij

Fα10kl
Fβ5m

H + Y d
αβ10ij

Fα5Fiβ5Hj. (1.50)

The mass matrices generated by the VEVs of the the SU(2)L doublets in both 5H

and 5H then read

Md = ML = Y d〈5H〉, Mu = Y u〈5H〉. (1.51)

Since the first term in Eq.(1.50) contains two identical 10s, the up-quark Yukawa

couplings are symmetric in the generation indices, i.e., Mu = M>
u . Diagonalization

of the down quarks and charged leptons mass matrix leads to

me = md mµ = ms mτ = mb. (1.52)

Note that the above mass relations are only valid at mass scales where the SU(5) is

a good symmetry. But the light fermion masses are observed at low energy scale of

order (2-5) GeV. Therefore, the above mass relations should be extrapolated to low

energy scale. The results are the following: the first two mass relations in Eq.(1.52)

are violated by experiment, while the third one is considered as a successful prediction

of minimal SUSY SU(5). One way to correct the bad mass relations for the first and

second generations is to employ the 45H [18]. In this case, the price that we have to

pay is including several Higgs multiplets.

It is obvious that the Higgs multiplets 5H and 5H do not break SU(5) to SU(3)c×
SU(2)L × U(1)Y since they do not contain a SM singlet. The smallest dimensional

Higgs representation that contains the SM singlet is the adjoint of SU(5). The adjoint

Higgs representation 24H decomposes under SU(3)c × SU(2)L × U(1)Y to

24H = (1, 1, 0)⊕ (8, 1, 0)⊕ (1, 3, 0)⊕ (3, 2,−5/6)⊕ (3, 2, +5/6), (1.53)
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and the (1,1,0) component can acquire a GUT-scale VEV. Equivalently, one can show

[19]

〈24H〉 = σ




2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 −3 0

0 0 0 0 −3




. (1.54)

The two Higgs fields 24H and 5H develop hugely different VEVs (i.e., 〈24H〉 of

order MGUT ≈ 1016 GeV and 〈5H〉 of order MW ≈ 102 GeV). Consequently, this

leads to a huge hierarchy of the gauge symmetry. In non-SUSY model, the param-

eters at tree level of the Higgs potential should be fine-tuned in order to maintain

this huge hierarchy. On the other hand, this fine-tuning gets worse via radiative cor-

rections. However, in the minimal SUSY- SU(5), once the parameters of the Higgs

superpotential

f̂ 3 m55H5H + m24Tr[24H24H ] + λ1Tr[24H24H24H ] + λ25H24H5H (1.55)

are fine-tuned properly at tree level, the SUSY non-renormalization theorem of Gris-

aru, Rocek and Siegel [67] ensures that it does not get upset by radiative corrections,

since according to this theorem these parameters do not receive either finite or infinite

corrections.

1.4.3 Gauge Sector of Minimal SU(5)

The adjoint representation of SU(5) has the dimension 52− 1 = 24. Hence, there are

24 gauge bosons associated with SU(5). They decompose under SU(3)c × SU(2)L ×
U(1)Y as given in Eq.(1.53). The gauge bosons of SM are contained within 24 gauge

bosons of SU(5) as follows: (8, 1, 0) are SU(3)c gluons , (1, 3, 0) are the three SU(2)L

vector fields W , and (1, 1, 0) is the U(1) B-field. The remaining 12 gauge bosons,
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which transform under the SM gauge group as (3, 2, 5
3
) and (3∗, 2,−5

3
) are called

lepto-quark gauge bosons denoted respectively by X and Y . These gauge bosons can

be collectively described by a 5 × 5 matrix form, Aµ = Aaλa/2, where λa are the

SU(5) generators (a runs from 1 to 24) and the summation over index a is implied.

As we have discussed before, the Higgs phenomenon can provide masses to the

gauge bosons by developing a VEV to the Higgs field. This can be seen by writing

down the invariant kinetic term of the Higgs fields as follows

LKE = Tr[(Dµ24H)(Dµ24H)∗]. (1.56)

Here the covariant derivative of the adjoint representation 24H is defined as follows:

Dµ24H = ∂µ24H + ig5[Aµ, 24H ], (1.57)

where [Aµ, 24H ] = Aµ24H − 24HAµ, and g5 is the SU(5) gauge coupling. The factor

g2
5Tr[Aµ, 〈24H〉]2 contains the mass term for the gauge bosons. Since 24H commutes

with the generators of the SM gauge group, the gauge bosons of the SM (Wr, B, Gα
β)

do not pick up mass, while the X and Y gauge bosons acquire masses according to

MX = MY = 5
√

2g5σ (1.58)

1.5 Minimal SUSY-SO(10)

We have seen that the SM fermions can be accommodated within two irreducible

representations of the simplest unified model based on SU(5) gauge symmetry. This

leads to the unification of the Yukawa couplings of the down quarks and charged lep-

tons. On the other hand, a single 16-dimensional chiral spinor of SO(10) is enough to

accommodate all the SM model fermions of one generation. This brings the follow-

ing benefits: First, the right-handed neutrino is automatically accommodated within

the same multiplet. Second, the number of independent parameters of the effective

fermion masses and mixing matrices can be reduced considerably. These observations

motivate us to consider the SO(10) gauge symmetry.
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1.5.1 Matter Fields in SO(10) GUTs

The reducible spinorial representation of SO(10) splits into a pair of spinorial repre-

sentations 16 and 16 under a chiral projection operator, for details see Ref. [21]. All

the femions reside in only one chirality of a SO(10) spinorial representation (i.e, 16-

dimensional representation of SO(10)). In order to see how the SM fermions can be

fitted within a 16-dimensional irrep of SO(10), let us write down its decompositions

under SU(3)c × SU(2)L × U(1)Y :

16 = (3, 2, +1/3)⊕ (1, 2,−1)⊕ (3, 1,−4/3)

⊕ (3, 1, +2/3)⊕ (1, 1, +2)⊕ (1, 1, 0), (1.59)

where the quantum numbers on the right-hand side (except the last one) are those

for the SM fermions (see Table 1), while the last one is the right-handed neutrino.

Equivalently, the 16-dimensional irrep of SO(10) can be written in terms of the SU(5)

basis as follows:

16 = 5⊕ 10⊕ 1, (1.60)

where the matrix representations of the irreducible representations of SU(5) (5 and

10) are given in Eq.(1.46). The right-handed neutrino (or equivalently νc) is assigned

to the singlet of SU(5).

1.5.2 The Higgs Fields and Yukawa Couplings in SO(10) GUTs

The Higgs sector of any realistic SO(10) model should be chosen appropriately in

order to satisfy the following requirements. First, the Yukawa couplings should

be invariant under SO(10) and compatible with the current data on the quark

and the lepton masses and mixings. Second, the Higgs sector should lead to the

proper spontaneous symmetry breaking of SO(10) gauge symmetry down to the

SU(3)c × SU(2)L × U(1)Y of the MSSM. The invariant Yukawa couplings follow
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from the decomposition of

16⊗ 16 = 10⊕ 126⊕ 120. (1.61)

Thus, there are three types of SO(10) Higgs multiplets that can give masses to the

matter fermions: the 10-dimensional vector representation 10H , the 126-dimensional

5-index antisymmetric tensor 126H and the 120-dimensional three-index antisymmet-

ric tensor 120H . Then, the most general Yukawa couplings are

WY = Y αβ
10 16Fα16Fβ10H + Y αβ

12016Fα16Fβ120H + Y αβ
12616Fα16Fβ126H . (1.62)

The good feature of the 10-dimensional Higgs multiplet of SUSY-SO(10) is that 10H

contains the SUSY-SU(5) Higgs multiplets 5H and 5H that give masses to the up-type

and the down-type quarks respectively. The fermion masses are generated by giving

VEVs to the Higgs fields in Eq.(1.62). The fermion masses with Higgs field belonging

to the 10-dimensional irrep can be calculated by writing the irreps of SO(10) matter

and Higgs fields in terms of SU(5)× U1 basis as [22]:

10 = 5(2) + 5(−2), 16 = 1(−5) + 5(3) + 10(−1). (1.63)

where the numbers in the bracket are quantum numbers of U1. Then we construct

the invariant combinations of SU(5)× U1 multiplets as

Y αβ
10 1Fα(−5)5Fβi(3)5j

H(2) + Y αβ
10 εijklm10ij

Fα(−1)10kl
Fβ(−1)5m

H(2)

+ Y αβ
10 5Fαi(3)10ij

Fβ(−1)5Hj(−2). (1.64)

We remind the reader that 5F and 10F are the usual SU(5) representations of Georgi

and Glashow given in Eq.(1.46). The first line in Eq.(1.64) shows that the Dirac

neutrinos and up-quarks couple with the same Higgs multiplets 5H while the second

line tell us that the charged leptons and down quarks couple with the other Higgs

muliplets 5H . Thus,

Mαβ
d = Mαβ

e = Y αβ
10 〈5H〉 Mαβ

u = Mαβ
ν = Y αβ

10 〈5H〉. (1.65)
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The above fermion mass matrices are symmetric. Since the up and down quark mass

matrices in Eq.(1.65) can be diagonalized by the same unitary matrix, the quark

mixing matrix is an identity matrix. This can be considered as a zeroth order ap-

proximation for the CKM mixing matrix. The 120-dimensional Higgs representation

is antisymmetric under the flavor index, however it contributes to mixings between

various generations. On the other hand, the 126-dimensional is symmetric under the

flavor index and by itself would lead to the following mass relations [21]:

Me = −3Y126v
126
d = −3Md,

Mν = −3Yνv
126
d = −3Mu. (1.66)

A realistic Higgs spectrum would include, for example, 10H ⊕ 126H . In order

to achieve the spontaneous symmetry breaking of SO(10) gauge symmetry down to

SU(3)c×SU(2)L×U(1)Y a (GSM) of the MSSM, we need to consider all possible Higgs

fields that contain GSM singlet in their decomposition under the SM gauge group

such as 45H , 54H , 210H and 126H . Since SO(10) is a rank 5 group, there are many

symmetry breaking chains leading to the rank-4 GSM . The most common breaking

chains and the Higgs representation that has been used to break the intermediate

symmetries at each step are represented in Fig1.4.

In any SO(10) breaking chain, there must be a Higgs multiplet capable to break

the considered symmetry down to the subsequent one by giving a VEV to the com-

ponent that transforms as a singlet under the lower intermediate symmetry group.

Being a rank 5 group, there should be at least two Higgs fields to break SO(10) down

to the SM. One is needed to break the rank of SO(10) from 5 to 4 while the other

breaks the remnant symmetry down to the SM gauge group. There are two simple

choices of the Higgs fields that not only break the rank of SO(10) but also give a

superlarge mass to the right handed neutrino as shown in section 1.5.3. The choices

are an antisymmetric five index tensor 126H or a spinor 16H . In either case, there
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Figure 1.4: The most common breaking chains of SO(10) gauge group to the SM

gauge group (GSM)

should be a Higgs field in the conjugate representation, 126H or 16H , to go along with

it, in order to obtain D-term cancelation and consequently maintain the invariance

of supersymmetry down to the electroweak scale. Breaking the rank of SO(10) by

either 16H or 126H leaves SU(5) unbroken because both 16H and 126H contain a

SU(5) singlet in their decomposition under SU(5) as shown below [22]:

126H = 1⊕ 5⊕ 10⊕ 15⊕ 45⊕ 50,

16H = 1⊕ 5⊕ 10. (1.67)

Therefore, a second Higgs field is needed to break SU(5) down to the SM. The

appropriate Higgs multiplets of SO(10), that can break SU(5), should contain a

24-dimensional representation with neutral U(1) charge in their SU(5) × U(1) com-

ponents (recall that the adjoint of SU(5) (24H) is used to break SU(5) to G321 of

SM). For example, the decomposition of the following Higgs multiplets 45H , 54H ,
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and 210H under SU(5)× U(1) [22]

45H = 1(0)⊕ 10(4)⊕ 10(−4)⊕ 24(0),

54H = 15(4)⊕ 15(−4)⊕ 24(0),

210H = 1(0)⊕ 5(−8)⊕ 5(8)⊕ 10(4)⊕ 10(−4)

⊕24(0)⊕ 40(−4)⊕ 40(−4)⊕ 75(0) (1.68)

makes them capable of breaking SU(5) down to the SM. There are two approaches

that have been adopted so far in order to break the SO(10) gauge group to the SM

gauge group. One uses large Higgs representations such as 210H , 126H , and 126H

[23]. Although this approach has the advantage that R parity is automatic, the

unified gauge coupling diverges in this case just above the GUT scale. On the other

hand, the other approach uses only small Higgs representations [24, 25]. This choice

of Higgs representations guarantees that the theory is perturbative up to the Planck

scale [26] and also has the potential to arise from string theory. Therefore, we shall

adopt the simplest breaking scheme; a pair of spinors 16H and 16H is used to break

the rank of SO(10) and only one adjoint 45H is used to break SU(5). The general

VEV direction of 45H required to break SU(5) gauge symmetry is given by [19]

〈45H〉 = diag(b, b, a, a, a)⊗ iτ2. (1.69)

The 〈45H〉 is proportional to the generator of B−L when b = 0 and it is proportional

to T3R when a = 0. The former VEV direction is preferred in the Dimopoulos-Wilczek

(DW) [27] mechanism in order to solve the doublet-triplet splitting problem.

1.5.3 Neutrino Masses

The existence of right-handed neutrinos is important to understand the smallness of

the neutrino mass as we have seen in the seesaw mechanism in the context of SM. The

accommodation of right-handed neutrinos within the 16-dimensional irreps of SO(10)
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indicates that the seesaw mechanism can be implemented in SO(10) models. In order

to see this, let us assume that the only source for the quark and lepton masses is the

10-dimensional Higgs representation of SO(10), causing Mu = Mν . The following

coupling

Y12616F 16F 126H , (1.70)

can be used to generate a Majorana mass term for right-handed neutrinos by giving

VEV to the SU(5) singlet component of 126H , so the combination of the Dirac and

Majorana neutrino mass terms are given by

L = νcMDν +
1

2
MRνcν, (1.71)

Here MR = Y126〈1(126H)〉 = Y126v126 and the notation p(q) refers to p of SU(5)

contained in q of SO(10). This can be written in a 2×2 mass matrix for the (ν,νc)

system as given in Eq.(1.25). If we ignore the mixing among generations, the light

neutrino masses for the three generations are given by

mνe ≈
m2

u

MR1

,

mνµ ≈
m2

c

MR2

,

mντ ≈
m2

t

MR3

, (1.72)

where we have used MD = Mu. The magnitude of the scale 〈1(126H)〉 is model-

dependent. For example, if the MSSM is a valid symmetry all the way until the GUT

scale, then v126 = MU ≈ 2×1016. It is important to point out that the assumption we

have made that the fermion masses arise only from 10H is not good, because it leads

to the undesirable relation md/ms = me/mµ. Therefore, we need additional fields, in

order to have a realistic SO(10) GUT model.

Another way to give Majorana masses to right-handed neutrinos is by using a

bilinear product of 16H . The relevant interaction is the effective nonrenormalizable
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interaction fij16i16j16H16H/M which may arise from integrating out a heavy state

with mass M. Several realistic models were published along these lines [30]. By giving

a VEV to the component of 16 in the SU(5) singlet direction, the right-handed

neutrino mass matrix is generated as follows:

MRij
= fij

〈16H〉2
M

. (1.73)

If we assume that both 16H and 16H break the rank of SO(10) at the GUT scale,

then 〈16H〉 ≈ 2 × 1016 GeV. In order to obtain the heaviest right handed neutrino

mass to be of order 2× 1014 GeV, the mass of the heavy state should be around the

Planck scale (2× 1018 GeV) [31]

One advantage of 126H is that it leads to a theory that conserves R parity auto-

matically. This is because 126H breaks B−L by two units. Plugging B−L = 2 back

into the R formula in Eq (1.36), one can see that R parity remains invariant even after

symmetry breaking. While in the case of 16H , B − L is broken by one unit, then R

parity is not conserved after symmetry breaking. However, the superpotential terms

that contain 16H and break B−L by one unit can be avoided by imposing a discrete

symmetry. Besides, as we mentioned in the previous section, the choice of 16H and

16H is inspired by string theory, and the fact that using small Higgs representations

leads to make the unified gauge coupling perturbative up to the Planck scale.
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CHAPTER 2

Fermion Masses and Mixings in a Minimal SO(10)× A4 SUSY GUT

We have seen that the GUT models unify the strong and electroweak interactions

into a simple group. The simplest GUT model is based on SU(5) gauge symmetry.

The minimal SU(5) model predicts a good mass relation for the third generation

(i.e., m0
b = m0

τ at GUT scale). However, it gives bad prediction for the first and

second generation masses (i.e., m0
s = m0

µ, m0
d = m0

e at the GUT scale). In addi-

tion, SU(5) does not naturally accommodate the right-handed neutrino. On the

other hand, SO(10) models accommodate all chiral fermions of one generation plus

a right handed-neutrino within a 16-dimensional irreducible representation (irrep).

Also, minimal SO(10) with only 10H involved in Yukawa couplings leads to the up

quark mass matrix being proportional to the down quark mass matrix, so it is consid-

ered a good zeroth order approximation for CKM mixings. Models based on SO(10)

symmetry, without including any family symmetry, were proposed to explain most of

the features of quarks and leptons [32, 33]. However, one is not really fully satisfied

with only producing the fermion masses and mixing angles without explaining why

we have three generations and without understanding the relation among generations,

such as the mass hierarchy and features of the mixing angles. For example, the fla-

vor symmetry A4 [34] can be employed to explain why the observed neutrino mixing

matrix is in very good agreement with the so called tri-bi-maximal (TBM) mixing

structure given by Eq(1.35). Thus, it may be important to consider the underlying

family symmetry. One of the best candidates for flavor symmetry is the non-Abelian

discrete symmetry A4, for the following reasons. First, it is the smallest group that

29



has a 3-dimensional irrep. Second, SUSY-SO(10)× A4 symmetry solves the FCNC

problem since the scalar fermions, which belong to the 16-irrep of SO(10) and trans-

form as a triplet under A4, have degenerate masses. Finally, it was shown that the

TBM mixing structure for the neutrinos can be obtained by imposing A4 symmetry

[34].

Several models based on the SO(10)×A4 group have been studied [14, 15, 16]. In

these models, large Higgs representations are employed. For example, in Ref.[16], the

authors employed a (126H ,3) representation, where the first (second) entry indicates

the transformation under SO(10) (A4), in order to produce the fermion masses and

mixing angles for both normal and inverted neutrino mass spectra. Besides employ-

ing the large Higgs representation 126H , the models in Refs.[14, 15] contain more

than one adjoint 45H representation. It has been shown that only one adjoint Higgs

field is required to break SO(10) while preserving the gauge coupling unification [35].

Also, using large Higgs representations like 126H leads to the unified gauge coupling

being nonperturbative before the Planck scale, which might be hard to obtain from

superstring theory [36]. Therefore, the purpose of this chapter is to construct an

SO(10)×A4 model in which SO(10) is broken to the standard model (SM) group in

the minimal breaking scheme. This means using only a spinor-antispinor (16H ,16H)

to break the rank of SO(10) from five to four, and the right-handed neutrino gets a

heavy mass from the antispinor Higgs field (16H). Then one adjoint representation

45H is used to break the group all the way to the SM group. Recently, a numerical

analysis for quark and charged lepton masses and mixings based on nonsupersymmet-

ric SO(10) without flavor symmetry was done [33]. The authors did not include the

neutrino sector in the numerical fitting. Their result for the atmospheric angle was

sin θatm = 0.89. However, as this work shows, when the neutrino sector is included,

not only is the result a better fit for the atmospheric angle sin θatm = 0.776, but the

known light neutrino mass differences are also accommodated.
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This chapter is organized as follows. In section 2.1, a general structure of the

fermion mass matrices for the second and third generations is constructed. Then,

based on that structure, the fermion mass hierarchy and relations are explained.

In section 2.2, it is shown that introducing several 10-plets of matter fields to the

model leads to the doubly lopsided structure which produces large neutrino mixing

angles and small quark mixing angles simultaneously [37]. Then, some analytical

expressions for quark masses and mixing angles at the GUT scale are derived in

a certain approximation on the model parameters. In Sec 2.3, an exact numerical

analysis is done to find the outputs at the GUT scale. To get predictions of fermion

masses and mixings at low scale, the quark masses and mixings at the GUT scale will

be run to the low scale by using renormalization group equations. section 2.4 shows

how to get a suitable right-handed neutrino mass structure that gives the correct fits

for the atmospheric angle after adding the charged lepton contribution.

2.1 Fermion Mass Structure in SO(10)× A4 Symmetry

In this section, the renormalizable Yukawa couplings of the SM fermions with the extra

spinor-antispinor matter fields are considered as a concrete example of the model. The

known matter fields of the SM (quarks and leptons) plus the right handed neutrino

are contained in the three spinors (16,3). The ordinary fermions, 16i, do not couple

with 45H in the minimal SO(10). As a result, some of the predictions of the minimal

SO(10) such as mµ = ms and mc/mt = ms/mb will follow; these are badly broken in

nature. Therefore, extra heavy fermion fields must be introduced in order to allow

the 45H to couple directly with the quarks and leptons of the standard model. The

transformation of the ordinary fermions and the extra matter fields under A4 and

the additional symmetry Z2 × Z4 × Z2 are summarized in Table 2.1. Let us consider

first the invariant superpotential W1 under the assigned symmetry that contains the
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Figure 2.1: This figure shows a diagrammatic representation of the couplings in the

superpotential W1.

coupling of ordinary fermions with the spinor-antispinor matter fields.

W1 = b116i1611Hi + b216i1621
′
Hi + Ω16116345H + a16316210H

+M1161161 + M2162162 + M3163163. (2.1)

Table 2.2 summarizes the transformation of the Higgs fields that are needed to achieve

a minimum breaking scheme as well as the Higgs singlets that are needed to break the

A4 symmetry. Although in this model, the structure in Eq.(2.1) does not include the

Yukawa term 16i16i10H which is forbidden by the discrete symmetry Z2 × Z4 × Z2,

the ordinary standard model fermions get their masses through their coupling with

heavy extra fields. This is similar to how the light neutrinos get their masses through

coupling with the heavy right-handed neutrinos in the known see-saw mechanism.

The coupling terms in the superpotential W1 can be represented diagrammatically as

shown in Fig.2.1. After integrating out the heavy states, the approximate effective

operators can be read from the diagram, i.e.,

Wij ≈
∑

ij

16i16j〈45H〉〈10H〉〈1Hi〉〈1′Hj〉
M1M2M3

. (2.2)

The VEVs of the Higgs fields can be written down in a general form as

〈45H〉 = ΩQ, (2.3)

〈1Hi〉 =




ε1

ε2

ε3




, (2.4)
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SO(10) 16i 161,161 162,162 163,163 1c
i

A4 3 1 1 1 3

Z2 × Z4 × Z2 +,+,+ +,-,+ -,+,+ +,+,- +,+,+

SO(10) 10i 10′i 10′′i 10′′′i 1i

A4 3 3 3 3 3

Z2 × Z4 × Z2 +,i,+ +,−i,+ +,i,- +,−i,- +,−i,+

Table 2.1: The transformation of the matter fields under SO(10)×A4 and Z2×Z4×Z2.

〈1′Hi〉 =




s1

s2

s3




, (2.5)

〈5(10)〉 = vu, 〈5(10)〉 = vd. (2.6)

Here the notation 〈p(q)〉 refers to a p of SU(5) contained in a q of SO(10). The Q from

Eq.(2.3) is a linear combination of SO(10) generators. One can redefine, without loss

of generality, the light fermion states as

161ε1 + 162ε2 + 163ε3 = ε16′3,

161s1 + 162s2 + 163s3 = S(16′2sθ + 16′3cθ), (2.7)

where ε =
√

ε2
1 + ε2

2 + ε2
3 and S =

√
s2
1 + s2

2 + s2
3. In terms of the redefined light

fermion states, after dropping the prime notation and plugging in the VEVs, one gets

W0 ≈ ΩεS〈10H〉
M1M2M3

(163162Q(163)sθ + 163163Q(163)cθ). (2.8)

In general, the above effective operator can be written in terms of quark and lepton

fields as

WF ≈ ΩεS〈10H〉
M1M2M3

(F3F
c
2QF sθ + F c

3F2QF csθ + F3F
c
3 (QF + QF c)cθ). (2.9)

Here F is a general notation for up quarks (U), neutrinos (N), charged leptons (L),

and down quarks (D). The quantity QF (QF c) refers to the assigned charge of the

33



left-handed fermion (charge conjugate of the right-handed fermions) after breaking

the SO(10) group down to the SM group. The unbroken charge Q can be written as

a linear combination of two generators that commute with SU(3)c×SU(2)L×U(1)Y

as:

Q = 2I3R +
6

5
δ(

Y

2
), (2.10)

where I3R is the third generator of SU(2)R and Y is the hypercharge of the Abelian

U(1) group. The charge Q for different quarks and leptons is given by.

Qu = Qd =
1

5
δ, Quc = −1− 4

5
δ, Qdc = 1 +

2

5
δ,

Ql = Qµ = −3

5
δ, Qlc = 1 +

6

5
δ, Qνc = −1. (2.11)

Eq.(2.9) can be expressed in the following matrix form:

WF ≈
(

F c
1 F c

2 F c
3

)
(
ΩεS〈10H〉
M1M2M3

)




0 0 0

0 0 QF sθ

0 QF csθ (QF + QF c)cθ







F1

F2

F3




. (2.12)

Some factors that arise from doing the algebra exactly should be included in the above

mass matrix as we are going to see later. Finding these factors that we have assumed

to be of order one is important in the flavor violation analysis. The first feature of

the general mass matrix of the light fermions in Eq.(2.12) is an explanation for the

mass hierarchy between the second and third generations in the limit sθ → 0. It is

remarkable that a relation among generations is related to the vacuum alignment of

the A4 Higgs.

Another feature of the above light fermion mass matrix m0
b = m0

τ is obtained

through MD33 = ML33, which follows from the relation Qdc + Qd = Qlc + Ql. This

relation occurs because both down quarks and charged leptons get their masses from

the same Higgs.

A further consequence of the light fermion mass structure is that m0
s 6= m0

µ. This

inequality relation follows from m0
µ/m

0
s = L32L23/D32D23 = QlcQl/QdcQd, which
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SO(10) 10H 45H 16H 16H 1Hi 1′Hi 1′′Hi 1′′′Hi

A4 1 1 1 1 3 3 3 3

Z2 × Z4 × Z2 -,+,- +,-,- +,−i,+ +,−i,+ +,-,+ -,+,+ +,+,- +,i,+

Table 2.2: The transformation of the Higgs fields under SO(10)×A4 and Z2×Z4×Z2.

is not necessarily equal to 1. This leads to the following question: What VEV

direction should be given to 45H in order to obtain the Georgi-Jarlskog relation

|m0
µ| = 3|m0

s|? There are two choices, either δ → 0 or δ → −1.25. The former

choice gives the unwanted relation (m0
c/m

0
t )/(m

0
s/m

0
τ ) → 1, while the latter leads to

(m0
c/m

0
t )/(m

0
s/m

0
τ ) → 0. Thus, a good fit for δ should be around −1.25.

2.2 Extension to the First Generation and Doubly Lopsided Structure

In this section, vector 10-plet fermions are added to the model to generate masses

and mixings of the first generation. These vector multiplets do not contribute to the

up-quark mass matrix since 10-plets do not contain a charge of (±2/3). Therefore,

the up-quark matrix is still rank 2, and this is consistent with m0
u

m0
t
≈ 10−5 being much

smaller than
m0

d

m0
b
≈ 10−3 and m0

e

m0
τ
≈ 0.3× 10−5. First, I will show how the model leads

to the doubly lopsided structure by employing these vector multiplets; then some

analytical expressions for masses and mixing angles of fermions at the GUT scale will

be derived. Let us first consider the invariant couplings under the assigned symmetry,

which can be read from the Feynman diagram in Fig.2.2. The allowed couplings in

the superpotential W2 are

W2 = 16i10i16H + M1010i10′i + h′ijk10′i10′j1Hk + hijk10i10j1Hk. (2.13)

The important point is that Fig.2.2 gives a flavor-symmetric contribution to the down-

quark and charged lepton mass matrices. In order to understand this, recall that the

general product of three triplets—(a1, a2, a3), (b1, b2, b3), and (c1, c2, c3)—that
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Figure 2.2: This figure leads to the flavor symmetric contribution to the down quarks

and charged leptons.

transform as a singlet under A4 is given by

h1(a2b3c1 + a3b1c2 + a1b2c3) + h2(a3b2c1 + a1b3c2 + a2b1c3). (2.14)

The third term of Eq.(2.13) gives a symmetric contribution since there are two iden-

tical 10-plets. The last term in Eq.(2.13) has been ignored by assuming the Yukawa

couplings hijk to be very small. The contribution of Fig.2.2 to the mass matrices of

the down quarks and charged leptons, after integrating out the extra vector multiplets

is then

M s
L = M s

D ∝




0 c12 c13

c12 0 c23

c13 c23 0




, (2.15)

where c12, c13, and c23 are proportional to ε1, ε2, ε3, respectively. To obtain the desired

fermion mass structure (the doubly lopsided structure, which is going to be explained

later in this section), other couplings need to be included by employing four vector

10-plets plus adding another Higgs singlet 1′′iH to the model (their transformations

under the assigned symmetry are shown in Tables 2.1 and 2.2). The purpose of

these couplings is to give a flavor-antisymmetric contribution to the down-quark and

charged lepton mass matrices. Since the adjoint of SO(10) (45H) is an antisymmetric

tensor which changes its sign under the interchange 10′i ↔ 10′′′i , one can consider

employing the Yukawa coupling 10′′′i 10′i45H . Also, due to the fact that when we write
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Figure 2.3: This figure leads to the flavor-antisymmetric contribution to the down

quarks and charged leptons.

the SO(10)-vectors in the SU(5) basis such as 10i = 5i + 5i, the charged lepton and

down quark contents of 5i or 5i have different chiralities, the structures of matrices ML

and MD therefore have opposite signs [look at the mass structures in Eqs.(2.18-2.19).

It is important to emphasize that the minimum Higgs breaking scheme assumption

does not allow us to add another adjoint to the model. Therefore, the same adjoint

45H Higgs representation that breaks the SO(10) group to the SM group is going

to be used. Additional couplings to the previous superpotential can be read from

Fig.2.3, i.e.,

W3 = 10′i10′′j 1
′′
Hk + m10′′i 10′′′i + 10′′′i 10′i45H , (2.16)

where 〈45H〉 has been defined previously. The VEV of the Higgs singlet 1′′H is given

below:

〈1′′H〉 =




δ1

δ2

δ3




. (2.17)

After integrating out the heavy states, the following contribution to the ML and MD

is obtained:

MA
L ∝




0 −δ3Ql δ2Ql

δ3Ql 0 −δ1Ql

−δ2Ql δ1Ql 0




, (2.18)
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MA
D ∝




0 δ3Qdc −δ2Qdc

−δ3Qdc 0 δ1Qdc

δ2Qdc −δ1Qdc 0




, (2.19)

where the overall constant has been absorbed in the redefinition of δ1, δ2, and δ3.

Equations (2.18-2.19) show that the off-diagonal elements of MA
D (MA

L ) are propor-

tional to Qdc (Ql). This is because 5i(10) contains, in its representation, the charge

conjugation of a color triplet of the left-handed down quarks dc
Li and the left-handed

charged leptons eLi. The full tree-level mass matrices, which are obtained by adding

the three superpotentials W1 + W2 + W3, have the following forms:

ML = m0
d




0 c12 + 3δ3(
−1+α

5
) −δ2α + ζ

c12 − 3δ3(
−1+α

5
) 0 δ1α + β

−3s(−1+α
5

)

ζ − δ2
6−α

5
δ1(

6−α
5

) + β 1

+s(−1+6α
5

)




, (2.20)

MD = m0
d




0 c12 + δ3(
3+2α

5
) −2δ2(

3+2α
5

) + ζ

c12 − δ3(
3+2α

5
) 0 2δ1(

3+2α
5

) + β

+s(−1+α
5

)

ζ s(3+2α
5

) + β 1




, (2.21)

MU = m0
u




0 0 0

0 0 (1−α
5

)s

0 (1+4α
5

)s 1




, (2.22)
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MN = m0
u




0 0 0

0 0 (−3+3α
5

)s

0 s 1




, (2.23)

the convention being used here is the left-handed fermions multiplied from the right.

The parameters of the model have been defined as follows:

ζ = c13 + δ2Qdc ,

β = c23 + δ1Qdc ,

δ = −1 + α, (2.24)

s =
sθ

(3
5
δ + 1)cθ

.

The above fermion mass structure has eight parameters. If α goes to zero, the fermion

mass matrices in Eqs.(2.20-2.21) go to the SU(5) limit (m0
b = m0

τ , m0
s = m0

µ, m0
d =

m0
e). To avoid the bad prediction of SU(5) for lighter generations, a good numerical

fitting for α should deviate from zero. On the other hand, to keep the good SU(5)

prediction for the third generation, the parameter α should satisfy α << 1. If δ1 and

δ2 are of order 1 and the other model parameters are very small (β, ζ, α, δ3, c12, s <<

δ1, δ2), the model leads to the doubly lopsided structure. To see this clearly, let us go

to the limit where the small parameters are zero (except s). So the MD and ML go

to the following form:

ML = MT
D = m0

d




0 0 0

0 0 (3s
5
)

−δ2
6
5

(−s
5

) + δ1(
6
5
) 1




. (2.25)

In diagonalizing ML of Eq.(2.25), the large off-diagonal elements δ1 and δ2 that appear

asymmetrically in MD and ML must be eliminated from the right by a large left-

handed rotation angle θsol in the 1-2 plane, where tan(θsol) = − δ2
δ1

. The next step of

diagonalization is to remove the large element σ ≈ (δ2
1 + δ2

2)
1
2 that has been produced
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after doing the first diagonalization, where the (3,2) element of the matrix in Eq.(2.25)

is replaced by σ. This can be done by a rotation acting from the right by a large

left-handed angle θ23 in the 2-3 plane, where tan(θ23) ≈ −σ. On the other hand,

there are no corresponding large left-handed rotation angles in diagonalizing MD since

ML = MT
D. However, the large off-diagonal elements in MD can be eliminated by large

right-handed rotation angles acting from the left on the MD in Eq.(2.25), while the

left-handed rotation angles are small. This explains how the doubly lopsided structure

leads to small CKM mixing angles and large neutrino mixing angles simultaneously.

If the parameters c12, δ3, and ζ are zero, analytical expressions can be written down

for the ratios of quark and lepton masses of the second and third generations, Vcb,

and neutrino mixing angles (tan θ12 and tan θ23) in terms of δ1, δ2, s , α, and β:

m0
c

m0
t

=
s2(1− α)(1 + 4α)

25
,

m0
s

m0
b

=
−2(3 + 2α)(β + s(3+2α

5
))

√
δ2
1 + δ2

2

5(1 + 4
25

(3 + 2α)2(δ2
1 + δ2

2))
,

m0
µ

m0
τ

=

√
(−3s

5
(−1 + α) + δ1α + β)2 + δ2

2α
2
√

(δ2
1 + δ2

2)(6− α)

5(1 + (6−α)2

25
(δ2

1 + δ2
2))

, (2.26)

V D
cb =

β + s(3+2α)
5

(1 + 4
25

(3 + 2α)2(δ2
1 + δ2

2))
,

V U
cb =

−s(1 + 4α)

5
,

tan θ12 =
δ2(

6−α
5

)

δ1(
6−α

5
) + s(−1+6α

5
) + β

,

tan θ23 = −(
6− α

5
)
√

δ2
2 + δ2

1.

These expressions are derived by using the approximation α, s, β << δ1, δ2, and are

useful for fitting the data. The best fit for the data is obtained by setting tan θ23 = −2

and tan θ12 = 0.68, which correspond to θ23 = −63o and θ12 = 34o. The central value

of the atmospheric angle is around 45o. In order to bring 63o close to the central

value, the neutrino sector is required to be included as shown in Sec 2.5. Also, it will

be shown that the contribution of the neutrino sector to the solar angle is small.
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2.3 Numerical Results

The model can be shown to be concrete by giving numerical values to the parameters

of the model, and producing the six mass ratios of quarks and leptons, CKM mixing

angles (Vus, Vub, and Vcb), the CP violation parameter η = −Im(VubVcs/VusVcb), and

neutrino mixing angles (sin θ12, and sin θ13). The ten parameters (δ1, δ2, δ3, α, β,

s, ζ, c12, m0
d, and m0

u) appearing in Eqs(2.20-2.23) are in general complex. Five

phases of the complex parameters can be removed by redefining the phases of the

quark and lepton fields. Then, we have ten real parameters and five phases in order

to fit the 16 quantities appearing in Table 2.3. However, the best numerical fit is

obtained when two parameters (δ3, c12) are complex while the others are real. If

δ1 = −1.302, δ2 = 1.0142, δ3 = 0.015 × e4.95i, α = −0.05801, s = 0.29, ζ = 0.0105,

c12 = −0.00153e1.1126i, and β = −0.12303, the following excellent fit at the GUT scale

is obtained : m0
c

m0
t

= 0.002717,
m0

b

m0
τ

= 0.958, m0
e

m0
µ

= 0.00473,
m0

µ

m0
τ

= 0.0585,
m0

d

m0
e

= 3.63,

m0
s

m0
µ

= 0.302, η = 0.357, Vus = 0.2264, Vub = 0.0037, Vcb = 0.0362, sin θ12 = 0.569, and

sin θ13 = 0.0653. The above numerical fittings lead to sin θL
23 = 0.904, which is not

close to the central value sin θatm
23 = 0.707. One can see from the superscript L that

the mixing angle θL
23 comes only from the charged lepton contribution. To obtain

close to the expected atmospheric angle and the correct neutrino mass differences,

it is important to include the neutrino sector contribution to the atmospheric angle

by finding out a suitable right-handed neutrino structure which respects the assigned

symmetry of the model.

In order to compare with experiment, the predicted fermion masses and mixing

angles at the low energy scale need to be found. The above numerical values of the

fermion masses and mixing angles which are obtained at the GUT scale have been

evolved to the low scale in two steps. First, the running from the GUT scale to

MSUSY = 1 TeV is done by using the two-loop MSSM beta function. The running

factors denoted by ηi depend on the value of tan β. The known fermion masses and
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mixing data are best fitted with tan β = 10. The running factors for tan β = 10 are

(ηs/b, ηµ/τ , ηb/τ , ηc/t, ηcb= ηub)=(0.8736, 0.9968, 0.5207, 0.73986, 0.910335), where

ηi/j = (m0
i /m

0
j)/(mi(1TeV)/mj(1TeV)) and ηcb,ub = V 0

cb,ub/Vcb,ub(1TeV). The second

step is to evolve the fermion masses and mixing angles from MSUSY = 1 TeV to

the low scale. The renormalization factors ηi that run fermion masses from their

respective masses up to the supersymmetric scale MSUSY = 1 TeV are computed

using three-loop QCD and one-loop QED, or the electroweak renormalization group

equation with inputs αs(MZ) = 0.118, α(MZ) = 1/127.9, and sin θw(MZ) = 0.2315.

The relevant renormalization equations can be found in [38][39]. The results are (ηc,

ηb, ηe, ηµ, ητ , ηt, ηub=ηcb)=(0.4456, 0.5309, 0.8188, 0.83606, 0.8454, 0.98833, 1.0151).

By using the above renormalization factors, mτ = 1776 MeV, and mt = 172.5 GeV,

the following predictions at the low scale can be obtained: mc(mc) = 1.4 GeV,

mb(mb) = 5.2 GeV, me(me) = 0.511 MeV, mµ(mµ) = 105.6 MeV, md(2 GeV) =

7.5 MeV, ms(2 GeV) = 132 MeV, η = 0.357, Vus = 0.2264, Vub = 0.004, Vcb = 0.0392,

sin θ12 = 0.569, and sin θ13 = 0.0653.

Note that the numerical value of mb is not in perfect agreement with the exper-

imental value mb = 4.20+0.17
−0.07 GeV [40]. In order to fix this, the finite gluino and

chargino loop corrections [41] are required to be included in the down-type quark

masses (md, ms, mb). The total contributions are denoted as (1+∆d), (1+∆s), and

(1+∆b). These corrections are proportional to the supersymmetric particle spectrum:

∆b ≈ tan β

(
2α3

3π

µMg̃

m2
b̃L
−m2

b̃R

[
f(m2

b̃L
/M2

g̃ ) −f(m2
b̃R

/M2
g̃ )

]
+

λ2
t

16π2
µAt

m2
t̃L
−m2

t̃R

[
f(m2

t̃L
/µ2)−

f(m2
t̃R

/µ2)
])

, where f(x) = ln(x)/(1 − x) and the first (second) term refers to the

gluino (chargino) correction. Similar expressions exist for ∆s and ∆d, but without

the chargino contribution and b̃ → s̃, d̃. If the chargino loop corrections are neg-

ligible and md̃, ms̃, and mb̃ are degenerate, the equality relation ∆d = ∆s = ∆b

is approximately satisfied. In order to get a better fitting for down-type quark

masses, let us take ∆d = ∆s = ∆b = −0.17, which gives md(2 GeV) = 6.24 MeV,
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m0
s(2 GeV) = 109.65 MeV, and mb(mb) = 4.31 GeV. The comparison of the model

predictions and experimental data at the low scale is summarized in Table 2.3, where

the quark and charged lepton masses, the CKM mixing angles (Vub, Vus, Vcb), the

neutrino mixing angles (sin θsol, sin θatm, sin θ13), and the CP violation parameter (η)

are taken from [40]. The masses are all in GeV. Although the model here predicts

mu(GUT ) = 0, the quantity mud = (mu + md)/2 is considered in Table 2.3, where

it is assumed that the tiny up quark mass at GUT scale may be generated either by

including the coupling 16i16i10H into the model or by considering higher dimensional

operators. If mu(2 GeV) = 2.4 MeV, the model predictions of the quantities mud and

ms

mud
, which are well-known from lattice calculations [42], are given in Table 2.3. The

asterisks in Table 2.3 indicate that the model predictions of neutrino mixing angles

are obtained after including the neutrino sector in section 2.5.

2.4 Right Handed Neutrino Mass Structure

So far, the model gives excellent agreement with the known values for the CKM

mixings, the quark masses, the charged lepton masses, the CP violation parameter,

and the neutrino mixing angles (sin θ12 and sin θ13). However, the whole picture is still

not complete and the following question arises. What is the appropriate light neutrino

mass matrix (Mν = −MT
NM−1

R MN) that gives not only the correct contribution to the

atmospheric angle, but also the correct neutrino mass differences: ∆m2
21 = (7.59 ±

0.2)×10−5eV2, |∆m2
32| = (2.43±0.13)×10−3eV2 [37]? In other words, we are looking

for a suitable structure of right-handed neutrino mass matrix MR since MN is fixed.

Recall that the MNS mixing matrix is given by

UMNS = U †
LUν , (2.27)
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where UL and Uν are the unitary matrices needed to diagonalize the Hermitian lepton

matrix M †
LML and the light neutrino matrix Mν , respectively.

Mdiag†
L Mdiag

L = U †
LM †

LMLUL, Mdiag
ν = UT

ν MνUν , (2.28)

where Mν is assumed to be real and symmetric. The Dirac neutrino mass matrix MN

in Eq. (2.23) has vanishing first row and column, and the same is true for Mν . So the

matrix required to diagonalize Mν is simply a rotation in the 2-3 plane by an angle

θν , while U †
L is determined numerically from the charged lepton mass matrix. Thus,

the mixing matrix of neutrinos is given by

UMNS =




−0.14− 0.81i 0.13 + 0.55i 0.065

0.25 + 0.06i 0.34− 0.04i 0.90

−0.51 −0.75 0.42







1 0 0

0 cos θν sin θν

0 − sin θν cos θν




. (2.29)

One can conclude that the correct contribution of the neutrino sector to the atmo-

spheric angle is around θν=−20o. For example, if we take θν=−20o, the neutrino

mixing angles (sin θatm, sin θsol, sin θ13) become (0.707, 0.53, 0.21). In order to find

the suitable right-handed neutrino mass structure, one can easily prove the inverse of

the see-saw relation,

MR = −MNUν(M
diag
ν )−1UT

ν MT
ν . (2.30)

A similar technique was used in Ref [43]. Note that one of the eigenvalues of Mν

is zero (i.e. Mdiag
ν is singular), so the inverse of Mdiag

ν does not exist. To overcome

this problem, one can generally define Mdiag
ν =diag( m1, m2, m3 ), and m1 will not

appear in MR. By using the numerical result of MN , θν=−20o, and m2/m3=0.178,

the right-handed mass structure can be presented numerically.




0 0 0

0 0.0186 −0.13

0 −0.13 1




. (2.31)
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Figure 2.4: This figure leads to the right-handed neutrino mass matrix.

From the above numerical mass matrix, one concludes (MR)23 × (MR)23 ≈ (MR)22,

so to a good approximation, the above numerical structure can be represented ana-

lytically as follows:




0 0 0

0 r2 ar

0 ar 1




. (2.32)

The constant a should not be equal to 1 because then MR would be singular. Now

our mission is to find the Yukawa couplings that respect the symmetry of the model

and lead to an analytical structure similar to Eq.(2.32). This can be accomplished

by considering the following Yukawa couplings represented by the Feynman diagram

in Fig.2.4, i.e.,

W4 = 16i16H1i + hijk1i1
c
j1
′′′
Hk + m11

c
i1

c
i , (2.33)

where two fermion singlets 1i and 1c
i , which couple with the singlet Higgs 1′′′iH , have

been introduced (their transformation under SO(10)×A4 and the additional symme-

try are shown in Tables 2.1-2.2). The product of the three triplets of the second

term in Eq. (2.33) that transform as a singlet under A4 is given by h1(N1N
c
2α3 +

N2N
c
3α1 + N3N

c
1α2) + h2(N1N

c
3α2 + N3N

c
2α1 + N2N

c
1α3), where α1, α2, and α3 are

the VEV’s components of 1′′′iH . By assuming h1=h2, Fig.2.4 leads to the desired right
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handed-neutrino mass structure.

MR = Λ




α2
1

α2
3

α1α2(
−1
α2

3
+ 2

α2
1+α2

2+α2
3
)

−α1(α2
1−α2

2+α2
3)

α3(α2
1+α2

2+α2
3)

α1α2(
−1
α2

3
+ 2

α2
1+α2

2+α2
3
)

α2
2

α2
3

−α2(−α2
1+α2

2+α2
3)

α3(α2
1+α2

2+α2
3)

−α1(α2
1−α2

2+α2
3)

α3(α2
1+α2

2+α2
3)

−α2(−α2
1+α2

2+α2
3)

α3(α2
1+α2

2+α2
3)

1




. (2.34)

By comparing the 2-3 block of the above structure with the mass structure in

Eq. (2.32), one can see the constant a is equivalent to the quantity ((−α2
1 + α2

2 +

α2
3)/(α

2
1 + α2

2 + α2
3)), which is equal to 1 in the limit α1 → 0. So, let us expand the

eigenvalues of the right handed neutrino mass structure in Eq(2.34) around α1.

MR1 = 1 +
α2

2

α2
3

+
α2

1(α
4
2 − 6α2

2α
2
3 + α4

3)

α2
3(α

2
2 + α2

3)
2

+O(α4
1),

MR2 =
4α2

1α
2
2

(α2
2 + α2

3)
2
− 8α3

1α
3
2α3

(α2
2 + α2

3)
7/2

+O(α4
1), (2.35)

MR3 =
4α2

1α
2
2

(α2
2 + α2

3)
2

+
8α3

1α
3
2α3

(α2
2 + α2

3)
7/2

+O(α4
1).

One can see that two of the right-handed neutrino masses are approximately de-

generate for small values of α1 (i.e. MR2 ≈ MR3). By setting (α1, α2, α3, Λ)=(−0.05,

0.125, 0.994, 8.42× 1015), the numerical fit for the neutrino mixing angles, the light

neutrino masses, and the right handed-neutrino masses are obtained as follows:

m1 = 0 eV, sin θsol = 0.551, MR1 = 8.57× 1015 GeV,

m2 = 0.01 eV, sin θatm = 0.776, MR2 = 1.3× 1012 GeV,

m3 = 0.056 eV, sin θ13 = 0.154, MR3 = 1.28× 1012 GeV.

As can be seen from Table 2.3, the masses and mixing angles of the quarks and

leptons after including the neutrino sector are predicted in this model to be within

2σ error bars of their experimental values.
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Model predictions Experiment Pull

me(me) 0.511×10−3 0.511×10−3 ...

mµ(mµ) 105.6×10−3 105.6×10−3 ...

mτ (mτ ) 1.776 1.776 ...

mud 4.32× 10−3 (3.85± 0.52)×10−3 0.9

mc(mc) 1.4 1.27+0.07
−0.11 1.85

mt(mt) 172.5 171.3±2.3 0.52

ms

mud
25.36 27.3± 1.5 1.29

ms(2Gev) 109.6×10−3 105+25
−35 × 10−3 0.184

mb(mb) 4.31 4.2+0.17
−0.07 0.58

Vus 0.2264 0.2255±0.0019 0.473

Vcb 39.2×10−3 (41.2±1.1)×10−3 1.82

Vub 4.00×10−3 (3.93±0.36)×10−3 0.194

η 0.3569 0.349+0.015
−0.017 0.526

sin θsol
12 0.551 0.566±0.018 0.83

sin θatm
23 0.776 0.707±0.108 0.63

sin θ13 0.154 < 0.22 -

Table 2.3: This Table shows the comparison of the model predictions at low scale and

the experimental data.
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CHAPTER 3

Flavor Violation in a Minimal

SO(10)× A4 SUSY GUT

Flavor changing neutral current (FCNC) processes impose severe constraints on the

soft supersymmetric breaking (SSB) sector of the minimal supersymmetric standard

model (MSSM). The simplest way to satisfy the FCNC constraints is to adopt univer-

sality in the scalar masses at a high energy scale where the effects of supersymmetry

(SUSY) breaking in the hidden sector is communicated to the scalar masses of MSSM

via gravitational interactions. For example, in the the minimal supergravity model

(mSUGRA) [44] the MSSM is a valid symmetry between the weak scale and grand

unification scale (MGUT) at which the universality conditions are assumed to hold. In

this case, the leptonic flavor violation (LFV) is not induced. However, in a different

class of models studied in Refs [45, 46, 47, 48, 49, 50] the universality of the scalar

masses will be broken by radiative corrections. Consequently, FCNC will be induced

in these models as discussed below.

If the universality conditions hold at the grand unification scale MGUT, the LFV

is induced below GUT scale by radiative corrections in the MSSM with right-handed

neutrino [45, 46, 47] or SUSY-SU(5) [48] models. Unfortunately, it is difficult to

predict LFV decay rates in these models because the Dirac neutrino Yukawa couplings

are arbitrary within MSSM. However, in an SO(10) GUT model, we can predict the

LFV decay rates below the GUT scale because the Dirac neutrino couplings are

related to the up-type quark Yukawa couplings and are thus fixed.

The FCNC could also be induced above the GUT scale by radiative corrections.
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It was shown that as a consequence of the large top Yukawa coupling at the unifi-

cation scale, SUSY GUTs with universality conditions valid at the scale M∗, where

MGUT < M∗ ≤ MPlanck, predict lepton flavor violating processes with observable rates

[49, 50]. The experimental search for these processes provides a significant test for

supersymmetric grand unification theory (SUSY GUT). Both contributions of FCNC

that are induced above and below MGUT will be studied in our model.

In this chapter, the flavor violation processes for charged lepton and quark sectors

are investigated in the framework of a realistic SUSY GUT model based on the

gauge group SO(10) and a discrete non-abelian A4 flavor symmetry [51]. This model

is realistic because it successfully describes the fermion masses, CKM mixings and

neutrino mixing angles. This work differs from other studies in several aspects. First,

it is different from those based on MSSM with right-handed neutrino masses or SUSY

SU(5) in the sense that the Dirac neutrino Yukawa couplings are determined from the

fermion masses and mixing fit of the SO(10)× A4 model. Thus, this model predicts

the lepton flavor violation arising from the renormalization group (RG) running from

MGUT to the right-handed neutrino mass scales. Second, it is different from those

based on SUSY SO(10) studied in [52] in the sense that the FCNC processes are

closely tied to fermion masses and mixings. Finally, in the SO(10)×A4 model flavor

violation is induced at the GUT scale at which A4 symmetry is broken due to large

(order one) mixing of the third generation of MSSM fields (ψ3) with the exotic heavy

fields (χi, i runs from 1 to 3). This large mixing arises when the A4 flavor symmetry

is broken at the GUT scale. This is different from the case where the flavor violation

is induced due to large top Yukawa coupling at the GUT scale [49, 50]. The reason

for introducing the exotic heavy fermion fields in our model is to obtain the correct

fermion mass relations at the GUT scale as we shall see in section 1. The mass scales

of these exotic fields range from 1014 GeV to 1018 GeV depending on the values of

the Yukawa couplings and the scale of A4 flavor symmetry breaking.
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In this chapter we study flavor violation of the hadronic and leptonic processes

by calculating the flavor violating scalar fermion mass insertion parameters (δAB)ij =

(m2
AB)ij

m̃2 , for (A,B) = (L,R), with m̃ being the average mass of the relevant scalar

partner of standard model fermions (sfermions). All the flavor violation sources are

included in our calculations. The sfermion mass insertions, δLL,RR,LR, arise from

the large mixing between the ψ3 and χi and the mass insertions, (δij
LL)RHN , arise

from RG running from MGUT to the right-handed neutrino mass scales. These scalar

mass insertion parameters are analyzed in the framework of our model; then they are

compared with their experimental upper bounds. We found that the most stringent

constraint on flavor violation comes from the µ → eγ process. This constraint requires

a high degree of degeneracy of the soft masses of MSSM fields and the exotic fields.

Therefore, in this model we assume that these soft masses are universal at the scale

M∗ with M∗ > MGUT, then we run them down to the GUT scale. The branching

ratio Br(µ → eγ) close to experimental bound (i.e. Br(µ → eγ)=1.2 × 10−11) is

obtained when the slepton masses of order 1 TeV , while the Yukawa couplings remain

perturbative at the scale M∗. We also found in the framework of our model that

once the constraint from Br(µ → eγ) is satisfied, all the FCNC processes will be

automatically consistent with experiments.

This chapter is organized as follows. In section 1, we show how the fermion mass

matrices are constructed in SO(10)×A4 model. In section 2, we discuss the sources of

flavor violation by finding the sfermion mass insertion parameters δij
LL,RR at the GUT

scale at which A4 symmetry is assumed to be broken as well as below the GUT scale.

The results of the SO(10)×A4 model regarding flavor violation analysis are presented

in section 4. Section 5 has our conclusion. The derivation of the light fermion mass

matrices and the light neutrino mass matrix after disentangling the exotic fermions

is shown in appendix A. In appendix B, we list the renormalization group equations

(RGEs) for various SUSY preserving and breaking parameters between MGUT and
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M∗ relevant for FCNC analysis.

3.1 A Brief Review of Minimal SO(10)× A4 SUSY GUT

In the SO(10) gauge group, all the quarks and leptons of the SM are naturally

accommodated within a 16-dimensional irreducible representation. However, minimal

SO(10) (i.e., with only one 10-dimensional Higgs representation) leads to fermion

mass relations at the GUT scale, such as m0
c

m0
t

= m0
s

m0
b

and m0
µ = m0

s, that are inconsistent

with experiment. This can be fixed by introducing exotic 16 + 16 fermions and by

coupling 16i with these exotic fields via 45H , which is used for SO(10) symmetry

breaking. The non-abelian discrete A4 symmetry is chosen in our model because it is

the smallest group that has a 3-dimensional representation, so the three generations of

SM fields transform as triplet under A4. Besides, FCNC is not induced in the SUSY-

SO(10)×A4 as long as A4 symmetry is preserved. However, as we will see later, the

breaking of A4 symmetry at the GUT scale will reintroduce the FCNC via large mixing

between the exotic and light fields. Based on the above reasons, a SO(10)×A4 model

is proposed in [51]. In this model, a minimal set of Higgs representations are used to

break the SO(10) gauge group to the SM gauge group so the unified gauge coupling

remains perturbative all the way to the Planck scale. Employing this minimal Higgs

representation and A4 symmetry, our model successfully accommodates small mixings

of the quark sector and large mixings of the neutrino sector in the unified framework

as shown summarized below.

The fermion mass matrices of the model proposed in [51] were constructed approx-

imately. In this section, we construct these matrices by doing the algebra exactly and

show that the excellent fit for fermion masses and mixings is obtained by slightly

modifying the numerical values of the input parameters of Ref.[51]. There are two

superpotentials of the model. The first one (Wspin.) describes the couplings of the

standard model fields (ψi(16i), i runs from 1-3) with the exotic heavy spinor-antispinor

51



SO(10) ψi χ1,χ1 χ2,χ2 χ3,χ3 Zc
i

A4 3 1 1 1 3

Z2 × Z4 × Z2 +,+,+ +,-,+ -,+,+ +,+,- +,+,+

SO(10) φi φ′i φ′′i φ′′′i Zi

A4 3 3 3 3 3

Z2 × Z4 × Z2 +,i,+ +,−i,+ +,i,- +,−i,- +,−i,+

Table 3.1: The transformation of the matter fields under SO(10)×A4 and Z2×Z4×Z2.

SO(10) 10H 45H 16H 16H 1Hi 1′Hi 1′′Hi 1′′′Hi

A4 1 1 1 1 3 3 3 3

Z2 × Z4 × Z2 -,+,- +,-,- +,−i,+ +,−i,+ +,-,+ -,+,+ +,+,- +,i,+

Table 3.2: The transformation of the Higgs fields under SO(10)×A4 and Z2×Z4×Z2.

fields (χi(16i), χi(16i), i runs from 1 to 3), while the second one (Wvect.) describes

the couplings of ψi with the exotic 10-vector fields (φi, φ′i, φ′′i , φ′′′i , i runs from 1 to

3) as given below:

Wspin. = b1ψiχ11Hi + b2ψiχ21
′
Hi + k1χ1χ345H + aχ3χ210H + Mαχαχα, (3.1)

Wvect. = b3ψiφi16H + M10φiφ
′
i + h′ijkφ

′
iφ
′
j1Hk + hijkφiφj1Hk

+Aijkφ
′
iφ
′′
j 1
′′
Hk + mφ′′i φ

′′′
i + k2φ

′′′
i φ′i45H . (3.2)

The above superpotentials are invariant under A4 and the additional symmetry

Z2 × Z4 × Z2. The transformations of the matter fields (i.e., the ordinary and exotic

fermion fields) and the Higgs fields under the assigned symmetry are given in Table

3.1 and 3.2.

The general fermion mass matrix structure that results from integrating out the
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exotic heavy spinor-antispinor fields in Wspin. is:

MF (spin.) =

(
aT1T2T3f

2〈10H〉
rF rF c

)



0 0 0

0 0 QF sθ
rFc

f

0 QF csθ
rF

f
(QF + QF c)cθ




, (3.3)

where we have made the following transformation: ψ1ε1 + ψ2ε2 + ψ3ε3 = εψ′3 and

ψ1s1 + ψ2s2 + ψ3s3 = S(ψ′2sθ + ψ′3cθ). Here εi and si are VEV-components of 〈1H〉
and 〈1′H〉 respectively and sθ(cθ) is sin θ(cos θ). f = (1 + T 2

2 + T 2
1 (1 + s2

θT
2
2 ))−1/2

and rF = (1 + Q2
F T 2

3 T 2
1 (1 + s2

θT
2
2 )f 2)1/2 are factors that come from doing the algebra

exactly (see appendix A). Here T1 = b1ε
M1

, T2 = b2S
M2

, T3 = k1Ω
M3

and Q = 2I3R + 6
5
δ(Y

2
)

is the unbroken charge that results from breaking SO(10) to the SM gauge group by

giving a VEV to 45H , where 〈45H〉 = ΩQ. The charge Q for different quarks and

leptons is given as.

Qu = Qd =
1

5
δ, Quc = −1− 4

5
δ, Qdc = 1 +

2

5
δ,

Ql = Qµ = −3

5
δ, Qlc = 1 +

6

5
δ, Qνc = −1. (3.4)

The above general structure of fermion mass matrix has the following interesting

features: (1) The relation m0
b = m0

τ automatically follows from Qd + Qdc = Qe + Qec ,

(2) The hierarchy of the the second and third masses generation is obtained by taking

the limit sθ → 0, and (3) The approximate Georgi-Jarlskog relation m0
µ = 3m0

s leads

to two possible values for δ, either δ → 0 or δ → −1.25, (4) the former possibility

is excluded by experiment since it leads to (m0
c/m

0
t )/(m

0
s/m

0
b) → 1 at the GUT

scale, while the latter possibility leads to (m0
c/m

0
t )/(m

0
s/m

0
b) → 0 which is closer to

experiments. Let us define δ = 1 +α. The masses and mixings of the first generation

arise from Wvector. The full mass matrices arising from Wspinor and Wvector have the
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following form:

MD = m0
d




0 (c12 + δ3( 3+2α
5 ))rdrdc (−2δ2(3+2α

5 ) + ζ)rdc

(c12 0 (2δ1( 3+2α
5 )

−δ3( 3+2α
5 ))rdrdc +s(−1+α

5 ) + β)rdc

ζrd (s(3+2α
5 ) + β)rd 1

−2(β + 3+2α
5 δ1)fcθsθT

2
2




,

MU = m0
u




0 0 0

0 0 ( 1−α
5 )sruc

0 ( 1+4α
5 )sru 1




, (3.5)

ML = m0
d




0 (c12 + 3δ3(−1+α
5 ))rerec (−δ2α + ζ)rec

(c12 0 (δ1α

−3δ3(−1+α
5 ))rerec −3s(−1+α

5 ) + β)rec

(ζ (s(−1+6α
5 ) + δ1( 6−α

5 ) 1

−δ2
6−α

5 )re +β)re −2(β + 3+2α
5 δ1)fcθsθT

2
2




,

MN = m0
u




0 0 0

0 0 (−3+3α
5 )srνc

0 srν 1




,

where the parameters are defined in terms of the Yukawa couplings of the super-

potential (Wspin. + Wvect.) and the VEVs of the Higgs fields as shown in appendix

A. These matrices are multiplied by left-handed fermions on the right and right-

handed fermions on the left. A doubly lopsided structure for the charged lepton

and down quark mass matrices of Eq.(3.5) can be obtained by going to the limit

β, ζ, α, δ3, c12, s ¿ 1 and δ1, δ2 are of order one. This doubly lopsided form leads

simultaneously to large neutrino mixing angles and to small quark mixing angles.

Based only on the above fermion mass matrices in Eq.(3.5), an excellent fit is found

for fermion masses (except for the neutrino masses), quark mixing angles and neu-
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trino mixing angles (except the atmospheric angle) by giving the input parame-

ters, appearing in Eq.(3.5), the following numerical values: δ1 = −1.28, δ2 = 1.01,

δ3 = 0.015 × e4.95i, α = −0.0668, s = 0.2897, ζ = 0.0126, c12 = −0.0011e1.124i, and

β = −0.11218. The above numerical values lead to sin θL
23 = 0.92 which is not close

to the experimental central value of atmospheric angle sin θatm
23 = 0.707 [7]. This con-

tribution to the atmospheric angle is only from the charged lepton sector. Therefore,

the neutrino sector should be included by considering the following superpotential:

WN = b4ψiZi16H + hijkZiZ
c
j1
′′′
Hk + m1Z

c
i Z

c
i , (3.6)

where two fermion singlets Zi and Zc
i that couple with the Higgs singlet 1′′′Hk have

been introduced.

The full neutrino mass matrix is constructed in Appendix B. The Higgs singlet 1′′′Hk

has the VEV-components (α1, α2, α3). The light neutrino mass matrix is obtained

by employing the see-saw mechanism. The numerical values (α1 = 0.075, α2 = 0.07,

α3 = 0.9, and λ = 0.0465 eV), where λ is defined in appendix B, lead to not only

the correct contribution to the atmospheric angles (sin θatm
23 = 0.811) but also to the

correct light neutrino mass differences. The predictions of the fermion masses and

mixings are slightly altered by doing the algebra exactly compared to the analysis of

Ref.[51]. These predictions and their updated experimental values obtained from [7]

are shown in Table 3.3. The right handed-neutrino masses arise from integrating out

the exotic fermion singlets Zi and Zc
i in Eq.(3.6). The right handed-neutrino mass

matrix is

MR = Λ




α2
1

α2
3

α1α2(
−1
α2

3
+ 2

α2
1+α2

2+α2
3
)

−α1(α2
1−α2

2+α2
3)

α3(α2
1+α2

2+α2
3)

α1α2(
−1
α2

3
+ 2

α2
1+α2

2+α2
3
)

α2
2

α2
3

−α2(−α2
1+α2

2+α2
3)

α3(α2
1+α2

2+α2
3)

−α1(α2
1−α2

2+α2
3)

α3(α2
1+α2

2+α2
3)

−α2(−α2
1+α2

2+α2
3)

α3(α2
1+α2

2+α2
3)

1




, (3.7)

where Λ = 8.45 × 1015 GeV and the right-handed neutrino masses are given by

MR1 ≈ MR2 ≈ 1.4× 1012 GeV and MR3 = 8.5× 1015 GeV.
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Another interesting feature of this model is that it contains a minimal set of

Higgs fields needed to break SO(10) to the SM gauge group. Consequently, the

unified gauge coupling remains perturbative all the way up to the Planck scale. This

can be understood from the running of the unified gauge coupling with energy scale

µ > MGUT as

1

α
=

1

αG

− bG

2π
log(

µ

MGUT

), (3.8)

where α = g2/(4π) and bG = S(R) − 3C(G). Here C(G) is the quadratic Casimir

invariant and S(R) is the Dynkin index summed over all chiral multiplets of the model.

The unified gauge coupling stays perturbative at the Planck scale (i.e g(MP ) <
√

2)

as long as bG < 26. Employing large Higgs representations might lead to bG ≥ 26. For

example, using 126H+126H gives bG = 46. On the other hand, the SO(10)×A4-model

gives bG = 19 which is consistent with the unified gauge coupling being perturbative

till the Planck scale.

We will use the same fit for fermion masses and mixings to calculate the mass

insertion parameters δij
LL,RR, and δij

LR,RL in the quark and lepton sectors and conse-

quently investigate the FCNC in this model. The charged lepton and down quark

mass matrices in Eq.(3.5) are diagonalized at the GUT scale by bi-unitary transfor-

mation:

Mdiag.
d,l = V †d,l

R MD,LV d,l
L , (3.9)

where V u,d,l
R,L are known numerically. Now, we discuss the sources of FCNC in this

model.

3.2 Sources of Flavor Violation in SO(10)× A4 Model

We assume in our flavor violation analysis that A4 flavor symmetry is preserved above

GUT scale and it is only broken at GUT scale. In this case flavor violation is induced
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at GUT scale where A4 symmetry is broken. In this section we discuss the flavor

violation induced at the GUT scale by studying the sfermion mass insertion parameter

δij
LL,RR and the chirality flipping mass insertion (A-terms) parameter δij

LR,RL. We will

see that these flavor violation sources arise from large mixing of the light fields with

the heavy fields. This large mixing is due to the breaking of A4 symmetry. In

addition, we discuss the induced flavor violation arising below GUT scale through

the RG running from MGUT to the right-handed neutrino mass scales.

3.2.1 The Scalar Mass Insertion Parameters

Let us assume the soft supersymmetry breaking terms originate at the messenger

scale M∗, where MGUT < M∗ ≤ MPlanck. The quadratic soft mass terms of the

matter superfields that appear in the superpotential Wspin. are

−L = m̃2
ψψ†i ψi + m̃2

χi
χ†iχi + m̃2

χi
χ†iχi. (3.10)

The MSSM scalar fermions that reside in ψi transform as triplets under the non-

abelian A4 symmetry. Since the A4 symmetry is intact, they have common mass (m̃2
ψ)

at the scale M∗. On the other hand, the exotic fields each of which transforms as

singlet under A4 symmetry have different masses (m̃2
χi

, m̃2
χi

, i runs 1-3) at the scale

M∗.

The MSSM scalars remain degenerate above the GUT scale where the A4 symme-

try is broken. In order to find the scalar masses in the fermion mass eigenstates, two

transformations are required. The first transformation is needed to block-diagonalize

the fermion mass matrix into a light and a heavy blocks as shown in Appendix A. The

upper left corner represents the 3× 3 light fermions mass matrix. The second trans-

formation is the complete diagonalization of the light fermion mass matrix. Applying

the first transformation to the quadratic soft mass terms of Eq.(3.10) by going to the

new orthogonal basis (L2, L3, H1, H2, H3) as defined in appendix A, the quadratic
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soft mass matrix of the light states is transformed as follows:

m̃2
ψI → m̃2

ψI + δm̃2
ψ, (3.11)

where,

δm̃2
ψ =




0 0 0

0 0 ε

0 ε δ




, (3.12)

ε = f
rF

T 2
2 sθ(m̃

2
χ2
− m̃2

ψ), δ = (( f
rF

)2 − 1)m̃2
ψ + ( f

rF
)2(m̃2

χ1
T 2

1 + m̃2
χ2

T 2
2 + m̃2

χ3
Q2T 2

1 T 2
3 ),

and we have safely ignored the terms that contain s2
θ ¿ 1. It is obvious that the first

two generations of the light scalars are almost degenerate because the mixing of the

second light generation (L2) with the heavy states is proportional to sθ ¿ 1. On the

other hand, since the mixing of the third light generation (L3) with the heavy states

is of order one, its mass splits from those of the first two generations.

The top Yukawa coupling is given in terms of T1, T2, and T3 as:

Yt =
af 2(Qu + Quc)T1T2T3

rucru

. (3.13)

The numerical values of T1 = 0.0305, T2 = 2, T3 = 100 and a ∼ 1.2 are consistent

with the top Yukawa coupling at the GUT scale to be of order λGUT
t ∼ 0.5 and ru,uc to

be of order one. Plugging these numerical values and sθ = 0.0465 into the expressions

for ε and δ gives us:

(δd, δdc , δe, δec) = (0.81, 0.87, 0.88, 0.82)(m̃2
χ − m̃2

ψ),

(εd, εdc , εe, εec) = (0.061, 0.05, 0.048, 0.06)(m̃2
χ − m̃2

ψ). (3.14)

Here we have dropped m̃2
χ1

terms because their coefficients are negligible. Also, the

RGE expressions of m̃2
χ2

and m̃2
χ3

are the same (see Eq.(B.13)), so we have assumed

that m̃2
χ2

= m̃2
χ3

= m̃2
χ.

The next step is to apply the second transformation by evaluating V †d,l
L δm2

ψV d,l
L

and similarly for L → R. The unitary matrices V d,l
L are numerically known from the
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fitting for fermion masses and mixings. So, the mass insertion parameters for charged

leptons and down quarks are given respectively by

(δd,e
LL,RR)ij = (V †d,l

L,R δm̃2
d,lV

d,l
L,R)ij/m̃

2
d,l. (3.15)

The above mass insertion analysis without including the superpotential Wvect. is good

enough because we assumed in our analysis that the mixing of the 10 vector multiplets

with the ordinary spinor fields is small.

3.2.2 The Chirality Flipping Mass Insertion (A-terms)

The FV processes are also induced from the off-diagonal entries of the chirality flipping

mass matrix M̃RL. The chirality flipping soft terms are divided into two parts Lspin

and Lvect:

−Lspin = b̃1b1ψ̃iχ̃11Hi + b̃2b2ψ̃iχ̃21
′
Hi + k̃1k1χ̃1χ̃345H

+ãaχ̃3χ̃210H + G̃iMiχ̃iχ̃i, (3.16)

−Lvect = b̃3b3ψ̃iφ̃i16H + B̃10M10φ̃iφ̃′i + h̃′ijkh′ijkφ̃′iφ̃′j1Hk + h̃ijkhijkφ̃iφ̃j1Hk

+ÃijkAijkφ̃′iφ̃′′j1
′′
Hk + g̃mφ̃′′iφ̃′′′i + k̃2k2φ̃′′′iφ̃′i45H . (3.17)

The fourth term of Eq.(3.16) induces the off-diagonal elements of the chirality

flipping mass matrix, if it is written in terms of the new orthogonal basis defined in

Eqs.(A.1). This transformation can be represented by

M̃2
RL(spin.) → ãMF (spin.), (3.18)

where MF (spin.) is defined in Eq.(3.3). The entire chirality flipping mass matrix in

the new orthogonal basis is obtained by including −Lvect. The bi-unitary transfor-

mations that block-diagonalize the full fermion mass matrix is applied on the entire

chirality flipping mass matrix (see Appendix A). Accordingly, the 3 × 3 quadratic

mass matrix (M̃2
LR) associated with the light states is transformed as follows:

M̃2
RL → ãMF (spin.) + b̃3MF (vector), (3.19)
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where MF (vect.) = −mM−1M ′ (see Eq.(A.6)) and we have assumed for simplicity

that the soft parameters appearing in Eq.(3.17) are all of the same order. Then, the

M2
LR matrix is written in the fermion mass eigenstate basis as:

M̃2
RL → V †

R(ãMF (spin.) + b̃3MF (vect.))VL. (3.20)

It is straightforward to show that the chirality mass insertion parameters are given

by:

(δRL)ij =
b̃3

m̃2
f

Mdiag.
F i δij + (z̃V †

RMF (spinor)VL)ij, (3.21)

where Mdiag.
F = V †

RMF VL and z̃ = ã−b̃3
m̃2

f
. The induced FV arises only from the second

term of Eq.(3.21).

3.2.3 Mass Insertion Parameters Induced Below MGUT

The Dirac neutrino Yukawa couplings (YN)ij induce flavor violating off-diagonal ele-

ments in the left-handed slepton mass matrix through the RG running from MGUT

to the right-handed neutrino mass scales. The RGEs for MSSM with right-handed

neutrinos are given in Ref.[46]. The right-handed neutrinos MRi
are determined in

the SO(10) × A4 model. In this case, the induced mass insertion parameters for

left-handed sleptons are given by [50],

(δl
LL)RHN

ij = −3m2
ψ + ã2

8m2
ψπ2

3∑

k=1

(YN)ik(Y
∗
N)jkln

MGUT

MRk

, (3.22)

where the matrix YN is written in the mass eigenstates of charged leptons and right-

handed neutrinos. The total LL contribution for the charged leptons is given by

(δl
LL)Tot

ij = (δl
LL)RHN

ij + (δl
LL)ij. (3.23)

3.3 Results

In this section, we investigate the flavor violating processes by calculating the mass

insertion parameters δLL, δRR, and δLR,RL, then we compare them with their exper-
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imental bounds. These bounds in the quark and lepton sectors were obtained by

comparing the hadronic and leptonic flavor changing processes to their experimental

values/limits [54, 55]. Eq.(3.12), Eq.(3.14) and Eq.(3.15) are used to calculate δLL,RR

and Eq.(3.21) is used to calculate δLR,RL for both charged leptons and down quarks.

The result of mass insertion calculations and their experimental bounds are presented

in Table 3.4. In this table, we have defined σ =
m̃2

χ2
−m̃2

ψi

m̃2
ψi

and k̃ = z̃mb,τ

The stringent bounds on leptonic δ12, δ13, and δ23 in Table 3.4 come only from

the decay rates li → ljγ. The experimental bounds on the mass insertion parameters

listed in column 3 were obtained by making a scan of m0 and M1/2 over the ranges

m0 < 380 GeV and M1/2 < 160 GeV , where m0 and M1/2 are the scalar universal

mass and the gaugino mass respectively [55].

Glancing at Table 3.4, we note that the stringent constraint on leptonic flavor

violation arises from δl
12 which corresponds to the decay rate of µ → eγ. On the

other hand, there is a weaker constraint that arises from δd
12 on the quark sector. One

can do an arrangement such that ã − b̃3 = 200 GeV and m̃f = 800 GeV (equivalent

to k̃ = 2.6×10−4) so that all the chirality flipping mass insertions will be within their

experimental bounds. This arrangement is possible if the trilinear soft terms vanish

at the scale M∗.

Since the stringent constraint comes from the µ → eγ process, let us discuss the

branching ratio of this process in more details. In general, the branching ratio of

li → ljγ is given by

BR(li → ljγ)

BR(li → ljνiν̄j)
=

48π3α

G2
F

(|Aij
L |2 + |Aij

R|2). (3.24)

We have used the general expressions for the amplitudes Aij
L,R given by Ref.[57] where

the contributions from both chargino and the neutralino loops are included. These

expressions are written in terms of mass insertion parameters.

The correct suppression of the decay rate Γ(µ → eγ) requires a high degree of

degeneracy of the soft mass terms of MSSM fields and the exotic fields. For example,
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σ ≈ 0.01, as can be seen from Table 3.4. In order to obtain high degree of degeneracy,

let us assume that the SSB terms which are generated at the messenger scale M∗

satisfy the universality boundary conditions at the scale M∗ given by

m̃2
ψi

= m̃2
χi

= m̃2
χi

= m̃2
10H

= m̃2
1H

= m̃2
1′H

= m0,

Mλ = M0,

ã = b̃1 = b̃2 = 0, (3.25)

where Mλ is the gaugino mass of SO(10) gauge group. Solving the RGE listed in

Appendix C with the boundary conditions given by Eq.(3.25) determines the value

of σ. In Table 3.5 we give the branching ratio of the process µ → eγ predicted by

the SO(10) × A4 model for different choices of the input parameters a, b1, b2, m̃ψ

and M1/2 at the GUT scale. The experimental searches have put the upper limit on

the branching ratio of µ → eγ as Br(µ → eγ) ≤ 1.2× 10−11 [56]. Note that m̃ψ and

M1/2 originate respectively from m0 and M0 through RGEs. In this Table we consider

ln M∗
MGUT

= 1 and ln M∗
MGUT

= 4.6 that correspond respectively to M∗ ≈ 3MGUT and

M∗ ≈ MPlanck.

Let us analyze the four cases in the Table 3.5. In the cases (I, II and III), the

chosen values of the parameters a are consistent with the top Yukawa coupling of

order 0.5 at the GUT scale and with the fitting for fermion masses and mixing. On

the other hand, the choice of a = 0.68 in Case IV is not consistent with the fit.

Although the medium slepton masses of order 550 GeV are obtained in Case I, the

choice b1 = b2 = 1.9 corresponds to non-perturbative Yukawa couplings at the scale

M∗ (i.e. b1 = b2 = 4 at M∗). In this case, the solutions of the 1-loop RGEs are

not trusted since the Yukawa couplings b1 and b2 go non-perturbative above the GUT

scale. Also, it is important to point out that the flavor violation constraint on µ → eγ

in Case III requires heavy slepton masses (≥ 3 TeV) while it requires slepton masses

of order ∼ 900 GeV in Case II. In other words, Case II is preferred in our model
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in the sense that the decay rate of µ → eγ is close to the experimental limit with a

reasonable supersymmetric mass spectrum, so it might be tested in the ongoing MEG

experiment[58]. Besides, the Yukawa couplings remain perturbative at the messenger

scale M∗. Figure 3.1 shows the allowed values of mψ that correspond to the graphs

below the x-axis for the cases I and II.
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Predictions Expt. Pull

mc(mc) 1.4 1.27+0.07
−0.11 1.85

mt(mt) 172.5 171.3±2.3 0.52

ms/md 19.4 19.5± 2.5 0.04

ms(2Gev) 109.6×10−3 105+25
−35 × 10−3 0.184

mb(mb) 4.31 4.2+0.17
−0.07 0.58

Vus 0.223 0.2255±0.0019 1.3

Vcb 38.9×10−3 (41.2±1.1)×10−3 2

Vub 4.00×10−3 (3.93±0.36)×10−3 0.7

η 0.319 0.349+0.015
−0.017 1.7

me(me) 0.511×10−3 0.511×10−3 -

mµ(mµ) 105.6×10−3 105.6×10−3 -

mτ (mτ ) 1.776 1.776 -

∆m2
21 7.69× 10−3eV2 (7.59± 0.2)× 10−3eV2 0.5

∆m2
32 2.36× 10−3eV2 (2.43± 0.13)× 10−3eV2 0.5

sin θsol
12 0.555 0.566±0.018 0.61

sin θl
23 0.811 0.707±0.108 0.96

sin θ13 0.141 < 0.22

Table 3.3: The fermion masses and mixings and their experimental values. The

fermion masses, except the neutrino masses, are in GeV.
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Figure 3.1: The above graphs show the plot of Log of Br(µ → eγ) divided by exper-

imental bound (1.2 × 10−11) versus mψ for two cases I and II with M1/2=787 GeV,

437 GeV and 175 GeV.
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Mass Insertion (δ) Model Predictions Exp. Upper Bounds

(δl
12)LL 0.062 σ+(δl

12)
RHN
LL 6 × 10−4

(δl
12)RR 6.1 × 10−4 σ 0.09

(δl
12)RL,LR (0.084, 0.0096) k̃ 10−5

(δl
13)LL 0.022 σ+(δl

13)
RHN
LL 0.15

(δl
13)RR 0.028 σ -

(δl
13)RL,LR (0.0335, 0.076) k̃ 0.04

(δl
23)LL 0.27 σ+(δl

13)
RHN
LL 0.12

(δl
23)RR 0.034 σ -

(δl
23)RL,LR (0.055, 0.899) k̃ 0.03

(δd
12)LL 1.9 × 10−4 σ 0.014

(δd
12)RR 0.15 σ 0.009

(δd
12)LR,RL (0.029, 0.035) k̃ 9× 10−5

(δd
13)LL 0.014 σ 0.09

(δd
13)RR 0.061 σ 0.07

(δd
13)LR,RL (0.173, 0.016) k̃ 1.7× 10−2

(δd
23)LL 0.054 σ 0.16

(δd
23)RR 0.29 σ 0.22

(δd
23)LR,RL (0.875, 0.064) k̃ (0.006, 0.0045)

Table 3.4: The mass insertion parameters predicted by SO(10)×A4 model and their

experimental upper bounds obtained from [55].
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I II III IV

a 1.14 1.07 1.14 0.62

b1 1.9 1.5 1.24 1.24

b2 1.9 1.5 1.24 1.24

m̃ψi
542 886 2932 675

M1/2 350 787 1924 350

BR(µ → eγ) 1.4× 10−13 1.16× 10−11 1.2× 10−11 2.2× 10−12

Table 3.5: Branching ratio of µ → eγ for different choices of input parameters at the

GUT scale. Cases I and II correspond to ln M∗
MGUT

= 1 and cases III and IV correspond

to ln M∗
MGUT

= 4.6. m̃ψi
and M1/2 are given in GeV
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CHAPTER 4

Higgs Boson Mass in Gauge-Mediating Supersymmetry

Breaking with Messenger-Matter Mixing

Supersymmetric (SUSY) grand unification theories (GUTs) are promising candidates

for physics beyond the standard model (SM). However, supersymmetry is not an exact

symmetry at the low-energy scale and it must be broken somehow to be relevant to

nature. SUSY can not be broken at tree level since the supertrace theorem leads to

non-phenomenological particle spectra. Therefore, it is assumed that SUSY breaking

occurs in the hidden sector which has no renormalizable tree level couplings with

the observable sector. SUSY breaking is transmitted to the visible sector either via

gravitational interactions as inspired by supergravity models (SUGRA)[44], or by SM

gauge interactions as in theories with gauge-mediated SUSY breaking (GMSB)[59, 60,

61]. In the first scenario, the soft terms are generated at the Planck scale. In general,

these soft terms are not flavor-invariant. The gravity-mediated scenario can only give

realistic models if the universality or an approximate alignment between particle and

sparticle masses is imposed in order to suppress the flavor violation processes. On the

other hand, the universality condition is naturally satisfied in the GMSB where the

soft terms are generated at the messenger scale, below the GUT scale, from radiative

corrections.

In GMSB theories, messenger fields communicate the SUSY breaking from the

hidden sector to the visible sector. In addition to the observable sector, at least

one gauge singlet superfield (Z) is needed in order to give mass to the messenger

fields and break SUSY by giving vacuum expectation values (VEVs) to its scalar-
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component (〈Z〉) and to its auxiliary F-component (〈FZ〉) respectively. The SUSY

breaking factor (i.e. 〈FZ〉) that appears in the mass splitting between the fermionic

and scalar components of the messenger field is communicated to the MSSM particles

through radiative corrections. For example, the gauginos and the scalars of MSSM

get their masses at the messenger scale Mmess from one-loop and two-loop Feynman

diagrams respectively as fellows:

Mλr = gNmess
αr

4π
Λ, (4.1)

m̃2 = 2f
3∑

r=1

NmessC
f̃
r

α2
r

(4π)2
Λ2, (4.2)

where Nmess is called the messenger index. For example, Nmess = 1 (Nmess = 3) for

messenger fields belong to 5 + 5 (10 + 10) of SU(5). Here, Λ = 〈FZ〉
〈Z〉 is the effective

SUSY breaking scale, C f̃
r are the quadratic Casimir invariants for the scalar fields,

and αr are the gauge coupling constants at the scale Mmess. These gauge couplings are

all equal at the GUT scale. In Eqs.(4.1) and (4.2), f and g are the 1-loop and 2-loop

functions whose exact expressions can be found e.g. in Ref.[61]. The universal scalar

masses in Eq.(4.2) are obtained when the messenger and matter fields are completely

separated. There are additional contributions to universal masses if messenger-matter

mixing is allowed.

Two interesting features of GMSB are concluded from Eqs.(4.1) and (4.2). Firstly,

the scalar masses are only functions of gauge quantum number so scalar masses with

the same gauge quantum number are degenerate. As a result, the supersymmetric

flavor problem is solved. Secondly, GMSB is highly predictive since all soft terms at

the messenger scale are determined by only two parameters Λ and Nmess. In order

to preserve the successful gauge coupling unification of MSSM, the messenger fields

should reside in complete SU(5) multiplets. In this chapter, we consider two cases

when the messenger fields belong to 5 + 5 and 10 + 10 of SU(5). In both cases the

perturbative unification is still maintained, as shown in Fig. 4.1.
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Figure 4.1: The evolutions of the gauge couplings with Mmess = 108 GeV and tan β =

10. Solid lines correspond to MSSM. Dashed lines are for MSSM+10+10 and dotted

lines are for MSSM+5 + 5.

The complete separation of messenger sector and visible sector is problematic

in cosmology because this leads to models possessing stable particles [62]. Besides,

messenger-matter couplings are allowed by gauge symmetry and they can only be

forbidden by imposing discrete flavor symmetry. If one allows these couplings, ad-

ditional contributions to the universal scalar mass given by Eq.(4.1) and (4.2) are

obtained [63, 64, 65]. These new contributions reintroduce flavor violation either in

the leptonic or the quark sector depending on the structure of the messenger fields. In

this chapter, we have shown that the induced flavor violation from messenger-matter

mixing that occurs mainly with the third generation is still sufficiently suppressed.

Another advantage of the messenger-matter mixing—the main result of this chapter—

is that it might increase the lightest Higgs mass to value as large as 125 GeV, which

is difficult to realize without such mixing.

In order to reproduce the known qualitative features of quark and lepton masses

and mixings, we consider the Froggatt-Nielsen mechanism [66]. This mechanism

leads to the lopsided structure of down-quark and charged lepton mass matrix. It
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was shown that in this kind of structure the µ → eγ decay rate is generally large by

adopting gravity mediated SUSY breaking and it is consistent with the experimental

limit of Br(µ → eγ) only with a heavy SUSY spectrum [67]. On the other hand, the

lopsided structure works well in the GMSB regarding the flavor violation processes

even with light SUSY spectra as we show in this chapter.

This chapter is organized as fellows: In section 4.1 the Higgs mass bounds are

considered in two models. The first is 5+5 model in which the messenger fields belong

to the 5 + 5 representation of SU(5) while the second is 10 + 10 model in which the

messenger fields belong to the 10 + 10 representation of SU(5). In both models, the

messenger-matter couplings (i.e. the exotic couplings) are allowed. We investigate

the effect of these couplings on the lightest Higgs mass of MSSM. In section 4.2, we

construct the general structure of the superpotential of both models by employing the

U(1) flavor symmetry of the Froggatt-Nielsen mechanism as discussed in section 4.2.1.

We find that the FCNC processes that are induced by the exotic Yukawa couplings

are in agreement with experimental bounds. The Yukawa RGEs between messenger

and GUT scales for both models are listed in Appendix C. The soft terms which are

induced by the exotic Yukawa couplings are evaluated in Appendix D.

4.1 Higgs Mass Bounds

One of the interesting features of MSSM is setting upper bounds on the lightest Higgs

mass. The tree level bound on the lightest Higgs mass equal to Mz has been already

excluded by the LEP2 lower bound mh > 114.4 [68]. However, radiative corrections

push this mass above the LEP2 bound. The leading 1- and 2- loop contributions to

the CP-even Higgs boson mass in the MSSM are given by [70, 71]

m2
h = M2

z cos2 2β(1− 3

8π2

m2
t

v2
t)

+
3

4π2

m4
t

v2
[
1

2
χt + t +

1

16π2
(
3

2

m2
t

v2
− 32πα3)(χtt + t2)], (4.3)
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where v2 = v2
d + v2

u,

t = log(
M2

s

M2
t

), χt =
2Ã2

t

M2
s

(1− Ã2
t

12M2
s

). (4.4)

Here the scale Ms has been defined in terms of the stop mass eigenvalues as

M2
s = mt̃1mt̃2 , (4.5)

Ãt = At−µ cot β, where At denotes the stop left and stop right soft mixing parameter.

The upper bound on the lightest Higgs mass depends crucially on the soft su-

persymmetry breaking terms. For example, the upper bound of around 125 GeV

corresponds to the maximal mixing condition, Ãt =
√

6Ms. Since there are restric-

tions on these soft terms from GMSB, it will be interesting to study the effect of these

restrictions on the lightest CP-even Higgs mass. In the following subsections we will

investigate the effect of allowing messenger-matter couplings on the soft terms of

MSSM and consequently on the lightest CP-even Higgs mass. In the ordinary GMSB

(i.e. without messenger-matter mixing), both A-terms and the soft breaking param-

eter B vanish at the messenger scale. However, B can be induced in the process

of running. By using the following equations that result from minimizing the Higgs

potential,

M2
z

2
= −µ2 − m2

Hu
tan2 β −m2

Hd

tan2 β − 1
, (4.6)

sin 2β =
2Bµ

2µ2 + m2
Hu

+ m2
Hd

, (4.7)

one can solve for the parameters tan β and µ. Then tan β turns out to be large (around

35-45) when the messenger scale is close to the effective SUSY breaking scale Λ. On

the other hand, by allowing messenger-matter couplings B is induced significantly at

low energy scale. This can be understood from the following RGE for the parameter

B:

dB

dt
=

1

2π
(3αtAt + 3α2M2 +

3

5
α1M1), (4.8)
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λ′0 mh(GeV) Λ(105GeV) M(1013GeV) m̃t1(GeV) m̃t2(GeV)

0 117 2 1.78 1634 2012

0.8 118 2 10 1590 1857

1.2 119 2 10 1065 2788

Table 4.1: We show the values of the minimal GMSB input parameters, Λ, λex and

Mmess that lead to the highest mh values at tan β = 10.

where αt = λt

4π
and λt is the top Yukawa coupling. Since At does not vanish in the

presence of messenger-matter mixing as shown in Eqs.(4.13) and (4.21), the first term

of Eq.(4.8) that pushes B to large values becomes more significant than in the case

when At is zero. This leads to small tan β. For example in the 10 + 10 model, the

range 1.64 ≤ tan β ≤ 7 corresponds to 105 GeV ≤Mmess ≤1014 GeV.

In the subsequent analysis, we will give the scalar mass spectrum that leads to the

highest mh for two cases. The first case is to assume a non-vanishing B is somehow

generated at the messenger scale such that tan β = 10 is obtained by using Eqs.(4.6)

and( 4.7). The potential solution to the µ problem based on flavor symmetries was

suggested by Ref. [72]. The authors of Ref. [72] gave an example of Bµ ∼ µ2

that leads to unconstrained values on tan β by introducing three singlets that are

charged under U(1) flavor symmetry. The second case is having a vanishing B at the

messenger scale as predicted by both 5 + 5 and 10 + 10 models. In this case tan β is

determined by Eqs.(4.6) and (4.7) where B at low energy scales is obtained by solving

the RGE with the boundary condition of vanishing B at the messenger scale.

4.1.1 Higgs Mass Bounds in the 5 + 5 Model

The messenger fields belonging to 5 + 5 of SU(5) decompose to down-quark singlets

dc
m and dc

m, and to lepton doublets Lm and Lm. The additional contributions to the
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Figure 4.2: The left graph is m̃2
τc versus λ′0 at the scale Mmess for two different

messenger scales. The right graph is m̃2
tc versus λ′0 at the low energy scale for two

different messenger scales.

MSSM superpotential due to messenger-matter couplings is

W5+5 = fddc
mdc

mZ + λ′bQ3d
c
mHd + feLmLmZ + λ′τcLmec

3Hd. (4.9)

We assume the messenger fields couple only with the third generation of MSSM. We

will show later that the superpotential W5+5 can be obtained by imposing the U(1)

flavor symmetry of the Froggatt-Nielsen mechanism. Also, we have assumed that the

exotic Yukawa couplings λ′b and λ′τc (fd and fe) are obtained from one unified coupling

λ′0(f0) at the GUT scale by solving the RGEs listed in the Appendix C.1 between the

messenger scale and the GUT scale.

In the universal case (i.e. without including messenger-matter couplings), the

scalar masses are obtained by employing Eqs.(4.1) and (4.2), while the trilinear soft

terms (A-terms) vanish at the scale Mmess. There are new contributions to the univer-

sal scalar masses and A-terms in the presence of messenger matter couplings. It was

shown [63] that the messenger-matter couplings induce negative one-loop contribu-

tions to the supersymmetry-breaking masses. However, these one-loop contributions

can be safely ignored in the limit of F/M2
mess ≤ g3/4π, as we will assume in this chap-

ter. On the other hand, these couplings induce dominant two-loop contributions to
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the quadratic soft terms and one-loop contributions to the A-terms. The expressions

for supersymmetry-breaking terms induced by messenger-matter mixing were derived

in [64, 65]. The Yukawa couplings λ′b and λ′τc cause splitting on the masses of squark

doublet (Q3) and the right handed selectron singlet (ec
3) respectively. In order to find

this splitting, we will employ the general expression in Ref.[65]. In addition to the

universal masses, the mass shifts δm̃2
Q3

, δm̃2
ec
3

and δm̃2
Hd due to the messenger-matter

couplings at the messenger scale are given as follows (see Appendix D.1):

δm̃2
Q3

=
α′bΛ

2

8π2

(
3α′b +

1

2
α′τc − 8

3
α3 − 3

2
α2 − 7

30
α1

)
, (4.10)

δm̃2
ec
3

=
2α′τcΛ2

8π2

(
2α′τc +

3

2
α′b −

3

2
α2 − 9

10
α1

)
, (4.11)

δm̃2
Hd

=
δm̃2

ec
3

2
+ 3δm̃2

Q3
+

3Λ2α′bαt

16π2
, (4.12)

and the A-terms generated by messenger-matter couplings at the messenger scale are

δAt = − 1

4π
α′bΛ, (4.13)

δAb = −
(

4α′b + α′τc

4π

)
Λ, (4.14)

δAτ = −
(

3α′b + 3α′τc

4π

)
Λ, (4.15)

where α′b =
λ
′2
b

4π
, and α′τc =

λ2
τc

4π
. Since λ′b and λ′τc originate from one unified coupling

λ′0 as shown in the left graph of Fig.4.3, the scalar mass spectra depend on λ′0, the

messenger scale Mmess, and the effective SUSY breaking scale Λ. In order to prevent

negative squared mass generated at the scale Mmess, some ranges of λ′0 are excluded.

These ranges depend on the value of Mmess. The lower value of Mmess is taken to be

around 107 GeV to ensure F/M2
mess ≤ g3/4π, so the one-loop contribution to the scalar

masses from messenger-matter mixing is ignored. The upper bound Mmess < 1014

GeV arises from demanding that the gravity mediated contributions, proportional to

〈FZ〉/MP , amount at most to 0.1 percent of the gauge mediated contributions. The

left graph of Fig.4.2 shows the interval 0.1 < λ′0 < 0.5 that leads to negative m̃2
τR

at

the scale Mmess is roughly applicable to all values of Mmess.
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Below the scale Mmess, the theory is just the MSSM. Therefore, we have solved

the one-loop RGEs of MSSM at the supersymetry breaking scale with the boundary

conditions at the scale Mmess given by Eqs.(4.1) and (4.2) and Eqs.(4.10)-(4.15). The

soft breaking mass squared m2
Hu

is driven to negative values at low energy scale leading

to the electroweak symmetry breaking. In order to avoid driving m̃2
tR

to negative

values at low energy scale, otherwise the color charge will be broken, a region of λ′0 is

forbidden. For example, the region of λ′0 > 1.3 for Mmess = 1014 GeV is forbidden as

shown in the right graph of Fig.4.2. In that forbidden case m̃2
tR

is driven to negative

values because of the term that contains the top Yukawa couplings in the RGE of

right-handed stop mass. This term increases with larger exotic Yukawa coupling.

All the soft terms at the messenger scale are fully determined by three parameters:

λ′0, Λ and Mmess. Consequently, the lightest Higgs mass is also determined by these

three parameters. As we discussed previously, the maximal mixing condition —

Ãt =
√

6Ms— gives the upper bound on the lightest Higgs mass of MSSM. It is

not possible to realize this maximal condition in GMSB without messenger-matter

mixing because At vanishes at the scale Mmess and the induced value at low energy

scale through RGEs is not sufficient. On the other hand, allowing messenger matter

couplings generates At as shown in Eq.(4.13). This leads to an enhancement of the

Higgs mass. By allowing these parameters to be in the respective ranges 4×104 GeV

< Λ < 2 × 105 GeV, 107 GeV < Mmess < 1014 GeV and 0 < λ′0 < 2, we report the

numerical values of these parameters that give rise to the highest mh value in Table

4.1. In this Table, we exclude values of λ′0 that give negative values for m̃2
τR

and

m̃2
tR

. The lightest Higgs mass around 117 GeV is obtained in the 5+5 model without

messenger-matter mixing and a small enhancement of the Higgs mass is obtained

in the presence of messenger-matter mixing as shown in Table 4.1. However, large

enhancement of the lightest Higgs mass is obtained when the messenger fields belong

to 10+10 in the presence of messenger-matter mixing as shown in the next subsection.
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Figure 4.3: The left (right) graph shows the running of two exotic Yukawa couplings

from the GUT scale MGUT = 2 × 1016 GeV to the messenger scale Mmess = 108

GeV for the 5 + 5 (10 + 10) model where the unified Yukawa coupling is taken to be

λ′0 = 1.6.

4.1.2 Higgs Mass Bounds in the 10 + 10 Model

In this subsection we have messenger fields belonging to 10 + 10 of SU(5). This

decomposes in terms of MSSM multiplets as:

10 + 10 = (Q + Q) + (uc + uc) + (ec + ec). (4.16)

We have assumed the messenger fields only couple with the third generation of MSSM

fields. In this case the MSSM superpotential has the additional contribution

W10+10 = λ′tcQ3u
c
mHu + λ′tQmuc

3Hu + λ′mQmuc
mHu

+ fecec
mec

mZ + fucuc
muc

mZ + fQQmQmZ. (4.17)

Although the coupling QmdcHd is allowed by gauge symmetry, we have not included it

in the above superpotential because it is suppressed by the small expansion parameter

ε as we will see later. We have assumed that the Yukawa couplings λ′tc and λ′t are

equal to one unified coupling λ′0 at the GUT scale as shown in the right graph of

Fig.4.3. The three Yukawa couplings fec , fQ and fuc are equal to f0 at the GUT scale
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as well. In other words, the six Yukawa couplings appearing in the superpotential

W10+10 are reduced to three (λ′0, f0 and λ′m0) at the GUT scale. These six Yukawa

couplings are obtained from the unified ones by solving the RGEs given in Appendix

C.2.

The exotic Yukawa couplings λ′tc , λ′t and λ′m generate 2-loop (1-loop) scalar masses

(A-terms) at the scale Mmess as shown in Appendix D.2. So, the universal scalar

masses given by Eqs.(4.1) and (4.2), substituting Nmess = 3, have additional contri-

butions at the scale Mmess given by

δm̃2
Q3

=
Λ2

8π2

(
α′tc(3α

′
tc +

3

2
α′t +

5

2
α′m −

8

3
α3 − 3

2
α2 − 13

30
α1)

− αt(
5

2
α′t +

3

2
α′m)

)
, (4.18)

δm̃2
uc
3

=
2Λ2

8π2

(
α′t(3α

′
t +

3

2
α′tc + 2α′m −

8

3
α3 − 3

2
α2 − 13

30
α1)

− αt(2α
′
tc +

3

2
α′m)

)
, (4.19)

δm̃2
Hu

=
3Λ2

8π2

(
α′tc(3α

′
tc +

3

2
α′t +

5

2
α′m −

8

3
α3 − 3

2
α2 − 13

30
α1)

+ α′t(3α
′
t +

3

2
α′tc + 2α′m −

8

3
α3 − 3

2
α2 − 13

30
α1)

+ α′m(3α′m + 2α′t +
5

2
α′tc −

8

3
α3 − 3

2
α2 − 13

30
α1)

)
, (4.20)

δAt = −
(

5α′t + 4α′tc + 3α′m
4π

)
Λ, (4.21)

δAb = −α′tc
4π

Λ, (4.22)

where α′tc =
λ
′2
tc

4π
, α′t =

λ
′2
t

4π
, and α′m = λ

′2
m

4π
. The interesting feature of the 10+10 model

is that At is generated sufficiently at the scale Mmess. Consequently, we are able to

obtain the maximal mixing condition (i.e. At

Ms
=
√

6) that leads to the upper Higgs

mass limit of the MSSM.

In order to find the Higgs mass and the other scalar mass spectra, we solved the

MSSM RGEs numerically from the messenger scale to the low scale. The scalar mass

spectra depend on the four parameters Λ, Mmess, λ′0 and λ′m0. We report the values

of three of these parameters Λ, Mmess, and λ′0 for λ′m0 = 0 and λ′m0 = 1.6 that lead to
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Figure 4.4: The left graph is a plot of mh versus Λ for λ′0 = 0 and λ′0 = 1.2. The

right graph is mh versus λ′0 for different messenger scales at Λ = 105 GeV.

the highest mh in Table 4.3 and Table 4.4 respectively. In the case of λ′m0 = 1.6, the

Higgs mass can be up to 125 GeV for λ′0 = 0.4 . Let us take λ′m0 = 0 for simplicity. In

the case of messenger fields belonging to 10 + 10 without messenger-matter mixing,

the Higgs mass limit 119 GeV corresponds to around 3.5 TeV for the lightest stop

mass. However, in the presence of messenger-matter mixing, we can obtain a Higgs

mass limit up to 125 GeV corresponding to around 1 TeV for the lightest stop mass

as can be seen from Table 4.3.

The left graph of Fig.4.4 shows the lightest Higgs mass with messenger-matter

mixing is enhanced about 10 GeV compared to the case without messenger-matter

mixing for low values of Λ (i.e. around Λ = 4× 104 GeV) and it is enhanced around

6 GeV for larger Λ. The low values of Λ correspond to 500− 600 GeV of the lightest

stop mass which might be accessible to LHC. The right graph of Fig.4.4 shows a

constraint on the values of the exotic Yukawa coupling λ′0 when the messenger scale

is above ∼1013 GeV. This constraint arises from the stop mass turning negative at

low energy scale.

The range of messenger scale Mmess ≤ 3 × 108 GeV is preferred by cosmology

because this corresponds to gravitino mass less than ∼ 1 keV [69]. Therefore, we
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Name 10 + 10 10 + 10 5 + 5

Inputs Mmess 108 4× 105 108

Nmess 3 3 1

Λ(105GeV) 0.3 0.3 0.95

tanβ 10 5.6 11.6

λ′0 1.2 1.2 1.2

Higgs: mh 121 117.7 114.6

m0
H 675 675 1107

mA 675 674 1107

mH± 679 678 1110

Gluino: m̃g 852 852 899

Neutralinos: mχ1 121 127 128

mχ2 234 245 248

mχ3 667 658 706

mχ4 675 668 713

Charginos: χ+
1 236 233 250

χ+
2 676 667 738

Squarks: m̃uL,cL 810 787 1120

m̃uR,cR 786 765 1071

m̃dL,sL
810 787 1121

m̃dR,sR
782 763 1064

m̃bL
692 682 997

m̃bR
780 763 1045

m̃tL 692 682 997

m̃tR 518 531 890

Sleptons: m̃eL,µL 224 201 371

m̃νeL,νµL
224 201 371

m̃eR,µR 168 150 182

m̃τL 224 201 352

m̃τR 167 150 1014

Table 4.2: The spectra corresponding to 10 + 10 model and 5 + 5 model. All the

masses are in GeV.
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λ′0 mh(GeV) Λ(105GeV) Mmess(108GeV) m̃t1(GeV) m̃t2(GeV) At/Ms

0 119 1.6 3.16× 105 3590 4145 -0.86

0.4 120 1.36 1 2756 3289 -1.1

0.8 123 0.912 105 1553 2143 -1.55

1.2 125 0.784 17782 1088 1751 -1.95

1.6 125 0.784 1778 1066 1743 -2

2 125 0.784 177 1138 1762 -1.93

Table 4.3: We show the values of the GMSB input parameters, Λ, λ′0 and Mmess that

lead to the highest mh values. These values correspond to λ′m0 = 0 and tan β = 10.

find that the lightest Higgs mass up to 123.5 GeV can be obtained at Mmess = 108

GeV. We give the spectra for both the 10 + 10 and 5 + 5 models in Table 4.2. In this

Table, the given values of tan β = 5.6 and tan β = 11.6 for the 10+10 model and the

5 + 5 model respectively are obtained from Eqs.(4.6) and (4.7) where B vanishes at

the scale Mmess, while the given value tan β = 10 for the 10+10 model is an arbitrary

choice.

4.2 Flavor Violation

GMSB has the interesting feature that FCNC processes are naturally suppressed in

agreement with experimental bounds. This suppression is due to the degeneracy of

scalar masses at the messenger scale. This degeneracy is broken when the messenger-

matter coupling is allowed. As we have seen previously, the third generation of the

scalar masses splits from the other two. Consequently, the flavor violating off-diagonal

elements of quadratic scalar matrix are introduced in the fermion mass eigenstate

basis.

In this section we will investigate the flavor violation processes of the charged
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λ′0 mh(GeV) Λ(105GeV) Mmess(1011GeV) m̃t1(GeV) m̃t2(GeV) At/Ms

0 123 0.97 178 1344 2163 -1.8

0.4 125 0.91 316 1046 1969 -2.1

0.8 125 0.848 56 960 1831 -2.3

1.2 125 0.848 10 997 1834 -2.3

1.6 125 0.784 1.78 1005 1716 -2.3

2 125 0.784 1 1007 1717 -2.3

Table 4.4: We show the values of the GMSB input parameters, Λ, λ′0 and Mmess that

lead to the highest mh values. These values correspond to λ′m0 = 1.6 and tan β = 10.

leptons and down quarks for both 5+5 and 10+10 models through the mass insertion

parameters given by

(δd,l
LL,RR)ij = (U †d,l

L,R, m̃2
LL,RRUd,l

L,R)ij/m̃
2
d,l, (4.23)

(δd,l
LR,RL)ij = (U †d,l

R,Lm̃2
LR,RLUd,l

L,R)ij/m̃
2
d,l, (4.24)

where m̃2
d,l is the average of the diagonal entries of the quadratic scalar mass matrix for

the down quarks and charged leptons, U †d,l
L,R are the bi-unitary transformations needed

to diagonalize the down quark and charged lepton mass matrix and the matrix m̃2
LR,RL

is related to trilinear soft terms (A-terms).

4.2.1 Flavour Violation in 5 + 5 Model

Let us first show how to obtain the superpotential W5+5 in Eq.(4.9) by imposing U(1)

flavor symmetry. The hierarchy in the masses and mixings of the quarks and leptons

can be understood by employing the Froggatt-Nielsen mechanism. In this approach,

U(1) flavor symmetry is assumed. This flavor symmetry is broken at high scale, M∗,

by giving a VEV to a scalar field “S”, usually SM singlet. The fermion mass matrix in

the effective theory below M∗ appears as a power expansion in the parameter ε = 〈S〉
M∗ .
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SU(5) 101 102 103 51 52,53 5u,5d S 5m 5m Z

U(1) 4 2 0 p+1 p 0 -1 −α 0 α

Table 4.5: The U(1) charge assignments to the messenger, MSSM, Z and S fields.

The superfields of MSSM can be accommodated into three copies of 5 + 10 of

SU(5). The two Higgs doublets Hu and Hd reside respectively in 5u and 5d of SU(5).

The U(1) charge assignments for all superfields are shown in Table 4.5. The new

superpotential invariant under the U(1) flavor symmetry at the messenger scale is

W5+5 = (kmdc
m + k1d

c
1ε

1+p + k2d
c
2ε

p + k3d
c
3ε

p)dc
mZ

+ (k′mLm + k′1L1ε
1+p + k′2L2ε

p + k′3L3ε
p)LmZ

+ (λ1Q1ε
4 + λ2Q2ε

2 + λ3Q3)d
c
mHd

+ Lm(λ′1e
c
1ε

4 + λ′2e
c
2ε

2 + λ′3e
c
3)Hd. (4.25)

Without loss of generality, one can redefine the combinations of fields in the paren-

thesis as:

fdd
′c
m = kmdc

m + k1d
c
1ε

1+p + k2d
c
2ε

p + k3d
c
3ε

p, (4.26)

feL
′c
m = k′mLm + k′1L1ε

1+p + k′2L2ε
p + k′3L3ε

p, (4.27)

λ′bQ
′
3 = λ1Q1ε

4 + λ2Q2ε
2 + λ3Q3, (4.28)

λ′τcec′
3 = λ′1e

c
1ε

4 + λ′2e
c
2ε

2 + λ′3e
c
3. (4.29)

Dropping the prime notation on the superfields we obtain W5+5 in Eq.(4.9). The

Yukawa coupling interactions of the superpotential W5+5 are

LY = fdQmQmZ + λ′bQ3d
c
mHd + feLmLmZ + λ′τcLmec

3Hd. (4.30)

In order to decouple the fermionic part of the messenger superfield, we redefine the

fermionic fields in Eq.(4.30) as f ′dd′cm = fddc
m〈Z〉 + λ′bd3vd and f ′ee′m = feem〈Z〉 +
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λ′τcec
3vd, where vd = 〈Hd〉. Accordingly, the fermionic mass matrix can be written as:

Md =




Y d
11vdε

5+p Y d
12vdε

3+p Y d
13vdε

1+p η1

Y d
21vdε

4+p Y d
22vdε

2+p Y d
23vdε

p η2

Y d
31vdε

4+p Y d
32vdε

2+p Y d
33vdε

p η3

0 0 0 fd
m〈Z〉




, (4.31)

Me =




Y e
11vdε

5+p Y e
12vdε

4+p Y e
13vdε

4+p 0

Y e
21vdε

3+p Y e
22vdε

2+p Y e
23vdε

2+p 0

Y e
31vdε

1+p Y e
32vdε

p Y e
33vdε

p 0

η1 η2 η3 f e
m〈Z〉




. (4.32)

The off-diagonal block elements η are negligible because they are of order ∼ vd

〈Z〉 .

The Yukawa couplings Y d,e
ij in the above matrices are taken to be of order one. The

convention being used here is the above matrices are multiplied from right by left-

handed fermions and from left by right-handed fermions. The above charged lepton

and down quark mass matrices have lopsided structure that lead to an order one

atmospheric angle and to small quark mixing, Vcb, simultaneously. The upper 3 × 3

block of the light fermion mass matrices for both down-quarks and charged leptons

can be diagonalized by bi-unitary transformations:

U e
L = Ud

R ∼




1 ε ε

ε ω ω

ε ω ω




, (4.33)

U e
R = Ud

L ∼




1 ε2 ε4

ε2 1 −ε2

ε4 ε2 1




, (4.34)

where U e
L,R and Ud

L,R are used to diagonalize the charged lepton and down quark mass

matrices respectively and ω is an order one parameter.

Since the messenger superfields couple with left-handed down quark and right-

handed charged lepton superfields, the flavor violating off-diagonal elements are only
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SU(5) 101 102 103 51 52,53 5u,5d S 10m 10m Z

U(1) 4 2 0 1+p p 0 -1 0 -α α

Table 4.6: The U(1) charge assignments to the 10 + 10 messenger, MSSM, Z and S

superfields.

induced in the quadratic scalar mass matrices for the left-handed down quarks and

right-handed charged leptons. These matrices are given in Appendix D.1. By using

Eqs.(4.23) and (4.24), where the unitary transformations are given in Eqs.(4.33) and

(4.34), we present the mass insertion parameters as power expansions in ε in Table 4.7.

The experimental bounds of the mass insertion parameters δLL, δRR and δLR,RL that

are presented in the table were obtained by comparing the hadronic and leptonic flavor

changing processes to their experimental values [73, 57]. We used the branching-ratio

expressions of the decay rates li → ljγ given in [57] in order to find the experimental

upper bounds on the leptonic mass insertion parameters that is consistent with the

spectra presented in Table 4.2. The numerical values of κd,l =
mb,τ Ad,l

m̃2
d,τ

are given in

Table 4.7. These numerical values are based on the spectra given in Table 4.2. We

can see from Table 4.7 that the 5 + 5 model is safe from flavor violation problems as

long as p ≥ 2.

4.2.2 Flavour Violation in 10 + 10 Model

The new superpotential when the messenger fields belong to 10+10 of SU(5) is given

by

W10+10 = Qm(λ′muc
m + λ′uu

c
1ε

4 + λ′cu
c
2ε

2 + λ′tu
c
3)Hu + uc

m(λ′ucQ1ε
4

+ λ′ccQ2ε
2 + λ′tcQ3)Hu + Qm(λd1d

c
1ε

1+p + λd2d
c
2ε

p

+ λd3d
c
3ε

p)Hd + ec
m(λe1L1ε

1+p + λe2L2ε
p + λe3L3ε

p)Hd

+ Qm(kQmQm + kQ1Q1ε
4 + kQ2Q2ε

2 + kQ3Q3)Z + uc
m(kumuc

m + ku1u
c
1ε

4
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+ ku2u
c
2ε

2 + ku3u
c
3)Z + ec

m(kemec
m + ke1e

c
1ε

4 + ke2e
c
2ε

2 + ke3e
c
3)Z. (4.35)

The U(1) charge assignments for the messenger, MSSM, S, and Z are given in Ta-

ble 4.6. One can redefine the linear combination of the fields inside the last five

parentheses of Eq.(4.35). This redefinition simplifies the superpotential W10+10 as

follows:

W10+10 = (λ′ucε4Q1 + λ′ccε2Q2 + λ′tcQ3)u
c
mHu + Qm(λ′uε

4uc
1 + λ′cε

2uc
2

+ λ′tu
c
3)Hu + λ′mQmuc

mHu + λ′bε
pQmdc

3Hd + λ′τ ε
pL3e

c
mHd

+ fecec
mec

mZ + fucuc
muc

mZ + fQQmQmZ. (4.36)

In the scalar mass analysis, the Yukawa couplings suppressed by the expansion pa-

rameter ε are ignored in the superpotential W10+10 given by Eq.(4.17). However, we

keep them in the flavor violation analysis. In the 10 + 10 model, the flavor violat-

ing off-diagonal elements are induced in the scalar matrices of the left-handed down

quarks, right-hand down quarks, and left-handed charged leptons. These matrices

are evaluated in Appendix D.2. Using Eqs.(4.23) and (4.24) and the unitary transfor-

mation given in Eqs.(4.33) and (4.34), the mass insertion parameters for the 10 + 10

model are listed in Table 4.7. The stringent constraint comes from the µ → eγ decay

as shown in Table 4.7. The inequality p ≥ 1 should be satisfied in order to suppress

the µ → eγ decay process. This justifies why we have ignored such couplings QmdcHd

and ec
mLHd in the scalar mass spectrum analysis.

86



Mass Insertion (δ) 5 + 5 10 + 10 Exp. Bounds

(δl
12)LL - ε4p+1 0.00028

(δl
12)RR ε6 - 0.0004

(δl
12)RL,LR κl

5(ε
p+4, εp+3) κl

10 ε3p+1 1.3× 10−6

(δl
13)LL - ε4p+1 0.026

(δl
13)RR ε4 - 0.04

(δl
13)RL,LR κl

5(ε
p+4, εp+1) κl

10 ε3p+1 0.002

(δl
23)LL - ε4p 0.02

(δl
23)RR ε2 - 0.03

(δl
23)RL,LR κl

5(ε
p+2, εp) κl

10 ε3p 0.0015
(√

Re(δd
12)

2
LL,

√
Im(δd

12)
2
LL

)
ε6 ε6 (0.065, 0.0052)

(√
(Re(δd

12)
2
RR),

√
(Im(δd

12)
2
RR)

)
- ε1+4p (0.065, 0.0052)

(√
Re(δd

12)
2
LR,

√
(Im(δd

12)2)LR

)
κd

5ε
4+p κd

10ε
1+3p (0.007, 5.2× 10−5)

(√
Re(δd

12)
2
LR,

√
(Im(δd

12)2)LR

)
κd

5ε
3+p κd

10ε
1+3p (0.007, 5.2× 10−5)

√
Re(δd

12)LL(δd
12)RR - ε3.5+2p 0.00453

√
Im(δd

12)LL(δd
12)RR - ε3.5+2p 0.00057

(Reδd
13, Imδd

13)LL ε4 ε4 (0.238, 0.51)

(Reδd
13, Imδd

13)RR - ε1+4p (0.238, 0.51)

(Reδd
13, Imδd

13)LR,RL κd
5(ε

4+p, ε1+p) κd
10ε

1+3p (0.0557, 0.125)

(δd
23)LL ε2 ε2 1.19

(δd
23)RR - ε1+4p 1.19

(δd
23)LR,RL κd

5(ε
p+2, εp) κd

10(ε
2, 1) 0.04

Table 4.7: The calculated mass insertion parameters for the 5+5 and 10+10 models

and their experimental upper bounds. The numerical values of κ’s are κd
5 = 0.0066,

κl
5 = 0.032, κd

10 = 0.0028 and κl
10 = 0.0025.
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CHAPTER 5

CONCLUSION

In spite of the impressive success of the standard model in producing most of the

observed low energy data, it leaves many unanswered fundamental questions. There-

fore, we need to go beyond the standard model. Grand unification theory is a more

symmetrical theory than the standard model, it combines the standard model inter-

actions (electroweak and strong interactions) into one simple gauge group that has

one gauge coupling constant. In addition, since one family of fermions is now grouped

into a larger representation of the GUT symmetry, fewer Yukawa couplings are ob-

tained in the GUT model. The minimal-SO(10) gauge group has several advantages

over the minimal-SU(5) such as: (1) One family of the standard model fermions plus

the right-handed neutrino are unified into one 16-dimensional irreducible represen-

tation of the SO(10). This is in contrast to two irreducible representations of the

SU(5) (5, 10) are required to unify one family of fermions (except the right-handed

neutrino). (2) Since the right-handed neutrino is automatically accommodated in the

16-dimentional irreducible representation of SO(10), which is not the case in SU(5),

the seesaw mechanism is implemented naturally in the SO(10). (3) Minimal SO(10)

model has less free parameters than the SU(5) model.

The three gauge couplings do not unify at high energy scale in the SM. However,

if the supersymmetric extension of the standard model (MSSM) is used instead of

the standard model, not only the unification of the three gauge coupling constants

is obtained, but also the gauge hierarchy problem is solved. The price we pay by

supersymmetrizing the theory is increasing the number of free parameters and get-
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ting new sources of flavor violation. These SUSY-shortcomings might be solved if we

know the origin of supersymmetry breaking. There are two main proposed scenarios

for supersymmetry breaking. Gravity-mediated and gauge-mediated supersymmetry

breaking. The gravity mediated supersymmetry breaking scenario gives only realistic

models if the scalar mass universality condition is assumed at M∗. Consequently, the

FCNC problem is solved. This universality boundary condition can be arranged by

employing flavor symmetry such as the non-abelian discrete A4 symmetry. On the

other hand, the universality condition is naturally satisfied in the gauge-mediated

supersymmetry breaking scenario. Besides, models with gauge-mediated supersym-

metry breaking are highly predictive. In this study, both scenarios are considered in

the unification framework.

The SO(10) × A4 model is the first SUSY grand unification model based on the

gauge symmetry SO(10) with the discrete family symmetry A4 leading to the doubly

lopsided structure for lepton and down quark mass matrices. This structure success-

fully accommodates the largeness of the neutrino mixing angles and the smallness of

the CKM mixing angles. A few works on SO(10)×A4 have recently been published,

but what makes this work unique is the assumption of using the minimal set of Higgs

fields that break SO(10) to the SM group. This assumption acts as an important guide

for searching for good models. The possibilities of renormalizable Yukawa interactions

for quarks and leptons are very limited because the minimum Higgs breaking scheme

is imposed and the superpotential must respect the assigned symmetry of the model.

Based on that, a general mass structure for the heavy SM fermion generations has

been obtained which explains the following features: (1) m0
b ≈ m0

τ , (2)
m0

µ

m0
s

= 3, (3)

m0
c

m0
t

<< m0
s

m0
b
. It is important to mention that another work [32] obtained the same mass

structure for heavy fermions. In that work, the authors did not employ the flavor

symmetry but showed that the hierarchy between the second and third generations

can be understood by choosing a specific direction of 〈45H〉. Also, they employed
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another adjoint Higgs field 〈45H〉 to include the first family in their model. On the

other hand, in the SO(10) × A4 model, the above features of heavy fermions have

been obtained by picking a specific direction of 〈45H〉, but the hierarchy between

the three generations can be understood in the framework of A4-symmetry. Without

adding another adjoint to the model, the first family is successfully included in the

model and excellent predictions are obtained. For fitting purposes, some approximate

analytical expressions given in Eq.(2.26) are derived for mass ratios and mixing angles

of the quarks and the leptons by combining the Yukawa couplings represented by the

three Feynman diagrams in Figs. (2.1)-(2.3). However, exact numerical fitting at the

low scale was done. Without including the neutrino sector, the model predictions at

the low scale for the masses and the mixing angles (except the atmospheric angle)

of the quarks and the charged leptons, as well as the CP violation parameter, are in

excellent agreement with data (i.e. within 2σ). The atmospheric angle needs to be

corrected by considering the neutrino sector. The symmetry of the model succeeds

in producing the appropriate right-handed neutrino structure that gives not only the

correct contribution to the atmospheric angle, but also the correct neutrino mass

differences. The neutrino contribution to the solar angle is negligible.

I also investigated flavor violating processes that arises below and above the GUT

scale in the SO(10)×A4 model in chapter 3. Above the GUT scale, I study how flavor

violation gets linked with the fitting of fermion masses and mixing through the factors

T1, T2, and T3. The requirement of top Yukawa coupling being ∼ 0.5 necessitates

some of these factors to be large. Consequently, this corresponds to an order one

mixing of the light fields with the exotic heavy fields. In this case, flavor violation is

reintroduced at the GUT scale when A4 symmetry is broken. The stringent constraint

on the µ → eγ decay rate requires a high degree of degeneracy of the soft quadratic

masses of the exotic heavy fields and the light fields. Therefore, all the quadratic soft

masses are assumed to be universal at the scale M∗ ∼ 3MGUT . Flavor violation is also
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induced below the GUT scale in the presence of right handed neutrinos through the

RG running from MGUT to the right handed neutrino mass scales. This FV source is

predicted by the SO(10) × A4 model because the Dirac neutrino Yukawa couplings

are determined from the fermion masses and mixing fitting. Combining all sources

of FV, we found that the choice of the slepton masses of order 1 TeV is associated

with a µ → eγ decay rate close to the current experimental bound. This choice is

consistent with the correct fitting for the fermion masses and mixing as well as with

the Yukawa couplings being perturbative at M∗.

In the last part of this thesis, I present the work done in collaboration with my

advisor Prof. K. S. Babu. In this work we have constructed the superpotential for

the 5 + 5 and 10 + 10 models by employing U(1) flavor symmetry of the Froggatt-

Nielsen mechanism. The assigned symmetry for both models allows messenger-matter

couplings. These couplings enhance the lightest Higgs mass of the MSSM. We have

shown by allowing the messenger-matter mixing in the 10+10 model that the lightest

Higgs mass can be increased up to 125 GeV with the lightest stop mass around 1 TeV.

The value of 125 GeV is the upper limit allowed by the leading 1 and 2-loop order

corrections to the lightest CP even Higgs boson of the MSSM when Mpole
t = 175

GeV. We also found, consistent with cosmology preference, that the lightest Higgs

mass can go up to 121 GeV with the scalar mass spectra below 1 TeV. Introducing

messenger-matter couplings in the 10 + 10 model has also the advantage of obtaining

all the scalar mass spectrum below 1 TeV with mh ∼ 118 even at the messenger scale

close to the effective SUSY breaking scale Λ. This advantage is not available in the

ordinary GMSB when the messenger scale close to Λ. These results are consistent

with the gauge coupling being perturbative and unified at the the GUT scale and

with the exotic Yukawa couplings being unified at the GUT scale as well as with the

FCNC processes being suppressed in agreement with experimental bounds.
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APPENDIX A

Diagonalization of Fermion Mass Matrix

A.1 Derivation of the Light Fermion Mass Matrix

In order to block-diagonalize the mass matrix of Wspin. of Eq(3.1), we define the new

orthogonal basis as Y = UX, where Y(X) is the column matrix that contains the

new(old) eigenstates and U is the 5 × 5 orthogonal matrix (i.e UT U = UUT = I).

These matrices are given by:




L2

L3

H1

H2

H3




=




−N1 0 0 N1sθT2 0
fN1cθsθT 2

2
rF

− f
N1rF

fT1
N1rF

fN1cθT2
rF

− fQF T1T3
N1rF

0 0 GF QF T3 0 GF

N2sθT2 N2cθT2 0 N2 0
fN2cθsθT 2

2 T1
GF rF

− fN2T1
N2

1 GF rF
− fGF

N2rF

fN2cθT2T1
GF rF

fQF GF T3
N2rF







ψ2

ψ3

χ1

χ2

χ3




, (A.1)

where N1 = 1/
√

1 + T 2
2 s2

θ, N2 = 1/
√

1 + T 2
2 , GF = 1/

√
1 + T 2

3 Q2
F , f = (1+T 2

2 +T 2
1 (1+

s2
θT

2
2 ))−1/2 , and rF =

√
(1 + Q2

F T 2
3 T 2

1 (1 + s2
θT

2
2 )f 2). The parameters appearing in the

above matrix are assumed to be real. Define ei, Ei, Ec
i, gi, g′i, g′′i , and g′′′i to be the

charge (−1) leptons in the ψi, χi, χi, φi, φ′i, φ′′i , and φ′′′i , respectively; and define ec
i , Ec

i ,

Ei, gc
i , g′ci , g′′ci , and g′′′ci to be the charge (+1) antileptons in the same representations.

By writing the old eigenstates appearing in the superpotential (Wspin + Wvect) of

Eqs.(3.1) and (3.2) in terms of the new ones, and restricting attention to the electron-
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type leptons, one gets a 21× 21 mass matrix:

Wmass =
(

ec
i Ec

α Eα gc
i g′ci g′′ci g′′′ci

)



m0 m

M ′ M







ei

Eα

Ec
α

gi

g′i

g′′i

g′′′i




, (A.2)

where,

m0 =




0 0 0

0 0 −afvdQesθT1T2T3

re

0 −afvdQecsθT1T2T3

rec
−af2vd(Qe+Qec )cθT1T2T3

rerec




.

The matrices M ′, m and M can be written in the compact form as

M ′ =




M ′
11

0


 , (A.3)

mT =




m11

0


 , (A.4)

M =
(

M11 M12 M13

)
, (A.5)
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where

M ′
11 =




0 aN1vdGecsθT2
afN1vdGeccθT2

re

0 0 −afN2vdQeT1T3

N1re

0 afN1vdGecQecsθT2T3

N2rec

af2vdcθ(N2
1 G2

ecQec−N2
2 QeT 2

1 )T2T3

N1N2Gecrerec

0 0 0

0 0 0

0 0 0

b3v1 0 0

0 −b3N1v1
b3fN1v1sθcθT 2

2

re

0 0 − b3fv1

N1re




,

m11 =




0 aN1vdGesθT2
afN1vdcθGeT2

rec

0 0 −afN2vdQecT1T3

N1rec

0 afN1vdGeQesθT2T3

N2re

af2vdcθ(N2
1 G2

eQe−N2
2 QecT 2

1 )T2T3

N1N2Gererec

0 0 0

0 0 0

0 0 0

b3v5 0 0

0 −b3N1v5
b3fN1v5cθsθT 2

2

rec

0 0 − b3fv5

N1rec




,
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M11 =




0 aN2vdGec
afN2vdGec cθT1T2

Gere
M1GecQecT3

aN2vdGe 0 afvdGeQeT3
re

M1N2cθT1T2

afN2vdGecθT1T2
Gec rec

afvdGec Qec T3
rec

af2vd(G2
eQe+G2

ec Qec)cθT1T2T3

GeGec rerec
− fM1(N2

1 G2
ec+N2

2 T 2
1 )

N2
1 N2Gec rec

M1GeQeT3 M1N2cθT1T2 − fM1(N2
1 G2

e+N2
2 T 2

1 )
N2

1 N2Gere
0

0 M2
N2

0 0

M3
Ge

0 0 0

0 0 0 0

0 b3N2v1sθT2
b3fN2v1sθcθT1T 2

2
Gere

0

0 b3N2v1cθT2 − b3fN2v1T1
N2

1 Gere
0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




,
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M12 =




0 M3
Gec

0 0 0 0 0

M2
N2

0 0 b3N2v5sθT2 b3N2v5cθT2 0 0

0 0 0 b3fN2v5sθcθT1T 2
2

Gec rec
− b3fN2v5T1

N2
1 Gec rec

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 M10 0

0 0 0 0 0 0 M10

0 0 0 0 0 0 0

0 0 M10 0 0 0 hε3

0 0 0 M10 0 hε3 0

0 0 0 0 M10 hε2 hε1

0 0 0 0 0 0 A2γ3

0 0 0 0 0 A1γ3 0

0 0 0 0 0 A2γ2 A1γ1

0 0 0 0 0 k2ΩQe 0

0 0 0 0 0 0 k2ΩQe

0 0 0 0 0 0 0




,
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and

M13 =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

M10 0 0 0 0 0 0

hε2 0 A1γ3 A2γ2 −k2ΩQe 0 0

hε1 A2γ3 0 A1γ1 0 −k2ΩQe 0

0 A1γ2 A2γ10 0 0 −k2ΩQe

A1γ2 0 0 0 m 0 0

A2γ1 0 0 0 0 m 0

0 0 0 0 0 0 m

0 m 0 0 0 0 0

0 0 m 0 0 0 0

k2ΩQe 0 0 m 0 0 0




.

Here v1 = 〈1(16H)〉, v5 = 〈5(16H)〉, vd = 〈5(10H)〉, sθ ≡ sin θ and cθ ≡ cos θ. The

above 21× 21 mass matrix may be block-diagonalized as follows [32]:

UR




m0 m

M ′ M


 U †

L =




(m0 −mM−1M ′)(1 + y†y)−1/2 0

0 (MM† + M ′M ′†)


 , (A.6)

where

UR =




I (m0M
′† + mM†)(MM† + M ′M ′†)−1

(MM† + M ′M ′†)−1(m†
0M

′ + m†M) I


 , (A.7)

and

UL =




(1 + y†y)−1/2 0

0 (MM† + M ′M ′†)−1/2







I −y†

M ′ M


 . (A.8)

Here y = M−1M ′. Terms of order (MWeak/MGUT )2 have been dropped. Then the

3×3 light fermion mass matrix of charged leptons in Eq.(3.5) is obtained by applying
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the relation in the left upper block of the matrix in the Eq.(A.6), where the factor

(1 + y†y)−1/2 is close to identity for small mixing between the ψi and the 10-plet

vectors. Similarly, one can obtain the down-type quark mass matrix. The parameters

appearing in Eq.(3.5) are defined as follows:

ζ = c13 + δ2
3 + 2α

5
, (A.9)

β = c23 − δ1
3 + 2α

5
, (A.10)

s =
5sθ

f(2 + 3α)cθ

, (A.11)

c12 =
b2
3hN1v1v5ε3

af 2vdcθM2
10(Qe + Qec)T1T2T3

, (A.12)

δ3 =
(A1 − A2)b

2
3k2N1v1v5γ3Ω

af 2mvdcθM2
10 (Qe + Qec) T1T2T3

, (A.13)

c13 =
b2
3hv1v5 (ε2 −N2

1 ε3cθsθT
2
2 )

afN1vdcθM2
10 (Qe + Qec) T1T2T3

, (A.14)

δ2 =
(A1 − A2)b

2
3k2v1v5Ω (γ2 + N2

1γ3cθsθT
2
2)

afmN1vdcθM2
10 (Qe + Qec) T1T2T3

, (A.15)

c23 =
−b2

3hv1v5ε1

afvdcθM2
10(Qe + Qec)T1T2T3

, (A.16)

δ1 =
(−A1 + A2)b

2
3k2v1v5γ1Ω

afmvdcθM2
10 (Qe + Qec) T1T2T3

. (A.17)

The above parameters are written in terms of the Yukawa couplings and the VEVs

of the Higgs fields appearing in the superpotentials Wspin and Wvect. in Eqs.(3.1) and

(3.2). The parameters γ1, γ2 and γ3 appearing in the above Eqs.(A.13), (A.15) and

(A.17) are the VEV components of the Higgs singlet 1′′H .

A.2 Light Neutrino Mass Matrix

The neutrino mass matrix can be obtained from the superpotentials given by Eqs.(3.1)

and (3.6). For simplicity, the contribution from the superpotential Wvect. in Eq.(3.2)

is ignored by assuming the coupling of the ordinary spinor fields 16i with the vector

multiplets is small. Define the right- and left-handed neutrinos, denoted respectively

by (νc
i and νi), residing in ψi. Similarly, νc

χi
and νχi

(νc
χi

and νχi
) reside in χi(χi),
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where i runs from 1 to 3. Including the six singlets denoted by Zi and Zc
i , one can

construct 24× 24 mass matrix written in the following compact form

Wmass = NT




0 MD

MT
D MR


 N, (A.18)

where

NT =
(

νi νχi
νc

χi
νc

i νc
χi

νχi
Zi Zc

i

)
, (A.19)

and

MT
D =




0

C

0




, (A.20)

where

C =




0 0 −afvuQνsθT1T2T3

rν

0 −afvuQνcsθT1T2T3

rνc
−af2vucθ(Qν+Qνc)T1T2T3

rνrνc

0 aN1vuGνcsθT2
afN1vucθGνcT2

rν

0 0 −afN2vuQνT1T3

N1rν

0 afN1vuGνcQνcsθT2T3

N2rνc

af2vucθ(N2
1 G2

νcQνc−N2
2 QνT 2

1 )T2T3

N1N2Gνcrνrνc




.

The matrix MR can be written in the compact form

MR =
(

MR11 MR12 MR13 MR14

)
, (A.21)

where the matrices MR11, MR12, MR13, and MR14 are given respectively by

107






0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

aN1vuGνsθT2 0 afN1vuGνQνsθT2T3
N2rν

0

afN1vucθGνT2
rνc

−afN2vuQνc T1T3
N1rνc

af2vucθ(N2
1 G2

νQν−N2
2 Qνc T 2

1 )T2T3

N1N2Gνrνrνc
0

0 aN2vuGνc
afN2vucθGνc T1T2

Gνrν
M1GνcQνcT3

aN2vuGν 0 afvuGνQνT3
rν

M1N2cθT1T2

afN2vucθGνT1T2
Gνc rνc

afvuGνc Qνc T3
rνc

af2vucθ(G2
νQν+G2

νc Qνc)T1T2T3

GνGνc rνrνc
− fM1(N2

1 G2
νc+N2

2 T 2
1 )

N2
1 N2Gνc rνc

M1GνQνT3 M1N2cθT1T2 − fM1(N2
1 G2

ν+N2
2 T 2

1 )
N2

1 N2Gνrν
0

0 M2
N2

0 0

M3
Gν

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




,
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


0 0 0 aN1vuGνsθT2
afN1vucθGνT2

rνc
0

0 0 0 0 −afN2vuQνc T1T3
N1rνc

aN2vuGνc

0 0 0 afN1vuGνQνsθT2T3
N2rν

af2vucθ(N2
1 G2

νQν−N2
2 Qνc T 2

1 )T2T3

N1N2Gνrνrνc

afN2vucθGνc T1T2
Gνrν

0 0 0 0 0 M1GνcQνcT3

0 0 0 0 0 0

0 0 0 0 0 M3
Gνc

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 M3
Gνc

0 0 0 0

M2
N2

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 vb4 0 0 0

0 0 0 −N1vb4
fN1vb4cθsθT 2

2
rν

0

0 0 0 0 − fvb4
N1rν

0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,
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


aN2vuGν
afN2vucθGνT1T2

Gνc rνc
M1GνQνT3 0 M3

Gν
0

0 afvuGνc Qνc T3
rνc

M1N2cθT1T2
M2
N2

0 0

afvuGνQνT3
rν

af2vucθ(G2
νQν+G2

νc Qνc)T1T2T3

GνGνc rνrνc
− fM1(N2

1 G2
ν+N2

2 T 2
1 )

N2
1 N2Gνrν

0 0 0

M1N2cθT1T2 − fM1(N2
1 G2

νc+N2
2 T 2

1 )
N2

1 N2Gνc rνc
0 0 0 0

M2
N2

0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 vb4

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

N2vb4sθT2
fN2vb4cθsθT1T 2

2
Gνrν

0 0 0 0

N2vb4cθT2 − fN2vb4T1
N2

1 Gνrν
0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 cα3

0 0 0 0 0 cα2




,
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


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−N1vb4 0 0 0 0
fN1vb4cθsθT 2

2
rν

− fvb4
N1rν

0 0 0

0 0 0 0 0

N2vb4sθT2 N2vb4cθT2 0 0 0
fN2vb4cθsθT1T 2

2
Gνrν

− fN2vb4T1
N2

1 Gνrν
0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 cα3 cα2

0 0 cα3 0 cα1

0 0 cα2 cα1 0

cα3 cα2 m1 0 0

0 cα1 0 m1 0

cα1 0 0 0 m1




. (A.22)

The light neutrino mass matrix is given by the seesaw formula as fellows

Mν = MDM−1
R MT

D = λ




0 0 0

0 κ η

0 η 1




, (A.23)

where

λ =
Λa2c2f 2v2

dT
2
1 T 2

2 ((α2
1 + α2

3) Q2
νr

2
νcs2

θ + 2N2
1 α2α3cθQνrνcsθ ((Qν + Qνc) rν

m1N2
1 v2b2

4r
2
νr

2
νc

+
Qνrνcs2

θT
2
2 ) + N4

1 (α2
1 + α2

2) c2
θ ((Qν + Qνc) rν + Qνrνcs2

θT
2
2 ) 2) T 2

3

m1N2
1 v2b2

4r
2
νr

2
νc

,

η =
N2

1 Qνcr2
νsθ (α2α3Qνrνcsθ + N2

1 (α2
1 + α2

2) cθ ((Qν + Qνc) rν + Qνrνcs2
θT

2
2 ))

f(A + B)
,
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κ =
N4

1 (α2
1 + α2

2) Q2
νcr4

νs
2
θ

f 2(A + B)
. (A.24)

Here the numerical values of α1, α2, α3 and λ are given in section 2, and we have

defined

A =
(
α2

1 + α2
3

)
Q2

er
2
ecs2

θ + 2N2
1 α2α3cθQerecsθ

(
(Qe + Qec) re + Qerecs2

θT
2
2

)
,

B = N4
1

(
α2

1 + α2
2

)
c2
θ

(
(Qe + Qec) re + Qerecs2

θT
2
2

)
.
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APPENDIX B

RGE from the Scale M∗ to the GUT Scale in the SO(10)× A4 Model

Neglecting all the couplings in the superpotential Wvector, since they do not contribute

to the top Yukawa coupling, we present only the RGEs that are needed to find the

parameter σ at the GUT scale. The one-loop RGE’s of the unified gauge (gG) cou-

pling, the couplings appearing in Wspinor, and the trilinear soft terms associated with

Wspinor between the scale M∗ and GUT scale are

16π2dgG

dt
= 19g3

G, (B.1)

16π2db1

dt
= b1(20b2

1 + b2
2 − 45g2

G), (B.2)

16π2db2

dt
= b2(20b2

2 + b2
1 − 45g2

G), (B.3)

16π2da

dt
= a(18a2 − 63

2
g2

G), (B.4)

16π2db̃1

dt
= 2(20b2

1b̃1 + b2
2b̃2 + 45g2

GMλ), (B.5)

16π2db̃2

dt
= 2(20b2

2b̃2 + b2
1b̃1 + 45g2

GMλ), (B.6)

16π2dã

dt
= 28ãa2 + 63g2

GMλ. (B.7)

The RGE’s soft mass terms for the fields appearing in Wspinor are given below:

16π2dm̃2
ψi

dt
= 2b2

1(m̃
2
ψi

+ m̃2
χ1

+ m̃2
1Hi

+ b̃2
1)

+ 2b2
2(m̃

2
ψi

+ m̃2
χ2

+ m̃2
1′Hi

+ b̃2
2)− 45g2

GM2
λ , (B.8)

16π2
dm̃2

χ1

dt
= 6b2

1(m̃
2
ψi

+ m̃2
χ1

+ m̃2
1Hi

+ b̃2
1)− 45g2

GM2
λ , (B.9)

16π2
dm̃2

χ2

dt
= 6b2

2(m̃
2
ψi

+ m̃2
χ2

+ m̃2
1′Hi

+ b̃2
2)− 45g2

GM2
λ , (B.10)

16π2
dm̃2

1Hi

dt
= 32b2

1(m̃
2
ψi

+ m̃2
χ1

+ m̃2
1Hi

+ b̃2
1), (B.11)
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16π2
dm̃2

1′Hi

dt
= 32b2

2(m̃
2
ψi

+ m̃2
χ2

+ m̃2
1′Hi

+ b̃2
2), (B.12)

16π2
dm̃2

χ2,3

dt
= 10a2(m̃2

χ2
+ m̃2

χ3
+ m̃2

10H
+ ã2)− 45g2

GM2
λ , (B.13)

16π2dm̃2
10H

dt
= 16a2(m̃2

χ2
+ m̃2

χ3
+ m̃2

10H
+ ã2)− 36g2

GM2
λ . (B.14)

Here m̃2
1Hi

, m̃2
1′Hi

and m̃2
10H

are the quadratic soft masses for the Higgs superfields

appearing in Wspin defined in Eq.(3.1) and the quadratic soft masses m̃2
ψi

, m̃2
χ1,2

, and

m̃2
χ1,2

are defined in Eq.(3.10).
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APPENDIX C

Yukawa Couplings RGEs

C.1 MSSM with 5 + 5 Messenger Fields

Here we derive the ordinary Yukawa couplings and the exotic Yukawa couplings ap-

pearing in Eq(4.30) between the messenger scale and the GUT scale:

dg2
3

dt
=

−g4
3

4π2
,

dg2
2

dt
=

g4
2

4π2
,

dg2
1

dt
=

19g4
1

20π2
,

dλ2
t

dt
=

λ2
t

8π2
[6λ2

t + λ2
b + λ

′2
b −

16

3
g2
3 − 3g2

2 −
13

15
g2
1],

dλ2
b

dt
=

λ2
b

8π2
[6λ2

b + λ2
t + λ2

τ + λ
′2
τc + 4λ

′2
b −

16

3
g2
3 − 3g2

2 −
7

15
g2
1],

dλ2
τ

dt
=

λ2
τ

8π2
[4λ2

τ + 3λ2
b + 3λ

′2
τc + 3λ

′2
b − 3g2

2 −
9

5
g2
1],

dλ
′2
b

dt
=

λ
′2
b

8π2
[6λ

′2
b + 4λ2

b + λ
′2
τc + λ2

t + λ2
τ + f 2

d −
16

3
g2
3 − 3g2

2 −
7

15
g2
1],

dλ
′2
τc

dt
=

λ
′2
τc

8π2
[4λ

′2
τc + 3λ2

b + 3λ
′2
b + 3λ2

τ + f 2
e − 3g2

2 −
9

5
g2
1],

df 2
d

dt
=

f 2
d

8π2
[5f 2

d + 2f 2
e + 2λ

′2
b −

16

3
g2
3 −

4

15
g2
1],

df 2
e

dt
=

f 2
e

8π2
[4f 2

e + 3f 2
d + λ

′2
τc − 3g2

2 −
3

5
g2
1],
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C.2 MSSM with 10 + 10 Messenger Fields

Here we write only the RGEs for Yukawa couplings that are not suppressed by the

parameter ε between two scales, the messenger and the GUT scale.

dg2
3

dt
= 0,

dg2
2

dt
=

g4
2

4π2
,

dg2
1

dt
=

3g4
1

5π2
,

dλ2
t

dt
=

λ2
t

8π2
[6λ2

t + λ2
b + 4λ

′2
tc + 5λ

′2
t + 3λ

′2
m −

16

3
g2
3 − 3g2

2 −
13

15
g2
1],

dλ2
b

dt
=

λ2
b

8π2
[6λ2

b + λ2
t + λ2

τ + λ
′2
tc −

16

3
g2
3 − 3g2

2 −
7

15
g2
1],

dλ2
τ

dt
=

λ2
τ

8π2
[4λ2

τ + 3λ2
b − 3g2

2 −
9

5
g2
1],

dλ
′2
m

dt
=

λ
′2
m

8π2
[6λ

′2
m + 4λ

′2
t + 5λ

′2
tc + 3λ2

t + f 2
Q + f 2

uc − 16

3
g2
3 − 3g2

2 −
13

15
g2
1],

df 2
ec

dt
=

f 2
ec

8π2
[3f 2

ec + 6f 2
Q + 3f 2

uc − 16

3
g2
3 − 3g2

2 −
12

5
g2
1],

df2
uc

dt
=

f 2
uc

8π2
[3f 2

uc + 6f 2
Q + f 2

ec + 2λ
′2
tc + 2λ

′2
m −

16

3
g2
3 −

16

15
g2
1],

df 2
Q

dt
=

f 2
Q

8π2
[8f 2

Q + 3f 2
uc + f 2

ec + λ
′2
t + λ

′2
m −

16

3
g2
3 − 3g2

2 −
1

15
g2
1],

dλ
′2
t

dt
=

λ
′2
t

8π2
[6λ

′2
t + 3λ

′2
tc + 5λ2

t + 4λ
′2
m + f 2

Q −
16

3
g2
3 − 3g2

2 −
13

15
g2
1],

dλ
′2
tc

dt
=

λ
′2
tc

8π2
[6λ

′2
tc + 3λ

′2
t + 4λ2

t + 5λ
′2
m + λ2

b + f 2
uc − 16

3
g2
3 − 3g2

2 −
13

15
g2
1].
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APPENDIX D

Generated Scalar Masses due to Messenger-Matter Mixing

In this Appendix we will present the generated soft mass terms due to messenger-

matter mixing by employing the following expressions: [65]

δm̃2
Q(Mmess) = −1

4
{∑

λ

(
d∆γ

dλ
β>[λ]− dγ<

dλ
∆β[λ]) + [γ>, γ<]}Λ2, (D.1)

δAabc(Mmess) =
1

2
(λa′bc∆γa′

a + λab′c∆γb′
b + λabc′∆γc′

c )Λ, (D.2)

for both 5 + 5 and 10 + 10 model. Where the sum is over the ordinary and exotic

Yukawa couplings, ∆β[λ(Mmess)] = β>[λ(Mmess)] − β<[λ(Mmess)], and ∆γ(Mmess) =

γ>(Mmess)−γ<(Mmess). Here γ>(γ<) is the anomalous dimension above (below) Mmess

and β[λ] is the beta function for Yukawa coupling λ.

D.1 5 + 5 Model

Let us write the ∆γ(Mmess) for the quark doublet Q3, right-handed electron ec
3 and

down Higgs doublet as follows:

∆γQ33(Mmess) = − λ
′2
b

8π2
, (D.3)

∆γec
33

(Mmess) = −2
λ
′2
τc

8π2
, (D.4)

∆γHd
(Mmess) = −3λ

′2
b + λ

′2
τc

8π2
. (D.5)

The anomalous dimensions for left-handed down quarks and right-handed electrons

below Mmess are given respectively by

γQij<(Mmess) = −Y u
kiY

u
kj + Y d

kiY
d
kj − (8/3)g2

3 − (3/2)g2
2 − (1/30)g2

1

8π2
, (D.6)

γec
ij<(Mmess) = −2Y e

ikY
e
jk − (3/10)g2

1

8π2
, (D.7)
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where

Y u =




Y u
11ε

8 Y u
12ε

6 Y u
13ε

4

Y u
21ε

6 Y u
22ε

4 Y u
23ε

2

Y u
31ε

4 Y u
32ε

2 Y u
33




, (D.8)

Y d = εp




Y d
11ε

5 Y d
12ε

3 Y d
13ε

Y d
12ε

4 Y d
22ε

2 Y d
23

Y d
13ε

4 Y d
23ε

2 Y d
33




, (D.9)

Y e = εp




Y e
11ε

5 Y e
12ε

4 Y e
13ε

4

Y e
12ε

3 Y e
22ε

2 Y e
23ε

2

Y e
13ε Y e

23 Y e
33,




, (D.10)

By keeping only the leading term of the expansion parameter ε, we calculate

∆βY u
33

(Mmess) =
Y u

33

16π2
λ
′2
b , (D.11)

∆βY e
12,22,13,23

(Mmess) =
Y e

12,22,13,23

16π2
(λ

′2
τc + 3λ

′2
b ), (D.12)

∆βY e
32,33

(Mmess) = 3
Y e

32,33

16π2
(λ

′2
τc + λ

′2
b ). (D.13)

The beta-functions for λ′b and λ′τc above Mmess are given respectively by

βλ′
b
>(Mmess) =

λ′b
16π2

(6λ
′2
b + λ

′2
e + (Y u

33)
2 − 16

3
g2
3 − 3g2

2 −
7

15
g2
1), (D.14)

βλ′
τc>(Mmess) =

λ′τc

16π2
(4λ

′2
τc + 3λ

′2
b −

16

3
g2
3 − 3g2

2 −
7

15
g2
1). (D.15)

Note that [γ>, γ<] = [∆γ, γ<]. Plugging Eqs.(D.3-D.15) into Eqs.(D.1,D.2) and keep-

ing only the leading expansion parameter ε we obtain

δm̃2
ec ∼ δm̃2

ec
3




ε8+2p ε6+2p ε4+2p

ε6+2p ε4+2p ε2+2p

ε4+2p ε2+2p 1




, (D.16)

δAe ∼ Λεp

(16π2)




ε5 ε4 ε4

ε3 ε2 ε2

ε1 (3λ
′2
b + λ2

τc) 3(λ
′2
b + λ2

τc)




, (D.17)
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δAd ∼ δAbε
p




ε3 ε ε

ε4 ε2 1

ε4 ε2 1




, (D.18)

δm̃2
Q ∼ δm̃2

Q3




0 0 ε4

0 0 ε2

ε4 ε2 1




, (D.19)

δAt =
Λ2

2(16π2)2
Y u

33λ
′2
b , (D.20)

where δm̃2
ec
3

, δm̃2
Q3

and δAb are given respectively by Eq. (4.11), Eq. (4.10) and

Eq. (4.14).

D.2 10 + 10 Model

By looking at the superpotential W10+10 in Eq(4.35), we can write ∆γQ, ∆γuc and

∆γHu as

∆γQ(Mmess) =
−1

8π2




λ
′2
ucε8 λ′ucλ′ccε6 λ′ucλ′tcε

4

λ′ucλ′ccε6 λ
′2
ccε4 λ′tcλ

′
ccε2

λ′ucλ′tcε
4 λ′tcλ

′
ccε2 λ

′2
tc




, (D.21)

∆γuc(Mmess) =
−1

8π2




2λ
′2
u ε8 2λ′uλ

′
cε

6 2λ′uλ
′
tε

4

2λ′uλ
′
cε

6 2λ
′2
c ε4 2λ′tλ

′
cε

2

2λ′uλ
′
tε

4 2λ′tλ
′
cε

2 2λ
′2
t




, (D.22)

∆γHu(Mmess) =
−3(λ

′2
t + λ

′2
tc + λ

′2
m)

8π2
. (D.23)

The beta-functions for the exotic Yukawa couplings appearing in the above matrices

above messenger scale are

βλ′
uc,cc>(Mmess) =

λ′uc,cc

16π2
(5λ

′2
m + 3λ

′2
tc + 3λ

′2
t −

16

3
g2
3 − 3g2

2 −
13

15
g2
1) (D.24)
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βλ′
tc

>(Mmess) =
λ′tc

16π2
(5λ

′2
m + 6λ

′2
tc + 3λ

′2
t + 4(Y u

33)
2

− 16

3
g2
3 − 3g2

2 −
13

15
g2
1), (D.25)

βλu,c>(Mmess) =
λu,c

16π2
(4λ

′2
m + 3λ

′2
tc + 3λ

′2
t −

16

3
g2
3 − 3g2

2 −
13

15
g2
1), (D.26)

βλ′t>(Mmess) =
λ′t

16π2
(4λ

′2
m + 6λ

′2
t + 3λ

′2
tc + 5(Y u

33)
2

− 16

3
g2
3 − 3g2

2 −
13

15
g2
1). (D.27)

The anomalous dimensions γQ< are given by Eq. (D.6) and for right-handed up

quarks they are given by

γuc
ij<(Mmess) = −2Y u

ikY
u
jk − (16/6)g2

3 − (8/15)g2
1

8π2
, (D.28)

and

∆βY u
13,23

(Mmess) =
Y u

13,23

16π2
(3λ

′2
m + 4λ

′2
tc + 3λ

′2
t ), (D.29)

∆βY u
31,32

(Mmess) =
Y u

31,32

16π2
(3λ

′2
m + 3λ

′2
tc + 5λ

′2
t ), (D.30)

∆βY u
33

(Mmess) =
Y u

33

16π2
(3λ

′2
m + 4λ

′2
tc + 5λ

′2
t ). (D.31)

Using Eqs.(D.1,D.2), we obtain

δm̃2
Q ∼ δm̃2

Q3




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1




, (D.32)

δm̃2
uc ∼ δm̃2

uc
3




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1




, (D.33)

δAu ∼ δÃt




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1




, (D.34)
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δAd ∼ δÃb




ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1




, (D.35)

where δm̃2
Q3

, δm̃2
uc
3
, and δÃt, and δÃb are given respectively by Eqs.(4.18, 4.19, 4.21,

4.22).

The coupling λεp510m5d induces scalar quadratic masses for both right-handed

down quarks and left-handed charged leptons and trilinear soft terms (Ad,Ae). These

generated soft terms are obtained by following the same previous steps as:

δm̃2
e ∼ δm̃2

dc ∼ Λ2

2(16π2)2




ε2+4p ε1+4p ε1+4p

ε1+4p ε4p ε4p

ε1+4p ε4p ε4p




, (D.36)

δAe ∼ Λ

2(16π2)




ε5+3p ε4+3p ε4+3p

ε3+3p ε2+3p ε2+3p

ε1+3p ε3p ε3p




, (D.37)

δAd ∼ Λ

2(16π2)




ε5+3p ε3+3p ε1+3p

ε4+3p ε2+3p ε3p

ε4+3p ε2+3p ε3p




. (D.38)
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